
Combining Adaptive Noise and Look-Ahead in Local
Search for SAT???

Chu Min Li1, Wanxia Wei2, and Harry Zhang2

1 LaRIA, Université de Picardie Jules Verne
33 Rue St. Leu, 80039 Amiens Cedex 01, France

chu-min.li@u-picardie.fr
2 Faculty of Computer Science, University of New Brunswick, Fredericton, NB, Canada, E3B

5A3
{wanxia.wei,hzhang}@unb.ca

Abstract. The adaptive noise mechanism was introduced in Novelty+ to au-
tomatically adapt noise settings during the search [4]. The local search algo-
rithm G2WSAT deterministically exploits promising decreasing variables to
reduce randomness and consequently the dependence on noise parameters. In
this paper, we first integrate the adaptive noise mechanism in G2WSAT to
obtain an algorithm adaptG2WSAT , whose performance suggests that the
deterministic exploitation of promising decreasing variables cooperates well
with this mechanism. Then, we propose an approach that uses look-ahead for
promising decreasing variables to further reinforce this cooperation. We imple-
ment this approach in adaptG2WSAT , resulting in a new local search algo-
rithm called adaptG2WSATP . Without any manual noise or other parameter
tuning, adaptG2WSATP shows generally good performance, compared with
G2WSAT with approximately optimal static noise settings, or is sometimes
even better than G2WSAT . In addition, adaptG2WSATP is favorably com-
pared with state-of-the-art local search algorithms such as R+adaptNovelty+
and V W .

1 Introduction

The performance of a Walksat family algorithm crucially depends on noise p and
sometimes wp (random walk probability) or dp (diversification probability). For exam-
ple, it is reported in [9] that running R-Novelty [9] with p = 0.4 instead of p = 0.6
degrades its performance by more than 50% for random 3-SAT instances. However, to

? A preliminary version of this paper was presented at the 3th International Workshop on LSCS
[6], and an extended abstract of this preliminary version will appear in a book, entitled “Trends
in Constraint Programming” [7].

?? The work of the second author is partially supported by an NSERC (Natural Sciences and
Engineering Research Council of Canada) PGS-D scholarship.

find the optimal noise settings for each heuristic, extensive experiments on various val-
ues of p and sometimes wp or dp are needed because the optimal noise settings vary
widely and depend on the types and sizes of the instances.

To avoid manual noise tuning, two approaches were proposed. Auto-Walksat [10]
exploits the invariants observed in [9] to estimate the optimal noise settings for an al-
gorithm on a given problem, based on several preliminary unsuccessful runs of the
algorithm on this problem. This algorithm then rigorously applies the estimated opti-
mal noise setting to the problem. The adaptive noise mechanism [4] was introduced
in Novelty+ [3] to automatically adapt noise settings during the search, yielding the
algorithm adaptNovelty+. This algorithm does not need any manual noise tuning and
is effective for a broad range of problems.

One way to diminish the dependence of problem solving on noise settings is to
reduce randomness in local search. The local search algorithm G2WSAT determin-
istically selects the best promising decreasing variable to flip, if such variables exist
[5]. Nevertheless, the performance of G2WSAT still depends on static noise settings,
since when there is no promising decreasing variable, a heuristic, such as Novelty++, is
used to select a variable to flip, depending on two probabilities, p and dp. Furthermore,
G2WSAT does not favor those flips that will generate promising decreasing variables
to minimize its dependence on noise settings.

In this paper, we first incorporate the adaptive noise mechanism of adaptNovelty+
in G2WSAT to obtain an algorithm adaptG2WSAT . Experimental results sug-
gest that the deterministic exploitation of promising decreasing variables in
adaptG2WSAT enhances this mechanism. Then, we integrate a look-ahead approach
in adaptG2WSAT to favor those flips that can generate promising decreasing vari-
ables, resulting in a new local search algorithm called adaptG2WSATP . Without any
manual noise or other parameter tuning, adaptG2WSATP shows generally good per-
formance, compared with G2WSAT with approximately optimal static noise settings,
or is sometimes even better than G2WSAT . Moreover, adaptG2WSATP compares
favorably with state-of-the-art algorithms such as R+adaptNovelty+ [1] and V W [11].

2 G2WSAT and adaptG2WSAT

2.1 G2WSAT

Given a CNF formula F and an assignment A, the objective function that local search
for SAT attempts to minimize is usually the total number of unsatisfied clauses in F un-
der A. Let x be a variable. The break of x, break(x), is the number of clauses in F that
are currently satisfied but will be unsatisfied if x is flipped. The make of x, make(x),
is the number of clauses in F that are currently unsatisfied but will be satisfied if x is
flipped. The score of x with respect to A, scoreA(x), is the improvement of the objec-
tive function if x is flipped. The score of x should be the difference between make(x)
and break(x). We write scoreA(x) as score(x) if A is clear from the context.

Heuristics Novelty [9] and Novelty++ [5] select a variable to flip from a randomly
selected unsatisfied clause c as follows.

Novelty(p): Sort the variables in c by their scores, breaking ties in favor of the least re-
cently flipped variable. Consider the best and second best variables from the sorted
variables. If the best variable is not the most recently flipped one in c, then pick it.
Otherwise, with probability p, pick the second best variable, and with probability
1-p, pick the best variable.

Novelty++(p, dp): With probability dp (diversification probability), pick the least re-
cently flipped variable in c, and with probability 1-dp, do as Novelty.

Given a CNF formula F and an assignment A, a variable x is said to be decreasing
with respect to A if scoreA(x) > 0. Promising decreasing variables are defined in [5]
as follows:

1. Before any flip, i.e., when A is an initial random assignment, all decreasing vari-
ables with respect to A are promising.

2. Let x and y be two different variables and x be not decreasing with respect to A. If,
after y is flipped, x becomes decreasing with respect to the new assignment, then x

is a promising decreasing variable with respect to the new assignment.
3. A promising decreasing variable remains promising with respect to subsequent as-

signments in local search until it is no longer decreasing.

G2WSAT [5] deterministically picks the promising decreasing variable with the
highest score to flip, if such variables exist. If there is no promising decreasing variable,
G2WSAT uses a heuristic, such as Novelty [9], Novelty+ [3], or Novelty++ [5], to
pick a variable to flip from a randomly selected unsatisfied clause.

Promising decreasing variables might be considered as the opposite of tabu vari-
ables defined in [8, 9]; the flips of tabu variables are refused in a number of subsequent
steps. Promising decreasing variables are chosen to flip since they probably allow local
search to explore new promising regions in the search space, while tabu variables are
forbidden since they probably make local search repeat or cancel earlier moves.

2.2 Algorithm adaptG2WSAT

The adaptive noise mechanism [4] in adaptNovelty+ can be described as follows. At
the beginning of a run, noise p is set to 0. Then, if no improvement in the objective
function value has been observed over the last θ × m search steps, where m is the
number of the clauses of the input formula, and θ is a parameter whose default value
in adaptNovelty+ is 1/6, noise p is increased by p := p + (1 − p) × φ, where φ

is another parameter whose default value in adaptNovelty+ is 0.2. Every time the
objective function value is improved, noise p is decreased by p := p− p× φ/2.

We implement this adaptive noise mechanism of adaptNovelty+ in G2WSAT

to obtain an algorithm adaptG2WSAT , and confirm that φ and θ need not be tuned

for each problem instance or instance type to achieve good performances. That is, like
adaptNovelty+, adaptG2WSAT is an algorithm in which no parameter has to be
manually tuned to solve a new problem.

2.3 Performances of the Adaptive Noise Mechanism for adaptG2WSAT and
for adaptNovelty+

We evaluate the performance of the adaptive noise mechanism for adaptG2WSAT on
9 groups of benchmark SAT problems.3 Structured problems come from the SATLIB
repository4 and Miroslav Velev’s SAT Benchmarks.5 These structured problems in-
clude bw large.c and bw large.d in Blocksworld, 3bit*31, 3bit*32, e0ddr2*1, e0ddr2*4,
enddr2*1, enddr2*8, ewddr2*1, and ewddr2*8 in Beijing, the first 5 instances in
Flat200-479, logistics.c and logistics.d in logistics, par16-1, par16-2, par16-3, par16-4,
and par16-5 in parity, the 10 satisfiable instances in QG, and all satisfiable formulas in
Superscalar Suite 1.0a (SSS.1.0a) except for *bug54.6 Since these 10 QG instances con-
tain unit clauses, we simplify them using my compact7 before running every algorithm.
Random problems consist of unif04-52, unif04-62, unif04-65, unif04-80, unif04-83,
unif04-86, unif04-91, and unif04-99, from the random category in the SAT 2004 com-
petition benchmark.8 Industrial problems comprise v*1912, v*1915, v*1923, v*1924,
v*1944, v*1955, v*1956, and v*1959, from the industrial category in the SAT 2005
competition benchmark.9

Table 1 shows the performances of adaptG2WSAT and G2WSAT , both using
heuristic Novelty+, compared with those of adaptNovelty+ and Novelty+. This ta-
ble presents the results of these algorithms for only one instance from each group.
The random walk probability (wp) is not adjusted and takes the default value 0.01 for
the original Novelty+, in each algorithm for each instance. G2WSAT (version 2005)
is downloaded from http://www.laria.u-picardie.fr/˜cli. Novelty+ and adaptNovelty+
are from UBCSAT [13]. The static noise p of G2WSAT is approximately optimal
for G2WSAT on each instance, and is obtained by comparing p = 0.10, 0.11, ...,
0.89, and 0.90 for each instance. The static noise p of Novelty+ is different from
that of G2WSAT because Novelty+ with its own noise p can perform better than
Novelty+ with the noise p of G2WSAT . Each instance is executed 250 times. The

3 All experiments reported in this paper are conducted in Chorus, which consists of 2 dual pro-
cessor master nodes (Sun V65) with hyperthreading enabled and 80 dual processor compute
nodes (Sun V60). Each compute node has two 2.8GHz Intel Xeon processors with 2 to 3

Gigabytes of memory.
4 http://www.satlib.org/
5 http://www.ece.cmu.edu/∼mvelev/sat benchmarks.html
6 The instance *bug54 is hard for every algorithm discussed in this paper.
7 available at http://www.laria.u-picardie.fr/˜cli
8 http://www.lri.fr/∼simon/contest04/results/
9 http://www.lri.fr/∼simon/contest/results/

algorithm cutoff Novelty+ adaptNovelty+ G2W SAT adaptG2W SAT

heuristic Novelty+ Novelty+

parameters wp=0.01 θ=1/6,φ=0.2 wp=0.01 θ=1/6,φ=0.2

p suc suc suc degr p suc suc suc degr
bw large.d 108 .17 100% 92.80% 7.20% .20 100% 100% 0%
ewddr2*8 107 .78 100% 5.20% 94.80% .52 100% 100% 0%
flat200-5 108 .54 99.60% 99.20% 0.40% .60 100% 100% 0%
logistics.c 105 .41 58.00% 43.20% 25.52% .52 81.20% 73.20% 9.85%
par16-1 109 .80 98.00% 42.80% 56.33% .63 100% 100% 0%
qg5-11 106 .29 100% 97.20% 2.80% .32 100% 92.40% 7.60%
*bug17 107 .82 100% 32.80% 67.20% .29 66.00% 66.00% 0%

unif04-52 108 .51 99.60% 94.40% 5.22% .52 100% 99.20% 0.80%
v*1912 107 .16 56.00% 50.80% 9.29% .22 84.00% 81.20% 3.33%

Table 1. Performance of the adaptive noise mechanism for adaptG2WSAT using Novelty+

and for adaptNovelty+. Results in bold indicate the lower degradation in success rate.

success rate of an algorithm for an instance is the number of successful runs divided
by 250, and the success rate is intended to be the empirical probability with which the
algorithm finds a solution for the instance within the cutoff. For each algorithm on each
instance, we report the cutoff (“cutoff”) and success rate (“suc”). Let sr be the success
rate of G2WSAT or Novelty+ with static noise for an instance, and ar the success
rate of adaptG2WSAT or adaptNovelty+ for the same instance. For each instance,
we also report the degradation (“suc degr”) in success rate of adaptG2WSAT , ((sr-
ar)/sr)*100, compared with that of G2WSAT , and the degradation (“suc degr”) in
success rate of adaptNovelty+, ((sr-ar)/sr)*100, compared with that of Novelty+.

According to Table 1, without manual noise tuning, adaptG2WSAT and
adaptNovelty+, with the adaptive noise mechanism, achieve good performances, θ

and φ taking the same fixed values for all problems. Nevertheless, with instance spe-
cific noise settings, G2WSAT and Novelty+ achieve success rates the same as or
higher than adaptG2WSAT and adaptNovelty+, respectively, for all instances. For
all instances except for qg5-11, the degradation in success rate of adaptG2WSAT

compared with that of G2WSAT is lower than the degradation in success rate
of adaptNovelty+ compared with that of Novelty+. Especially, for bw large.d,
ewddr2*8, par16-1, and *bug17, the degradation in success rate of adaptG2WSAT

compared with that of G2WSAT is significantly lower than the degradation in success
rate of adaptNovelty+ compared with that of Novelty+.

In Table 1, both adaptG2WSAT and G2WSAT use Novelty+ to select a variable
to flip when there is no promising decreasing variable. Furthermore, adaptG2WSAT

uses the same default values for parameters θ and φ as adaptNovelty+, to adapt noise.
So, it appears that, apart from the implementation details, the only difference between
G2WSAT and Novelty+, and between adaptG2WSAT and adaptNovelty+, in Ta-

ble 1, is the deterministic exploitation of promising decreasing variables in G2WSAT

and adaptG2WSAT . From this table, we observe that the degradation in performance
of adaptG2WSAT compared with that of G2WSAT is lower than the degradation
in performance of adaptNovelty+ compared with that of Novelty+. This observation
suggests that the deterministic exploitation of promising decreasing variables enhances
the adaptive noise mechanism. We then expect that better exploitation of promising
decreasing variables will further enhance this mechanism.

3 Look-Ahead for Promising Decreasing Variables

3.1 Promising Score of a Variable

Given a CNF formula F and an assignment A, let x be a variable, let B be obtained
from A by flipping x, and let x′ be the best promising decreasing variable with respect
to B. We define the promising score of x with respect to A as

pscoreA(x) = scoreA(x) + scoreB(x′)

where scoreA(x) is the score of x with respect to A and scoreB(x′) is the score of x′

with respect to B.10

If there are promising decreasing variables with respect to B, the promising score
of x with respect to A represents the improvement in the number of unsatisfied clauses
under A by flipping x and then x′. In this case, pscoreA(x) > scoreA(x).

If there is no promising decreasing variable with respect to B,
pscoreA(x) = scoreA(x)

since adaptG2WSAT does not know in advance which variable will be flipped for B

(the choice of the variable to flip is made randomly by using Novelty++).

Given F and two variables x and y in F , y is said to be a neighbor of x with re-
spect to F if y occurs in some clause containing x in F . According to Equation 6 in
[5], the flipping of x can only change the scores of the neighbors of x. Given an initial
assignment, G2WSAT or adaptG2WSAT computes the scores for all variables, and
then uses Equation 6 in [5] to update the scores of the neighbors of the flipped variable
after each step and maintains a list of promising decreasing variables. This update takes
time O(L), where L is the upper bound for the sum of the lengths of all clauses con-
taining the flipped variable and is almost a constant for a random 3-SAT problem when
the ratio of the number of clauses to the number of variables is a constant. The com-
putation of pscoreA(x) involves the simulation of flipping x and the searching for the
largest score of the promising decreasing variables after flipping x. This computation
takes time O(L + γ), where γ is the upper bound for the number of all the promising
decreasing variables in F after flipping x.

Function: Novelty+P (p, wp, c)

1: with probability wp do y← randomly choose a variable in c;
2: otherwise
3: Determine best and second, breaking ties in favor of the least recently flipped variable;

/*best and second are the best and second best variables in c according to the scores*/
4: if best is the most recently flipped variable in c

5: then
6: with probability p do y ← second;
7: otherwise if pscore(second)>=pscore(best) then y ← second else y ← best;
8: else
9: if best is more recently flipped than second

10: then if pscore(second)>=pscore(best) then y ← second else y ← best;
11: else y ← best;
12: return y;

Fig. 1. Function Novelty+P

3.2 Integrating Limited Look-Ahead in adaptG2WSAT

We improve adaptG2WSAT in two ways. The algorithm adaptG2WSAT maintains
a stack, DecV ar, to store all promising decreasing variables in each step. When there
are promising decreasing variables, the improved adaptG2WSAT chooses the least re-
cently flipped promising decreasing variable among all promising decreasing variables
in |DecV ar| to flip. Otherwise, the improved adaptG2WSAT selects a variable to flip
from a randomly chosen unsatisfied clause c, using heuristic Novelty+P (see Fig. 1),
which extends Novelty+ [3], to exploit limited look-ahead.

Let best and second denote the best and second best variables respectively, mea-
sured by the scores of variables in c. Novelty+P computes the promising scores for
only best and second, only when best is more recently flipped than second (including
the case in which best is the most recently flipped variable, where the computation is
performed with probability 1− p), in order to favor the less recently flipped second. In
this case, score(second) < score(best). As is suggested by the success of HSAT [2]
and Novelty [9], a less recently flipped variable is generally better if it can improve
the objective function at least as well as a more recently flipped variable does. Accord-
ingly, Novelty+P prefers second if second is less recently flipped than best and if
pscore(second) ≥ pscore(best).

The improved adaptG2WSAT is called adaptG2WSATP and is sketched in Fig.
2. Note that wp (random walk probability) is also automatically adjusted and wp =

10 x′ has the highest scoreB(x′) among all promising decreasing variables with respect to B.

p/10. The reason for adjusting wp this way is that, when noise needs to be high, local
search should also be well randomized, and when low noise is sufficient, random walks
are often not needed. The setting wp = p/10 comes from the fact that p = 0.5 and
dp = 0.05 give the best results for random 3-SAT instances in G2WSAT .

Algorithm: adaptG2WSATP (SAT-formula F)

1: for try=1 to Maxtries do
2: A← randomly generated truth assignment; p=0; wp=0;
3: Store all decreasing variables in stack DecVar;
4: for flip=1 to Maxsteps do
5: if A satisfies F then return A;
6: if |DecV ar| > 0

7: then
8: y←the least recently flipped promising decreasing variable among
9: all promising decreasing variables in |DecV ar|;

10: else
11: c←randomly selected unsatisfied clause under A;
12: y ← Novelty+P (p, wp, c);
13: A ← A with y flipped;
14: Adapt p and wp;
15: Delete variables that are no longer decreasing from DecVar;
16: Push new decreasing variables into DecVar which are different from
17: y and were not decreasing before y is flipped;
18: return Solution not found;

Fig. 2. Algorithm adaptG2WSATP

Given a CNF formula F and an assignment A, the set of assignments obtained
by flipping one variable of F is called the 1-flip neighborhood of A, and the set of
assignments obtained by flipping two variables of F is called the 2-flip neighborhood
of A. The algorithm adaptG2WSATP exploits only the 1-flip neighborhoods, since
the limited look-ahead is just used as a heuristic to select the next variable to flip.

We find that in adaptG2WSAT and adaptG2WSATP , which use heuristics
Novelty++ and Novelty+P , respectively, θ = 1/5 and φ = 0.1 give slightly better
results on the 9 groups of instances presented in Section 2.3 than θ = 1/6 and φ = 0.2,
their original default values in adaptNovelty+. So, in adaptG2WSATP , θ = 1/5 and
φ = 0.1.

In this paper, adaptG2WSATP is improved in two ways, based on the preliminary
adaptG2WSATP described in the preliminary version of this paper [6, 7]. The first

improvement is that, when promising decreasing variables exist, adaptG2WSATP no
longer computes the promising scores for the δ promising decreasing variables with
higher scores in |DecV ar|, where δ is a parameter, but chooses the least recently
flipped promising decreasing variable among all promising decreasing variables in
|DecV ar| to flip. As a result, adaptG2WSATP no longer needs parameter δ. The
reasons for this first improvement are that, usually the scores of promising decreasing
variables are close and so such variables can improve the objective function roughly
the same, and that flipping the least recently flipped promising decreasing variable
can increase the mobility and coverage [12] of a local search algorithm in the search
space. The second improvement is that, when there is no promising decreasing vari-
able, adaptG2WSATP uses Novelty+P instead of Novelty++P [6, 7], to select a
variable to flip from a randomly chosen unsatisfied clause c. The difference between
Novelty+P and Novelty++P is that, with wp (random walk probability), Novelty+P

randomly chooses a variable to flip from c, but with dp (diversification probability),
Novelty++P chooses a variable in c, whose flip will falsify the least recently satisfied
clause. Considering that adaptG2WSATP deterministically uses both promising de-
creasing variables and promising scores, adding a small amount of randomness11 to the
search may help find a solution.

4 Evaluation

We evaluate adaptG2WSATP on the 9 groups of instances, or the 56 instances, pre-
sented in Section 2.3. For an instance and an algorithm, we report the median flip num-
ber (“#flips”) and the median run time (“time”) in seconds, for this algorithm to find a
solution for this instance. Each instance is executed 250 times. If an algorithm can suc-
cessfully find a solution for an instance in at least 126 runs, the median flip number and
median run time are calculated based on these 250 runs. If an algorithm cannot achieve
a success rate greater than 50% on an instance even if the cutoff is greater than or equal
to the maximum value among the cutoffs of all other algorithms, the median flip num-
ber and median run time cannot be calculated; we use “> Maxsteps” (greater than
Maxsteps) to denote the median flip number and use “n/a” to denote the median run
time, where Maxsteps is the cutoff for this algorithm on this instance. If the median
flip number and median run time of G2WSAT with any noise settings for an instance
cannot be calculated, we also use n/a to denote the optimal noise setting. Results in bold
indicate the best performance for an instance.

4.1 Comparison of Performances of adaptG2WSATP , G2WSAT , and
adaptG2WSAT

We compare the performances of adaptG2WSATP , G2WSAT with approximately
optimal noise settings, and adaptG2WSAT in Table 2, where adaptG2WSATP uses
11 In general, wp ranges from 0% to 10%.

Novelty+P , and G2WSAT and adaptG2WSAT use Novelty++, to pick a variable
to flip, when there is no promising decreasing variable. On the instances that G2WSAT

can solve in reasonable time, except for qg7-13, the performance of adaptG2WSATP

is comparable to that of G2WSAT with approximately optimal noise settings. More-
over, adaptG2WSATP can solve 3bit*31, 3bit*32, *bug5, *bug38, *bug39, and
*bug40, which are hard for G2WSAT with any static noise settings. More importantly,
adaptG2WSATP does not need any manual tuning of p and wp for each instance
while G2WSAT needs manual tuning of p and dp for each instance. In other words,
G2WSAT cannot achieve the performance shown in this table by using the same p and
dp for the broad range of instances.

On the instances that adaptG2WSAT can solve in reasonable time, the perfor-
mance of adaptG2WSATP is comparable to that of adaptG2WSAT . Furthermore,
adaptG2WSATP can solve 3bit*31, 3bit*32, *bug5, *bug38, *bug39, and *bug40,
which are hard for adaptG2WSAT . In addition, among the 56 instances presented in
this table, adaptG2WSATP exhibits the best run time performance and/or the best flip
number performance on the 13 instances among adaptG2WSATP , G2WSAT with
approximately optimal noise settings, and adaptG2WSAT , while adaptG2WSAT is
never the best.

4.2 Comparison of Performances of adaptG2WSATP , R+adaptNovelty+,
and V W

R+adaptNovelty+ is adaptNovelty+ with preprocessing to add a set of resolvents
of length ≤ 3 into the input formula [1]. V W [11] is an extension of Walksat. V W

adjusts and smoothes variable weights, and takes variable weights into account when
selecting a variable to flip. R+adaptNovelty+, G2WSAT with p=0.50 and dp=0.05,
and V W won the gold, silver, and bronze medals, respectively, in the satisfiable random
formula category in the SAT 2005 competition.12

Table 3 compares the performance of adaptG2WSATP with the performances
of R+adaptNovelty+ and V W . We download R+adaptNovelty+ and V W from
http://www.satcompetition.org/. We use the default value 0.01 for the random walk
probability in R+adaptNovelty+, when running this algorithm. In this table, instances
with † on the right constitute the entire set of instances that were used to originally eval-
uate R+adaptNovelty+ in [1]. Among the 56 instances presented in this table, in terms
of run time, adaptG2WSATP , R+adaptNovelty+, and V W are the best algorithms
on the 32, 16, and 13 instances, respectively. Also, among the 56 instances, in terms of
run time, adaptG2WSATP outperforms R+adaptNovelty+ and V W on the 38 and
42 instances, respectively.

12 http://www.satcompetition.org/

adaptG2WSATP adaptG2WSAT G2WSAT

#flips time #flips time optimal #flips time
bw large.c 1083947 3.650 3553694 10.175 (.21, 0) 2119497 3.699
bw large.d 1542898 8.590 9626411 49.635 (.16, 0) 3237895 7.180
3bit*31 87158 0.780 > 107 n/a n/a > 107 n/a
3bit*32 60518 0.565 > 107 n/a n/a > 107 n/a
e0ddr2*1 4520164 19.275 831073 2.595 (.14, .09) 254182 0.910
e0ddr2*4 641587 2.855 208815 0.805 (.23, .1) 117266 0.540
enddr2*1 982540 4.570 153905 0.640 (.18, .1) 97451 0.535
enddr2*8 412624 2.385 135332 0.585 (.16, .09) 90076 0.480
ewddr2*1 492907 2.470 137430 0.600 (.18, .1) 89420 0.505
ewddr2*8 262177 1.385 116917 0.535 (.16, .1) 67854 0.425
flat200-1 36764 0.025 42053 0.020 (.49, .08) 25358 0.010
flat200-2 288521 0.160 303515 0.135 (.49, .07) 171487 0.085
flat200-3 71324 0.045 89515 0.040 (.51, .05) 51037 0.025
flat200-4 314273 0.180 323353 0.145 (.49, .05) 178842 0.095
flat200-5 4963846 2.675 4173580 1.810 (.49, .08) 3008035 1.455
logistics.c 54777 0.075 46875 0.060 (.24, .07) 38177 0.040
logistics.d 83894 0.185 102575 0.165 (.2, .08) 78013 0.105
par16-1 58937999 27.955 76985828 29.870 (.51, .01) 48342381 20.835
par16-2 130634181 64.300 140615726 57.170 (.59, .01) 73324801 32.460
par16-3 104764223 50.865 112297525 44.885 (.58, .01) 80700698 33.223
par16-4 133899858 63.595 174053106 68.735 (.5, .02) 89662042 39.256
par16-5 124873168 59.865 133250726 53.385 (.54, .02) 83818097 35.688
qg1-07 6413 0.025 7370 0.020 (.38, 0) 4599 0.010
qg1-08 361229 4.740 448660 3.635 (.11, .03) 339312 1.350
qg2-07 3869 0.020 4708 0.025 (.33, .01) 2648 0.005
qg2-08 1262398 8.960 1473258 9.565 (.22, 0) 1449931 6.270
qg3-08 36322 0.125 36046 0.040 (.44, .05) 20517 0.015
qg4-09 68472 0.310 70659 0.100 (.37, 0) 48741 0.075
qg5-11 20598 0.210 23431 0.275 (.38, .01) 12559 0.080
qg6-09 414 0.005 441 0.005 (.41, .08) 340 0.000
qg7-09 392 0.005 318 0.005 (.41, .1) 316 0.015
qg7-13 > 108 n/a > 108 n/a (.33, 0) 4768987 50.809
*bug3 > 108 n/a > 108 n/a n/a > 108 n/a
*bug4 > 108 n/a > 108 n/a n/a > 108 n/a
*bug5 1460519 6.050 > 108 n/a n/a > 108 n/a
*bug17 107501 1.170 425730 5.130 (.15, .15) 63582 1.355
*bug38 181666 0.745 > 108 n/a n/a > 108 n/a
*bug39 75743 0.390 > 108 n/a n/a > 108 n/a
*bug40 182279 0.890 > 108 n/a n/a > 108 n/a
*bug59 102853 1.080 268332 2.475 (.62, .06) 52276 0.408
unif04-52 5588325 6.065 6763462 5.570 (.4, .07) 4991465 4.295
unif04-62 530432 0.590 768215 0.640 (.49, .03) 386031 0.335
unif04-65 1406786 1.560 1566427 1.315 (.48, .06) 1289658 0.918
unif04-80 3059121 3.575 3751125 3.300 (.45, .1) 1908125 1.760
unif04-83 8370126 9.930 6589739 5.860 (.43, .09) 4370302 3.112
unif04-86 6288398 7.450 5817258 5.250 (.43, .09) 3429233 2.442
unif04-91 659313 0.780 789717 0.730 (.5, .05) 414399 0.324
unif04-99 4054201 4.985 7746102 7.205 (.45, .02) 4931360 4.530
v*1912 3454184 84.115 3683237 78.625 (.16, 0) 3554771 65.509
v*1915 12928287 409.480 14636382 328.450 (.19, .02) 12510065 288.966
v*1923 1200896 25.030 1358055 16.630 (.42, 0) 1065848 13.386
v*1924 1389813 28.040 1756779 29.855 (.21, .04) 1613496 23.019
v*1944 4248279 216.700 4386535 156.67 (.20, 0) 3667138 126.398
v*1955 1404357 56.240 1417356 32.195 (.29, .01) 1152386 28.669
v*1956 1762589 71.100 1849539 68.365 (.26, .02) 1599232 46.434
v*1959 612589 27.985 786925 32.815 (.37, .01) 498563 16.276

Table 2. Performance of adaptG2WSATP , adaptG2WSAT , and G2WSAT with approxi-
mately optimal noise settings.

R+adaptNovelty+ adaptG2WSATP V W

#flips time #flips time #flips time
bw large.c† 9489817 29.140 1083947 3.650 1868393 5.960
bw large.d 27179763 152.160 1542898 8.590 2963500 18.120
3bit*31 152565 1.645 87158 0.780 37487 0.290
3bit*32 133945 1.640 60518 0.565 21858 0.160
e0ddr2*1† 2488226 10.630 4520164 19.275 6549282 22.530
e0ddr2*4† 355044 1.530 641587 2.855 1894243 7.850
enddr2*1† 331420 1.555 982540 4.570 4484178 17.605
enddr2*8† 11753 0.020 412624 2.385 3493986 15.505
ewddr2*1† 154825 0.675 492907 2.470 4714786 18.410
ewddr2*8† 32527 0.100 262177 1.385 4956356 21.785
flat200-1 50600 0.030 36764 0.025 187053 0.085
flat200-2 535300 0.280 288521 0.160 1318485 0.650
flat200-3 161169 0.085 71324 0.045 664550 0.330
flat200-4 577180 0.290 314273 0.180 2747696 1.345
flat200-5 15841761 8.366 4963846 2.675 26137279 13.119
logistics.c† 57693 0.075 54777 0.075 70446 0.085
logistics.d 162737 0.220 83894 0.185 340379 0.395
par16-1† 80339283 37.645 58937999 27.955 > 109 n/a
par16-2† 324826713 157.455 130634181 64.300 > 109 n/a
par16-3† 224140856 107.410 104764223 50.865 > 109 n/a
par16-4† 274054172 129.660 133899858 63.595 > 109 n/a
par16-5† 264871971 125.025 124873168 59.865 > 109 n/a
qg1-07† 9882 0.015 6413 0.025 21304 0.055
qg1-08† 676122 2.300 361229 4.740 2548200 69.325
qg2-07† 6147 0.010 3869 0.020 9181 0.035
qg2-08† 2200276 8.440 1262398 8.960 8843525 277.735
qg3-08† 53998 0.070 36322 0.125 137354 0.185
qg4-09† 105386 0.165 68472 0.310 264297 0.505
qg5-11† 36856 0.215 20598 0.210 39907 0.410
qg6-09† 542 0.000 414 0.000 1014 0.000
qg7-09† 531 0.000 392 0.000 1037 0.000
qg7-13† 5113772 66.680 > 108 n/a 8843466 307.620
*bug3 62148492 360.920 > 108 n/a 1974994 4.875
*bug4 > 108 n/a > 108 n/a 177511 0.460
*bug5 66283256 431.395 1460519 6.050 280071 0.735
*bug17 6020734 141.875 107501 1.170 32999 0.275
*bug38 4699436 32.735 181666 0.745 157834 0.385
*bug39 9693455 54.345 75743 0.390 83287 0.220
*bug40 17465338 125.010 182279 0.890 98834 0.290
*bug59 389865 4.150 102853 1.080 66090 0.345
unif04-52† 24720067 21.335 5588325 6.065 22594215 17.115
unif04-62† 1484946 1.280 530432 0.590 3321105 2.605
unif04-65† 9043996 7.885 1406786 1.560 4505318 3.520
unif04-80† 5432957 4.780 3059121 3.575 20083928 16.515
unif04-83† 291310536 255.685 8370126 9.930 25897048 21.590
unif04-86† 38667651 34.045 6288398 7.450 8536496 7.170
unif04-91† 1581843 1.370 659313 0.780 3097695 2.725
unif04-99† 16856278 14.850 4054201 4.985 17422353 15.400
v*1912 6812718 148.735 3454184 84.115 61152892 3037.695
v*1915 78909897 2208.900 12928287 409.480 > 108 n/a
v*1923 2736569 51.662 1200896 25.030 9820793 340.430
v*1924 2931225 60.319 1389813 28.040 13744232 515.720
v*1944 6153990 373.905 4248279 216.700 58541545 7971.731
v*1955 2755333 89.455 1404357 56.240 10396220 1073.960
v*1956 2865074 114.685 1762589 71.100 13419375 1437.035
v*1959 2420412 118.335 612589 27.985 11433482 1377.245

Table 3. Experimental results for R+adaptNovelty+, adaptG2WSATP , and V W .

4.3 Comparison of Performances of adaptG2WSATP and Preliminary
adaptG2WSATP

preliminary adaptG2WSATP adaptG2WSATP

#flips time #flips time
*bug5 > 108 n/a 1460519 6.050
*bug17 133691 2.820 107501 1.170
*bug38 > 108 n/a 181666 0.745
*bug39 > 108 n/a 75743 0.390
*bug40 > 108 n/a 182279 0.890
*bug59 179091 4.965 102853 1.080

Table 4. Experimental results for the preliminary adaptG2WSATP and adaptG2WSATP

Our experimental results show that adaptG2WSATP exhibits better performance
than the preliminary adaptG2WSATP on some instances from SSS.1.0a presented
in Section 2.3. According to our experimental results, on the remaining instances
presented in Section 2.3, the overall performance of adaptG2WSATP is close to
that of the preliminary adaptG2WSATP . Table 4 indicates that adaptG2WSATP

exhibits good performance on the 6 instances from SSS.1.0a while the preliminary
adaptG2WSATP has difficulty on 4 out of these 6.

5 Conclusion

We have found that the deterministic exploitation of promising decreasing variables
can enhance the adaptive noise mechanism in local search for SAT, and thus integrated
this adaptive noise mechanism in G2WSAT to obtain the algorithm adaptG2WSAT .
We then have proposed a limited look-ahead approach to favor those flips generating
promising decreasing variables to further improve the adaptive noise mechanism. The
look-ahead approach is based on the promising scores of variables, meaning that after
flipping a variable x, the score of the best promising decreasing variable should be
added to the score of x to improve the objective function. The resulting algorithm is
called adaptG2WSATP .

There are two new parameters in adaptG2WSATP , θ and φ, which are from
adaptNovelty+ and are used to implement the adaptive noise mechanism. How-
ever, noise p and random walk probability wp are entirely automatically adapted.
Our experimental results confirm that, like θ and φ in adaptNovelty+, θ and φ in
adaptG2WSATP are substantially less sensitive to problem instances and problem
types than are p and wp [4], and our results also show that the same fixed default values
of θ and φ allow adaptG2WSATP to achieve good performances for a broad range of

SAT problems. Moreover, our experimental results show that, without any manual noise
or other parameter tuning, adaptG2WSATP shows generally good performance, com-
pared with G2WSAT with approximately optimal static noise settings, or is sometimes
even better than G2WSAT , and that adaptG2WSATP compares favorably with state-
of-the-art algorithms such as R+adaptNovelty+ and V W .

We plan to optimize the computation of promising scores, which actually is not
incremental. In addition, the efficient implementation techniques of UBCSAT , the
variable weight smoothing technique proposed in V W , and the preprocessing used in
R+adaptNovelty+ could be integrated into adaptG2WSATP .

References

1. Anbulagan, D. N. Pham, J. Slaney, and A. Sattar. Old Resolution Meets Modern SLS. In
Proceedings of AAAI-2005, pages 354–359. AAAI Press, 2005.

2. I. P. Gent and T. Walsh. Towards an Understanding of Hill-Climbing Procedures for SAT. In
Proceedings of AAAI-1993, pages 28–33. AAAI Press, 1993.

3. H. Hoos. On the Run-Time Behavior of Stochastic Local Search Algorithms for SAT. In
Proceedings of AAAI-1999, pages 661–666. AAAI Press, 1999.

4. H. Hoos. An Adaptive Noise Mechanism for WalkSAT. In Proceedings of AAAI-2002,
pages 655–660. AAAI Press, 2002.

5. C. M. Li and W. Q. Huang. Diversification and Determinism in Local Search for Satisfiabil-
ity. In Proceedings of SAT-2005, pages 158–172. Springer, LNCS 3569, 2005.

6. C. M. Li, W. Wei, and H. Zhang. Combining Adaptive Noise and Look-Ahead in Local
Search for SAT. In Proceedings of LSCS-2006, pages 2–16, 2006.

7. C. M. Li, W. Wei, and H. Zhang. Combining Adaptive Noise and Look-Ahead in Local
Search for SAT. In F. Benhamou, N. Jussien, and B. O’Sullivan, editors, Trends in Constraint
Programming, chapter 2. Hermes Science, 2007 (to appear).

8. B. Mazure, L. Sais, and E. Gregoire. Tabu Search for SAT. In Proceedings of AAAI-1997,
pages 281–285. AAAI Press, 1997.

9. D. A. McAllester, B. Selman, and H. Kautz. Evidence for Invariant in Local Search. In
Proceedings of AAAI-1997, pages 321–326. AAAI Press, 1997.

10. D. J. Patterson and H. Kautz. Auto-Walksat: A Self-Tuning Implementation of Walksat.
Electronic Notes on Discrete Mathematics 9, 2001.

11. S. Prestwich. Random Walk with Continuously Smoothed Variable Weights. In Proceedings
of SAT-2005, pages 203–215. Springer, LNCS 3569, 2005.

12. D. Schuurmans and F. Southey. Local Search Characteristics of Incomplete SAT Procedures.
In Proceedings of AAAI-2000, pages 297–302. AAAI Press, 2000.

13. D. A. D. Tompkins and H. H. Hoos. UBCSAT: An Implementation and Experimentation
Environment for SLS Algorithms for SAT and MAX-SAT. In Proceedings of SAT-2004,
pages 306–315. Springer, LNCS 3542, 2004.

