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INTRODUCTION

There has been a considerable investment of
resources by both government and industry in the
development of automated structural design and analy-
sis methods (e.g., refs. 1 and 2). In addition, a
number of interdisciplinary design studies have been
completed which indicate the benefits of these methods
in design (e.g., ref. 3). Computer implementations of
such methods for use in design studies typically take
the general form given in figure 1. As the figure
shows, each discipline begins its own intradiscipli-
nary analysis and optimization with an initial
design. However, one discipline (e.g., flutter
sizing) may be dependent upon results found in the
analysis and optimization process of another disci-
ptine (e.g., strength sizing). Thus, once the
- strength sizing has been completed, the results are
used to set a minimum gauge in place of estimates pre-
viously input for the flutten sizing. This is a
sequential approach to automated design and implies
that iterations are to be made until an optimum design
is obtained. However, because of budget and time con-
straints, very few (if any) iterations with interdis-
ciplinary optimization are carried out in design study
applications. What is needed, therefore, is an
approach which allows concurrent multidisciplinary
analysis and optimization (fig. 2). In such an
approach, the software system is capable of performing
the analysis for several disciplines in parallel
(concurrent analysis) and then have the optimizer take
into account the constraints from all the different
analyses (concurrent optimization), allowing users to
achieve more iterations and therefore obtain a more
optimal design than of that from the sequential
approach. One of the long-term goals at NASA's
Langley Research Center (LaRC) is to develop the meth-
odology for such systems.

As a part of the effort to reach this long-term
goal, LaRC has been combining analysis and optmization
codes since 1971, The resulting programs show a
steady evolution from relatively elementary, special-
purpose programs with limited capabilities to modular,
flexible systems of programs with more general capa-
bilities. This paper first traces the three evolu-
tionary lines along which computer programs combining
analysis and optimization have beendeveloped at LaRC,
namely, strength sizing, concurrent strength and flut-
ter sizing, and general optimization (fig. 3). Analy-
tical and computational advances contributing to this
evolutionary process are described. The near-term
goal, a state-of-the-art software system which exe-
cutes the analysis and optimization in a sequential
rather than concurrent mode, is then described as a
major step toward reaching the long-term goal.
Finally, one of LaRC's current efforts in combining
analysis and optimization codes to be incorporated
into the software system satisfying the near-term goal
is described. The description of this current effort
is in terms of how this analysis and optimization
system works, how this system is connected using a
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special-purpose language, how this system communicates
with a data base, and how new programs can easily be

added to the system. Some numerical results are also
shown.

PAST COMBINATIONS OF ANALYSIS AND OPTIMIZATION A
LANGLEY RESEARCH CENTER AT

Qeginning in 1971, there has been a steady pro-
gression of programs or systems of programs combining
gnalySIS and optimization which were developed either
in-house at LaRC or under contract. This progression
of programs is listed below along with the meaning of
thelr names (where applicable), the primary date of
publication, and reference(s): :

1971 EANNS (Design of Aircraft WiNg Structures, ref.

1971

SWIFT (refs. 5 and 6)
1972

SA¥ES7§Sizing Aerospace VEhicle Structures,
ref,

FADES (Fuselage Analysis and DEsign of Struc-
tures, refs. 8 and 9)

WIDOWAC (WIng Design Optimization With Aero-
elastic Constraints, ref. 10)

ISSYS (Integrated Synergistic SYStem, ref. 11)
PARS (ProgrAm for Resizing Structures, ref. 12)
PROSSS (PROgraming Structural Synthesis System,
refs. 13 and 14)

Distributed PROSSS (refs. 15 and 16)

1972
1973

1978
1979
1979

1981

Programs combining analysis and optimization at
LqRC have evolved along the three lines indicated in
figure 3. These lines are: (1) strength sizing, (2)
concurrent strength and flutter sizing, and (3) gen-
eral optimization. The evolution of programs along
each of these lines was a natural consequence of
advances in six areas: (1) structural application
(components), (2) structural representation (mathemat-
ical model), (3) analysis, (4) optimization, {(5) flex-
ibility of use, and (6) computer implementation fea-
tures. The effect of these advancements on the evolu-
t1on§ry process is described briefly below. A more
detailed comparison of these six areas is given 1in
Tables 1-3. ’

§trength sizing is the first line of evolution,
The f1rs§ codes in this line, DAWNS and FADES, were
very limited in the size of the models they could
analyze because all of the analysis and data handling
was executed in core. The control of their execution
was done through main programs and subroutines, or
overlays. For optimization, DAWNS used the weight/
strength method coupled with fully-stressed design
(FSD). Techniques allowing the use of mathematical
programing to solve optimization problems were incor-
porated into later programs beginning with FADES.
S@VES was the first. system to use a general-purpose
finite-element program (NASTRAN, ref. 17) for analy-
sis. The use of NASTRAN allowed much larger problems
to be solved in a batch environment because not all of
the data had to be kept in core. The data handling
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was done using sequential data files stored on disk
during execution and magnetic tapes for restarting.
SAVES was controlled by a FORTRAN callable subroutine
which called sequences of control cards to execute
various programs. Although SAVES was capable of
analyzing a complete airframe, the optimization pro-
cess was adapted from DAWNS and limited to wing struc-
tures.

When SPAR (ref. 18) was developed, the user was
provided with'a finite element analysis program suit-
able for an interactive environment because of its
modularity, but still applicable to large models. At
about the same time, the Control Data Corporation
(CDC) Network Operating System (NOS)! became avail-
able at LaRC. With NOS, the user was able to take
advantage of permanent disk files, interactive opera-
tion, and a method of combining CDC executive control
language commands (ref. 19) into procedure files.
[SSYS then evolved to take advantage of the features
offered by SPAR and NOS. Most of the data handling
and storage is done using the SPAR data management
system (DMS). The controlling network accessed proce-
dure files using CDC executive command control lan-
guage to connect more than one program into a modular
system. ISSYS, using SPAR and the method of usable-
feasible directions, could perform structural analysis
and optimization on a complete airframe. The modular-
ity of ISSYS allowed programs to be added which per-
formed aerodynamic and aeroelastic analysis. However,
in ISSYS, the structural and flutter optimizations
were executed sequentially rather than concurrently.

Concurrent strength and flutter sizing is the
second line of evolution. SWIFT and WIDOWAC, like
DAWNS and FADES, were very limited in the size of the
models they could analyze because all of the analysis
and data handling was done in core. Both programs
used the sequential unconstrained minimization tech-
nique (SUMT, ref. 20) for optimization. SWIFT suc-
ceeded in performing concurrent strength and flutter
sizing, but only for simple plate wings. WIDOWAC
evolved from SWIFT to take advantage of the finite-
element method (FEM) for structural representation.
PARS was developed to take advantage of the features
in SPAR. For example, PARS used the SPAR special-
purpose language (runstreams) to control the flow of
execution. Programs were added to SPAR to perform
optimization, and aerodynamic and aeroelastic analysis
making PARS a modular system within a single program.
These programs, when incorporated into SPAR, are
called SPAR processors. PARS became the first system
to allow the user to perform strength and flutter
sizing on a general structure. Although WIDOWAC and
PARS were both originally designed to perform con-
current strength and flutter sizing, upon implementa-
tion it was found that this was not economically feas-
ible within the state-of-the-art of analysis as it
then existed. Thus, both WIDOWAC and PARS were reset
to execute in a sequential mode. Additional work is
required to obtain approximation techniques that would
reduce the cost of such analyses to some economically
feasible level (refs. 21, 22).

General optimization is the third line of evolu-
tion. CONMIN (ref. 23) is a general-purpose optimizer
based on the method of usable-feasible directions and
gives the user a optimizer that can easily be inter-
faced with analysis codes. The Approximation Concepts
Code for Efficient Structural Synthesis (ACCESS,
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ref. 24) provided a methodology for using reciprocal
design variables, design variable linking, and linear
approximations. PROSSS was developed to take advan-
tage of the features in SPAR, CONMIN, NOS, and some of
the methodology provided by ACCESS. It should be
noted that before PROSSS all of the analysis/optimiza-
tion codes at LaRC relied on a preset definition of
the design variables, constraints, and objective func-
tion, as well as a preset optimization procedure.

With PROSSS, the user gained a large degree of flexi-
bility because of the way in which the programs within
the system pass data and are connected by executive
control language commands. This connecting network
allows the user to substitute problem dependent pro-
grams and formulations of the design variables, con-
straints, and the objective function at execution time
thus making the system adaptable to a wide spectrum of
structural optimization problems. Although SPAR and
CONMIN are used for the analysis and optimization in
PROSSS, other analysis and/or optimization programs
could be substituted. Distributed PROSSS evolved from
PROSSS after a PRIME minicomputer was made available
to LaRC researchers. Distributed PROSSS takes advan-
tage of the best features of both the mainframe (e.q.,
faster CPU) and the minicomputer (e.g., virtual
storage and faster interaction) by distributing the
structural analysis and optimization process between
the two computers. Distributed PROSSS also reduced
the complexity of the system by placing a majority of
the control (previously handled through executive
command control language) within a FORTRAN program on
the minicomputer. The ability to examine and plot
intermediate results from Distributed PROSSS signifi=
cantly reduced the total amount of wall-clock time
required for the design process.

As the above synopsis indicates, during the
period 1971-1981 there has been a steady progressive
development of computer programs combining analysis
and optimization at LaRC toward the long-term goal of
developing the methodology to perform concurrent
analysis with concurrent optimization. This long-term
goal requires that the software system have the capa-
bility of performing the analysis for several disci-
plines in parallel (concurrent analysis) and then have
the optimizer take into account the constraints from
all the different analyses (concurrent optimization).
One way this can be accomplished is to combine the
methodology from Distributed PROSSS with a multilevel
optimization system for decomposing a large optimiza-
tion problem into a hierarchy of much smaller problems
(ref. 25). Engineers can then work the smaller pro-
blems using a distributed network of state-of-the-art
micro- and minicomputers connected to a common data
base. The development of analysis/optimization pro-
grams is continuing and a near-term goal has been
established. The near-term goal for combining analy-
sis and optimization will execute in a sequential
rather than concurrent mode. Hence, the near-term
goal does not meet the the requirements of the long-
term goal, but it is a major step in that dirction.
This near-term goal is discussed in the next section.

THE NEAR-TERM GOAL FOR COMBINING ANALYSIS AND
OPTIMIZATION AT LARC

As presently defined, the near-term goal for
combining analysis and optimization codes at LaRC is
to develop a modular software system which combines
general-purpose, state-of-the-art, production-level
analysis computer programs for structures, aerody-
namics, and aeroelasticity with a state-of-the-art
optimization program featuring an FSD capability as
well as either the method of usable-feasible direc-
tions or SUMT. This system is to be applied to gene-
ral structures using (1) finite element models, (2)




general, user-defined design variables, constraints,
and objective function, (3) a user-formulated optimi-
zation procedure, and (4) a DMS for storing and
retrieving data. PARS, ISSYS, PROSSS, and Distributed
_PROSSS do not satisfy all of these criteria. For
example, PARS and ISSYS only allow a preset definition
of design variables, constraints, objective function
and optimization procedure. In addition, ISSYS is not
applicable to a general structure. PROSSS and Distri-
buted PROSSS lack aerodynamic and aeroelastic analysis
capabilities. However, the modularity of PARS, ISSYS,
and PROSSS and the availability of a new finite
element analysis computer program called Engineering
Analysis Language (EAL, ref. 26) have provided the
necessary ingredients to develop a software system
which satisfies all of the above criteria. Because of
their modularity, each program can be incorporated as
a processor within EAL. By incorporating each program
into a single program, the system temporarily loses
some of the benefits derived from Distributed
PROSSS. However, it is anticipated that these bene-
fits will be recovered in the long-term as advances
are made in distributing hardware and software.

EAL, which evolved from SPAR, provides the
required finite element structural analysis capability
for general structures as well as the DMS. CONMIN,
which is contained in PROSSS, satisfies the require-
ments for an optimization program. The modularity of
EAL and the capability to add new programs provide the
user with much flexibility in defining the design
variables, the constraints, and the objective function
as well as in formulating an optimization procedure.
There are efforts currently underway to incorporate
procedures, processors, and programs from PARS, ISSYS,
and PROSSS into EAL. Additional analysis modules
which are closely related to structural optimization
(such as new, advanced aerodynamic analyses needed for
aerodynamic loads and aeroelasticity) will be added to
EAL to meet the’ requirements of multidisciplinary
analysis and optimization which deal with the airframe
directly. The resulting system will be designated
EAL/ISSYS (fig. 3) and will satisfy the requirements
set down for the software system meeting the near-term
goal. Users of this system will have much greater
flexibility to solve a wide variety of engineering
problems as well as evaluate new techniques in both
analysis and optimization. A1l modules will communi-
cate through the EAL DMS. Because all of the software
will be either computer-independent FORTRAN or EAL
runstreams, this system should be easily portable to
any other government agency or any private company.

It is anticipated that in addition to EAL/ISSYS,
which will be focused on airframes, there will be a
need for a system supporting much broader applications
such as general aerospace vehicles. In these applica-
tions, there will be many other major analyses
involved, each represented by a program or system of
programs too large and too complex to be added as
processors in EAL. Integration of these programs with

. EAL/ISSYS can be accomplished with the aid of a
state-of-the-art DMS such as RIM (Relational
Information Management, ref. 27). A proposed system
is diagramed in figure 4. In this system, each major
analysis program has its own data base for storing
data used only by that program. RIM is used to store
data (such as design variables and constraints) that
is to be passed between the major analysis program and
procedure files for controlling the flow of execution.

One of the current efforts at LaRC that will aid
in reaching the near-term goal (EAL/ISSYS) is the
incorporation of PROSSS into EAL to form EAL/PROSSS
(fig. 3). The remainder of this paper describes the
salient features of PROSSS and the process for incor-
porating PROSSS into EAL. Since this process is
representative of the manner in which any code can be

incorporated into EAL, the reader should gain some
understanding as to how EAL/ISSYS is being developed.

STRUCTURAL ANALYSIS AND OPTIMIZATION USING PROSSS

The flowchart of "the PROSSS structural optimiza--
tion software system is shown in figure 5. This flow-
chart is the same regardless of which of the three
versions of PROSSS is being used. The five major com-
ponents in the system are: (1) initialization; (2)
analysis (EAL or SPAR); (3) optimization (CONMIN); (4)
interface processing; and (5) termination.

During initialization, certain problem-dependent
variables, files, and sometimes file names are ini-
tialized to the desired values. An example of this is
the input data required for CONMIN. The initializa-
tion is not repeated during the analysis/optimization
process.

There are two parts to the analysis portion of
the process. One part, the nonrepeatable analysis, is
executed outside of the optimization loop and is
executed only once unless the user changes the struc-
tural model. The nonrepeatable part of PROSSS gene-
rates tables of material constants, section proper-
ties, joint locations, and element connectivities for
the initial design variables. If analytical gradients
are required, then the derivatives of the mass and
stiffness matrices with respect to each design vari-
able are also computed. These data are then stored in
the data base on a temporary disk file and are
referenced by other programs in the optimization
Toop. These data can also be saved on a permanent
file so that it is not necessary to execute the
nonrepeatable analysis for each subsequent execution
of PROSSS. This is a very desirable feature when the
user has a fixed model and is evaluating various new
optimization and analysis techniques. The second part
of the analysis portion of the process is the
nonrepeatable analysis which is executed iteratively
in the optimization loop. During this portion of the
analysis, the changed design variables are used to
calculate the new behavior variables for the
structure. If analytical gradients are required, th
the derivatives of the behavior variables are also
computed. These data are also stored in the data
base.

CONMIN, the optimizer, computes a new set of .
design variables based on the values of the objective
function, constraints, and optionally their
gradients. In PROSSS, CONMIN is treated as a "black
box". A user-supplied, problem-dependent driver pro-
gram is written to input the data created by the end
processor, call the optimization subroutines, and out-
put data using either files or the data base, depend-
ing upon the version of PROSSS being used.

The interface processors are also user-supplied,
problem-dependent programs. They are used to communi -
cate between the analysis and optimization programs.
The front processor receives the updated design vari-
ables from CONMIN and converts the data into a format
suitable for input into SPAR or EAL. The end pro-
cessor receives the behavior variables, and optionally
their derivatives for analytical gradient calculation,
and converts the data into constraint data formatted
for input into CONMIN. The capability of adding these
two processors and the CONMIN driver program to EAL
contributes to the flexibility of the system.

Certain termination criteria (such as the objec-
tive function not changing greater than a given tole-
rance within three successive passes through the
system) are determined within the CONMIN driver pro-
gram. If these criteria are met, the CONMIN driver
program creates a termination file causing execution
to terminate. Execution may also terminate if a pre-
defined number of optimization loops is exceeded. The




last criterion prevents the user from spending too
much computer time on a poorly defined problem.

INCORPORATION OF PROSSS INTO EAL

Incorporating PROSSS into EAL to form EAL/PROSSS
is one of LaRC's current efforts in the evolutionary
process of combining analysis and optimization codes.
A system with enhanced portability and flexibility is
achieved by taking advantage of the EAL special-
purpose language commands and data base. Use of the
EAL data base simplifies the restarting of an abnor-
mally terminated EAL execution. The ease in which new
processors can be added to EAL makes the system
readily adaptable to a wide spectrum of structural
optimization problems. The remainder of this paper
describes these features in detail. In addition, the
model used for validating each of the PROSSS systems
is described and the key results are shown.

Connecting Processors in EAL with the EAL Special-
Purpose Language

The connecting network ties all of the system's
components together. For PROSSS, an executive control
language network connects procedures, programs, and
data. For Distributed PROSSS, FORTRAN programs using
a PRIME feature of FORTRAN callable procedure files
replaced the complex procedure files used in PROSSS.
The procedure files in Distributed PROSSS are very
simple, because the FORTRAN driver programs contain
all the looping, branching and testing logic required
for executing the programs in PROSSS.

EAL (Engineering Analysis Language) is, as the
name implies, a special purpose language contained
within a state-of-the-art finite element computer pro-
gram. This language gives the capability of doing
most of the operations normally done in FORTRAN. The
operations include testing, branching, looping and
arithmetic calculations. ~There are also commands that
simplify retrieval of data from the data base. The
commands are simple and easy to use. For example, to
branch in EAL requires:

*JUMP 100

*LABEL 100
Thus, the controlling network can now be written in
computer-independent EAL runstreams.

In the two earlier versions of PROSSS, SPAR was
used for the analysis and two FORTRAN programs were
written to create SPAR runstreams to aid in calcu-
lating analytical graidents. FORTRAN programs were
used because the runstreams had to be general and
satisfy any number of load cases and any number and
type of design variables. SPAR, although quite simi-
lar to EAL in many respects, lacks the EAL commands
for looping, testing, and branching. Thus, another
advantage to incorporating PROSSS into EAL is that the
two FORTRAN programs can be replaced by two general
EAL runstreams that take advantage of EAL's looping
and branching commands. This increases portability
while decreasing complexity. A portion of the listing
containing the EAL runstream for computing the deriva-
tives of the stiffness and mass matrices with respect
to the design variables is shown in table 4 as an
example of the commands used in EAL.

Communicating Between New Processors and the EAL Data
Base

Incorporating PROSSS into EAL takes advantage of
the EAL data base. The data base is written so that
it can easily be accessed by any processor using
FORTRAN callable utility subroutines. These utility
subroutines are stored in the main overlay which

remains in core at all times; thus these subroutines
are available not only for the original EAL pro-
cessors, but also for any processors the user may wish
to add.

To use these subroutines, the user must be fami-
liar with their functions and calling parameters
(ref. 28) as well as how the data are stored in the
data base (ref. 29). Data are stored in the data base
in two-dimensional tables or matrices called data
sets. The data sets are referenced by a four-word
name such as STRS E23 i j--where STRS means stress,
E23 is the element type, i 1is the load set number,
and j s the load case number within the load set.
The data sets are stored on disk in libraries within
the data base (fig. 6). When two data sets containing
data for the same item and having the same data set
name exist on the same library in the data base, only
the Tatest stored item can be accessed by other pro-
grams. There are 30 libraries available for the user
to store data sets, however, library 30 is generally
reserved for system usage. Data sets can be trans-
ferred from one library to another using standard EAL
runstream commands. The typical user only stores data
in library 1, which is the default.

One of the powerful features of EAL is the capa-
bility of extracting data from the data base using
runstream commands. This information is very useful
in setting up general-purpose runstreams. Using this
capability such information as the number of design
variables, number of load cases, number of joints, and
element names can be extracted from the data base and
stored in runstream variables called registers. These
registers are then used for loops, branches and calls
to other data sets within the general runstream. This
means that some runstreams, such as the runstream that
computes the derivatives of the stiffness and mass
matrices with respect to the design variables, do not
have to be coded differently for different problems or
different users.

It may also be necessary for users to create
their own data sets for use in the processors they are
coding. The user is then responsible for the naming
of the data set and the format in which the data is
stored within the data set. An example of this type
of data set in EAL/PROSSS .is the data set containing
the design variables. These data sets are not used by
the standard EAL processors, but are used to pass data
between the front and end processors, and the CONMIN
driver, all of which are coded by the user.

The ability to communicate between a processor in
central memory and the data base on disk requires that
certain EAL utility subroutines be used. The data
being used in EAL processors are usually stored in the
central memory area reserved for blank common (fig.
6). These routines are used for moving data from
blank common into the data base and moving data from
the data base into blank common. The call to the
utility subroutine first specifies the data set which
is to be addressed within the library. A starting
address in central memory is also passed in the
subroutine call. The starting address, usually an
address within blank common, specifies the address in
central memory where the data being retrieved from the
data base is to be placed or an address in central
memory that is to be stored in the data base. An
operation code, also passed through the subroutine
call, specifies whether the data areto be stored or
retrieved. Once the data have been placed in the data
base, it can be accessed by any other processor or
runstream. Once the data have been successfully
transferred from the data base to central memory, it
can be used in the accessing processor just as any
data might be used.

In the two earlier versions of PROSSS, only data
created by the SPAR analysis was stored in the data




base. Data for initialization and data created by the
front and end processors and CONMIN were all kept on
separate disk files. Managing all of these files as
well as the flow of the system is very cumbersome in
an executive control language. Because all of the
data are stored in the EAL data base in EAL/PROSSS,
the use of files is minimized which greatly reduces
the -complexity of the connecting network.

Restarting an execution in EAL is simple because
of the data base. A disk file (or files) with
libraries containing the most recently computed data
sets is saved at the end of an EAL execution. This is
true even if the execution terminated abnormally. If
the execution does terminate abnormally, changes can
be made either to a processor or to a runstream; then
the execution can be restarted at the beginning of the
last pass through the optimization loop.

A capability that allows the user to examine
intermediate results is currently available in Distri-
buted PROSSS and is to be added to EAL/PROSSS. With'
this feature the user will be able to examine plots
and/or listings of the intermediate results and
determine if the analysis/optimization process is
executing as anticipated. If a problem is discovered,
the user can stop the execution, make the necessary
changes, and then restart execution. For example, the
user, upon examining his intermediate results, may
find that one of the design variables is lodged
against a lower-bound constraint which was input to
CONMIN, At this point, the user can stop execution,
relax the constraint condition, and then restart exe-
cution. Because of this restart feature, loss of
previous (and sometimes expensive) calculations can be
prevented. g

Adding Processors’ to EAL

Just as FORTRAN programs call subroutines to per-
form a specific task, EAL calls processors. The pro-
cessors are incorporated into EAL as overlays. The
main overlay, which is always in core, contains the
input/output routines and commonly used utility pro-
grams. The next (primary) level of overlay contains
the processors. The main overlay can call a primary
overlay into core (fig. 6). In EAL, this is done with
runstream commands such as:

*XQT processor name

To add PROSSS to EAL requires the addition of new
processors external to EAL, such as the front pro-
cessor, the end processor and the CONMIN driver.

Since EAL is a proprietary program, its source code is
not available at LaRC. To add a new processor
requires using an external overlay as shown in figure
7. When an *XQT command is encountered in EAL, a
test is made to see if a legitimate EAL processor is
being called. If it is not a legitimate EAL processor
and an *XQT EXTERNAL command has already been
encountered, then EAL branches to an external overlay
called EXT to execute the additional processors.

The division of the processors between the two over-
lays is shown in figure 8.

The primary overlay in the external overlay con-
tains a driver program to check and determine if the
called processor is a legitimate processor in the
external overlay. If it is not a legitimate pro-
cessor, an error message is issued. If it is a legi-
timate processor, a secondary overlay is called to
execute the processor.

As mentioned previously, one of the key features
of PROSSS is its flexibility. To maintain this flexi-
bility when incorporating PROSSS into EAL, dummy
drivers were added to the external overlay. The dummy
driver program performs only one task, the calling of
a subroutine with a specific name. Thus, once the

relocatable overlay structured file is created it does
not have to be recreated for different users or
different problems. The unsatisfied subroutines
called by the dummy driver programs in the external
overlay program are satisfied at load time with user-
supplied, problem-dependent subroutines. The only
requirement placed on the user is that the subroutine
names used in the dummy driver programs must also be
used in the subroutines. The file containing the sub-
routine can have any name.

Another key feature available when adding new
processors to EAL is the use of reset. EAL provides a
utility routine for resetting certain variables used
in the processors. This 1s similar to the passing of
parameters to subroutines. When a user writes a pro-
blem-dependent processor, variables can be initialized
with default values in data statements. Should the
user decide to change the defaults at execution time,
there is no need for him to change the source code,
recompile, and reload the absolute overlay. A reset
command with the variable name and its new value
following the command that executes the processor can
be added. For example, suppose the external processor
EPRC required the number of beam elements (NE21) used
in the model as input. Suppose the user initially
defaults the NE21 parameter to 75, but now wishes to
change the number of beam elements to 100, then the
following commands are required:

*XQT EPRC
RESET NE21=100

The EAL utility routine is then called by the pro-
cessor to reset the variable. The only thing required
of the user is to plan ahead and design code to handie
all variables that might be reset. :

Test Case
7 degree-of-freedom finite element model of
an idealized segment of a fuselage with a cutout
(fig. 9) was used to test each version of "PROSSS. The
model consists of 80 joints connected to form 76 rod
elements, 58 beam elements and 56 membrane elements.
The cross-sectional areas of the rods and beams and
the thicknesses of the membranes were used as design
variables. For this test case, all rod areas are
equal, as are the areas of the beams, and the thick-
nesses of the membranes.

The final objective function {mass) for EAL/
PROSSS was 6343 Kg which agrees with the 6344 Kg found
with PROSSS. The final cross-sectional area of the
rods and the thicknesses of the membranes were in
exact agreement at 2.0390 cm? and 0.1207 cm, respec-
tively. There was only a slight difference in the
final cross-sectional area of the beams between the
two systems. EALéPROSSS resulted in a cross-sectional
area of 1.6025 cm“ while the final area for PROSSS
was 1,6002 cm?, ‘

CONCLUDING REMARKS

The evolutionary process of combining analysis
and optimization codes at Langley Research Center is
described with a view toward providing insight into
the long-term goal of developing the methodology for
an integrated, multidisciplinary software system for
the design of aerospace structures. A current effort
in this evolutionary process is discussed, particular-
ly as it relates to the near-term goal of combining
state-of-the-art, general-purpose, production-level
analysis computer programs with a state-of-the-art
optimization program. This effort, a software system
designated EAL/PROSSS, is described in terms of its
special-purpose language and data base features, and
the process used for adding new programs. Some



numerical results showing the accuracy of EAL/PROSSS
are given.
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TABLE I.- COMPARISON OF PROGRAMS WITH RESPECT TO STRUCTURAL APPL;CATION AND REPRESENTATION

71 11 2 12 13 18 19 19 81
DAWNS | SWIFT | SAVES | FADES | WIDOWAC| ISSYS | PARS | PROSSS | DIST. PROSSS
WINGS X x X x x x X x
FUSELAGE x x x x x
STRUCTURAL
APPLICATION COMPLETE N x N x
AIRFRAME
GENERAL x x x
STRUCTURE

FINITE ELEMENT

X X X X X X x %
STRUCTURAL |MODEL (DISCRETE)
REPRESENTATION PLATE y
(CONTINUOUS)

TABLE II.- COMPARISON OF PROGRAMS WITH RESPECT TO ANALYSIS AND OPTIMIZATION

nilanlnln 73 B[] 19 81
DAWNS | SWIFT | SAVES | FADES | WIDOWAC| ISSYS | PARS | PROSSS|DIST. PROSSS
STRUCTURAL
{STATIC) X o Rl x X o x X
STRUCTURAL
(DYNAMIC) x X x x X x X
ANALYSIS | AeroDYNAMIC | x x x x x | x
AEROELASTICITY
(STATIC) X O
AEROELASTICITY
(DYNAMIC) : x x x
WEIGHT/STRENGTH| x
- USABLE- FEASIBLE
DIRECTIONS x x X x
OPTIMIZATION
_Sumy X x x X
FSD X x X x x x

TABLE III.- COMPARISON OF PROGRAMS WITH RESPECT TO FLEXIBILITY AND COMPUTER IMPLEMENTATION FEATURES

n B 2 | n 73 8179 79 81
DAWNS [ SWIFT | SAVES | FADES [ wiDOwAC] 1SSYS | PARS | PROSSS [DIST. PROSSS
PRESET DEFINITIONS
OF DESIGN VARIABLES,
CONSTRAINTS, AND A I O B x i
OBJECTIVE FUNCTION
GENERAL, USER DEFINED
DEFINITIONS OF DESIGN . % N
FLEXIBILITY | VARIABLES, CONSTRAINTS,
AND OBJECTIVE FUNCTION
PRESET
OPTIMIZATION PROCEDURE| X A O X x| X X
USER FORMULATED < <
OPTIMIZATION PROCEDURE i
FORTRAN X X X X X x X x x
EXECUTIVE CONTROL
LANGUAGE X X X x
SPECIAL PURPOSE
LANGUAGE ] ox x x
COMPUTER DATA MANAGEMENT
IMPLEMENTATION SYSTEM x x x x
TURES
FEATURE DISTRIBUTED PROCESSING x
SINGLE PROGRAM x x
MODULAR SYSTEM x x x X x X
MODULAR SYSTEM WITHIN x
A SINGLE PROGRAM




TABLE IV.- SAMPLE EAL RUNSTREAM

*XQT AUS

J1LCOS=DS,15491(1, INFO»LOAD»050)
ININT=DS»1,191(1,JDF1,BTABs1,8)
$

$ COMPUTE UNIT VECTOR

s

SYSVEC

UNIT VEC

el

Jely "NINT™

1.0

DEFINE UNSUNIT VEC .
INELT=TOCoNWDS(L,ELs)NAME» 0, 0)
1ICNT=0

E

$ COMPUTE OBJECTIVE FUNCTIONS
%

SLABEL 100

IICNT=ICNT+1

DEFINE H=DMDV DIAG "ICNT™ 1
0BJF G "ICNT™ 1aXTY(UNsW)
2JGZs-1(NELT»100)
INOLC=DS»15151(15 INFO,LOAD»0,0)
1 ICKTsO

1 TOLCsLCDS~1

OUTLIB=3

LIMITED INTERDISCIPLINARY OPTIMIZATION

- ¥
INTRADISCIPLINARY

OPTIMIZATIONS
1
INITIAL AERODYNAMIC STRENGTH ove—a] U FLUTTER
CONCEPT SHAPE S1ZING SIZING
OISCIPLINES: AERODYNAMICS STRUCTURES AEROELASTICITY

Fig. 1 A sequential approach to the design process.

__,| AERODYNAMIC
SHAPE ,
.| STRENGTH
SIZING
INITIAL :
DES IO : OPTIMIZER
| FLumer
SIZING

Fig. 2 A concurrent approach to the design process.

CONCURRENT STRENGTH
AND FLUTTER SIZING

STRENGTH S1ZING

GENERAL OPTIMIZATION

CONMIN
GENERAL PURPOSE
OPTIMIZER

(wioowac)

{METHODOLOGY)

STRENGTH SIZING
FOLLOWED BY |
FLUTTER SIZING |

|

EAL/PROSSS

~ - Va

EAL/ISSYS
(NEAR-TERM GOAL)

| -~
//
(TONG-TERMY .~
GOAL

Fig. 3 Evolutionary lines for combining analysis and
optimization at LaRC.

DISTRIBUTED PROSSS

DISTRIBUTED
PROSSS
METHODOLOGY

——= COMPLETED DEVELOPMENT

— =+ PLANNED OR UNDER
DEVELOPMENT

RIM
PERFORMANCE DATA DATA MANAGEMENT
BASE SYSTEM
« GEOMETRY
EAL/1SSYS g:yf\ o DESIGN VARJABLES
« CONSTRAINTS
- « PROCEDURE FILES
CONTROLS DATA .
BASE
DATA
OTHER BASE
*
[ ]
[ ]
DATA
OTHER BASE

Fig. 4 Proposed multidisciplinary analysis and
optimization system for general aero-
space vehicles.

INITIALIZATION

NON-

REPEA}ABLE NON-REPEATABLE ANALYST%]
NO
DRIVER FOR OPTIMIZER
OPTIMIZER
OPTIMIZATION
NO

| FRONT PROCESSOR |———[ REPEATABLE ANALYSIS|

Fig. 5 Flowchart of the PROgraming Structural
Synthesis System (PROSSS).




EAL DATA BASE
(DISK)

CENTRAL MEMORY

ADDRESS

EAL LIBRARY 1
DATA SET 1

DATA SET N,
EAL LIBRARY 2

0

MAIN OVERLAY
(UTILITIES
AND 1/0)

EAL

EAL PROCESSORS
(DISK)

C

PROCESSOR 1

PROCESSORi

BLANK COMMON

DATA SET 1

DATA SET N,

EAL LIBRARY 30

PROCESSOR 2

N

PROCESSOR I

MAIN
OVERLAY

UTILITIES
AND_
10

EAL DRIVER

1 |
()0 (2

EAL PROCESSORS

——II EXTERNAL DRIVER l

FRONT END
PROCESSOR g%mr PROCESSOR
DUMMY U DUMMY
DRIVER DRIVER

USER- DEFINED
PROBLEM- DEPENDENT

DATA SET 1 : PROGRAMS
w ' PROCESSORS EXTERNAL TO £AL
Fig. 6 Data communications in EAL. Fig. 7 'EAL program structure with PROSSS dummy
* driver programs incorporated into an
external overlay.
INITIALIZATION
NON-
NO REPEATABLE
} ?
EAL
OVERLAY|- | | NON-REPEATABLE
ANALYSIS
BEGIN ;
REPEATABLE
—) OPTI:\-Q)IOZF/,\TION ANALYSIS
CONMIN
EXTERNAL DRIVER || FRONT END
PROCESSOR PROCESSOR
OVERLAY CONMIN

Fig. 8 Divisions of EAL/PROSSS processors between overlays.

CLAMPED EDGE

LOADING DISTRIBUTED ON
ALL JOINTS

337 DEGREES OF FREEDOM

EDGE SUBJECT
TO LOAD

58 RODS
76 BEAMS
56 MEMBRANES

Fig. 9 337 DOF fuselage model.
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