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Abstract: Traditional documentation capabilities of laser scanning technology can be further exploited for urban modelling 

through the transformation of resulting point clouds into solid models compatible for computational ana-lysis. This paper 

introduces such a technique through the combination of an angle criterion and voxelization. As part of that, a k-nearest 

neighbor (kNN) searching algorithm is implemented using a predefined number of kNN points combined with a maximum 

radius of the neighborhood, something not previously implemented. From this sample points are categorized as boundary or 

interior points. Façade features are determined based on underlying vertical and horizontal grid voxels of the feature boun-

daries by a grid clustering technique. The complete buil-ding model involving all full voxels is generated by em-ploying the 

Flying Voxel method in order to relabel voxels inside openings or outside the facade as empty voxels. Ex-perimental results on 

3 different buildings, using 4 distinct sampling densities show successful detection of all open-ings, reconstruction of all 

building façades, and automatic filling of all improper holes. The maximum nodal displace-ment divergence was 1.6% 

compared to manually genera-ted meshes from measured drawings. This fully automated approach rivals processing times of 

other techniques with the distinct advantage of extracting more boundary points, especially in less dense data sets 

(<175pts/m
2
), which may enable its more rapid exploitation of aerial laser scanning data and ultimately preclude needing a 

priori knowledge. 

1 INTRODUCTION 

Point clouds from laser scanning technology, known as Light Detection and Ranging (LiDAR), can collect object surface data 

quickly and accurately. These pointclouds have been used for reconstructing object surfaces in applications from medicine 

(Weyrich et al., 2004) to product design (Várady et al., 2007). LiDAR is being used in Civil Engi-neering applications most 

significantly in transportation for road modelling (Cai and Rasdorf, 2008; Tsai, et al. 2009), sign inventorying (Wang et al. 

2010), road defect identify-cation (Zhang and Elaksher, 2011), and disaster planning (Laefer and Pradhan 2006). Increasingly, 

it is also being ap-plied for structural health monitoring (Park et al. 2006 and Lee and Park, 2011), texture mapping (Zalama et 

al. 2010), historic documentation (Böhm et al. 2007) and Building In-formation Model generation (Huber et al., 2011). Most 

re-cently, pointclouds are employed for populating complex computational models for climate modelling (Wenisch et al., 

2007) and subsidence prediction (Laefer et al., 2010), for which highly accurate geometries are needed. 

Many methods have been developed to extract geometries from LIDAR data [both airborne and terrestrial] and photo-

grammetry, but most concentrate on reconstructing models for visualization. To date, the conversion of these models for 

computational analysis has required significant manual intervention to obtain high geometric accuracy (Laefer et al., 2011a). 

With Aerial Laser Scanning (ALS) data, city-scale, polyhedral building models are typically generated from boundaries of roof 

segments (Dorninger & Pfeifer, 2008; Elberink, 2009; Zhou & Neumann, 2009). In such cases, resulting building outlines are 

of low accuracy, as roof outlines are normally slightly larger than the buildings. Also, ALS’s traditionally low sampling 

density (<100 pts/m
2
 horizontally projected and <35 pts/m

2
 vertically pro-jected) creates difficulties in generating detailed 

vertical surfaces. Greater success has been achieved using the sub-stantially denser Terrestrial Laser Scanning (TLS) datasets. 

A good approach proposed by Pu and Vosselman (2009) in-volves segmenting potential façade features (e.g. windows, doors) 

and the subsequent fitting of polygons. Many alter-native approaches are based on façade grammars (Becker & Haala, 2007 

and 2009; Hohmann et al., 2009; Wonka et al., 2003); see Laefer et al. (2011a,b) for an extensive review of related literature 

and commercial applications for terrestrial and aerial options, respectively. 

As most existing approaches have concentrated on visuali-zation, significant problems tend to arise in either mesh convergence 

or geometric accuracy when the resulting mo-dels are used as the basis for computational modelling. Solid models of existing 

buildings generated through such means have had several drawbacks:  (1) re-quire significant user experience; (2) are of 
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relatively low geometric accura-cy of the façade and its openings; (3) cannot overcome un-realistic openings caused by sparse 

or missing data; and/or (4) may produce degenerate shapes causing difficulty in generating Finite Element Method (FEM) 

meshes. To sur-mount these shortcomings, a feature detection approach en-titled the FacadeAngle (FA) algorithm is proposed 

to create highly accurate boundaries of façade features through the combination of an angle criterion, voxelization, and a re-

cently introduced voxel location detection approach entitled the Flying Voxel method (Truong-Hong et al. 2012). 

2 RELATED WORKS 

To identify relevant sample points for detecting building features various algorithms and criteria have been proposed, many of 

which employ (1) an angle criterion or a half-disc criterion (Becker & Haala, 2007), (2) a Delaunay triangulation [e.g. (Pu & 

Vosselman, 2007)] and/or (3) proximity-based alternatives. 

2.1 Angle and Half-disk Criteria 

The general idea of boundary point detection by an angle criterion has been described by several researchers (Bendels et al., 

2006; Gumhold et al., 2001; Linsen, & Prautzsch, 2001, 2002). The criterion is based on the distribution of neighboring points 

consisting of the k-nearest neighbor points (kNNs) to a given point in Euclidean space (Samet, 2008) around a given point. To 

select appropriate kNNs for a small portion of an object’s surface, Linsen and Prautzsch (2001) implemented an angle criterion 

to establish the neighborhood of a given point, where the maximum angular gap between two consecutive points within the k-

neighbors projected onto a fitting plane was less than a threshold angle (e.g. π/2). Subsequent work allowed rapid generation of 

locally triangulated meshes suited for object representa-tion and real-time rendering of three-dimensional (3D) scenes (Linsen, 

& Prautzsch, 2002). Similarly, an angle criterion was used to enhance a standard kNN during sele-ction of a given point’s 

neighborhood, where no angles be-tween two consecutive neighboring points were larger than a pre-specified threshold 

(Moenning & Dodgson, 2004). The given point was classified either as a boundary point or as one lying in an under-sampled 

region, if no points were detected within a spherical neighborhood (as defined by a user-controlled radius). 

Elsewhere, Gumhold et al. (2001) applied an angle criterion to raw point data to extract the points on an object’s sur-face. 

There, sample points were classified as surface, crease, corner, or border points based on a penalty function dependent upon 

the maximum angle between neighboring points on a tangent-fitting plane (Hope et al., 1992). In rela-ted work, Bendels et al. 

(2006) presented a boundary proba-bility by combining various criteria for automatic hole detection. In this, boundary 

probability was computed from the maximum gap between two consecutive projected neighbor points for an angle criterion. 

The distance between a given point and the average of its neighbors for the shape criterion was calculated. Then the 

eigenvector of the given points calculated from its neighbors were compared to the eigenvector of a sample point belonging to 

standard objects.  

2.2 Delaunay Triangulation and Related Approaches 

In FEM meshing, Delaunay triangulation is a common approach, in which a circumcircle of any triangle may not contain any 

sample points of the set (Berg et al., 2000). For feature detection this is useful, as there are no sample points inside openings. 

The resulting triangles in those areas have longer sides. Using Delaunay triangulation meshes, sample points on the boundaries 

of a façade and its openings can be identified. These are the end points of the triangle sides that are longer than a predefined 

length threshold (Boulaassal et al., 2009; Pu & Vosselman 2007). Those points have been used for generating polygons as 

representations of complete building models by a least-squares fitting approach (Pu & Vosselman 2009) or by transforming 

them into parametric models (Boulaassal et al., 2010). Some drawbacks involve incomplete window generation, low accuracy 

of wall outlines, and dependence upon a predefined length threshold (Tang et al., 2009). In related work, Ali et al. (2008) 

introduced adaptive thresholds to detect contours of a rectangular, bounding window. This was based on the high variability of 

absolute differences of adjacent laser measured distances that occur in window regions where part of the laser beam falling on 

a window surface is reflected back when it hits an internal object’s surface. In such cases, windows were segmented by 

implementing closing morphological operations, from which window positions and global shapes were detected and 

subsequently retrieved by using contour analysis.  

2.3 Proximity-based Alternatives 

Based on the observation that glass reflectivity is low for normal light incidence, Wang et al. (2011) proposed detect-ing 

boundary points by examining neighboring spaces to low intensity ones; defined as voxels along vertical and horizontal 

directions. A voxel contains boundary points, if at least one empty voxel appears in an interval width of the considered voxel. 

The methods can efficiently detect win-dows but with relatively low geometric accuracy and can-not distinguish windows 

from occlusions. Similarly, in 2008, Hinks et al. (2008) proposed a point-based voxeliza-tion method to generate solid models 

of building façades from LiDAR data for simulation. In this, a voxel grid divi-des a bounded 3D region (containing whole 

point clouds of the façade) into a set of cells along vertical and horizontal grids parallel to axial directions of a Cartesian 
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coordinate system. The voxel is assigned a value of 0 or 1 correspond-ing to the voxel containing a number of sample points 

less than a user-specified threshold value or vice versa, of which the voxel is called “active” or “inactive”. While the result-ing 

building models are fully compatible with FEM mesh generation, they require a fairly dense data set for accurate feature 

detection, thereby precluding applicability to aerial data. The long range processing of city wide data also must address the 

challenges of working with very large data sets, so although the current TLS data capture capability is near-ly limitless, further 

data density may not be the optimal so-lution, although more recently available mobile mapping may be an alternative 

(Alshawa et al. 2009). 

Furthermore, to date these approaches have not provided sufficiently reliable and accurate boundary and feature de-tection for 

solid model reconstruction for computational modeling for Civil Engineering. The next section describes a new approach 

towards integration of these technologies for improved boundary and feature detection. 

3 PROPOSED FACADEANGLE ALGORITHMS 

While the point-based voxelization technique patented by Hinks et al. (2008) can by itself generate a solid model quickly, it 

insufficiently defines boundaries of a façade and its openings for computational purposes. Furthermore, other attempts to 

exploit that technique such as the FacadeDelaunay (FD) algorithm recently proposed by the same research group (Truong-

Hong et al. 2012) require data densities that will not be available through aerial LiDAR capture for many years as they are two 

orders of magnitude greater than current data capture abilities (Hinks et al. 2009). Therefore, the FacadeAngle (FA) algorithm 

is pro-posed for detection of façade and building features with less dense data sets, as it harvests greater numbers of boundary 

points for facades and building features, which provide a wider range of subsequent processing opportunities. Herein, the FA 

algorithm is applied to TLS data of various densities, as these are not yet achievable with ALS.  

The proposed workflow can be divided (Figure 1): (i) initial feature detection, in which sample points (called boundary points) 

lying on the façade and its openings are extracted by using the angle criterion and then unrealistic holes are eliminated by 

comparing characteristics of detected holes to standard building openings and (ii) geometric model reconstruction, in which a 

geometric model is produced. 

Since the solid models herein are used for structural analy-sis, some non-structural elements (e.g. balconies and win-dow 

ledges) are not included. Further, this work assumes that buildings are quadrilateral in shape, with structural ele-ments residing 

within a planar façade, with openings com-prised of primarily rectangular windows and glass-plated doors, and currently only 

reconstructs two-dimensional (2D) façades but could be extended to 3D models. 

3.1 Boundary detection (Step 1) 

As mentioned above, a pre-processing step classifies input sample points into boundary and interior classifications and discards 

unrealistic holes (Figure 2). There, each sample point is examined as to whether or not it lies on a boundary using an angle 

criterion. A boundary coherence technique (as will be discussed subsequently) is then applied to im-prove robustness. Holes 

are then assessed by comparing their characteristics to those of standard building openings. Their boundary points are finally 

re-classified as interior points, if they fail to meet the criteria (Figure 2). 

 

Figure 1. Building reconstruction process
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Figure 2. Feature detection processes 

3.1.1 Angle criterion in boundary point detection (step 1.1) 

Point, pi, is an “interior point” if the neighboring points are distributed around an entity (Figure 3a), or a “boundary point”, if 

the neighboring points form a partial ball (Figure 3b). Thus, the maximum angle between two consecutive neighbor points is 

critical for classification. Ideally, sample points on boundaries of a façade and its openings would be straight lines, for which 

the maximum angle between con-secutive neighbors would be equal to π except at interior window corners, which should not 

exceed π/2. Thus, the critical angle is chosen as π/2, so the given point is a boundary point, if the maximum angular gap 

exceeds an angular threshold. Otherwise, it is an interior point. 

  
a) Neighbor points of an 

interior point, pi 

b) Neighbor points of a 

boundary point, pi 

Figure 3. Distribution of the number of nearest neighbor points of a given point 

The FA algorithm starts with a randomly selected sample point and searches for a set of neighboring points, q (discussed 

below). The neighboring points, q, are projected onto a target-fitting plane (Figure 4). Cartesian coordinates of neighboring 

points are then transformed into relative cy-lindrical coordinates, with the local origin set at a given point pi. An angle between 

two consecutive neighboring points, αi,i+1 = ∠qiqi+1, is computed as the difference be-tween their azimuths (Figures 4a). The 

given point is label-ed as a boundary one, if the angle (αi,i+1) exceeds a given threshold (Figure 4b), and an interior point, 

otherwise. 

  
a) Angle between 2 

consecutive neighbor 

points of a given point pi 

b) Maximum angle between 2 

consecutive points in the neighbor 

points of a given point pi 

Figure 4. Computing a maximum angle between two consecutive neighbor points of a given point pi 

For selecting neighboring points of a given point, various methods have been used, such as a ball neighborhood (Fig-ure 5a) 

and kNN (Figure 5b). Herein, a binary search k-di-mension (k-d) tree was implemented into the FA algorithm for searching 

kNN points, where each leaf node contains a number of predefined target points (Bentley, 1975) – e.g. the 20 points (as 

discussed subsequently) adopted in this k-d tree. A number of kNNs, q{q1, q2,…,qn}, the nearest points of the given point, p, in 

the Euclidean distance, were extracted by the use of a k-d tree; [see Moore (1990) for more details of the searching]. 

Selecting am optimal number of kNN points is an important task, because this affects the running time and feature de-tection 
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quality. For example, if the data have a high level of noise or are relatively sparse, selecting a small number of kNN points will 

lead to large errors in classification (e.g. a sample point in the sparse Figure 6a data set was classified as a boundary point 

instead of an interior one). Similarly, boundary points are overlooked with excessively large neighborhoods (Figure 6b). 

Additionally, as point density varies within a data set, with low densities normally occur-ring in boundary areas, a 

neighborhood with a predefined number of kNN points can unintentionally contain sample points belonging to surface patches 

along two boundaries of the same opening (Figure 6b), which causes improper clas-sification. Herein it is proposed, that the 

problem can be minimized by implementing a radius threshold to constrain the ball of the neighborhood. In this, the ball’s 

radius must be less than or equal to the selected threshold. This thresh-old is set to a normal minimum window opening size 

(i.e. 0.4m) based on empirical work by (Pu & Vosselman 2007). The kNN searching algorithm implemented in this study is 

defined by an input number of kNN points combined with the neighborhood’s maximum radius (something not pre-viously 

done). Results with and without a radius threshold are illustrated in Figures 7a and 7b, respectively. 

  
a) Ball searching algorithm 

with a pre-defined radius 0.5m 

b) k-nearest neighbor 

searching for 10 kNNs 

Figure 5. Searching nearest neighbor point algorithm 

  
a) 8 kNNs causing 

misclassification of point 

pi in a sparse dataset 

b) 22 kNNs causing 

misclassification of point pi due 

to overly large neighborhood 

Figure 6. Misclassification of sample points due to either an overly sparse data or an excessively large neighborhood. 

  
a) 15 kNNs with an upper 

bound searching radius leads 

to only 13 kNNs selected 

b) 15 kNNs without an 

upper bound searching 

radius 

Figure 7. Selecting 15 kNNs of the given point pi with and without an upper bound searching radius 

To improve robustness of boundary point detection, the boundary coherence technique proposed by Bendels et al. (2006) was 

implemented to eliminate incorrect boundary points due to noisy data. The technique defines a point as being on a boundary, if 

and only if, two neighbor points of the given point forming the maximum angle are also boun-dary points. Otherwise, the point 

is classified as an interior one. In this study, the process is used to check through all boundary points detected in the previous 

step.  

3.1.2 Adjusting openings 

To distinguish real from apparent openings, any detected hole is compared to a standard façade opening. A detected hole is 

presumed false, if its characteristics fail to meet pre-defined opening criteria (as will be discussed later). To make this check, 

firstly all points on the boundary of a single hole are clustered using a clustering technique with a predefined searching radius 

(Guha et al., 1999). The radius value must ensure that none of the boundary points of adja-cent openings are unintentionally 

included, while still cap-turing all the relevant boundary points (Figure 8a). In real buildings, the distance between adjacent 
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rows or columns of openings or an opening and the façade edge is normally larger than 0.2m (Ripperda, 2008) [Figure 8b]. 

Thus, a pre-defined searching radius equal to 0.2m is adopted. 

  
a) Clustering all boundary 

points of a selected opening 

b) Unintentional selection 

boundary points from 

adjacent openings due to an 

overly large searching radius 

* Black points are respectively boundary points of windows 1 and 2 

Figure 8. Clustering boundary points of the openings  

Next, characteristics of each detected hole (height, length, and height/length ratio) are computed using a histogram a-long the 

horizontal and vertical directions (Figure 9), where the hole is assumed to be rectangular. The possible hori-zontal and vertical 

boundary lines of a hole can be deter-mined from two peaks of the histogram along the x- and y-directions, respectively 

(Figure 9b and c), in which a num-ber of bins in each direction is adopted equal to 10. How-ever, for holes (such as doors) at 

the ground surface, only one peak on the upper side appears on the histogram along the y-direction. Based on this concept, 

equivalent dimen-sions (height and length) of each hole are consequently de-termined in accordance with equations 1 and 2. 

    (1) 

    (2) 

where n and m, and k and l are a number of boundary points belonging to 2 peaks (“up” and “down”) along the y-histogram, 

and to 2 peaks (“left” and “right”) along the x-histogram. Notably, for a hole along the ground surface, the down peak is the 

lowest bin in the y-histogram. 

   
a) Boundary points of the 

window 

b) X-coordinate histogram of boundary 

points along the x-direction 

c) Y-coordinate histogram of boundary 

points along the y-direction 

Figure 9. Using histograms to determine height and length of a window 

Finally, holes are categorized as occlusions, if their charac-teristics differ from a predefined minimum opening dimen-sions 
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greater or equal to 0.4m (as established by Pu & Vosselman 2007) and a height (Ho) to length (Lo) ratio greater than 0.25 and 

less than 5.0 (as established by Mayer & Reznik 2005; Ripperda 2008) (Equation 3). Thereafter, boundary points of occlusions 

are reclassified as interior points. In order to eliminate unrealistic holes, characteris-tics of detected holes are compared to ones 

of openings in building structures, in which the opening is assumed as rec-tangular; height and length are used post 

identification.  

 

(3) 

3. 2 Solid model reconstruction (Step 2) 

The aim of Step 2 (Figure 10) is to reconstruct a solid mo-del of the building façade from raw data points adding a point 

classification of either “interior” or “boundary” as de-fined in Step 1. In surface reconstruction from a set of sample point, an 

object’s surface-based triangulation consists of curved surfaces, instead of the generally planar surface of building façades. 

Surface-based triangles may cause difficulty in generating FEM meshes or result in distorted FEM meshes leading to unstable 

numerical solution. For these reasons, voxelization is implemented into the FA algorithm to generate a complete building 

model. 

 
Figure 10. Reconstruct geometric model process 

Initially, a bounding box enclosing the building’s entire fa-çade is established. Often, a bounding box has equal edge lengths 

but is defined herein by equations (4) and (5) there-by implying the possibility of non-cubic voxels. 

    (4) 

    (5) 

where xmax, ymax, xmin,  ymin are minimum and maximum coordinates of input sample points. 

In the proposed FA algorithm, a voxel’s size along its short side (either longitudinal or vertical) of the façade is less than half 

of the minimum feature size (e.g. if the minimum opening dimension is 0.4m, voxel size must be less than 0.2m.). Thus, the 

required octree depth along x- an y-directions can be given: 

     (6) 

     (7) 

in which MinVoxelSize = 0.2 m and the sign [] means that the value is rounded up toward the nearest integer. As the octree 
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depth is unique, the maximum octree depth for recursively subdividing in this proposed approach can expressed as: 

max_Octree_depth = max(depth_x, depth_y)   (8) 

Subsequently, an initial voxel is subdivided along the x- and y-directions into four smaller voxels. Herein, the voxel is then 

categorized as “Empty”, “Full” or ”Partial”. The voxel is “Empty”, if it contains no data points, or “Full” if it contains 

exclusively interior points. The last category is “Partial”, if the voxel contains interior and boundary points or only boundary 

points. In the three sample buildings to be presented in the experimental section a depth of 8 was found to be ideal for the 

smaller structures and a depth of 9 for the larger. 

Boundary lines of the building façade and its openings are determined based on boundary points underlying partial voxels. To 

achieve this, a group of empty voxels is assumed to be inside an opening, and then the partial voxels around the opening are 

clustered using a flood-filling algorithm (Agoston, 2005), in which 8 voxels connected to the se-lected voxel are checked.  

The assumed quadrilateral shape of the façade and its open-ings implies that boundary points of each side can be ex-tracted 

from vertical and horizontal grids of partial voxels by using a grid clustering technique. A new grid cluster is generated, if the 

boundary points within the partial voxel of the grid satisfy the following conditions:  (1) a maximum distance between two 

boundary points in the grid is not less than the minimum opening size, and (2) a minimum dis-tance between two boundary 

points belonging to two adja-cent partial voxels is not greater than half of the opening size, in which an opening size of 0.4 m 

is adopted. By im-plementing a constrained condition in the grid clustering technique, incorrect boundary points due to noise 

in the data can be eliminated, because those boundary points may be stored as partial voxels on fragment girds. Often, the 

boundary points for reconstructing boundary lines lie in the same grid voxels, which implies a low noise level for these points. 

Furthermore, these grid clusters are classified as sub-cluster voxels containing boundary points representing boundary lines for 

each opening’s side by comparing coordinates of the grid cluster voxels to coordinates of the opening’s centre (Figure 11a). 

For example, a window has four sub-cluster voxels corresponding to the four boundary lines (two vertical, one bottom, and one 

top), whereas a ground-floor door normally includes only three representing to three boundary lines (no bottom boundary 

lines). For gene-rating two vertical lines and a bottom boundary line, these line segments were determined based on 

coordinates of all boundary points contained within the sub-cluster’s voxels by using a least median of squares approach  

(Pighin & Lewis, 2007, Fleishman et al., 2005). To obtain realistic vertical and horizontal boundary lines, fitting lines were de-

termined from a set of boundary points in each sub-cluster S = {pi = (xi, yi, zi)| 1≤ i≤n} as shown in equation 9 and 10. 

x = a for vertical lines    (9) 

y = b for horizontal line   (10) 

where the parameters a and b were determined by minimizing the median of the residuals: 

 for vertical lines  (11) 

 for horizontal lines  (12) 

  
a) Clustered vertical and 

horizontal clusters 

b) Determined boundary 

lines of the opening 

 

Figure 11. A modified grid clustering technique is employed to cluster vertical and horizontal voxels and to determine 

boundary lines of the opening 
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For the detailed process for parameter determination see Pighin & Lewis (2007) and Fleishman et al. (2005). This technique 

can eliminate 50% of all outlier points (Fleishman et al., 2005). Additionally, as the top boundary lines of real openings may be 

straight (as in rectangular openings,) bi-linear (as in wedge openings) or curved (as in arched openings), the y-coordinates of 

the end points of the top line were determined from average y-coordinates of these boundary points, while x-coordinates of the 

end points were set equal to two outlier boundary points along horizontal direction. A similar process was applied for 

determining the façade’s boundary lines. 

The full voxels were then stored in a database to describe the geometric model of the solid wall for computational modeling. 

Thus, the properties of the voxels must be re-classified based on their positions. Namely, the empty voxels are either “inside” 

openings (interior to a set of an opening’s boundary lines) or outside the façade (exterior to a set of the façade’s boundary 

lines). To achieve this, a fur-ther voxelization is created by dividing the initial voxeli-zation model (Figure 12a) by the 

boundary lines (Figure 12b). For this, the number of child voxels depends on the number of boundary lines intersecting a 

parent voxel. For example, four child voxels would be created, if two boun-dary lines intersected the parent voxel. Conversely, 

no sub-division would occur, if no boundary line intersected the parent voxel, or if boundary lines(s) coincided with surface 

plane(s) of the parent voxel.  

In re-voxelization (Figure 12c), voxels inside of openings or outside of the façade are now labeled as empty and all others as 

full. For that, the “Flying Voxel” method (Truong-Hong et al., 2012) is employed to quickly determine one of three possible 

positions with respect to various boundary lines:  Case 1 - voxel outside of the façade; Case 2 - voxel inside the façade and 

inside an opening; or Case 3 - voxel in-side the façade but not inside any opening. This approach is summarized in Truong-

Hong et al. (2012). 

Finally, all full voxels in the final voxelization model are converted into a neutral file for computational modeling into the 

commercial FEM code such as ANSYS Mechanical APDL Product (ANSYS Academic Research Release 13.0). Topology and 

geometry of the full voxels are converted to a Boundary Representation (B-Rep) scheme that defines a solid model, similar to 

that done by Hinks (2011) but with the voxel criteria described herein. 

 

 

    
a) Initial Voxelization 

model   

b) Boundary lines c) New voxelization 

model with 1 further 

subdivision (8 vs. 7) 

d) New voxelization model by 

using the “Flying Voxel” 

method 

Figure 12. Determined façade boundaries and its openings’ boundaries 

4 EXPERIMENTAL RESULTS AND DISCUSSION 

To validate the algorithms, four datasets were created for each of three brick buildings in Dublin, Ireland (Figures 13a-15a), 

which were selected for their proximity to an up-coming metro project and the availability of independent survey 

measurements. TLS point cloud data were collected using a Trimble GS200 device. Point clouds of each build-ing acquired 

from multiple scanner stations because of traf-fic, terrain limitations, and footpath space were registered by using RealWork 

Survey (RWS) V6.3, proprietary soft-ware associated with the Trimble GS200 scanner. In this survey, two scanner stations 

were set up for each building. A minimum of three reference regions for each scanner sta-tion was acquired at 2 mm 

resolutions in order to merge pointclouds of the façade, in which the reference regions were chosen at well-defined positions 
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such as window cor-ners or window ledges. A trial and error merge process was manually undertaken by selecting a pair of 

points from the source and target stations until the average error of each tar-get point expressed in term of distance errors was 

less than 5mm. Additionally, sampling point clouds were obtained by using a random sampling function built on RWS, in 

which a required distance between two adjacent sample points was defined.    

The first set was the original scans (NS00) after being co-registered and having points +/-20 cm behind the expected building 

façade removed. The other three were subsets using random re-samplings with expected distances between sampling points of 

20mm (S20-2500pts/m
2
), 50mm (S50-400pts/m

2
) and 75mm (S75-175pts/m

2
) [Table 1]. The densities were selected to test 

algorithm sensitivity.  

For extracting only sample points of considered facades, a MATLAB subroutine incorporated with MATLAB libraries was 

developed. Point clouds of adjoining building were re-moved. Similar to work of Adan and Huber (2011), the fa-çade surface 

was determined from a histogram peak along depth direction. For that, points ±20 cm from the facade were considered as 

sample points of objects behind the fa-çade (e.g. floors, internal walls and objects) or non-func-tional structures in front of the 

façades and were manually removed. Finally, the ground level was also determined as a peak of a histogram along vertical 

direction.  

Table 1.  Dataset Sizes 

Sampling dataset  Building 

 NS00 S20 S50 S75 

 B1:  2 Anne St. South 264,931 51,171 9,909 4,643 

 B2:  5 Anne St. South 190,865 51,884 11,119 5,366 

 B3:  2 Westmoreland St. 650,306 353,848 71,155 35,468 

The FA algorithm was implemented in MatLab program (MathWorks, 2007), using TLS data in ASCII format for point cloud 

coordinates. Experimental tests were run on a Dell Precision Workstation T5400 with Intel (R) Pentium (R) Xeon (8CPU) 

CPU speed 2GHz with 24 Gb RAM. For the boundary point detection, 20 kNN points and 0.4 m of a radius threshold were 

preselected for searching kNN, and an angle threshold of π/2 was preselected for the angle cri-terion. Each building had four 

geometric models:  B1FANS00 describes the geometric models of Building 1 (B1) reconstructed by using the FacadeAngle 

algorithm on the original dataset (NS00), while B2FAS20 describes the same applied to the sampling point S20 (distance of 

20mm between points) dataset for Building 2 (B2). Due to space limitations, only one set of solid models is graphically 

presented herein for each building. 

    
a) Photo Building 1 

(4.95m w x12.16m h) 

b) Scanning data in the 

RealWorks Survey program 

c) Point cloud after 

cleaning and resampling  

d) Boundary points in red 

    
e) Initial voxel 

representation 

f) Voxel representation 

subdivided by boundary lines 

g) Solid model 

representation 

h) CAD drawing from 

physical survey
(*)
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(*)
 values in [] are derived from the FA algorithms, while others are the independently measured survey values 

Figure 13. Facade reconstruction for Building 1 based on dataset of 2500pts/m
2
 (S20-distance between adjacent sample points 

no less than 20mm)   

    
a) Photo Building 2 

(4.90m l x 13.28m h) 

b) Scanning data in the 

RealWorks Survey program 

c) Point cloud after 

cleaning and resampling 

d) Boundary points in red 

    
e) Initial voxel 

representation 

f) Voxel representation 

subdivided by boundary lines 

g) Solid model 

representation 

h) CAD drawing from 

physical survey
(*) 

(*)
 values in [] are derived from the FA algorithms, while others are the independently measured survey values. 

Figure 14. Facade reconstruction for Building 2 based on a dataset of 400 pts/m
2
 (S50-distance between adjacent sample points 

no less than 50mm) 

    
a) Photo Building 3: 

(19.36m l x 17.0m h) 

b) Scanning data in RealWorks 

Survey program 

c) Point cloud after 

cleaning and resampling 

d) Boundary points in red 

    
e) Initial voxel 

representation 

f) Voxel representation 

subdivided by boundary lines 

g) Solid model 

representation 

h) CAD drawing from 

physical survey
(*)

 
(*)

 values in [] are derived from the FA algorithms, while others are the independently measured survey values 

Figure 15. Facade reconstruction for Building 3 based on a dataset of 175 pts/m
2
  

(S75-distance between adjacent sample points no less than 75mm) 

5 GEOMETRIC VALIDATION 
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Geometric accuracy of building façades in figures 13a, 14a, and 15a derived from the FA approach was compared to those 

processed in the commercial program, Kubit (1999). In this comparison, the building facades from on-site survey are 

considered for benchmarking quantities. In Kubit, the solid models were created within an AutoCAD program by manually 

indentifying openings and building boundaries based on a building’s photograph. Building façades generated from the Kubit 

program based on input datasets in Figure 13c, 14c and 15c are shown in Figure 16. 

   
a) Building 1 b) Building 2 c) Building 3 

Figure 16. Building façades created by Kubit program based on input datasets in Figure 13c, 14c and 15c 

To evaluate accuracy, the geometries of the derived building models were compared to measured drawings from independently 

produced on-site surveys (Figure 13h, 14h and 15h). In general, length of building models derived from the FA algorithm were 

slightly underestimated while ones from the Kubit algorithm were overestimated and to a greater extent, when compared to the 

real buildings underlying CAD drawings (Figure 17a). The maximum relative error in length by the FA algorithm 

underestimated Building 2 by 1%, while the maximum relative error by the Kubit program overestimated Building 1 by 3% 

(Figue 17a). Similarly, the FA algorithm also tended to underestimate the building height, whereas the Kubit program tended 

to overestimate it. While, the relative errors of the building height from the FA algorithm were slightly higher than ones from 

the Kubit program, the maximum relative errors were no more than 1.2% (Building 3) for the FA-based models versus 0.6% 

for the Kubit-based models (Figure 17b), with the benefit of the FA algorithm being fully automated.  

   
a) Lengths b) Heights c) Opening area 

Figure 17. Relative errors of building facades reconstructed by FA algorithm and Kubit program compared to independently 

measured drawings 

In terms of opening areas, for the small buildings (Building 1 and 2), the FA algorithm was more accurate (maximum relative 

error of 3.7% for Building 2) than the Kubit program generated ones (maximum relative error of -7.2% for Building 2), as 

shown in Figure 17c. However, for the larger Building 3, the opposite trend was found with the FA algorithm overestimating 

the opening area by 3% and the Kubit program underestimating by 1% (Figure 17c). As the resulting geometry of the building 

components (e.g. openings) may or may not affect building response depending upon the application, the geometric accuracy 

of the components was also evaluated.   

By considering the most important building components in masonry buildings (e.g. openings), the approach was also shown to 

be comparable. The average absolute errors of the opening dimensions in the FA-based solid models were generally less than 
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the Kubit-based ones (Table 2), in which the average error was 12.7mm [Standard deviation (SD)=121.1mm] in Building 2or 

the FA-based models, while 75.6mm (SD=102.7mm) for the Kubit-based ones. However, for the larger Building 3, opening 

dimensions in the Kubit-based model were more accurate than those from the FA-based models. For that, the average errors 

were -30.3mm (SD=54.1mm) and 4.5mm (SD=58.6mm) for the FA- and Kubit-based models. In conclusion, the FA algorithm 

more commonly automatically generated building models of superior accuracy than those created by the operator-assisted 

Kubit ones. This was likely caused by the fact that the Kubit program depends on visual interpolation by the user, while the FA 

algorithm generates the boundaries of the façade and its openings strictly from sample points. 

Table 2. Geometric differences between CAD drawings against the FA and Kubit-based solid models 

Building 1 Building 2 Building 3 Aspects 

(mm) FA-S20 Kubit FA-S50 Kubit FA-S75 Kubit 

Average  8.6 28.8 12.7 75.6 -30.3 4.5 

Min. error -109.0 -110.0 -165.0 -40.0 -177.0 -140.0 

Max. error 179.0 250.0 359.0 370.0 45.0 70.0 

Stand. dev. 111.4 110.0 121.1 102.7 54.1 58.6 

5.1 Quality of boundary point detection 

The proposed FA algorithm consistently detected all openings for each of the three building facades (Figure 13-15). Using 20 

kNNs, sufficient boundary points were found on the façade boundaries and its openings to reconstruct realistic boundary lines 

(Figure 13c, 14c and 15c), with improved detection for denser datasets (Figures 18a-b vs. Figures 18c-d). Notably, the FA 

algorithm can detect all boundary points around openings corners, a shortcoming that occurs in the Delaunay triangulation 

based FD algorithm (Truong-Hong et. al, 2011) [Figure 19] or with use of a shape criterion (Becker & Haala, 2007). 

Additionally, the FA algorithm also detected approximately twice the number of boundary points on building’s features than 

the FD algorithm (Figure 18 vs. Figure 19), even in the presence of occlusions (Figure 18a black circle). This opens the way 

for further processing options or further density reductions, which may soon enable use of existing ALS data for solid model 

generation of building facades.  

    
a) For NS00 – 230 

boundary points 

b) For S20 – 187 

boundary points 

c) For S50 – 86 

boundary points 

d) For S75 – 56 

boundary points 

Figure 18. Boundary points of a top left window of Building 2 with various sampling density of datasets to show parameter 

sensitivity 

    
a) For NS00 – 71 

boundary points 

b) For S20 – 61 

boundary points 

c) For S50 – 42 

boundary points 

d) For S75 – 32 

boundary points 

Figure 19. Boundary points of a top left window of Building 2 with various sampling density of datasets from the FD 

algorithm (adapted from Truong-Hong et al. 2012) 

5.2 Processing time 

The majority of the total processing time was devoted to feature detection (Figure 20). With a dataset of 190,865 points [as 

shown as 5.28 (log190,865) on x-axis of Figure 20], the feature detection took 102.3 minutes while voxelization required only 

1.8 minutes (Figure 20). This is because the feature detection algorithm must pass through the entire dataset, whereas the 

voxelization process is mainly searching through partial voxels to reconstruct boundary lines of building’s features. The 

voxelization process depends on not only depth of octree representation but also the number of openings needing to be 

reconstructed. For example, the process took 0.8 minutes for Building 2 (51,884 sample points, 8 openings and depth of octree 

representation by 8) but 6.28 minutes for Building 3 (71,155 sample points, 28 openings and depth of octree representation by 



Page 14 

 

9; the greater size of Building 3 required an additional level of division). 

While, the FA and FD algorithms (Truong-Hong et al., 2012) were nearly equivalent in speed, particularly for datasets less 

than 350k sample points, the FA algorithm may be further optimized, by having the feature detection portion of the algorithm 

search only on the sample points around openings instead through all sample points, as currently reflects its implementation.   

 
a) Feature detection 

 
b) Voxelization process 

Figure 20. Running time of the algorithms. 

To investigate efficiency of the proposed FA algorithm and Kubit program in reconstructing building models, the dataset of 

S75 was selected and the results of the building models was illustrated in Figure 13-16. Processing time for manual cleaning 

irrelevant points with the RealWork Survey is 5 minutes for all datasets while ones for reconstructing the building models is 

shown in Figure 21 (below). In general, the FA algorithm is faster than the Kubit program, particularly for small buildings 

(Building 1 and 2) having less number of openings. 

 
Figure 21. Comparing processing time between FA algorithm and Kubit program based on dataset of S75 

5.3 Influence of critical input parameters 

In the angle criterion, the vital parameters were identifying the critical angle and selecting a suitable neighborhood. In this 

study, the critical angle was set equal to π/2, which worked well, even in the corners, because the data points were fairly 

regularly distributed. False results occur, if the number of kNNs is set either too low or too high. As such, as discussed 

previously, for cases of 8 or 22 kNNs selected, detection of either interior or boundary points would be incomplete (Figure 6). 

By assuming a perfectly distributed rectangular data set, 8 kNN points would be sufficient for boundary point detection (Figure 

22 with sample points in circles), but real data are not distributed as such. Thus, 20 kNN points were selected for all datasets, 

corresponding to 0.2m of the ball’s radius of the kNN points for 75mm sampling dataset. This selection provides rapid 

boundary point detection while avoiding accidental sample point collection on adjacent openings. Additionally, the 0.2m 

radius enabled robust clustering of all boundary points on the boundaries of the façade’s features for each of the 12 datasets. 
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Note: 

* Dark gray points: sample points 

* Black gray points: given points 

* Unfilled circle points: boundary points 

* Black points:  neighbor points 

* Circles: selecting 8 kNN points 

* Dash lines: an expected window boundary lines 

Figure 22. Selecting neighboring points in rectangular distribution of sample points  

6 NUMERICAL ASSESSMENT 

As the main goal of the FA algorithm was to reconstruct solid models of existing building façades for computational modeling, 

compatibility of the solid models and the impact of the aforementioned geometric discrepancies on numerical results must be 

discussed. To evaluate the usability of these models for a relevant case, the responses of the FEM models derived solid models 

from the FA algorithm were compared to ones based on CAD drawings from on-site drawings submitted for planning 

permission. In this section, the solid models of Building 1 respectively shown in Figure 13g and 13h for the FA algorithm and 

the CAD drawing were selected for further investigation.  

Non-linear analysis was adopted for analyzing the solid model of Building 1 by using ANSYS Mechanical APDL product 

(ANSYS Academic Research Release 13.0), where a macro modeling strategy was employed to model the building facade by 

using a SOLID65 element. Additionally, a William Warnke (WW) failure criterion and Drucker-Prager (DP) yield criterion 

built into the ANSYS program are respectively to model masonry behavior in tension and compression. Thus, the WW failure 

criterion provides a tension cut-off for the DP yield criterion (Truong-Hong and Laefer, 2008). Material properties were 

selected from existing experimental reports and the peer-reviewed literature to represent medium-strength masonry properties 

used for this analysis. These were as follows: for elastic behavior Young’s modulus of 3,480 MPa and Poisson’s ratio 0.16 and 

for plastic behavior for 26.15/1.15 MPa of compressive/tensile strength, 6.81 MPa internal cohesion, 35
0
 internal friction angle 

and 10
0
 dilatancy angle. The analysis was conducted under self-weight and imposed displacements due to excavation-induced 

foundation settlements (Truong-Hong 2011), in which an element size of 0.15 m was predefined for FEM mesh generation, 

and displacements were directly applied to nodes on the bottom of the model (Figure 23a and b). As discrepancy of building 

length (Figure 17a) and the building edge is set at 2 m behind excavation face (Truong-Hong, 2011), there are small different 

displacements imposed on FEM models based on CAD drawing and the FA algorithm, where the minimum displacements 

were respectively 24.764 mm and 24.905 mm (Figure 23a and b). 
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a) FEM mesh & imposed 

displacement – CAD based 

b) FEM mesh & imposed 

displacement – FA based 

c) Displacements of FEM 

model – CAD based 

d) Displacements of FEM model – 

FA based 

Figure 23. Finite element models and numerical results from CAD and FA based models 

Graphically, the numerical analysis showed a consistency of nodal displacements between the FEM models based on two 

sources of the solid models (Figure 23c and d). The maximum nodal displacement differed by no more 1.6%, with an absolute 

difference of only 1.6 mm (Figure 23). In terms of an engineering perspective, this difference in FEM results was well below 

accepted uncertainty levels within structural design [e.g. the Load and Resistance Factor Design specification allows a nominal 

force effect increase of 5% to consider ductility, redundancy, and operational importance (Hoffman et al., 1996)]. Thus, the 

algorithm proposed herein can be used for auto-generating computational models from TLS data.    

7 CONCLUSIONS AND FUTURE WORK 

The newly proposed FacadeAngle algorithm combines an angle criterion, voxelization, and the positional determining Flying 

Voxel method to automatically extract building façades and their major features from LiDAR point cloud data for further 

computational modeling. By use of an angle threshold combined with a pre-specified searching radius and a pre-selected 

number of nearest neighbor candidates, the algorithm performed within acceptable limits in a wide variety of tests against a 

semi-automatic, commercial alternative on three urban buildings at 4 data densities. Favorable results were also obtained for 

geometric variance of the overall form and individual elements compared to solid models derived from measured drawings, as 

well as for resulting displacements and stresses in an adjacent excavation scenario (within 1.6% or 1.6 mm). Furthermore, even 

without full optimization, the processing time was comparable to another voxel-based automated approach and was also able to 

automatically overcome holes caused by data occlusions. In addition to these favorable aspects, the strategic advantages that 

the FacadeAngle potentially possesses over other approaches are as follows:   

1. Ability to precisely detect all boundary points around the corners of openings, except where occlusions exist 

2. Capability to harvest twice the number of boundary points over other automated methods 

3. Item 2 offers the potential for further processing for more exact results and/or for the abandonment of any a priori 

knowledge (e.g. general window sizes); something not yet obtainable in any approach 

4. Item 2 also offer the potential use of less dense data sets, such as aerial ones in the near term as there is a difference of 

two orders of magnitude between current high level aerial data when vertically projected and the typical terrestrial 

scan. 

However, the proposed algorithm needs to be extended to non-rectangular forms, optimized for use with large and sparse 

datasets, and needs to be freed from reliance on prior knowledge. Finally, increasing automation and applicability of this 

method will require its extension to fully 3D models and its integration with a procedure appropriate to eliminate irrelevant 

sample points prior to the initial processing.  
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