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Abstract 1 

 2 

The pink stem borer (Sesamia nonagrioides Lef.) is the main pest of maize (Zea mays L.) in 3 

northwestern Spain. Little is known about combining ability for antibiosis and tolerance to 4 

this pest. Therefore, the objectives of this work was the estimation of general combining 5 

ability (GCA), specific combining ability (SCA) and reciprocal effects (R) for stem damage 6 

traits, yield and yield loss, using a complete diallel of ten inbreds, and to determine the most 7 

useful trait for evaluating the level of defense to pink stem borer. The diallel design was 8 

evaluated for two years for stem damage traits, yield loss, and for yield under two conditions, 9 

infestation with Sesamia nonagrioides and no infestation. For all stem damage traits, general 10 

combining ability was significant, while specific combining ability and reciprocal effects were 11 

not significant. This indicated that, for this set of inbreds, only additive effects were important 12 

for stem antibiosis. GCA and SCA effects were significant, in at least a trial, for yield under 13 

both infestation conditions and for yield loss. R effects were significant for yield of infested 14 

and no infested plants in 1995. The lack of concordance among lines that exhibited the most 15 

favorable GCA effects for stem antibiosis, yield loss, and yield under infestation conditions 16 

and the low correlation coefficient between SCA effects for yield under infestation and no 17 

infestation conditions showed that yield under infestation conditions is the best trait for 18 

evaluating the level of defense against pink stem borer attack. A interpopulational recurrent 19 

selection program for yield under infestation conditions appears as the most efficient program 20 

to improve the defense level against pink stem borer attack. 21 

Key words: Sesamia nonagriodes, stem borer, antibiosis, yield loss, combining ability. 22 

23 



 

 

 

3

Introduction 1 

 2 

Insect pests can cause high yield losses at different fenological stages of maize. The most 3 

important pest of maize in temperate areas of the northern hemisphere is the European corn 4 

borer (Ostrinia nubilalis Hbn), but in southern Europe the pink stem borer also causes 5 

significant damage to maize. Specifically, in the northwest of Spain, the pink stem borer is the 6 

main pest of maize (Cordero et al., 1998). 7 

Sesamia nonagrioides is a tropical moth (Fam. Noctuidae) and temperatures below 8 

0ºC limit the population levels (Galichet, 1982). In most of its area it has two generations per 9 

year, but it can reach even four generations per year. Most of the larvae development takes 10 

places into the maize plant and it can provoke lodging stem, ear drop and direct yield losses, 11 

but Sesamia nonagrioides prefers attacking stems rather than ears (Cordero et al., 1998). The 12 

yield losses could reach up to 30% of yield (Larue, 1984). 13 

One of the most promising methods for controlling an insect pest in the overall context 14 

of integrated pest control is to grow insect resistant cultivars (Ortega et al., 1980; Pathak, 15 

1991). To start a breeding program to increase the level of defense of maize to Sesamia 16 

nonagrioides it is necessary to know the different mechanisms of defense against this insect 17 

and to determine the transmission of each mechanism from the original plants to cultivars 18 

(Pathak, 1991). The mechanisms of defense have been classified into three groups, namely 19 

antixenosis, antibiosis, and tolerance (Painter, 1951). Antixenosis reduces the probability of 20 

contact between parasites and plants. Antibiosis is the ability of the plant to reduce or stop the 21 

growth and/or development of the parasite. Tolerance is the mechanism by which plants 22 

reduce the extent of damage per unit parasite present. Therefore, to detect differences in 23 

tolerance among genotypes it is necessary to determine the amount of yield reduction per unit 24 
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of infection. A tolerant plant could present an elevated injury without showing a proportional 1 

yield loss. 2 

The first step in a breeding program for increasing the level of plant defense to insect 3 

attack is to identify sources of defense mechanisms. Several authors have evaluated stem and 4 

ear antibiosis of maize to the pink stem borer (Anglade, 1961a; Anglade and Bertin, 1968; 5 

Malvar et al., 1993; Cartea et al., 1994; Butrón et al., 1998a, b; Butrón et al., 199-). After 6 

identifying the sources of defense mechanisms, it is necessary to study how they are 7 

transmitted from the original varieties to improved cultivars to design an efficient breeding 8 

program (Pathak, 1991). A study has been carried out to estimate general and specific 9 

combining abilities and reciprocal effects for antibiotic resistance of the ear. It has showed 10 

that specific combining ability (SCA) effects were not important for grain antibiosis to the 11 

pink stem borer (Butrón et al., 1998a). However, there is only one study about transmittability 12 

of stem antibiosis (Anglade and Bertin, 1968). They evaluated the antibiotic resistance to pink 13 

stem borer of inbred lines and their hybrids and concluded that antibiotic resistant lines 14 

transmitted antibiosis to their hybrids. 15 

There is only a work about the three mechanisms of defense against Sesamia 16 

nonagrioides (Butrón et al., 1998b). In this work tolerance was an important mechanism of 17 

defense, since only a small part of the variation of yield loss could be predicted from the level 18 

of antibiosis. This indicated the need of selecting genotypes by a comprehensive measure such 19 

as yield loss that combines antibiosis and tolerance. However, Lynch (1980) showed that the 20 

high yield losses of certain hybrids were compensated by their high potential yield. So, the 21 

evaluation of yield under infestation conditions appears as an important way to estimate the 22 

defense level against insect attack. Therefore, the knowledge about combining ability effects 23 

for yield loss and yield under infestation conditions and about relationship between combining 24 
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ability effects for both traits would allow determine the best strategy to improve tolerance to 1 

pink stem borer 2 

So, the objectives of this work were: i) to estimate GCA, SCA, and R effects for 3 

antibiotic resistance of stem, yield and yield loss, using a complete diallel of ten inbreds, and 4 

ii) to check the relationships among antibiotic resistance, yield loss, and yield under 5 

infestation and no infestation conditions to choose the most useful traits for evaluating the 6 

defense against pink stem borer attack. 7 
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Materials and methods 1 

 2 

Ten maize inbred lines that showed different degrees of resistance to the pink stem borer 3 

attack in a previous study (Butrón et al., 199-) were used as parents of a diallel set of crosses 4 

with reciprocals (Table 1). In 1994, the 90 hybrids were obtained from the diallel design. The 5 

90 F1 single crosses were evaluated with 10 checks in a split-plot where plots were sorted 6 

according to a 10 × 10 simple lattice. The whole plots were genotypes and the subplots were 7 

treatments, namely either infestation with Sesamia nonagrioides or no infestation. The 8 

experiment was carried out in 1995 and 1996 in Pontevedra, in the Atlantic coast of Spain 9 

(42º 25’ N, 4º 57’ W and 20 m above sea level). In 1996, successive granular insecticide 10 

(triclorfon 2.5%) treatments were applied on the no infested subplots to guarantee protection 11 

against pink stem borer attack. Whole plot consisted of two rows and each of them received 12 

randomly one different treatment (infestation or no infestation). 13 

 At silking, corresponding subplots were infested with eggs of the pink stem borer. 14 

Each one of five plants per subplot received a mass of about 40 eggs of Sesamia nonagrioides. 15 

The infestation was made according to Anglade’s technique (Anglade, 1961) with a 16 

modification, eggs were placed between the shank of main ear and the stem, instead of placing 17 

them at the third leaf below the main ear. The rearing method of eggs was described by 18 

Eizaguirre (1989). 19 

 At harvest, yields of infested plants and no infested plants at 140 g Kg
-1

 moisture 20 

content were calculated from the ears of infested and no infested plants, respectively. On the 21 

basis of these yields, the percentage of yield loss was computed as: 22 

 23 

%yield loss = (1 - yield of infested plants/yield of no infested plants) * 100 24 
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 1 

 Stems of infested plants in each plot were dissected. Data were recorded on number of 2 

entry holes, number and length of tunnels, and number of larvae of Sesamia nonagrioides. 3 

Individual analyses of variance were made for stem damage traits and yield loss according to a 4 

lattice design. Repetitions were considered as a random factor and hybrids as a fixed factor. If 5 

the efficiency of the lattice design was not at least 110% of the randomized complete block, 6 

the combined analysis of variance was analyzed as a randomized complete block design. 7 

Combined analysis of variance for yield was computed according to a split-plot design. 8 

In the combined analysis of variance for each trait, the variation due to genotypes was 9 

orthogonally divided into checks, hybrids of diallel, and checks versus hybrids of diallel. 10 

Variation among hybrids of diallel was further partitioned into GCA, SCA, and R effects. 11 

Griffing’s Method 3, Model I (fixed effects) (Griffing, 1956) was used to determine 12 

combining ability and reciprocal effects for antibiotic resistance of stem, yield, and yield loss. 13 

The analyses of the diallel design was made using the program DIALLEL Analysis and 14 

simulation (Burow and Coors, 1994). 15 

The comparisons of means for GCA, SCA, and R effects were carried out by the 16 

Fisher’s least significant difference method. The standard errors for GCA, SCA, R, and 17 

differences among GCA and SCA effects were calculated according to Griffing (1956). 18 

The simple correlation coefficients between GCA and SCA effects for yield under 19 

infestation conditions and yield loss, and between GCA and SCA effects for yield under 20 

infestation and no infestation conditions were calculated. Analysis of variance and simple 21 

correlation coefficients were made with the SAS package (SAS Institute, 1989). 22 

23 
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Results and discussion 1 

 2 

The combined analyses of variance for stem damage traits were made according to a 3 

randomized complete block design because the lattice analyses did not show a significantly 4 

higher efficiency (108, 99, 102 and 109 % for number of holes, number of tunnels, tunnel 5 

length and number of larvae of Sesamia, respectively). 6 

The combined analyses of variance showed significant differences among hybrids of 7 

diallel for number and length of tunnels, and number of larvae of Sesamia (Table 2). For stem 8 

damage traits, there were significant differences among GCA effects and there were not 9 

among SCA and R effects. Then, for stem antibiosis only additive effects were important for 10 

this set of lines as it was already pointed out for grain antibiosis (Butrón et al., 1998a). 11 

Besides, Anglade and Bertin (1968) showed that resistance to Sesamia nonagrioides is 12 

transmitted from inbreds to hybrids. On the other hand, most studies carried out for 13 

determining the genic control of the antibiotic resistance of maize to other pests showed that it 14 

was mainly additive, but with a dominant component (Scott et al., 1964; Chiang et al., 1978; 15 

Jennings et al., 1974; Ortega et al., 1980; Kaan et al., 1983; Pathak and Otieno, 1990; Thome 16 

et al., 1992). In general, the diallel designs made to determine the inheritance of insect 17 

resistance showed significant differences among GCA and SCA (Jennings et al., 1974; Ajala, 18 

1993; Widstrom et al., 1992; Thome et al., 1994) in disagreement with our results, since we 19 

showed that GCA effects were the only significant for stem antibiosis to pink stem borer. For 20 

all stem damage traits, there were neither significant reciprocal effects nor significant 21 

interaction year x reciprocal effects. This means that for the genotypes studied, the 22 

cytoplasmic effects were not important in the inheritance of stem resistance to the pink stem 23 

borer as it has been already pointed out by other authors for the inheritance of corn earworm 24 
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resistance (Widstrom, 1972). However, there are other studies that show the existence of 1 

reciprocal effects for pest resistance (Khalifa and Drolsom, 1988; Widstrom et al., 1992; 2 

Ajala, 1993) and that reciprocal effects are large enough to influence decisions in a breeding 3 

program for corn borer resistance (Khalifa and Drolsom, 1988). There was not any significant 4 

interaction with years, so the genotypes in these trials had a similar behavior across different 5 

environments as it was expected since the evaluations were made in both years under artificial 6 

infestation. Since GCA effects were the only significant, a intrapopulational recurrent 7 

selection program for stem antibiosis would be useful for reducing the stem damage made by 8 

the pink stem borer. 9 

The split-plot combined analysis of variance for yield showed significant differences 10 

between treatments (data not shown), average yield under infestation conditions (7.65 t ha
-1

) 11 

being lower than under no infestation conditions (8.96 t ha
-1

). The existence of significant 12 

interactions hybrids of diallel × treatments and GCA × treatments for yield (data not shown) 13 

was the cause of carrying out the analysis of variance for yield under infestation and no 14 

infestation conditions separately. 15 

The combined analyses of variance for yield under infestation and no infestation 16 

conditions, and yield loss  showed significant differences among GCA effects (Table 2). There 17 

were also significant differences among SCA effects for yield of no infested plants, but not for 18 

yield under infestation conditions and yield loss. The existence of significant interactions SCA 19 

× year for both traits could have masked the differences among SCA effects for yield of 20 

infested plants and yield loss. Reciprocal effects were not significant for both traits. However, 21 

the significant interaction R × year for yield under infestation conditions could be the cause of 22 

the lack of differences among R effects for this trait. Individual analyses for yield under 23 
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infestation and no infestation were computed on account of the significance of these 1 

interactions. 2 

Individual analysis showed significant differences among GCA effects for yield under 3 

infestation and no infestation conditions in both years and for yield loss in 1995 (data not 4 

shown). There were also significant differences among SCA effects for yield of no infested 5 

plants in both years and for yield of infested plants and yield loss in 1996. Reciprocal effects 6 

for yield under infestation and no infestation conditions were only significant in 1995. Then, 7 

additive and dominant effects were present in the inheritance of yield loss and yield under 8 

infestation and no infestation conditions for this set of inbreds. Thome et al. (1994) obtained 9 

similar results studying yield under infestation with Southwestern corn borer (Diatraea 10 

frugiperda Dyar) and protected conditions in a diallel set of crosses among maize inbreds. 11 

Besides, cytoplasmic effects should be considered to improve yield under infestation and no 12 

infestation conditions. 13 

The expression of yield under infestation conditions and yield loss have had an 14 

important environmental component since the interactions SCA × year and R × year were 15 

significant for yield under infestation conditions and the interaction SCA × year was 16 

significant for yield loss. Therefore, in a breeding program to improve the yield under 17 

infestation conditions or reduce yield loss caused by the pink stem borer evaluations should be 18 

made in several environments. 19 

 The inbreds A509 and F7 showed the best GCA effects for number of holes and tunnel 20 

length (Table 3). EP28 and F7 exhibited the most favorable GCA effects for number of 21 

tunnels. Finally, the lines A509, EP28, and F7 showed the most negatives values for the GCA 22 

for the number of larvae of Sesamia. EP42 had significant positive GCA effects for all traits. 23 

The lines A661, CM105, EP28, and PB60 had, in general, GCA effects that did not 24 
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significantly differ from zero. A637 showed unfavorable GCA effects for number of holes and 1 

tunnel length and the hybrids of the line EP31 performed worse than the hybrid mean for 2 

tunnel length. Therefore, the inbreds A509 and F7 were the best general combiners for stem 3 

resistance and EP42 was the worst. 4 

Under both infestation conditions inbreds A637, A661 and CM105 showed favorable 5 

GCA effects for yield, while A509 and EP31 exhibited unfavorable GCA effects (Table 3). 6 

The line A637 did not show favorable GCA effects for the antibiosis of the stem, as it was 7 

pointed out, and of the ear (Butrón et al., 1998a), but its hybrids were as productive under 8 

infestation conditions as those derived from the inbreds A661 and CM105. On the other hand, 9 

the line A509, that transmitted antibiotic resistance to stem attack by the pink stem borer to its 10 

hybrids and that did not show unfavorable GCA effects for yield loss, exhibited a significant 11 

unfavorable GCA effect for yield under infestation and no infestation conditions. Inbred F7 12 

showed good GCA effects for stem antibiosis and yield loss, but did not have significant 13 

favorable GCA effects for yield under infestation conditions because its hybrids, in general, 14 

showed a low yield under no infestation conditions. The low yield loss suffered by these 15 

hybrids did not compensate their low yield under no infestation. So, there were not a good 16 

concordance between stem antibiosis and yield under infestation conditions as it was already 17 

showed between stem antibiosis and yield loss (Butrón et al., 1998b). 18 

The no convenience of using yield loss instead of yield under infestation conditions for 19 

evaluating the defense level against pink stem borer attack was supported by the low simple 20 

correlation coefficient between GCA effects for yield under infestation conditions and those 21 

for yield loss (r = 0.12). Inbreds A661 and CM105, in spite of not showing favorable GCA 22 

effects for yield loss, had good GCA effects for yield under infestation conditions (Table 3). 23 

There was a lack of concordance between the lines that exhibited the most favorable GCA 24 
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effects for yield under infestation conditions and yield loss and a good concordance between 1 

inbreds that showed the best GCA effects for yield of infested plants and no infested plants (r 2 

= 0.90*). These results supported the proposals made by Lynch (1980), since the high yield 3 

under no infestation conditions of certain hybrids compensated the higher yield loss 4 

experimented by them than by others such as those derived from the lines EP28 and F7. 5 

Therefore, it is important to consider yield under infestation conditions for breeding maize 6 

performance to pink stem borer attack as it has already been proposed for other pests (Klenke 7 

et al., 1986; Thome et al., 1994; Anglade et al., 1996). 8 

The hybrid A637 × EP42 had significant favorable SCA effects for yield under 9 

infestation and no infestation conditions in 1995 (Table 4). Besides, we have already pointed 10 

out that the inbred A637 showed a good GCA for yield; then this cross could be used directly 11 

by maize growers due to its high yield under infestation and no infestation conditions. This 12 

hybrid responds to the heterotic pattern “American dent × European flint” suggested as a 13 

interesting heterotic pattern for northwestern Spain conditions (Moreno-González, 1988). The 14 

crosses A637 × PB60 and A661 × F7 exhibited significant favorable SCA effects for yield 15 

under infestation conditions, but their yield performance under no infestation conditions were 16 

not as good as that exhibited by A637 × EP42. There were significant correlation coefficients 17 

between SCA effects for yield under infestation conditions and yield loss (r = -0.75 in 1995 18 

and r = -0.56 in 1996). Therefore, SCA effects for yield under infestation conditions and yield 19 

loss were related. The hybrid A637 × EP42 showed favorable significant SCA effects for both 20 

traits, yield and yield loss under infestation conditions. However, SCA effects for yield under 21 

high infestation conditions were little related with SCA effects for yield under no infestation 22 

conditions (in 1996 the correlation coefficient between SCA effects for yield of infested and 23 
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no infested plants was r = 0.34*). Then, it would no be adequate to use the yield of no infested 1 

plants as a estimation of yield under infestation conditions. 2 

Hybrids A509 × A637, A509 × CM105, A637 × EP31, EP42 × A661, EP28 × CM105, 3 

and Z77016 × CM105 showed values for yield under infestation conditions better than those 4 

of their corresponding reciprocal crosses (Table 4). Therefore, if these crosses are directly 5 

used by maize growers, it will be necessary to use the first line of each cross as the female 6 

parent. 7 

Based on the evidence that additive gene action is the only component of inheritance 8 

of stem antibiosis to Sesamia nonagrioides for this set of inbreds, the lines mentioned by their 9 

good GCA effects could be used as donors of resistance to make a synthetic population that 10 

would respond positively to an intrapopulational recurrent selection program for stem 11 

antibiosis. However, from this study it appears that the high level of yield under no infestation 12 

conditions conferred a better yield performance under infestation conditions, though high 13 

yielding hybrids can suffer higher yield loss and/or higher plant damage. Therefore, breeding 14 

for antibiosis could increase the level of maize defense to Sesamia nonagrioides attack, but at 15 

the end the main criterion of selection to develop genotypes with high level of defense 16 

mechanisms should be yield under infestation conditions (Thome et al., 1994). Since GCA, 17 

SCA, and R effects were significant for yield under infestation conditions, a interpopulational 18 

recurrent selection program for yield under infestation conditions appears as the most efficient 19 

program to take advantage of both additive and dominant genetic effects. 20 
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Table 1. Germplasm description of ten parental inbred lines used for a diallel crossing design 1 

with reciprocals. 2 

 3 

Inbred lines Pedigree Type of germplasm 4 

 5 

A509 A78 x A109 American dent 6 

A637 CO106 x A321 American dent 7 

A661 AS-A American dent 8 

CM105 V3 x B14
2
 American dent 9 

EP28 AS-D American dent 10 

EP31 Silleda European flint 11 

EP42 Tomiño European flint 12 

F7 Lacaune European flint 13 

PB60 Nostrano dell’Isola European flint 14 

Z77016 Z27 x Z36 European flint 15 

 16 
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Table 2. Mean squares combined over years of the pertinent sources of variation for four stem damage traits, yield under infestation (I) and no 1 

infestation (N) with pink stem borer, and yield loss from a diallel with reciprocals of ten inbred lines tested in two years. 2 

 3 

Sources of  Number Number of Tunnel Number of   Yield  Yield 4 

variation df of holes tunnels length larvae of Sesamia I  N loss 5 

 6 

 Hybrids of diallel (H) 89 15,66 1,03 ** 413,61 ** 1,92 ** 4.12 5.90** 254.06 7 

  GCA 9 56,30 ** 3,61 ** 2067,11 ** 8,73 ** 16.29** 32.42** 586.68** 8 

  SCA 35 12,20 0,68 262,24 1,23 4.11 4.68** 295.58 9 

  R 45 10,21 0,79 200,65 1,09 1.70 1.53 155.24 10 

 Years x H 89 12,40 0,64 230,76 1,17 3.16** 1.70* 300.19* 11 

  Years x GCA 9 6,80 0,81 405,00 1,18 2.34 2.32 229.82 12 

  Years x SCA 35 11,25 0,45 153,94 0,91 3.35* 1.39 387.02** 13 

  Years x R 45 14,41 0,75 255,65 1,38 3.20* 1.82 246.74 14 

Error  198
†
 12,92 0,67 270,38 1,36 2.01 1.22 214.35 15 
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*,** Significant at the 5 and 1% level of probability, respectively. 1 

† For yield under no infestation conditions and yield loss, freedom degrees were 178 and, for yield under infestation conditions, they were 177. 2 
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Table 3. GCA estimates for four stem damage traits, yield of infested and no infested plants, and yield loss from a diallel with reciprocals of 1 

ten inbred lines tested in two years. 2 

 3 

    Number of Yield Yield  4 

 Number Number Tunnel larvae of of infested of no infested Yield 5 

Inbred line of holes of tunnels length Sesamia plants plants loss 6 

 7 

A509 -1.2* -0.2 -5.3* -0.4* -0.5* -0.8* -0.9 8 

A637 1.0* 0.0 7.2* -0.1 0.5* 0.6* 0.7 9 

A661 0.4 0.2 -3.0 0.2 0.6* 0.8* 1.3 10 

CM105 -0.7 0.1 -2.5 0.0 0.7* 1.1* 2.5 11 

EP28 -0.5 -0.3* -0.9 -0.5* 0.3 0.0 -3.7* 12 

EP31 0.7 0.2 4.1* 0.2 -0.8* -0.9* 0.1 13 

EP42 1.5* 0.4* 10.0* 0.7* 0.1 0.2 1.1 14 

F7 -1.2* -0.3* -8.2* -0.3* -0.1 -0.7* -6.4* 15 
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PB60 0.5 0.0 1.5 0.3* -0.1 0.4* 4.1* 1 

Z77016 -0.5 -0.1 -2.9 -0.1 -0.6* -0.6* 1.3 2 

LSD (5%) 1.2 0.2 5.7 0.4 0.5 0.4 5.1 3 

 4 

* GCA estimate differed significantly from zero. 5 
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Table 4. Specific combining ability (SCA) and reciprocal effects (R) of diallel crosses among 1 

ten inbred lines for maize yield under infestation (I) and no infestation (N) conditions and for 2 

yield loss in 1995 and 1996. 3 

 4 

   1995     1996 5 

   SCA  R   SCA  R 6 

  Yield  Yield Yield  Yield  Yield Yield 7 

 I  N loss I  N I  N loss I  N 8 

 9 

A509 × A637 -0.10 0.10 3.2 2.32* 1.82* 0.56 -0.43 -9.8 -0.41 -0.19 10 

A509 × A661 -0.13 0.04 2.0 -0.09 -0.25 -0.75 -1.34* -4.2 0.25 0.18 11 

A509 × CM105 0.81 0.47 -4.7 1.53* 0.43 -0.60 0.19 8.9 -0.91 -0.48 12 

A509 × EP28 -0.49 -0.10 5.2 0.78 0.59 -0.04 0.31 2.0 0.28 -0.85 13 

A509 × EP31 0.66 0.00 -10.4 0.94 0.24 0.18 0.19 -1.5 -0.39 0.25 14 

A509 × EP42 0.36 0.47 1.1 -1.49 -1.03 -0.51 -0.21 4.0 0.79 0.36 15 

A509 × F7 -0.97 0.02 12.3 0.77 0.69 1.02 0.94 -2.8 -0.32 0.28 16 

A509 × PB60 -0.37 -0.68 -2.2 0.40 0.65 0.00 -0.42 -1.5 -0.43 -0.81 17 

A509 × Z77016 0.22 -0.32 -6.4 -1.41 -0.72 0.14 0.77 4.9 -0.16 0.38 18 

A637 × A661 -0.36 0.00 2.7 -1.07 0.27 -0.37 0.27 5.0 0.12 -0.22 19 

A637 × CM105 -2.70* -0.98 20.8 -0.37 -0.71 -0.03 -0.22 -1.0 0.15 0.69 20 

A637 × EP28 -0.32 -0.65 -4.7 -0.37 0.36 -1.15 -1.03* 2.6 1.04 0.46 21 

A637 × EP31 -0.79 -0.31 10.7 1.74* 0.77 0.04 -0.01 2.0 -1.42 -1.30 22 

A637 × EP42 2.66* 1.65* -13.1 0.14 -0.13 0.97 -0.59 -14.5*-0.78 -0.09 23 



 24

A637 × F7 -0.17 0.41 6.7 1.06 0.13 -0.14 0.51 6.2 0.55 0.38 1 

A637 × PB60 1.39* 0.49 -12.1 1.07 -0.30 -0.26 0.86 7.7 0.68 -0.54 2 

A637 × Z77016 0.40 -0.72 -14.2 0.57 0.20 0.36 0.65 1.7 0.98 0.09 3 

A661 × CM105 1.02 0.15 -10.1 0.62 0.18 -0.15 -0.64 -3.0 -0.11 0.72 4 

A661 × EP28 -1.02 -1.79* -8.3 0.45 0.95 -0.04 -1.17* -10.3 -0.06 -0.56 5 

A661 × EP31 -1.27 -1.21* 6.5 -0.59 -0.52 0.58 -0.58 -10.0 -0.16 0.01 6 

A661 × EP42 -0.45 0.44 8.7 -1.89* -1.37* -0.25 1.36* 13.4*-0.09 -0.23 7 

A661 × F7 1.51* 1.26* -3.6 -0.67 -0.62 0.88 0.88 -0.2 0.30 0.09 8 

A661 × PB60 0.72 1.00* -0.1 0.06 0.94 -0.45 0.78 10.7 0.44 0.89 9 

A661 × Z77016 -0.01 0.10 2.3 0.65 -0.17 0.55 0.45 1.5 -0.26 0.25 10 

CM105 × EP28 0.55 0.27 -1.6 -2.13* -1.07 0.51 -0.08 -7.1 0.63 0.17 11 

CM105 × EP31 -0.92 -0.48 5.7 -0.34 -0.55 0.32 -1.72* -22.4*-0.14 -0.75 12 

CM105 × EP42 0.04 -0.23 -3.9 0.39 0.66 -0.93 0.69 15.1* 0.16 0.24 13 

CM105 × F7 1.16 0.76 -5.3 -0.59 -0.22 0.74 1.15* 3.3 0.33 0.60 14 

CM105 × PB60 -0.44 -0.63 -1.9 1.18 1.05 -0.23 0.33 6.3 -0.75 0.12 15 

CM105 × Z77016 0.48 0.67 0.9 -2.03* -1.51* 0.38 0.31 -0.2 0.56 0.64 16 

EP28 × EP31 -0.55 -0.03 8.6 0.53 0.49 0.13 0.44 3.1 -0.06 0.09 17 

EP28 × EP42 0.22 0.76 4.9 -0.09 -0.28 0.61 0.52 -1.1 -0.23 -0.57 18 

EP28 × F7 -0.22 -0.09 1.2 -0.09 0.58 0.47 0.58 0.1 0.25 0.08 19 

EP28 × PB60 0.89 0.43 -6.3 -0.35 0.05 -1.10 -0.51 8.7 0.80 0.26 20 

EP28 × Z77016 0.94 1.20* 1.1 0.56 0.97 0.61 0.93 1.9 0.76 0.50 21 

EP31 × EP42 0.01 -0.35 -4.6 -0.47 0.58 0.82 0.44 -4.2 -0.37 0.10 22 

EP31 × F7 0.89 0.44 -8.0 -0.15 -0.19 -0.83 0.37 14.3* 0.36 0.09 23 
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EP31 × PB60 0.71 1.06* 2.3 -0.80 -0.41 -0.49 0.63 7.1 0.72 -2.19 1 

EP31 × Z77016 1.27 0.89 -10.8 0.49 0.75 -0.76 0.24 11.7* 0.18 -0.04 2 

EP42 × F7 -0.30 -0.91 -7.7 0.27 -0.23 -0.67 -1.25* -5.9 -0.50 -0.32 3 

EP42 × PB60 -1.95* -1.22* 13.2 0.21 0.56 0.23 -0.40 -4.0 0.25 -0.30 4 

EP42 × Z77016 -0.58 -0.62 1.5 -1.04 -0.27 -0.27 -0.57 -2.7 -0.57 -0.52 5 

F7 × PB60 -0.06 -0.56 -7.1 -0.34 0.29 0.92 -0.83 -17.0* 0.16 -0.29 6 

F7 × Z77016 -1.83* -1.32* 11.5 0.33 0.04 -2.40 -2.36* 2.1 -0.80 -0.42 7 

PB60 × Z77016 -0.89 0.12 14.2 -1.20 -1.59* 1.38 -0.43 -18.0*-0.37 0.08 8 

LSD (SCAij - SCAik) 2.01 1.48     1.44 17.5 9 

LSD (SCAij - SCAkl) 1.86 1.37     1.34 16.2 10 

 11 

* Estimate differed significantly from zero. 12 


