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Abstract

Contemporary algorithms employed for reconstruction of 3D volumes from helical
cone beam projections are so called non-exact algorithms. This means that the
reconstructed volumes contain artifacts irrespective of the detector resolution and
number of projection angles employed in the process. In this thesis, three iterative
schemes for suppression of these so called cone artifacts are investigated.

The first scheme, iterative weighted filtered backprojection (IWFBP), is based
on iterative application of a non-exact algorithm. For this method, artifact re-
duction, as well as spatial resolution and noise properties are measured. During
the first five iterations, cone artifacts are clearly reduced. As a side effect, spa-
tial resolution and noise are increased. To avoid this side effect and improve the
convergence properties, a regularization procedure is proposed and evaluated.

In order to reduce the cost of the IWBP scheme, a second scheme is created by
combining IWFBP with the so called ordered subsets technique, which we call OS-
IWFBP. This method divides the projection data set into subsets, and operates
sequentially on each of these in a certain order, hence the name “ordered subsets”.
We investigate two different ordering schemes and number of subsets, as well as
the possibility to accelerate cone artifact suppression. The main conclusion is that
the ordered subsets technique indeed reduces the number of iterations needed, but
that it suffers from the drawback of noise amplification.

The third scheme starts by dividing input data into high- and low-frequency
data, followed by non-iterative reconstruction of the high-frequency part and
IWFBP reconstruction of the low-frequency part. This could open for acceleration
by reduction of data in the iterative part. The results show that a suppression of
artifacts similar to that of the IWFBP method can be obtained, even if a significant
part of high-frequency data is non-iteratively reconstructed.






Sammanfattning

De rekonstruktionsmetoder som idag anvénds fér medicinsk datortomografi ér alla
icke-exakta. Det betyder att de framrdknade bilderna innehaller fel, ovasett nog-
grannhet och uppldsning vid datainsamlingen. For konvinklar upp till £2° &r
dessa fel forsumbara, men for hogre vinklar uppstar stérande artefakter. I denna
avhandling undersoks tre metoder for att undertrycka dessa artefakter.

Den forsta metoden, vars namn pa engelska forkortas IWFBP, bygger pa it-
erativ tillimpning av en icke-exakt metod. For denna metod har reduktion av
artefakter, brusnivaer samt spatiell upplésning métts genom rekonstruktion av fér
dndamalet konstruerade testobjekt. Resultaten visar en tydlig minskning av arte-
faktnivan under de forsta fyra iterationerna. En bieffekt &r att brusnivan och den
spatiella upplosningen 6kar. For att forbéattra konvergensegenskaper och undvika
denna bieffekt foreslas och undersoks en modifikation av den ursprunliga metoden.

Istéllet for att, som i IWFBP-metoden, anvinda alla tillgéngliga métningar
vid varje iteration, kan en delmingd anvidndas. Detta utgér grunden till metod
nummer tva, forkortad OS-IWFBP. Effekten av antal delméngder, ordning av
dessa samt mdjlighet till uppsnabbning av IWFBP-metoden har undersékts. Det
visar sig att antalet n6dvéindiga iterationer sjunker nagot nir dena teknik anvinds.
En nackdel dr dock att brusnivan okar jamfort med IWFBP-metoden.

Den tredje metoden bygger pa att ingangsdata forst delas upp i en lagfrekvent
del och en hogfrekvent del. Iterativ rekonstruktion gors nu endast pa den lag-
frekventa delen. Detta kan mgjliggora for uppsnabbning genom nedsampling av
data i den iterativa delen. Resultaten visar att artefakter undertrycks ungefar lika
mycket som for IWFBP-metoden trots att en betydande del hogfrekvent informa-
tion rekonstrueras icke-iterativt.
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Chapter 1

Introduction

1.1 Helical cone-beam computed tomography (CT)

In the areas of medical diagnostics and non-destructive testing, it is of great interest
to be able to reproduce images of the interior of objects without destroying them.
One common technique for doing this originates from 1972, when Sir Godfrey
Hounsfield at Electrical and Musical Industries Limited (EMI) patented the first
CT scanner. The technology made a huge success and in 1979, Alan Cormack and
Hounsfield were awarded the Nobel Prize for this invention.

A CT scanner uses digitally sampled X-ray projection data from an object
collected in many directions to calculate cross-sectional images of the X-ray atten-
uation. High acquisition speed is generally desirable since this reduces examination
time and image artifacts due to motion. Since 1972, several major improvements
have been made in this direction, the first one being employment of fan-beam
instead of parallel beam geometry.

Since higher data acquisition speed often implies more complicated scanning
geometries, the need for novel image reconstruction algorithms have occurred quite
frequently. Below follows a presentation of three, from an image reconstruction
point of view, interesting developments of the geometrical setup.

e Fan beam projections. As shown in Figure 1.1a, early CT scanners cap-
tured projection data from parallel rays. This was very time consuming since
the source had to travel through all source positions for every projection an-
gle. According to Yang and Firmin [83], Hounsfield recognized early that a
considerable increase of data acquisition speed could be achieved by collect-
ing data using fan beams instead of parallel beams. In a fan beam system,
every ray originates from the same source position as shown in Figure 1.1b.
Later in the thesis it will become apparent that the introduction of a fan
beam setup does not complicate the reconstruction problem very much.

e Helical source path. Until 1989, the rotating gantry was connected with
cables for power supply and data transfer. To avoid self-strangulation, the
gantry had to be accelerated and de-accelerated for every reconstructed slice.
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) Parallel projections ) Fan-beam projections

oL

Figure 1.1: Introduction of fan beam projections

a) Circular source path b) Helical source path
r4

Figure 1.2: Circular versus helical source path geometry. The chosen coordinate
system is convenient due to its consistency with other literature in
this topic. However, in medical applications the z-axis will of course
be directed horizontally.

i
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Figure 1.3: The helical cone beam geometry

This resulted in the piecewise circular source path shown in Figure 1.2a. The
slip-ring technology, introduced in 1989, made it possible to read and transfer
data continuously while rotating the gantry at constant speed. The result
is the helical source path shown in Figure 1.2b and a vastly higher data
acquisition speed.

e Cone beam projections. In the late 1990s, several medical CT manufac-
turers released so called multi-slice machines, where the single row detector
was replaced by a multi-row detector. This resulted in the helical cone beam
geometry illustrated in Figure 1.3. In principle, this geometry is identical to
the one in Figure 1.2b. However, in combination with the multi-row detector
the geometry of Figure 1.3 calls for new reconstruction algorithms.

In helical cone-beam tomography, a difference is made between ezact and non-
ezact reconstruction methods. Turbell and Danielsson [78] defined exactness of a
reconstruction method as follows.

An exact algorithm is mathematically correct in the following sense.
Let € be the largest allowable deviation between the object function
and the reconstructed result. Provided there are noise-free projection
data, captured with sufficient density along the source trajectory with
a detector array having sufficient detector element density, an exact
algorithm can deliver the wanted result for any given e.

Another important feature of a helical cone-beam reconstruction method is
whether it can handle the so called long object problem. This problem is described
by Danielsson et al. in [11] and more precisely defined by Defrise et al. in [15].
The definition in [15] reads
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Physical detector

Tam window

Figure 1.4: Illustration of the Tam-window.

Long-object problem: given the geometric characteristics of the
detector and of the helix, design an exact reconstruction algorithm,
which, for reconstruction of a given slice z = zg, only requires CB data
to be known in a finite region A € [z9/h — AN, z0/h + AN with AX
independent of the axial extent of the support of f(r).

In this definition, f(r) is the function describing the object to be reconstructed, and
A is the parameter pointing out a certain focus position so that the z-coordinate
of the focus is given by hA.

The first exact reconstruction methods able to handle the long object problem
for helical cone-beam tomography were presented in 1999 by Kudo et al. [40],
Schaller et al. [65] and in 2000 by Defrise et al. [15] (see Turbell [77] for a
review of these methods). Unfortunately, these methods have a relatively high
computational complexity.

In 2001, an exact method, dramatically different method was presented by
Katsevich [37, 38]. This algorithm is able to deliver reconstructed output data
in a continuous fashion at the same pace as the input scanning, if so required by
the application. It has a remarkable simplicity and only one serious drawback.
The input data utilized by the reconstruction method is limited to the so called
Tam-window. This means that only rays intersecting the area between consecutive
turns of the helical source path opposite to the source are used (see Figure 1.4).
Therefore, given a fixed speed of rotation for the gantry (the carriage for source
and detector) the speed of translation for the patient cannot be varied freely, a
feature which seems to be indispensable for most customers of CT-systems.

Since the introduction of the Katsevich method, several improvements of the
method have been published. Also other computationally efficient exact methods
have been presented by Zou and Pan [88, 89]. One of these methods have the
advantage of being able to reconstruct images from data that is truncated in the
xy-plane. However, also these methods suffer from the drawback of not being able
to utilize redundant data.

For the above-mentioned reasons, contemporary commercial CT scanners all
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Pin

Figure 1.5: The iterative improvement scheme.

employ approximate, i.e. non-ezact algorithms. These algorithms have relatively
low complexity and they allow for high flexibility in terms of translation speed
[73], [17]. They seem to produce spotless images for cone angles |kmax| < 2° or
thereabout. Beyond 2° non-acceptable artifacts appear gradually with increasing
cone angle.

1.2 An iterative improvement scheme

In this section we will present a short introduction to the iterative scheme serving
as a main component in all experiments presented in this thesis. The main goal
with this method is to improve the reconstruction results by means of an iterative
procedure. A more detailed presentation and analysis of this scheme is given in
Chapter 3.1.

The scheme is illustrated in Figure 1.5. Suppose that input data are repre-
sented by a vector pin = Ppnysf, and that a non-exact reconstruction method is
represented by the matrix Q. An approximation of the correct result is then given
by fappr = Qpin. By employing a discrete model P of the physical projection op-
erator Pphys, projections p = Pf,,,, of the approximative result can be calculated.
Now, the difference p;, —p can be used to create an approximate correction image
fair = Q(pin — p)- Finally, addition of f,,,, and f4g yields a corrected result fop,
which under certain circumstances contain less artifacts than f,,,,. By iterating
this procedure, a sequence of gradually improved results is obtained.

Typically, Q represents a filtered backprojection method. Then, the resulting
iterative method belongs to the class of iterative filtered backprojection (IFBP)
methods. These methods has successfully been applied to problems where data are
missing due to heavy objects [53] and due to an incomplete source trajectory [86].
Danielsson and Magnusson [12] proposed to use this scheme to suppress artifacts
caused by non-exact reconstruction.
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1.3 Contributions

The main contributions in the thesis are the following.

e Chapter 5. The improvement loop proposed by Danielsson and Magnusson
[12] is evaluated, with Q being the non-exact weighted filtered backprojection
(WFBP) method proposed by Stierstorfer et al. [74]. The iterative loop
has also been extended with linear regularization resulting in a more stable
behavior and controllable spatial resolution.

e Chapter 6. In 1994, Hudson and Larkin [29] showed how a technique called
ordered subsets (OS) can be used for accelerating iterative methods for tomo-
graphic reconstruction. Here, we show how this technique can be combined
with the iterative scheme examined in Chapter 5, and we evaluate the re-
sulting reconstruction method.

e Chapter 7. A new method called frequency domain partitioning (FDP) is in-
troduced and evaluated. This method starts by dividing projection data into
one low-frequency part and one high-frequency part. The iterative scheme
is applied to the low-frequency part, while the non-iterative WFBP method
is used for reconstructing the high-frequency part. Although not explored
in this thesis, the FDP technique could make it possible to accelerate the
reconstruction by means of downsampling data used in the low-frequency
part.

1.4 Thesis outline

Chapter 2 starts with some basic concepts in CT-reconstruction such as ramp
filtering and backprojection. This is followed by a short description of the WFBP
method.

The topic of Chapter 3 is iterative methods. As an introduction we describe
the Landweber method. This is probably the simplest method for iterative recon-
struction. Thereafter follow examples and comments on various parameters and
alternative methods. In Section 3.2, the concept of basis and irradiation functions
is discussed. This is followed by a simple introduction of least square methods and
regularization techniques. The motivation behind this section is that the similar-
ity between least square methods and IFBP methods suggests a way to introduce
regularization with penalty terms for the IFBP methods. Section 3.4 describes
the ordered subsets acceleration technique. Finally, Section 3.5 present the IFBP
methods in more detail and show how regularization can be included in the update
step.

In Chapter 4, we describe how input data have been generated in the sub-
sequent chapters. Geometrical parameters and the different phantoms used are
specified. The different methods used for assessing spatial resolution and measur-
ing noise are also presented.

Chapter 5 starts with a presentation of the iterative weighted filtered backpro-
jection (IWFBP) scheme. Subsequent sections study the behavior over the number
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of iterations, effects of different resolutions on image quality, and the spatial reso-
lution properties for different amounts of regularization. In Section 5.5, a possible
alternation of the scheme is investigated. This is followed by experiments on low
contrast phantoms and conclusions.

The first section in Chapter 6 describes how ordered subsets can be com-
bined with the IWFBP method and the parameters specific to this method. Two-
dimensional experiments are then performed in order to examine how two promi-
nent parameters, the number of subsets and ordering scheme, affect the results.
In Section 6.3, suppression of high-frequent artifacts characteristic to the OS-
IWFBP method is investigated. To examine the acceleration of cone-artifact sup-
pression, three-dimensional experiments are performed with the cone angles +4.8°
and £9.6°.

Chapter 7 presents the FDP scheme, which could allow for acceleration by
downsampling the data used in the iterative loop. In this chapter, it is inves-
tigated how the reconstruction results are affected in terms of noise and spatial
resolution. Especially we compare the IWFBP method and the FDP method with-
out downsampling. We also investigate how the reconstruction of a low contrast
phantom is affected by variation in sampling density.

Finally, Chapter 8 provides a summary of conclusions and presents questions
remaining to be answered.
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Chapter 2

Analytical methods for
cone-beam CT

2.1 Two-dimensional image reconstruction

The mathematical problem of two-dimensional image reconstruction from line in-
tegrals, was first solved by Johann Radon in 1917 [63]. Practical solutions suitable
for computer implementations have been an active research topic since the end of
the 1960s. Several text books on the topic exist, see for instance the books by
Herman [27], Kak and Slaney [34] and Natterer [56]. Here we will present the re-
construction problem in general and the widely used filtered backprojection (FBP)
method by Bracewell and Riddle [5]. The presentation is mainly inspired by the
more extensive text in [34] and parts of [77] and [66]. Some parts of the material
have been copied from [75].

Consider Figure 2.1 illustrating an x-ray beam with initial photon intensity I
traveling through an object described by the linear attenuation function f(z,y).
After traveling through the object, the remaining photon intensity I(t,0) is given
by [56]

I(t,0) = Lo Jrea @0 (2.1)
Taking the logarithm yields
I(t,0
p(t,0) = —log ((1)) — [ (22
0 Lo

The linear operator R mapping f(x,y) to p(t, 8) is known as the Radon transform.
Any method for two-dimensional CT reconstruction faces the problem of inverting
this transform.

In order to invert the Radon transform, the Fourier slice theorem is very useful.
It provides a connection between the Radon transform and the Fourier transform
of a two-dimensional function:



10 Analytical methods for cone-beam CT
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[(t7 9) = Ioei th’g f(zy)dl
Lo
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/ (ff, y) /\]0
Figure 2.1: The photon intensity of the attenuated and non-attenuated x-ray beams
- ‘/.Lt.e flz,y)dl

differ by a factor e

Spatial domain Fourier domain

P w (Faf)(pcosb, psinb)

Theorem 1 (The Fourier slice theorem). The two-dimensional Fourier transform
Faf of a function f(x,y) along a radial line equals the one-dimensional Fourier
transform along the radial direction of the Radon transform:

(Faf)(pcost, psind) = (F(R[))(p,0) = (Fip)(p,0). (2.3)

Figure 2.2: Illustration of the Fourier slice theorem.

The theorem is illustrated in Figure 2.2 and a formal proof is given by Kak
and Slaney in [34].

Theorem 1 can be applied directly to parallel projection data by computing the
two-dimensional Fourier transform of f(z,y) through a series of one-dimensional
Fourier transforms F;(Rf). Performing a final inverse two-dimensional Fourier
transform yields the reconstructed result. However, applying Theorem 1 directly
is associated with the problem of mapping radially sampled Fourier data to a
Cartesian grid. Even if solutions to this problem exist (see Magnusson [66] and
O’Sullivan [61]), these direct Fourier methods (DFMs) have been less popular than
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Projection Backprojection

f(z,y)

p(t,0)

Figure 2.3: Illustration of projection followed by backprojection. Without any filtering
of projection data, it is obvious that this has a low-pass filtering effect on
the image.

filtered backprojection (FBP).
An FBP method implements the inversion formula

flz,y) = /07r (p(+,0) * goo ) (z cos 8 + ysin 6, 0)do . (2.4)

filtering

backprojection

As a first step, the projection data p = Rf are filtered with a linear and spatially
invariant so called rampfilter g, in the radial (¢) direction. This step is followed
by a backprojection, which consists of adding (in the case of a finite number of
angles) the filtered projection data to a digital image along the rays from which
the projection data has its origin. Projection and backprojection are illustrated
in Figure 2.3.

Figure 2.3, inspired by Magnusson [66], also give an intuitive explanation for
the point spread function (PSF) of the combined operation projection followed
by backprojection. Assume that projections of a small object have been collected
and are being backprojected as shown to the right in Figure 2.3. The result-
ing image fyp(x,y) is the wanted point spread function. Clearly, this image will
non-zero not only on the support of the original object, but also in the rest of
the image. In fact, by observing the backprojection contribution to circles cen-
tered around the object of interest, we may conclude that fi,(z,y) decays with
1/y/(z —20)2 + (y — y0)? = 1/d. Since the 2D Fourier transform of 1/|d| is given
by 1/|D|, the inverse filter should look like |D| in the Fourier domain. According
to Theorem 1, this filtering can be implemented as an one-dimensional filtering in
the radial direction of the projection data p(t, 6).
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Equation 2.4 can be derived mathematically as follows.
flay) = (F'Ff)(zy)
/ (Fof)(u, v)ei%(“”y”)dudv

—0o0

= (Change of vars. :u = pcosf,v = psiné, dudv = |p|dpdb)
/ / (F2f) (p COoS 97 psin 0)€i27rp(x cos 04y sin 0) \p\dpd@

0 —o0
= (Theorem 1)

- / / (F2p) (p, 0) ple™m7(= o Txv= O dpdf
0 —o0

/ (-7‘?1(7::5]? - Fgoo)) (2 cos 8 + y sin 6)db
0

/ (p * goo)( cos O + ysin 0)do (2.5)
0 =~

filtering

backprojection

Here, g is a generalized function satisfying Fgo, = |p|. Because of its shape in
the Fourier domain, this filter is called a rampfilter.

In a practical implementation, all signals involved are digital. Therefore, the
rampfilter g, must be bandlimited and sampled before it can be used. From the
theory of sampled signals (see for instance Bracewell [4]), we know that sampling
with a distance A; is equivalent to convolution with a Dirac impulse train III A7t

Hence, the Fourier transform of the sampled rampfilter is A; !-periodic. As shown
in Figure 2.4, one way to avoid discontinuities in this periodic Fourier transform
is to multiply Fg. with a rectangle of width A, 1 and sample its inverse Fourier
transform. This inverse Fourier transform is given by

o) = fl{%(H@/A#)A@p/A#»}

= g sinc(t/Ay) —

2A — sinc®(t/(24,)). (2.6)

4A

where IT and A are rectangle and triangle functions respectively, and

sine(z) £ sin(rz) . (2.7)

T

Sampling of g with sampling distance A, results in the sequence

AT k=0
IAZ =
gslk] = g(kA) =4 0 k even . (2.8)

Rampfiltered projection data can now be calculated as
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(Fag)(p)
N 7/ N 7/
N 7/ N 7/
AN e AN e
AN 7/ AN 7/
N 7/ N 7/
N 7/ N 7/
_ 1 1 P

2At 2At

Figure 2.4: By bandlimiting the rampfilter so that no frequencies higher than A;*/2
exist, the Fourier transform of the bandlimited and sampled rampfilter
becomes continuous.

o

gk, 0] = A S gulllplk— 1, (2.9)

l=—0o0

where plk, 0] are the original projection data for a certain angle §. We are only
interested in the result of this convolution in the interval where p[k, 0] is non-zero.
Therefore, the summation in (2.9) can be made finite by truncating gs[k] to the
double length of this interval.

Discretization of the backprojection operation is done in the following way.
Suppose that projection data have been collected for the angles 6y, ...,0n,-1, and
radial coordinates ¢, ...,tn,—1. For each angle 6;, a continuous projection ¢(¢,6;)
is created by means of linear interpolation, i.e.

N¢e—1
q(t.0) = > qlk.O]A (t ;:’“) : (2.10)

k=0

The final image can now be created by approximating the integration over angles
with a summation, resulting in

Jrec(,y) = /q(a:cos&+ysin9,0)d9
0
No—1

= Nl& Z q(zcosf + ysinb, 0;). (2.11)
1=0

2.2 Weighted filtered backprojection

The weighted filtered backprojection method (WFBP) by Stierstorfer et al. [74],

is an approximative reconstruction method for helical cone-beam CT, and a main

component in the iterative methods examined in Chapter 5, 6 and 7. In the

following, we give a presentation of the WFBP method, mainly based on [74].
Four main steps can be identified in the WFBP method.

1) Row-wise rebinning of cone-beam data to semi-parallel data.

2) Ramp-filtering of rebinned projection data.
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Detector

Kmax

Focus

Focus Ry

Figure 2.5: Illustration of scanning parameters for the helical cone-beam geometry.

3) Down-weighting of outer detector rows.
4) Normalized backprojection.

Each of these steps will be explained in the following sections.

In order to understand what is done in the different steps, the basic geometry
parameters illustrated in Figure 2.5 must be well understood. Given a certain
focus angle «, the location of the focal spot is determined by

zj(a) = Rpcosa

yr(a) = Rpsina (2.12)
Pa

zf(e) = on

In the helical cone-beam geometry, an arbitrary ray is determined by the angles
«, [ and a continuous variable ¢ € [—1, 1] describing the slope of the ray, where
q = %1 corresponds to rays hitting the top and bottom of the detector respectively.
Given these parameters, arbitrary points along the ray can be calculated by

Tapql) = zf(a)—lcos(a+p)
Ya,p,q(l) = yg(a)—Isin(a+B) (2.13)
Za,gq(l) = zp(a) + gltan Kax.

Figure 2.5 shows how an arbitrary ray is uniquely determined in the xy-plane,
either by specifying o and 8 or by specifying the angle # and the orthogonal
distance t to the isocenter. Given « and 3, the parameters 6 and ¢ can be calculated
from

0=a+ (3, t=Rpsing, (2.14)
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Figure 2.6: The left image shows the helical cone-beam geometry, in which the orig-
inal projection data have been captured. To the right, the semi-parallel
geometry obtained after row-wise rebinning is shown.

or the other way around, if # and ¢ are known, o and § can be obtained by using
the relation

a=0-0, f=sin"? (Ri> . (2.15)

F

The procedure of calculating projection data parametrized with 6,¢ and ¢ from
cone-beam data is referred to as row-wise rebinning, meaning that the resampling
from a («, 8)-grid to a (0,t)-grid is done independently for each row. This is the
first step in the WFBP method. The resulting geometry is illustrated in the right
image in Figure 2.6. Projected onto the zy-plane, the rebinned projections look
perfectly parallel. However, the rays diverge in the z-direction and the rebinned
projections are therefore called semi-parallel projections.

As a second step in the WFBP method, rampfiltered projections peony(8,t, q)
are obtained from p(0,t, q) by applying the rampfilter from the previous section.

Stierstorfer et al. [74] showed experimentally that if the outermost detector
rows are backprojected with the same strength as the central rows, severe artifacts
appear in the result. In order to suppress these artifacts, projection data are
weighted with a function of ¢ that approaches zero as ¢ approaches £1. More
specifically, weighted projection data are calculated as

PW(Q,@Q) = WQ(q)pconv(Gat’ q) (216)

where the function Wy(q) is given by

1 , lgl <@
WQ(q)={ (COS (%'?‘_}?)) Q<ld <1 (2.17)

Similar to two-dimensional backprojection, the WFBP backprojection con-
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structs a voxel volume as a sum of partial backprojections

T—Ag
Viyz= Z Vey,2(0) (2.18)
6=0

over different angles 6. However, in contrast to Equation 2.11, each term in this
equation contain contributions from several f-angles, namely 0 = 6+ km, k =
0,1,.... The reason for dividing the backprojection in such partial backprojections
is connected to what is shown in Figure 2.7. This figure shows how a certain
voxel may receive one, two or three contributions from one f-angle depending on
the location of the voxel. Because of this, and the weighting described in the
previous paragraph, normalization must be performed for each individual é—angle.
We will describe how the contribution from one such angle is calculated. Given
a point (x,y, z) in which we want to know the backprojected values, a first step
is to calculate the projection (£, g, [) of this point onto the virtual detector plane
illustrated in Figure 2.6. This is given by

t = xsin(@+ kr) — ycos(d + kn),
z—P (é—i— km —sin™* RLF) /27
q 5 (2.19)
ltan Kpmax
[ = \/R% —i2—zcos(f) —ysin(d),

(2.20)
where £ = 0,1,.... Knowing # and §, the normalized partial contribution can be
calculated as

~ 1 ~ .
Vig2(0) = ————= > p(0+km,t,q), (2.21)
O T 2

where the normalization sum is given by

Hyy2(0) = > Wo(d). (2.22)
k
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Figure 2.7: Example of how different voxels receive different numbers of contributions
during backprojection from a certain angle 0. Voxels located in the lightly
shaded area receive a contribution from one focus position. In the medium
and dark shaded areas, voxels receive two and three contributions respec-
tively.
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Chapter 3

Iterative methods

3.1 Introduction

While analytical reconstruction methods typically implements some analytical in-
version formula for the cone-beam transform, iterative methods generate a se-
quence of estimates that eventually should converge towards a good solution. How
this works in principle is illustrated here with the Landweber method, originally
developed for iteratively solving Fredholm equations of the first kind [41].

Let the estimates of linear x-ray attenuation coefficients be represented by
vectors f, € RY, and let p;, € RM represent input projection data. Here, k refers
to a certain iteration and each component in fj represents a certain voxel. A
detailed discussion of the relation between the vector f;, and corresponding image
by means of basis functions is contained in the following section. The update
formula for the Landweber method is given by

frr1 = £ — o PT (Pfi — pin) (3.1)

and is illustrated in Figure 3.1. The matrix P € RM*¥ ig representing a linear
model of the physical acquisition process. Thus, P maps the estimate f;, onto
Pf),, the projection of the estimate. The difference Pf;, — pi, is then used for
creating a new estimate by backprojection with the adjoint operator P7 € RN*M
multiplication with the step length «, and finally subtraction from the old estimate.

By keeping ) constant with respect to k and letting A = I — aPTP, we see
that

fry1 = Afy+aPTpy,
A%y + (A +T1)aPTpyy,

= A"+ (A" +- + A+ TP i (3.2)

If A, — 0, the first term become zero and the expression (AF 4 ... + A + 1)
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Pin

Figure 3.1: Illustration of the Landweber method. In order to calculate a new estimate
fi41, projection data Pfy are first calculated. These are then subtracted
from the input data and a difference image (gradient) is obtained by back-
projection with the adjoint operator P. This difference image is finally
multiplied with a step length o and added to the old estimate fj.

converges to (I — A)~1, so that

foo = lim f; = (I-A) 'aPTp;y, = (PTP)'PTpy,. (3.3)
In the updating formula (3.1), let

PT(Pf — pin) = Vz(f). (3.4)

Since z(f) can be identified as
1
() = S|IPf — punll3, (3.5)

the method (3.1) is recognized as a steepest descent method for minimizing z(f)
[57]. A presentation of methods that minimize z(f) in (3.5) and variations of this
function will be given in section 3.3.

Compared to analytical reconstruction, most iterative methods are painfully
slow. However, there are cases where this drawback is outweighed by the relative
ease by which the iterative methods handle the modeling problem. Any analytical
method faces the problem of modeling the inverse of every physical phenomenon
involved in the data capture. In contrast, iterative methods require an emphasis
primarily on modeling the forward version of all such processes. Some examples
where iterative methods have been found worthwhile to explore are listed below.

Redundant data: In helical cone-beam tomography, at this time of writing
and to the best of our knowledge, there is no exact method able to exploit redun-
dant data for noise reduction, a fact which has forced the CT-industry to rely on
non-exact methods. Iterative techniques seem to be able to make these non-exact
methods nearly exact, which is precisely the subject of this thesis.

Missing data: One example of how to diminish artifacts due to missing data
is given by Zeng et al. [86]. Here the Feldkamp method is applied iteratively to
reduce errors due to the incomplete circular trajectory data capture.
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Resolution recovery: In a simulation study by Nuyts et al. [59], iterative
methods were shown to increase the spatial resolution in comparison to filtered
backprojection.

Beam hardening correction: It has been showed by De Man et al. [52] and
Elbakri and Fessler [16] that by simulating multienergetic x-rays in the acquisition
model, beam hardening artifacts can be significantly reduced.

Metal artifact reduction: De Man et al. [51] showed that iterative methods
can be used to reduce artifacts caused by the presence of strongly attenuating
objects.

Modeling of focus, detector and gantry rotation: In single photon emis-
sion tomography (SPECT), modeling of the blurring caused by sources with a
non-neglectable spatial extent have successfully been used to recover higher reso-
lution [3]. One could expect the same technique to be applicable to compensate for
azimuthal blur caused by the gantry rotation during projection data acquisition
in CT.

Primarily, an iterative reconstruction method is characterized by the projection
operator and the updating step. Different aspects of the design of the projection
operator will be discussed in the next section. Based on how various update steps
lead to different results, Xu et al. [82] classifies iterative methods as follows.

Conventional algebraic reconstruction techniques include algebraic re-
construction technique (ART) [22], simultaneous algebraic technique (SART) [1],
simultaneous iterative reconstruction technique (SIRT) [21] and the Landweber
method presented above among others. It was shown by Jiang and Wang [31] that
all of them under certain circumstances minimize weighted square norms similar

0 (3.5). A detailed presentation of these methods is found in Section 3.3.

Iterative filtered backprojection (IFBP) methods: The convergence
rates of the above mentioned Landweber and SIRT methods are slow. The num-
ber of iterations required to reach the wanted residual error level may exceed 500,
where each iteration is more than two times as expensive as one single backpro-
jection step. One way to increase the rate of convergence is to replace the adjoint
projection operator P7 with an analytical, possibly non-exact reconstruction op-
erator Q including filtered backprojection (FBP). This results in the so called
IFBP methods, which are special cases of the “iterative data refinement” scheme
proposed by Censor et al. [7]. For attenuation correction in SPECT, IFBP was
proposed by Chang [8], and Walters et al. [81], while Medoff. et al. [53] used
IFBP for improved reconstruction from limited angles. It was later shown by Xu
et al. [82] that for emission tomography, the IFBP methods have computational
advantages over the conventional and statistical methods. Furthermore, the signal
to noise ratio (SNR) in relation to contrast recovery coefficients (CRC) of IFBP
methods were comparable to those of regular FBP. Similar results for transmis-
sion tomography were later presented by Nuyts et al. [59]. Recently, Zeng et al.
[86] employed an IFBP method for reduction of circular trajectory artifacts in
the Feldkamp algorithm. A general presentation of these methods is contained in
Section 3.5.

Statistical methods: Statistical image reconstruction methods are based on
the Poisson model for the photon density. This is used for deriving the condi-
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tional likelihood P(pin|f) for the acquired input data given a certain vector f of
linear attenuation coefficients. Bayes rule gives an expression for the reciprocal
conditional likelihood

P(pin|f)P(f)
P(pin) '

This aim of statistical methods is to maximize this likelihood. If P(f) is assumed
to be constant, the method is called a maximum likelihood (ML) method. Other-
wise, the method is called a maximum a posteriori (MAP) method. There is an
abundance of methods for maximizing the ML and MAP functions. Examples of
these are the MLEM method [42], the convex method [43] and the corresponding
ordered subsets method [36]. The ML and MAP methods are known to produce
images with better signal to noise ratio, and many recent developments toward
faster methods make these methods promising. However, since the theory for
these methods has little to do with IFBP, statistical reconstruction will not be
further discussed in this treatise.

P(flpin) = (3.6)

3.2 The projection operator

3.2.1 Basis functions, irradiation functions, and footprints

The following derivation of a matrix formulation of the projection operation P has
mainly been inspired by a paper on local basis functions by Hanson and Wecksung
[24]. A continuous three-dimensional image, i.e. a not necessarily continuous
function that maps R? into R, can be represented as a linear combination of basis
functions as

N
folr) = Z £ibj(r) (3.7)

where r € R? is a coordinate vector and b; : R — R are the basis functions (for
the 2D case, see Figure 3.2). Usually, these basis functions are translated copies
of a single basis function b(r) so that expression (3.7) becomes

N
folr) = Z fib(r —r;). (3.8)

Here, each r; corresponds to the center of a certain voxel. Following this notation,
the vectors f}, from the previous section contain the coefficients f; in (3.8).

Figure 3.3 shows an illustration of a linear model for the acquisition process
in the case of two-dimensional functions. In the three-dimensional case, if non-
linear effects in the acquisition process are neglected, the contribution from a
continuous three-dimensional image f, : R? — R to a certain detector reading i
can be calculated as

P = /R3 w;(r) fo(r)dr. (3.9)
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Figure 3.2: Illustration of how a two-dimensional array of image coefficients are mapped
onto a continuous function by interpolation with a bilinear basis function.
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a) The function f.(r) b) The irradiation function w;(r)

¢) The product w;(r) f.(r)

Figure 3.3: Illustration of a linear model for projection generation in the case of two
dimensions. The image f.(r) is first multiplied with an irradiation function
specifying the photon flux in different areas of the image. The result is then
integrated to get the final result p; = [,, wi(r)fe(r)dr.

The three-dimensional functions w;(r) will throughout this thesis be called irra-
diation functions. They constitute a model for the source and detector system
and contain values of the photon flux for a certain reading ¢ in a certain point r.
The simplest and most common choice of functions w; are Dirac lines, resulting in
pure line integral contributions. More elaborate functions such as strips or sums
of several Dirac lines can be used to create more realistic models of the acquisition
process (to be discussed below in Section 3.2.3.
Insertion of (3.8) into (3.9) yields

N N
pi = / w;(r) ijb(r —r;)dr = ij/ w; (r)b(r —r;)dr (3.10)
R i=1 =1 I
From this expression, we see that the projection data p = (p1 - -- pM)T can be

calculated by a matrix multiplication p = Pf where the components of P € RM*V

are given by

Pij = /W w; (r)b(r — r;)dr. (3.11)
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For simple irradiation functions such as Dirac lines and strips, the above computa-
tion can be efficiently implemented as a simple lookup in a table of pre-computed
values (see for instance [87] and [55]). Clearly, if w;(r) is a Dirac line, (3.11) yields
a line integral taken through the basis function. This observation takes us to the
important notion of footprints. Let s € S2 C R? be a direction vector and let
t € st C R? describe a displacement in the orthogonal complement of s. Then
the footprint f(s,t) is defined by

f(s,t) :/Rb(t—kts)dt. (3.12)

According to the Fourier slice theorem, the Fourier transform of f(s, t) with respect
to t equals the Fourier transform of b(r) on s*. Thus, the footprint can be used to
study Fourier domain properties of a basis function. Later in this section, examples
will be given of basis functions that are defined by specifying their footprints rather
than directly specifying b(r). In cases where the footprint is invariant to changes
in direction s and the irradiation functions w;(r) are Dirac lines, footprint tables
can be used for efficient implementations of P [55].

3.2.2 Basis function properties

Both the choice of basis function b(r) and irradiation functions w;(r) affect the
result of an iterative method. A number of desirable properties for the basis
function are listed below.

Accurate representation of constant functions: The basis function should
be able to represent a constant function with high accuracy. This property can be
described in the Fourier domain by considering the Fourier transform of repeated
copies of a basis function b. Let A be the repetition distance and let IIIo be a
train of impulses located A length units apart from each other. Then, the Fourier
transform of the repeated basis functions is given by

(F(ITT5 #b))(u) = (ITTa-1 -Fb)(u). (3.13)

Assume that we have sampled a constant function. To be able to represent the
underlying constant function, the basis function (to be convolved with the samples)
must fulfill the following criterion. Its Fourier transform Fb must be close to
zero in all points where the impulses of IIIn—1 are located, except in the origin.
Otherwise, not only a DC-component will appear in the result, but also false high
frequency components.

In one dimension, it is easy to find a function that satisfies the condition above,
for instance the standard linear interpolation basis function which is a special case
of the so called B-spline functions (see Unser [79]). This can easily be extended to
higher dimensional spaces by using Cartesianly separated basis functions such as
the bilinear and trilinear basis functions. However, rotationally symmetric basis
functions do not fit the Cartesian grid. A simple example of a basis function that
severely violates this requirement is illustrated in Figure 3.4 and 3.5. This basis
function, which occurs as a special case of a projection method proposed by Peters
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[62], is defined by its rotationally symmetric footprint

~ U <a
f(s,t) { 0 otherwise (8:-14)

The Fourier transform of this basis function is exactly zero in the impulse points
of ITIo-: along a line aligned to one of the main axes. However, if the Fourier
transform is considered along a line tilted 45° away from one of the main axes, it is
clear that there are non-zero contributions at the impulse points of IIIo-1. Thus,
false high frequencies appear when this basis function is used for approximating
a constant function. Danielsson and Magnusson [13] called this phenomenon DC-
aliasing since these repeated DC-components are aliased into the Nyquist domain
during the projection process. In the same paper, it was explained how the Joseph
interpolation [32] (to be presented later in this section) avoids these severe aliasing
artifacts. Ohyama et al. [60] made similar investigations for a number of different
basis functions. However, the special importance of keeping down frequencies near
repeated DC-components was not stressed.

Low amount of false frequency components: Since the highest frequency
that can be represented by the sampling grid is the Nyquist frequency 1/(2A), the
basis function should be close to zero outside this limit.

Low computational cost: Since the projection and backprojection opera-
tions are the most expensive parts of an iterative methods, the choice of basis
and irradiation function should allow for cheap computation of Pf;. Therefore,
it is desirable that the basis and irradiation functions have only a small support,
resulting in a sparse matrix P. However, this is not possible to reconcile with
the uncertainty principle [4]. Small support and therefore strong variation in the
signal domain will inevitably create long extended non-zero tails in the Fourier
domain, i.e. high amount of false frequencies.

There exist a number of basis functions that fulfill at least the first property
in the above list. Frequently occurring in the literature are the square basis func-
tion used in the Siddon algorithm [68], the basis function induced by the Joseph
projection method [32] and the generalized Kaiser-Bessel basis functions by Le-
witt [45, 46]. It was shown by Danielsson and Magnusson [13], and Sunnegardh
[75] that the basis function induced by the SinCot filter by Magnusson [66] yields
better results than the Joseph method at the same sampling resolution.

Generally, there is a conflict between the two requirements low aliasing and
low cost. Computationally cheap methods often produce more aliasing artifacts
and slow methods often produce better image quality. Since Joseph is a good
compromise, this method has been used extensively for projection generation in
later chapters.

For simplicity, we describe the Joseph method in two dimensions. An extension
to three dimensions is straightforward but more difficult to illustrate. In See
Figure 3.6. Suppose that the line integral through an image along a line L is to be
calculated. The first step in the Joseph method is to divide the image in to a set of
lines, parallel either to the z-axis or y-axis, so that the line L is as perpendicular
as possible to the lines in the set. The next step is to calculate contributions
from each intersection between L and the set of vertical lines. Finally, a length
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sinc?(Avu? + v2)

Zero crossings of (Fb)(u,v)

Figure 3.4: Illustration of the periodic Fourier transform of a sampled image and zero

crossings for the function sinc?(Av/u2 + v2).
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Figure 3.5: Two intersections through the Fourier transform shown in Figure 3.4. Since
Fb is zero for p = VuZ+v2 = ...,—A"1 0,A7! ..., the repeated DC-
components are perfectly eliminated. However, this is not true in the 45°
direction where false high frequency components are introduced.
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Figure 3.6: Illustration of the Joseph projection method. Depending on the slope of
the line integral to be calculated, the image is divided into a set of lines
such that the angle v does not exceed 45°. At each intersection between
the line and this set of lines, a contribution is calculated by means of linear
interpolation. This results in a triangular footprint f(s,t) with a width
that varies between A and %. When all contributions have been added, a
final division by cos(7y) is made to normalize the integral of the convolution
kernel to unity.

correction is made by division with cos(y) where 7y is the angle between L and the
normal to the images.

As mentioned before, the Joseph method does not suffer from DC-aliasing.
Danielsson and Magnusson [13] showed this by studying the footprint

1 _ [t] <
fst) = | ot (1= et 18] < Acos(a(s) (3.15)
0 otherwise

where v(s) is the angle in Figure 3.6. Except for the compression factor cos(y(s)),
this expression is identical to (3.14). By reasoning in the same way as in that

example, we see that since the footprint is compressed with a factor % in the

45°-direction, the Fourier transform is stretched with a factor /2. Therefore,
all non-central repetitions of the DC-component are eliminated also in the 45°-
directions, and in the directions arctan(+1/2) as well.

3.2.3 Irradiation functions

In the previous section, the irradiation function w; was a single Dirac line. There
are at least two reasons to consider other types of irradiation functions.

1) In order to capture all information delivered by the input data, it is desirable
to use a relatively high voxel density in comparison to the ray density. During
projection generation, such a relation between the detector and voxel density
may give rise to aliasing. This is realized by first studying the continuous



30 Iterative methods

projection of the continuous image obtained by convolution by the basis
function. The next step is to see whether the assumptions of the sampling
theorem [4] are violated during sampling of this continuous projection. As
illustrated in Figure 3.8, this type of aliasing will occur for a wide range of
sampling densities A, in a situation where the rays are diverging, like in
the z-direction in the semi-parallel geometry after rebinning in the WFBP
method.

To use an irradiation function that consists either of several Dirac lines or a
strip is equivalent to convolve the continuous projection with a certain low-
pass filter prior to sampling. Therefore, these types of irradiation functions
can be used for suppressing aliasing in the projection generation process.

2) The line integral model of the acquisition process is rather crude since the
gantry rotation and size of focus and detectors is neglected. A better model
would take into account the smoothing caused by these elements.

Various examples of irradiation functions other than Dirac lines exist in the
literature. In the papers by Hanson and Wecksung [24], and Ohyama et al. [60],
strip integrals (see Figure 3.7) were used in combination with the square basis
function in two dimensions. In both papers, better results were achieved with
strips than with Dirac lines. The problem of aliasing was pointed out by Mueller
et al. [54] and a space variant scaling of the basis functions (in this case blobs) was
suggested to suppress aliasing artifacts. Later, Ziegler et al. showed that suppres-
sion of these artifacts can be done by using divergent strip irradiation functions
in combination with blob basis functions [87]. De Man and Basu [50] proposed a
technique for generating projections that resembles the Joseph interpolation but
instead of a triangular interpolation function uses two rectangles with different
widths convolved with each other. These widths were chosen to be the image
sampling distance and the spatial dependent ray distance respectively. Thus, in
terms of basis and irradiation functions, the first rectangle would correspond to
the basis function and the second to the irradiation function. We believe that this
idea should be highly beneficial to apply in the divergent projection field in Figure
3.8.

3.3 Least squares methods. Regularization

Least squares methods for image reconstruction are iterative methods designed to
find the f € RY that minimizes

1 1
A(6) = 5 IPE — pulldy = 5| VW(PE — b (3.16)

where the square root VW exists since the matrix W is assumed to be positive
semidefinite. The matrix W can be used either to assign individual weight to each
detector element, or it could be a ramp-filter that rescales the problem and makes
it easier to find a solution.
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Figure 3.7: Examples of different irradiation functions.

a) High frequencies located close to the focus

Rr+ Rp

Retip A, > A, = no aliasing Detector

b) High frequencies located far from the focus

Rr+R
Fb DAZ

I
b
Betlp A, < A, = aliasing Detector

Figure 3.8: An illustration of how aliasing occur during projection generation. High
frequencies located close to the focus are projected to relatively low fre-
quencies on the detector, while high frequencies located far from the focus
are projected to relatively high frequencies on the detector.
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Since z(f) is convex and bounded below, there exists a solution to the problem
(3.16). However, if the number of voxels, i.e., the number of components N in f is
chosen high enough, the matrix P will not have full column rang and the solution
will not be unique. One way to ensure uniqueness is to add a minimum norm
constraint and solve

argmingcg [|f]|, S = {f € RY, |Pf — pin |3y is a minimum} (3.17)

instead of (3.16).

The analytical solution of this problem is given by f = Ptp;, where  denotes
the pseudoinverse (see Heath [25]). In this case, since the number of variables is
huge, the analytical solution is only theoretically interesting. In practice, iterative
methods must be employed. Many methods, for example the steepest descent and
conjugate gradient methods (see Nocedal and Wright et al. [57]), exist for this
purpose. The simplest method is probably the steepest descent method introduced
in Section 3.1. The gradient Vz(f) is given by

Vz(f) = PTW(Pf — pi,). (3.18)
Inserted in the steepest descent update formula f;11 = fi, — @ Vz(£y), this yields
fk+1 = fk — OszTW(Pfk - pin)~ (319)

If the method is initialized with f = 0 and the step-lengths a4 are chosen
appropriately, this method converges to the solution of (3.17). That the minimum
norm solution is indeed achieved is realized by looking at the update step; when
| VW (Pf — pin || is a minimum, contributions from the nullspace N(P) = R(PT)*
can be added without changing the value of ||v'W(Pf — pi,||. Since the update
step only add contributions from R(P7T) to the iterates, the limit point will lie
precisely in R(P7), while any change of components in R(P7)* would increase
the norm |[/f]|.

In order to be a descent direction (a direction that decrease the objective z(f)),
a search direction d must fulfill the relation

dTvz(f) <o. (3.20)

If V is a symmetric positive definite matrix, we see that not only the negative
gradient —Vz(f) but also d = —V'Vz(f) satisfies the condition (3.20). Therefore,
the update step (3.19) can be replaced by the more general update step

fir1 = £ — oy VPTW(Pf — pyy). (3.21)

The matrix V can be used to improve the rate of convergence. For instance, if
V = (PTP),fy = 0 and ap = 1, the method will converge to the least square
minimum norm solution in only one iteration. Changing the search direction with
a matrix V as in (3.21) is called preconditioning. Clinthorne et al. [9] showed that
convergence rates for iterative reconstruction can be improved without changing
the ultimate solution by preconditioning with an approximation of (P7P)T.
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fi(t)
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Figure 3.9: A simple example of fitting a function f : R — R to a number of mea-
surements. The filled circles illustrate the measured points and the curves
illustrate two possible functions f; and f2 that interpolate the measured
data.

The well-known SIRT is achieved if V and W in 3.21 are diagonal matrices
with diagonal elements v; = (Y, pi;)~"! and w; = (Z;V:lpij)_l. It was shown
by Jiang and Wang [30] that this method converges to the least square minimum
norm solution plus a contribution depending on fy for « € (0, 2).

ART and SART are sequential methods in the meaning that a full update con-
sist of a sequence of subupdates. Jiang and Wang [31] showed how such sequential
methods can be expressed with formulas similar to (3.21) when V and W are pos-
itive diagonal matrices. It was also shown that if the parameters «y, satisfy certain
conditions, these methods also converge to a least square minimum norm solution
plus a contribution that depends on the initial reconstruction volume f;. These
results will be presented in more detail in Section 3.4 when discussing convergence
of the ordered subsets methods.

A common problem with iterative image reconstruction methods is that the
iterates tend to become distorted by high frequency artifacts and noise as the
number of iterations grows. One reason for this is that the restrictions on the space
of possible reconstruction results are inappropriate. A simple example is given in
Figure 3.9. The space of functions that maps the real line to itself is too large
and contains many solutions that we would consider incorrect or noisy. Therefore,
constraints must be added to restrict the solution space to certain wellbehaived
functions. This is called regularization. In the context of image reconstruction, at
least four different regularization techniques appear in the literature.

Bandlimiting with smooth basis functions: Since the input data have not
been acquired with an infinite resolution, it seems reasonable to limit the band-
width of the reconstruction result. One way to do this is to use basis functions that
are effectively bandlimited, for instance the generalized Kaiser-Bessel functions by
Lewitt [45].

Bandlimiting with sieves: Snyder and Miller [70], and Snyder et al. [71]
proposed the use of sieves to suppress the enhancement of noise as the number of
iteration is increased. This means that the iterative method is designed so that
the result will lies in the sieve

S = {f(r) cf(r)= [ K@Ex-r)f'(t)dr',K >0,f > O} (3.22)
RS

where K (r) is called the sieve kernel and is usually a smooth function, for instance
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a Gaussian. The iterative method is designed to estimate f’ by introducing a
convolution with the sieve kernel before projection as well as after backprojection
in each iteration. As a final step (after convergence), f’ is convolved with the
sieve kernel to get f. Note that the continuous formulation (3.22) leaves room
for principally different implementations. For instance, f’ can be identified as the
Dirac impulse train corresponding to the coefficients of the f vector, and K can
be identified as the basis functions. Then, sieve regularization would be identical
to regularization with a smooth basis function. Another, perhaps more common
interpretation is to design the iterative method so that the resulting coefficient
vector f lie in the sieve

Sdiscrete = {f € RV : £ = Kf', K > 0,f' € RV} (3.23)

where K correspond to a convolution with a discrete sieve kernel. This was imple-
mented in combination with Joseph interpolation by De Man [49] for z-resolution
constraining.

Early stopping: Since the noise level increases with increasing number of
iterations, a popular method for avoiding enhancement of noise is to stop the
method before the fixed point has been reached (see for instance Veklerov and
Llacer [80] and Hebert et al. [26]). The practical problem with this method is to
determine a good stopping criterion.

Penalty functions: Stopping an iterative method before convergence is theo-
retically unsatisfactory, since this means that a sub-optimal point is preferred over
the optimal solution to the problem as it has mathematically been formulated.
The conclusion is that the mathematical problem formulation lacks some feasibil-
ity parameter not yet accounted for. One way to improve the problem formulation
is to add a penalty term to the objective function in (3.16). This term is designed
so that certain structures and properties considered likely to appear are penalized
less than other less likely structures.

One class of penalty terms is based on a Markov Random Field (MRF) model
of the reconstructed image. For statistical motivation of this penalty term in a
MAP reconstruction framework, see for instance Geman and McClure [20] and
Liang et al. [47]. The new function to be minimized is given by

N N
1
2(f) = SIVWPE—pu)|* + 6D digV(Fi — 1) (3.24)
i=1j=1
where
fi are components of f,

d;; are given by the inverse distances between the voxels ¢ and j in a small
neighborhood,

V' is the so called potential functions, and

0 is a parameter that determines the amount of smoothing.
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Depending on the choice of potential function, this term will penalize certain local
structures more than others. Figure 3.10 show examples of different potential
functions. Non-quadratic potential functions are interesting because of their edge-
preserving smoothing properties. Unfortunately, they result in non-linear methods
with a behavior that is rather difficult to understand and interpret.

A quadratic potential function in combination with a least square term results
in a linear method which follows by the following reasoning. Differentiation of
(3.24) and insertion of the quadratic potential function V(f) = f? yields

N N

Va(f) = PTW(Pf—pw)+23) Zdijiv(fi_fj) ei

i=1 \j=1

N [N
= PTW(Pffpin)+4BZ Zdij(fi*fj) e

i=1 \j=1
=:Rf
= PTWPf - P"Wpy, + 48Rf
= (PTWP +46R)f — PTWpy, (3.25)
where R is given by
S¥diy—di —d1> o —din
—do1 SN doj — dao
R = _ = (3.26)
: . L
—dn1 Zj:l dnj —dnN
Hence, the analytical expression
f* = (PTWP + 44R)'PTWp,, (3.27)

for the minimizer of z(f) reveals that the optimum depends linearly on the input
data piy-

In practice, the minimization of the penalized least square problem can be done
using the same techniques as for the non-penalized. The term 46Rf grows linearly
with the total number of voxels. Therefore, the additional computational cost due
to this term is neglectable in comparison with the projection and backprojection
operations.

3.4 Ordered subsets acceleration

The ordered subsets technique for emission tomography was introduced in 1994 by
Hudson and Larkin [29]. They showed that this technique could improve the rate
of convergence for the emission tomography MLEM algorithm [67] with at least a
factor 16 without any appreciable loss of image quality. Later, the ordered subsets
technique was applied to algorithms for transmission tomography by Kamphuis
and Beekman [36] and Erdogan and Fessler [19].
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Quadratic potential function Geman and McClure potential function

Huber potential function
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Figure 3.10: Three examples of potential functions. (a) The quadratic prior produces
smooth images without any edge preservation. It has the advantage of
being convex and results in a linear method when combined with a least
square data term. (b) This non-convex edge preserving prior was proposed
by Geman and McClure [20]. (c) The Huber prior has the advantage of
being both edge preserving and convex.
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Simultaneous update mode: 0,4
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Ordered subsets mode: 05
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Figure 3.11: Simple illustration with only 8 projection angles for illustrating the or-
dered subsets technique. Here, each arrow represents a parallel projection
angle 0. A simultaneous method would use all projection data pin in each
update. In an ordered subsets method, the full update would be split into
two partial updates, first with pin,1 and then with piy .

Mathematical descriptions and proofs of convergence for sequential methods
such as ART, SART and OS methods were given by Jiang and Wang [31]. Here
we give a simple presentation of the ordered subsets technique as it is used in
tomographic reconstruction and repeat one of the main results from [31].

First, the input data p;, are partitioned into equidistantly sampled subsets
Pini,! = 1,...,L with respect to the rotation angle 6 (see Figure 3.11). Now,
presuming that W does not mix data between these subsets, we can define new
matrices W;, P; and P7 acting only on the subsets. With an index sequence
{ix}32 , specifying the order in which the subsets shall be applied, the update step
becomes

fk+1 =1, + OszPz;WZk (szflc — pin,ik)~ (328)

In the case of disjoint subsets, Jiang et al. showed that if the index sequence is
periodic, i.e. gy, = ik, n € N, and the step lengths oy, satisfy the conditions

klingo ag =0, and ;ak = 400, (3.29)

then the method defined by (3.28) converge toward a minimum norm minimizer
of |vVW (Pf — pi,)||? plus an oblique projection of the initial image fy on the null
space N(P) = R(PT)L.

Although the above result holds independently of subset ordering, this ordering
affects the rate of convergence. Therefore it is of interest to find an ordering scheme
that minimizes the number of necessary iterations. Different ordering schemes will
be presented and explored in Section 6.
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3.5 Iterative filtered backprojection (IFBP) meth-
ods

The IFBP method in its most basic form is given by
fir1 = fr — . Q(Pfy — pin)- (3.30)

where Q is the matrix representation of an analytical reconstruction method. For-
mula (3.30) differs from the Landweber method (3.1) in that the adjoint projection
operator matrix P7 has been replaced with the analytical reconstruction operator
matrix Q. This is motivated by the fact that an analytical reconstruction method
produces a result that resembles the original object to be reconstructed much more
than a result produced by PT. Therefore, it is likely that an IFBP method would
converge much faster than the Landweber method.
In the following, we will study the more general IFBP method defined by

fk+1 = fk — O(kQ(Pfk — pin) — akﬂRfk. (331)

Here, the matrix R € RV*V is the same matrix as the one introduced and moti-
vated for least squares methods in (3.24), (3.25) and Figure 3.10.This can be used
to reduce unwanted enhancement of high frequencies in the final result.

Here follows a convergence discussion similar to the convergence discussion for
the Landweber method in the beginning of Section 3.1. This discussion was mainly
inspired by the similar discussion for the non-regularized case in [85]. Suppose that
ap = « is constant with respect to k and let

A =1-a(QP + SR). (3.32)

If the eigenvalues of the matrix A are contained in the interior of the unit circle
{A e C: || < 1}, or equivalently

leig(a(QP + SR)) — 1] < 1, (3.33)
then
fk+1 = fk — OzQ(pin — Pfk) — OéﬁRfk
= f; —a(QP + SR)f; + aQpin
= Afp +aQpiy

= A2fk_1 + (A + I)OzQpin

— Ak+1f0 + (Ak: + Ak)—l N I)anin
"7 (I-A)'aQpin = (QP + SR)'Qpi. (3.34)

When no regularization is present, i.e. R = 0, there are a number of cases when
the nullspace N(QP) is nonempty and equality holds in (3.33). For instance, this
happens when the number of voxels is chosen to be larger than the total number
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Figure 3.12: Illustration of the 3-D convolution kernel corresponding to the regulariza-
tion matrix R.

of detector readings in order to preserve all information contained in the input
data. In this case N(P) # () and the sum in (3.34) would diverge. However, the
following argument suggests that this convergence problem can be solved with the
regularization term Rf from Equation (3.25). Since the nonempty nullspace of
P arises when the voxel density is increased above a certain level, this nullspace
must consist of high-frequency structures. By inspection of equation (3.25), we see
that multiplication with R is equivalent to convolution with the kernel illustrated
in Figure 3.12, i.e. a high-pass filter. It is therefore unlikely that the matrix
(QP + SR) would have a non-empty nullspace.

Zeng and Gullberg [85] numerically investigated the property (3.34) for a num-
ber of operators Q that can be used for single photon emission computed to-
mography (SPECT). Under the assumption that QP was symmetric, its smallest
eigenvalue was found by using the power method (see [25]). For the initial 500
iterations, the normalized mean square error was also studied and it was con-
cluded that a ramp filter can be used to reduce the number of iterations by an
order of magnitude. However, the WFBP method used in the following chapters
differs from the transposed projection operator P7 with respect to interpolation
and normalization so that QP becomes non-symmetric. Because of this and differ-
ences between x-ray CT and SPECT, the results from this paper are not directly
transferable to the methods studied in the following chapters.
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Chapter 4

Simulation and evaluation

4.1 Generation of input projection data

Noise-free input data for the experiments in the later Chapters 5, 6 and 7 were
generated with the CTSIM program package (Siemens Medical, Forchheim). This
program takes scanning parameters and a mathematical description of a phantom
as input data. It simulates the finite extension of focus and detector by dividing
these into Ngub—xy X Nsub—z and Ngub—ch X Nsub—rows €quidistantly sampled points
respectively (see Figure 4.1), and calculating a mean of line integrals instead of just
one single line integral. To make the physical model more realistic, modeling of the
gantry rotation have been added. Thus, CTSIM in combination with the additional
gantry rotation model calculates the contributions after taking logarithms as

N
p; = —log %Zexp (/F fpha(r)dl> (4.1)
i=1 3

where
N = Nsubfxy X Nsub—z X Neub—ch X Nsub—rows X Nsub—a- (42)

As shown in Table 4.1, typically N = 3% = 243, which makes the computation of
these simulated projection data very heavy. However, since the same input data
can be used for several different experiments, this is not a problem in practice.

Noise were added using the procedure suggested by Fuchs [18]. Let Iy be the
expected number of non-attenuated photons traveling along the ray i from Equa-
tion (4.1). Then, the number of attenuated photons I is approximately Poisson
distributed with

E[I) = Var[l] = Iok, (4.3)

where k = exp(—p;). When this number is large, the distribution of I is ap-
proximately Gaussian with variance k and standard deviation vk. Then, a noisy
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%subfch

Focus Detector

Figure 4.1: In order to realistically simulate the physical acquisition process, both focus
and detector are divided into subunits. The final contribution is calculated
as the mean of all sub-contributions.

z

'Limax

Focus Detector

Rp

Figure 4.2: Explanation of some of the scanning geometry parameters in Table 4.1.

contribution p; can be calculated as

pi = —log (k +VEN (07 \/%» : (4.4)

where N(u,0) is a sample from the Gaussian distribution with expectation p and
standard deviation o.

The scanning parameters for the experiments in Chapter 5 to 7 are given by
Table 4.1, and an illustration of the geometry and corresponding parameters is
shown in Figure 4.2. In some cases, two-dimensional rather than three-dimensional
experiments have been performed. In these cases, all parameters regarding lengths
in the z-direction have been set to zero and the number of rows have been reduced
to one.

As a first step in all experiments presented in this treatise, input data are
rebinned to semi-parallel geometry. In the rebinning process, new parameters
describing sampling in the new semi-parallel geometry are introduced. These pa-
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Table 4.1: Scanning parameters for experiments in Chapter 5 to 7.

Source-Isocenter distance Rp 570mm

Number of channels (Quarter offset) Ny 336

Number of rows Niows 64

Number of projections per turn Nproj 580

Detector subsampling in channel dir.  Ngyb—ch 3

Detector subsampling in row dir. Naub—row 3

Focus subsampling along xy-plane Neub—xy 3

Focus subsampling in z-dir Neub—z 3

Angle subsampling Ngub—a 3

Focus width (zy) wy 1.3mm

Effective focus length (2) ly 1.2mm

Slicewidth S 1.5mm

Detector height h S X Niows = 96mm
Table-feed P 96mm

Maximal fan angle Bmax 26°

Maximal cone angle Kmax % x tan~1 (%—/5) ~ 4.8°

Table 4.2: Parameters introduced in the rebinning step.

Number of channels Ny 672
Number of projections Ny 580

: TREBmax ~
Parallel displacement per channel A, 18’671\% ~ 0.77mm
Maximal parallel displacement tmax % ~ 259mm

rameters are shown in Table 4.2. The alternative would be to move the rebinning
step forward and include this process in the reconstruction operator Q. As a conse-
quence the projection operator P should be redesigned to generate true cone-beam
data. This possibility is investigated in Section 5.5.

4.2 Phantoms and error measurements

In earlier experiments, the Turbells clock phantom [77] was used because of its
ability to reveal the effects of non-exactness in a cone-beam reconstruction algo-
rithm, the so-called cone artifacts. This phantom has now been replaced by the
Thorax phantom by Sourbelle [72] since the thorax phantom contains more com-
plex shapes including edges and corners. Besides emphasizing cone artifacts, such
shapes are more likely to produce streak artifacts and non-linear partial volume
artifacts existing already in 2D-reconstruction. The Thorax phantom is illustrated
in Figure 4.3 and 4.4. The sharp transitions in the z-direction near the vertebra
borders usually give rise to severe cone artifacts when reconstructed with non-exact
methods at high cone angles.
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(d) x = —33mm

Figure 4.3: Four different slices of the thorax phantom. The greyscale window is +50
HU. The first row consists of two axial slices at different z-levels. The right
slice is located close to the border of one vertebra. Non-exactness in a
reconstruction algorithm usually results in cone artifacts in this area. The
bottom row show coronal and saggital slices respectively.

Under certain circumstances, the iterative experiments to be reported in the
following sections give rise to high-frequent low-contrast artifacts. To study these
artifacts, a low contrast phantom by Schaller [64], scaled to twice its original size,
was used. This phantom is shown in Figure 4.5.

For each reconstructed result presented in the following chapters, the deviation

from the original phantom has been calculated as the root mean squared error
(RMSE)

O = \/|S1)| Z((frcc)i - (fphan)i)2~ (45)
i€

Here, fynan is a vector containing sampled values of the original phantom and
Q is the set of voxels taken into account for the measurement. Depending on
how this set is chosen, different types of deviation are measured. For instance, if
high-contrast edges are included in 2, o, will be dominated by errors caused by
smoothing of edges. Figure 4.6 shows two different sets that have been considered
for the thorax and low-contrast phantom, one for measuring the amount of cone
artifacts, the other for measuring the overall RMSE. RMSE measurements for the
low contrast phantom were calculated using all voxels except those located close
to or outside the cylinder edge.
Noise in the reconstructed images was calculated with the formula

Op = \/(1“ Z((fnoisy)i - (fnoiseffree)i)2 (46)
i€Q

where f,,0isy Tepresents a reconstruction from noisy data and figise—free represents
a reconstruction from noise-free data. In the same way as for equation (4.5),
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Figure 4.4: Illustration of the thorax phantom. This image was created from a sampled
voxel volume by a program called MCIV (Matlab Connecting ITK and
VTK) developed by Larsson et al. [44].

Figure 4.5: Illustration of the low contrast phantom. The left image shows an axial
section of the phantom at z = Omm with a greyscale window of +10HU.
The right image is a 3D-view created by MCIV (see Figure 4.4).
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(a) Original phantom, z = —12mm (b) Original phantom, z = Omm
“Cone artifact areas” indicated in lower “Whole image area” indicated
middle part of the image

(¢) Original phantom, z = Omm
Areas for noise measurements indi-
cated

Figure 4.6: The marked areas show different ) sets for measuring the error o. and op,.
The cone artifact areas in (a), consisting of one square, two ellipses, and
two rectangles, are designed for measuring presence of cone artifacts. The
whole image area in (b) measures the error over the whole image. The area
for noise measurement in (c) consists of one square, two ellipses and two
rectangles. Depending on the reconstruction resolution, these sets extend
over one to five slices in the z-direction. The difference in z between (a)
and (b) stems from the fact that cone artifacts arise at z = 12mm but
not at z = Omm. For two-dimensional experiments, (c) is used both for
measuring o. and oy,.
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Q is the set voxels, which over the summation takes place. The sets used for
noise measurements are shown in Figure 4.6¢c. These sets are also used for o,
measurements in two-dimensional experiments.

Even if the purpose of the iterative methods studied in the following chapters
is to produce good results after few iterations, it is interesting to see what the
methods deliver after many iterations. Besides error and noise measures described
above, we have calculated the Euclidean norm

1QPin — (QP + SR)f || = [[fxr1 — fil- (4.7)

Obviously, a necessary condition for the iterative method to converge is that this
norm tends to zero as k — oo.

4.3 Spatial resolution

Images reconstructed by analytical and iterative methods respectively differ in
many ways e.g. in sensitivity to noisy input data. Another feature, which often
can be traded for noise is the ability to preserve high frequencies throughout the
reconstruction (high spatial resolution). This section describes how spatial resolu-
tion can be and has been experimentally measured in the experiments to be found
in the following chapters. We will make a difference between spatial resolution in
the zy-plane, represented by modulation transfer functions (MTFs), and spatial
resolution in the z-plane, represented by slice sensitivity profiles (SSPs).

The method that has been used to measure the MTF of the virtual CT and
its reconstruction algorithm is called the edge method and was first presented by
Judy [33]. It is based on the assumption that the MTF is space invariant or at
least only slowly varying in space. A phantom containing a sharp edge, is slightly
tilted to form angle v with the z-axis as illustrated in Figure 4.7. By measuring
points along the z-axis, in the reconstructed result, we obtain an oversampled
edge response of the system. The amount of oversampling is determined by the
value of 7. In the MTF measurements, we used an angle of v = 3°. From the
edge response, the line spread function (LSF) is obtained by differentiation. This
differentiation was made by simple central difference calculations instead of the
least square line fitting described by Judy [33]. This can be justified by looking at
the oversampling density, which is almost 20 times higher than the image matrix
sampling density. Thus, the errors introduced by differentiation are not likely to
affect the area where the MTF exceeds 10% of its maximum value. Finally, the
MTF is calculated as the modulus of the Fourier transform of the LSF.

In the books by Hsieh [28] and Kalender [35], the wire method is presented
as a standard method for measuring MTFs. Unfortunately, this method requires
reconstruction to a fine grid, often finer than what is used in practice. In iterative
methods, the MTF is dependent on the image matrix resolution (see Chapter 5).
Therefore, to enable studies of MTFs also at lower image matrix resolutions, the
edge method was chosen in favor of the wire method.

The slice sensitivity profile (SSP) is the tomographic system response in the z-
direction. For helical CT, so called delta phantoms are used for measuring the SSP



48 Simulation and evaluation

Figure 4.7: Illustration of the edge method. If the edge response does not vary along
the edge, an oversampled edge response can be obtained by sampling along
the z-axis. The angle v is exaggerated here. In the experiments presented
later, a value of 3° was used.

Figure 4.8: Measurement of the SSP of a system. By merging responses from a number
of discs, whose exact positions are known, an oversampled SSP is obtained.

[35]. Again, such measurements require extra high resolution. Hence, proper SSP
measures are difficult to obtain in our experiments on iterative methods, where
the SSPs are dependent on the resolution. We have circumvented this problem by
assuming that the SSP in the isocenter does not vary in the z-direction, and using
a phantom consisting of a number of very thin (0.2mm) discs. Since the exact
location of each disc is known, measurements from all discs can be merged (see
Figure 4.8) into one oversampled SSP.

4.4 Noise versus spatial resolution

Let p be the highest frequency the tomographic system is able to reconstruct in
the zy-plane, and let S be the slice thickness of the system. It was shown by
Brooks and Di Chiro [6] that the variance o2 of the reconstructed voxels is related
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to p and S as

1
2
X —. 4.8
5 (48)
Furthermore, due to the Poisson nature of the photon density, the variance in the
reconstruction result is related to the dose D (attenuated energy per mass unit)
as
1
2
o X —. 4.9
= (49)
These relations imply that the factor o2p~2SD should be constant for a tomo-
graphic system. Clearly, given the same dose and resolution requirement, a system
that can produce an image with a lower noise level must be better than another
system producing noisier images. This is the motivation for the figure of merit

c

= —_— 4.10
Ql UszOS%SD ( )

presented by Kalender [35]. Here, pigy is the frequency where the MTF has
dropped to 10% of its maximum value, and c is an arbitrary scaling factor. An
alternative to this p is the mean value

_ £10% + £50% (4 11)

M D)

resulting in the figure of merit

c

= 4.12
QQ UQpJTJgSD ( )

In our experiments accounted for in the following chapters, ¢ and D will be
ignored, since these entities are constant during each comparison. It turns out
that direct WFBP differs from IWFBP both with respect to noise o and spa-
tial resolution (p,S). The @Q1- and Q2—value might allow for an investigation of
whether a certain increase of both noise and spatial resolution is reasonable (@1
and @2 remain unchanged), or if it corresponds to a significant change of available
information (@ and @ are changed).

We have also examined the quality of the reconstruction results by finding and
employing regularization parameters SR that leave the spatial resolution unaf-
fected by the iterative procedure. Clearly, this allows for noise comparisons at
constant spatial resolution.
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Chapter 5

Iterative Weighted Filtered
Backprojection (IWFBP)

5.1 Introduction

In this chapter, we investigate the possibility to use an iterative scheme for reducing
cone artifacts caused by the non-exact weighted filtered backprojection (WFBP)
reconstruction method.

The procedure is illustrated in Figure 5.1. As an initial step, input data py, are
rebinned to semi-parallel geometry with double resolution in the radial direction
as described in Section 2.2, resulting in pyep- This means that the projection
and backprojection operators in the iterative scheme are working only on semi-
parallel projection data. The rest of the method is principally the same as the
IFBP method described in Section 3.5, with the matrix Q being equal to matrix
representation Qwrpp of the WFBP method without the initial rebinning step. As
described in Section 2.2, the detector rows are down-weighted near the border of
the detector. The Q-factor characteristic for this down-weighting is 0.7 throughout
this chapter. Assuming that the method is initialized with f; = 0, and that the
iterates fo, ..., fx, k € {0,1,...} have been calculated, the next iterate is calculated
as

frr1 = i — . Qwrp (P — preb) — arSRE; (5.1)

where P is the Joseph projection operator (see Section 3.2.2), and R is the matrix
representation of the linear operation

N N

YA dilfi- ) | e (5.2)

i=1 \j=

from Equation (3.25).
The main body of experiments in this Chapter are motivated by results pre-
sented by Sunnegardh et al. already in [76] and shown in Figure 5.2. The test
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Figure 5.1: Illustration of the IWFBP method. Given the iterates fy,f1,...,fx, the
updated image is calculated as follows. First, the projections Pfj are cal-
culated and subtracted from the input data pren. The difference p — Pf},
is then reconstructed using Qwrsp. From this difference image, the result
BRA is subtracted. A final scaling with «y is then made before addition
to the previous iterate.
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object is Turbell “s clock phantom [77] and the cone angle is +9°. A clear suppres-
sion of the artifacts caused by WFBP can be observed after one iteration in Figure
5.2b. The IWFBP method was also accelerated with the ordered subsets technique
(see Section 3.4 and the next chapter). With this technique, the cone artifacts were
almost perfectly suppressed after one single iteration (see Figure 5.2c). However,
the ability to handle inconsistent data due to noise, and low contrast properties
were not examined in [76].

In the next section, we investigate the behavior of the IWFBP method with
and without regularization as a function of the number of iterations. Noisy input
data are generated as described in Section 4.1. The investigations are designed to
address the following salient questions.

e How much will the image quality improve during the first few iterations?
e Will the method converge?
e Will the noise level increase?

From Section 3.5, we know that if the method converges, the limit point is
given by

foo = (QP + ﬂR)71Qpin- (53)

Unfortunately, this expression is difficult to interpret, and an experimental evalu-
ation is needed. It turns out that the iterative procedure does not only suppress
cone artifacts, but also changes the spatial resolution and noise properties of the
reconstruction results. Therefore, it is of interest to compare these new properties
with those of the non-iterative WFBP method. This is done in Section 5.3.
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(a) WFBP reconstruction (b) IWFBP after one iteration

(c) OS-IWFBP after one iteration

Figure 5.2: Three reconstructions of the Turbell clock phantom. The cone angle is +9°.
Grey scale window: [—1050, —950] HU.
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In Section 5.4, reconstructions of the low contrast phantom from Section 4.2
are studied with a very narrow grey scale window.

5.2 Cone artifact reduction and convergence

In the experiments presented here, noisy input data were used for IWFBP re-
construction to a 5133 volume with dimensions L, = L, = 500mm and L, =
387mm. Thus, corresponding sampling distances are A, = A, ~ 0.98mm and
A, ~ 0.75mm. For comparison we investigated a non-regularized method (8 =0
in the last term of Equation 5.1) as well as a regularized method with 8 = 0.0005.
Most cone artifact reduction takes place within the first five iterations. However,
to investigate the stability of the methods and to see how the reconstructions
change over time, up to 40 iterations were calculated.

Figure 5.3, 5.4 and 5.5 show result images from the first six iterations. It is
clear from these images that the cone artifacts present in f; to a large extent are
suppressed after one iteration and hardly recognizable after five iterations.

As the number of iterations increases for the non-regularized IWFBP, we ob-
serve not only suppression of cone artifacts, but also an increase of overshoots,
spatial resolution, and noise. Fortunately, by choosing an appropriate value for
the regularization parameter 3, the frequency and noise characteristics of the orig-
inal WFBP method can be approximately preserved. This is demonstrated in the
right columns of Figure 5.3 and 5.5 showing results from IWFBP with 5 = 0.0005.

The quantity ||fz+1 — fx|| can be used as an indicator of convergence (or diver-
gence) since the sequence {fo, fy,...} converges only if ||fy+1 — fi|| — 0. In Figure
5.6, the update norms ||fy41 — fx|| calculated over “whole image” is shown. For
the non-regularized IWFBP, the norm is reduced to about 1/30 in the first five
iterations. However, even after 40 iterations the norm does not fall below 1/50 of
the first iteration. Therefore, it is difficult to tell anything about the convergence
in the unregularized case. In contrast, the corresponding norm of the regular-
ized IWFBP with 8 = 0.0005 falls down to 1/50th in the first five iterations and
continues to drop down to 1/100000th after 30 iterations. After 30 iterations, no
further reduction can be observed. What remains is so little that it may depend on
the finite precision in the calculation. We therefore conclude that the regularized
method converges to its fixed point after approximately 30 iterations.

Figure 5.7c shows the RMSEs, that is

O = \/|;2| Z((frec)i - (fphan)i)2 (54)
1€Q

calculated over the cone artifact measurement set shown in Figure 4.6¢c (repeated
in Figure 5.7a). Even if the RMSE does not only measure cone artifacts, but also
noise and aliasing artifacts, the initial reduction for the non-regularized IWFBP
is due to diminishing cone artifacts. After a few iterations, however the noise and
aliasing artifacts are amplified, resulting in an increasing RMSE. For the regular-
ized IWFBP, the cone artifact mask RMSE drops during the first seven iterations
and then remains practically unchanged. Figure 5.7d shows the RMSE of the
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3 = 0.0000 3 = 0.0005

f;

Figure 5.3: Axial slices first six results of IWFBP reconstructions with and without
regularization. Enlarged images of the area around the spine can be found
in Figure 5.4. Grey scale window: £50 HU.
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(a) WFBP reconstruction (b) IWFBP, fs, 5 = 0.0000

(¢) IWFBP, f5, 3 = 0.0005

Figure 5.4: Axial slices of the first six results of IWFBP reconstructions with and with-
out regularization. The dark vertebra like structure is an overshoot from a
real vertebra located very close to this slide. This overshoot is apparently
stronger for 8 = 0.0000 than for 8 = 0.0005. However, looking at Fig-
ure 5.15 we see that the maximum amplitude of the overshoots is actually
higher for 5 = 0.0000. Grey scale window: £50 HU.
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Figure 5.5: Coronal and saggital slices of the first six results of IWFBP reconstructions
with and without regularization. Grey scale window: +50 HU.
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Figure 5.6: The sequence log,,(||fx+1 — fx||/C) used for measuring convergence. The
value of C' was chosen so that the largest value of the sequence became
zZero.
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Figure 5.7: Root mean squared errors (RMSEs) as a function of the number of iter-
ations. These measures have been calculated over the two different sets
shown in (a) and (b).
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whole image. Here the RMSE mainly represents differences near edges. This is
realized by observing that the overall RMSE values in Figure 5.7d are approxi-
mately ten times larger than the values of the cone mask RMSE in Figure 5.7c
taken over areas without sharp edges. Here, the non-regularized IWFBP improves
the RMSE during the first five iterations, while the RMSE for the regularized
IWFBP remains at a constant level, close to that of the WFBP. One similarity
between Figure 5.7c and 5.7d is that in both cases, the non-regularized IWFBP
keep changing, while the regularized version converges to a practically constant
result after a few iterations.

Since the patient usually is longer than the length of the examined area, there
are locations that can not be correctly reconstructed. It is not trivial to see how
this will affect the results in the iterative loop. Luckily, it was shown by Magnusson
et al. [48] that if the reconstruction and projection is performed on a voxel grid
that fully covers the path of all rays involved, the result will improve rather than
degrade near the border of the region of interest(ROI). The result from [48] is fully
verified in Figure 5.8.

5.3 Spatial resolution and noise

As showed in the previous section, the frequency characteristics of the IWFBP
after a few iterations are different from those of the WFBP. This means not only
that the spatial resolution changes during iteration, but also the noise properties.
Two parameters that affect the frequency characteristics are the value of the reg-
ularization parameter § and the resolution of the image matrix, characterized by
the sampling distances A, and A, . In this section, experiments are presented with
0 ranging from 0 to 0.0007 and image matrix configurations as shown in Table 5.1.
The size of the image matrix follows suite with the sampling distance since we are
using a phantom of the same size.

Figure 5.10 and 5.11 show axial and coronal slices of the results obtained with
non-regularized (3 = 0) IWFBP for the three different configurations listed in
Table 5.1. The noise levels, calculated as in Section 4.2 are equal to 6.37 HU for
Cy, 6.34 HU for Co and 5.78 HU for C3. Measurements of SSPs show that the
amplitude of the overshoots observed for the C; resolution are reduced to less than
half of its original value when increasing the resolution to the Cs-configuration.
The overshoots are caused by the inability of a basis function, or rather a set of
weighted basis functions to compose an edge represented by input data. Ounly
if the edge is bandlimited, and the spacing and frequency characteristics of the

Table 5.1: Image matrix and sampling distances.

Conf. Image matrix Sampling distances
Cq Ny =N, =257,Nz2=129 A, =A,=195mm,A, = 1.50mm
Co Ny =N, =385,Nz2=193 A, =A,=130mm,A, = 1.00mm
Cs Ny =N, =513, N2 =257 A, =A,~098mm,A, =0.75mm
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f;
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Figure 5.8: Axial and coronal slices of the regularized IWFBP results showing a slice

that can barely be reconstructed with the available data. No propagation
of truncation artifacts in the z-direction even after 41 iterations. The lines
in the coronal slices show the location of corresponding axial slices. Grey
scale window: +50 HU.
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Figure 5.9: Illustration of least square fitting to a bandlimited edge with two linear
interpolation basis functions with different widths. The solid line show the
bandlimited input data and the dashed and dotted lines show the least
square fits. Clearly, a better fit with lower overshoots is obtained for the
set with small basis function width and spacing. Note that this is true only
for bandlimited input data. For an ideal edge, the overshoots would be of
same amplitude independent of width and spacing.

basis function set match the highest non-zero frequency component of the input
data, a result without overshoots can be obtained (see Figure 5.9 for an one-
dimensional example). Since this set in the C; configuration contain less high-
frequency components than the basis function set in the C3 configuration, the
overshoots are less pronounced for the C3 configuration.

Even when reconstructing to a relatively high resolution such as the Cs-configuration
from Table 5.1, the overshoot amplitudes are significant. In the z-direction, the
maximum amplitude is 5% of the edge amplitude. The amplitude of the noise is
also markedly higher: 5.78 HU compared to 3.50 HU for the WFBP reconstruction.
By changing the value of 3, it is possible to alter the frequency characteristics of
the final result. Figure 5.12 and 5.13 show axial and coronal slices from results
with  ranging from zero to 0.007. As ( is increased, both the amplitudes of the
overshoots and the noise are reduced. The o, and o,, values for different values of 3
are given in Table 5.2. From this table, an IWFBP reconstruction with 8 = 0.0005
comes closest to the original WFBP reconstruction in terms of noise and overall
RMSE.

Comparing noise levels for different reconstruction methods only makes sense if
the spatial resolution properties simultaneously are taken into account. Therefore,
modulation transfer functions (MTFs) and slice sensitivity profiles (SSPs) have
been calculated for different values of 8 and for the direct WFBP reconstruction.

The MTFs are shown in Figure 5.14. Compared to the WFBP, clearly 5 =
0.0000 and @ = 0.0003 results in higher spatial resolution in the xy-plane, while
£ = 0.0007 results in a slightly lower resolution. For g = 0.0005, the MTF of
IWFBP after 6 iterations is approximately equal to the MTF of WFBP.

Figure 5.15 show SSPs for different values of 3. Examining the full widths
at half maximum (FWHM), the IWFBP with 8 = 0.0007 comes closest to the
WFBP method. However, in terms of low overshoots in the z-direction, none of
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Noise-free data

Noisy data

Figure 5.10: Axial slices of non-regularized (8 = 0) IWFBP fs reconstructions with
different resolutions of the image matrix (see Table 5.1 for a specification).
Grey scale window: +50 HU.

Noise-free data Noisy data

Figure 5.11: Coronal slices of non-regularized (3 = 0) INFBP fs reconstructions with
different resolutions of the image matrix (see Table 5.1 for a specification).
Grey scale window: £50 HU.
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Noise-free data

Noisy data

£5, 3 = 0.0007 f5, 3 = 0.0007

Figure 5.12: Axial slices of IWFBP reconstructions with different values of the regu-
larization parameter 5. Grey scale window: +50 HU. See also table 5.2.
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Noise-free data

£, 3 = 0.0000

f5, 3 = 0.0003

£5, 3 = 0.0005

£5, 3 = 0.0007

Noisy data

f5, 3 = 0.0000

f5, 3 = 0.0003

f5, 3 = 0.0005

£5, 3 = 0.0007

Figure 5.13: Coronal slices of IWFBP reconstructions with different values of the reg-
ularization parameter 3. Grey scale window is £50 HU. See also table

5.2.

Table 5.2: 0. and o, values after five iterations for different values of
. The sampling distances are A, = Ay = 0.98mm and
A; = 0.75mm. Images shown in Figure 5.12 and 5.13.

8 c. (HU) o. (HU) o, (HU)
cone artifact areas whole image

WEFBP 16.21 83.54 3.50

0.0000 4.00 78.80 5.78

0.0003 3.41 81.57 4.43

0.0005 3.27 83.41 3.79

0.0007 3.21 85.24 3.28
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Figure 5.14: Modulation transfer functions (MTFs) measured for WFBP and IWFBP
with 8 = 0.0000,0.0003,0.0005 and 0.0007.

the IWFBP reconstructions match the original WFBP reconstruction very well.
For 4 = 0.0005, which resulted in an MTF similar to the WFBP MTF, the SSP
FWHM of the IWFBP is slightly smaller than that of the WFBP method. On
the other hand, overshoots appear in the IWFBP results but not in the WFBP
results. In Table 5.2, we see that the noise properties for WFBP and IWFBP with
£ = 0.0005 are quite similar.

In Table 5.3, the values of the figures of merit ()1 and Q)5 introduced in Section
4.2 are shown. For 8 = 0.0005, we see that the Q; and Q> values for WFBP are
slightly higher than for the IWFBP.

It does not seem reasonable to use Q1 or ()2 to compare methods at different
spatial resolutions, since these figures of merit clearly vary with the value of .
Even simple low-pass filtering of the result from non-regularized IWFBP with a
Gaussian with o = 1.40A,,, yields an improvement of () from 0.83 to 1.33.

5.4 Low contrast images

For statistical reconstruction using the Siddon projection operator [68], Zbijewski
and Beekman [84] showed that image quality is improved by reconstructing to
higher sampling density. This was partially verified in the last section, where
it was observed that edge overshoots and noise became more pronounced if the
resolution was too low. On the other hand, the grey scale window was too large
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Figure 5.15: Slice sensitivity profiles (SSPs) measured for WFBP and IWFBP with
£ = 0.0000, 0.0003,0.0005 and 0.0007.

Table 5.3: Q1 = c/(azp;03%SD), Q2 = ¢/(d°py SD) and the entities used for calucu-
lating these figures of merit for different values of 5. The dose is excluded,
since it is kept constant.

B on (HU)  prog (em™')  psoy (em™) S (mm) Q1 Q2

WFBP 3.50 3.30 1.84 2.01 1.47 0.69
0.0000 5.78 3.55 2.22 1.62 0.83 0.44
0.0003 4.43 3.35 2.00 1.79 1.07 0.55
0.0005 3.79 3.21 1.88 1.90 1.21 0.60
0.0007 3.28 3.06 1.78 2.01 1.32 0.65

0.0009 2.87 291 1.69 212 141 0.70
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to detect artifacts that could disturb the detection of low contrast objects.

In this section, the low-contrast phantom from Section 4.2 has been two-
dimensionally reconstructed to different resolutions with the WFBP and IWFBP
algorithms. As shown at the end of Section 2.1, backprojection can be seen as a
procedure which samples a continuous function. In fact, this is the point where the
sampling density of the image matrix comes into play. Hence, the artifact level of
the WFBP method at constant regions does not depend on this sampling density.
For IWFBP, this is not true. Suppose that an area in an image, for instance due to
an insufficient sampling density (illustrated for the one-dimensional case in Figure
5.9), cannot be properly reconstructed by an iterative method. Then the error in
this area will introduce errors in all projection data to which this area contributes.
When these data are subtracted from input data and backprojected, since the basis
function is unable to represent the correct result in the area of interest, erroneous
“corrections” will be made outside the area of interest along every ray that travels
through this area. Therefore, errors caused by an insufficient sampling density will
be less local than in the one-dimensional case illustrated in Figure 5.9.

Figure 5.16 shows one WFBP reconstruction and three IWFBP reconstruc-
tions to image matrices with dimensions N, = N, = 385, 513, 1025 respectively.
At the lower resolutions, errors caused by imperfect image representation clearly
propagates into the interior of the water cylinder and disturbs the detection of the
smallest low contrast objects. If the dimension of the image matrix is increased to
1025 x 1025, even for the small gray scale window +5HU, artifacts are practically
invisible.

5.5 Rebinning inside versus outside the iterative
loop

In all experiments presented so far, rebinning to a semi-parallel geometry has been
performed before entering the iterative loop. This makes implementation of the
projection operator slightly simpler and enable us to use ordered subsets together
with IWFBP (see Chapter 6). However, low-pass filtering as well as artifacts
caused by the rebinning process will appear also in the final result f,,. Also, ac-
curate modeling of focus, detector elements, and gantry rotation in the projection
operator P is more difficult. Therefore, in spite of the increased complexity, it is
tempting to place the rebinning operation inside the iterative loop and replace the
semi-parallel projection operator P with an operator P, generating true cone
beam projections.

Figure 5.17a and 5.17b show images reconstructed with IWFBP. The image
in Figure 5.17a was reconstructed with the rebinning process placed outside the
iterative loop as in previous experiments and in Figure 5.17b, the rebinning was
placed inside the iterative loop. Visual inspection reveals a clear difference in edge
response between the two methods. This difference is even more obvious when
studying the values of the images along a centered horizontal line as in Figure
5.17c and 5.17d. The amplitude of the overshoot near the edge of the water
cylinder is around 8 times higher when the rebinning is placed inside the iterative
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(c) IWFBP, f5, N, = N, = 513 (d) IWFBP, f5, N, = N, = 1025

Figure 5.16: Noise-free WFBP and IWFBP reconstructions of the low contrast phan-
tom. The resolution in (b) corresponds to configuration C2 and (c) corre-
sponds to Cs3 earlier in this section. Grey scale window +5 HU.
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(a) Rebinning outside loop (b) Rebinning inside loop
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(c) Profile, reb. outside loop (d) Profile, reb. inside loop

Figure 5.17: Results from IWFBP reconstruction with the rebinning operation located
outside and inside the iterative loop respectively. (c) and (d) show the
reconstructed linear attenuation coefficients along a horizontal line cutting
through the center of the cylinder. Greyscale window +5 HU.

loop.

It is difficult to draw any strong conclusions regarding the cause of this ef-
fect from this experiment. One likely explanation could be that the rebinning
operation acts as a low-pass filter, setting a certain high frequency to zero before
backprojection. This would cause the MTF of the IWFBP to drop with a steep
gradient close to this frequency. Other explanations could be that this effect is
caused by the changed geometry of the projection operator P, or the fact that the
difference between the adjoint operator P and rebinning followed by backprojec-
tion is larger when the rebinning is located inside the iterative loop. In order to
further investigate this, a comparison could be made with methods that do not
include a rebinning step, for instance SIRT.



70 Iterative Weighted Filtered Backprojection (IWFBP)

5.6 Conclusions

In this chapter we have seen how the IWFBP can be used for suppressing cone-
artifacts caused by WFBP at a cone angle of £4.8° in less than five iterations.
The question regarding final convergence of the non-regularized IWFBP remains,
but it has been shown that the behavior can be stabilized by introducing the
regularization matrix R handled in Section 3.5.

The frequency and noise characteristics of IWFBP obviously changes as a func-
tion of the number of iterations. However, by choosing an appropriate value of
the regularization parameter 3, the characteristics become very similar to those
of the WFBP reconstruction. With regularization, the IWFBP reaches the final
solution faster than without. It is therefore easier to determine when to terminate
the iterative loop.

The experiments on different resolutions show that for the current scanner
setup using a detector system with 336 channels with quarter offset, the resolution
of the image matrix should be at least 512 x 512 in order to avoid edge and aliasing
artifacts. More improvement can be achieved by an even larger image matrix.

Placing the rebinning operation inside the loop results in strong overshoots.
Further investigations must be done in order to find how these results relate to
iterative methods where no rebinning operation is present.

One topic that remains to be investigated is whether the weights d;; in the
regularization can be changed with respect to the ratio A, /A, in order to gain
better control over the spatial resolution in the xy-plane as well as in the z-
direction. Another topic is to find out how different choices of Q-weightings in
the WFBP reconstruction (not to be confused with the figures of merit @1 and
Q2) affect the required number of iterations and noise levels. High @Q-values imply
low noise, but in ordinary non-iterative WFBP high @Q-values are prohibited since
they introduce severe artifacts. Possibly, this could be tolerated if the artifacts
can be suppressed by the IWFBP scheme.



Chapter 6

Ordered subsets IWFBP
(OS-IWFBP)

6.1 Introduction

The IWFBP method described in the last chapter is simultaneous in the sense
that all projection data are used in each iteration. In Section 3.4, it was shown
how a simultaneous diagonally weighted least squares method can be turned into
an ordered subsets method, i.e. a method where only a subset of the projection
data are employed in each update. For a low number of subsets, the conclusion
in several papers ([29, 36, 19] among others) is that by using the ordered subsets
technique, an acceleration factor approximately equal to the number of subsets is
possible to achieve for statistical reconstruction methods.

In this chapter, experiments on using this technique on the IWFBP method
are presented. The basic idea is to divide the projection data p;, into L equidis-
tantly sampled subsets pin.1, ..., Pin,r. With respect to the rotation angle 6 so that
two subsets only differ by an offset (see Figure 6.1). For each subset piy;, new
matrices P; and Qwrpp,; are defined. These matrices produce and reconstruct
from projection data corresponding to pin;. After one initial full reconstruction,
the update step of the ordered subsets IWFBP (OS-IWFBP) method is given by

frr1 =i + 0 Qwrsp,if, (Pi fi — Pin,ix) (6.1)

where the sequence {ij}72 ; defines the ordering of the subsets. We will restrict the
discussion to periodic ordering schemes, i.e. schemes that satisfy iy, = ix4nr,n €
N. In the case of periodic ordering, assuming that all subsets are used, a full
iteration is defined as L consecutive sub-updates.

The motivation behind using the ordered subsets technique together with the
IWFBP method is that for reconstructing low frequencies, only a small set of
projection angles are needed. Since cone artifacts produced by the WFBP method
mostly consist of low frequencies, almost the same reduction could be obtained
with a partial update employing only a subset of projection angles, as with a full
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a) Subset numbers b) Subset ordering
{ix} ={0,2,4,1,3,0,2,4, ..}
3 2 10
4 4
1
2

Pin,0

234 01 Pin,4

Figure 6.1: a) Simple example of how projection data with respect to the rotation
angle 6 are divided into equidistantly sampled subsets that only differ by
an offset. There are 25 projection angles and the number of subsets is 5.
b) Example of an ordering scheme.

simultaneous update. Thus, suppression of cone artifacts could in best case be
accelerated with a factor equal to the number of subsets.

Several new free parameters are introduced when OS is combined with the
IWFBP. The most important parameters are

The number of subsets L.

The sequence {iy}, defining the order in which the subsets are to be applied.

The step lengths a. These are free parameters also for the original IWFBP,
but the choice is more important when ordered subsets are used.

The degree of low-pass filtering of updates. See below and Section 6.3 for
details.

In the next section, two different ordering schemes are presented. Two-dimensional
experiments are performed to determine reasonable « values for different number
of subsets and whether the ordering schemes lead to significantly different results.

It turns out that high-frequent artifacts are introduced when the ordered sub-
sets technique is added to the IWFBP method. This is not surprising since each
update uses too few projection angles in relation to the radial resolution of the
projection data. In Section 6.3, we investigate the possibility to reduce these ar-
tifacts by low-pass filtering the updates either in reconstruction space or in the
radial direction of the projection data.

Having determined reasonable values on the step-lengths and low-pass filters, it
is time to investigate how well the reduction of cone artifacts work for OS-IWFBP
in comparison to ordinary IWFBP. This is done in Section 6.4.
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a) ip = 0 = largest gap = {1...6} = i; =4

) i1 =4 = largest gap = {1...3} = iy =2

) ia = 2 = largest gap = {5...6} = i3 =6

d) i3 = 6 = equally sized gaps = {1},{3},{5} = is =3
e) iy = 3 = equally sized gaps = {1}, {5} = i5 =7

e o

Figure 6.2: Illustration of the HLBK ordering scheme. Given a number of subset indices
41,142, ..., in, the largest gaps of unused subsets are identified. The new index
in+1 1s chosen as close as possible to the gap center located as far away from
the subset i,, as possible.

6.2 Number of subsets and ordering schemes. 2D
experiments.

The quality of reconstruction results produced with OS-IWFBP depends on the
order in which the different subsets are applied. Here, we first present and examine
the scheme presented by Beekman and Kamphuis [2] (which is similar to the
scheme by Hudson and Larkin [29]) followed by another scheme based on the
Golden ratio and originally developed for SART by Kohler [39].

The Hudson-Larkin-Beekman-Kamphuis (HLBK) scheme works as illustrated
with an example in Figure 6.2. Given a number of subset indices i1, is, ..., i), next
index 4,1 is chosen as close as possible to the center of the largest gap of unused
subsets. If several gaps of the same size exist, the center set located as far away as
possible, i.e. as close to LAy/2 as possible, is chosen. Sometimes several subsets
satisfy the last condition (see for instance Figure 6.2). Then the choice between
the remaining centrally located subsets is random.
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The greediness of the HLBK ordering scheme sometimes lead to the unfor-
tunate situation illustrated in the Figure 6.2f. Since no subset other than the
closest neighbor of the first subset is available, the first subset will consequently
be employed directly after its closest neighbor. This can result in image artifacts.
A class of ordering schemes not suffering from this drawback can be created by
observing that one can visit all available subsets in L steps by choosing subsets
according to

int1 = (in +m) mod L (6.2)

for any m € Z% such that ged(L,m) = 1. This is trivial for m = 1 and a general
proof is found in [23]. When the number of subsets is prime, this means that any
increase by m modulo L will create a periodic ordering scheme that employs all
subsets.

The Golden ratio ordering scheme by Kohler [39] was shown to deliver good
results for SART using an angular increment as close as possible to the golden
ratio times 27, i.e.

V5 -1

27 5 (6.3)

This can be adapted to the ordered subsets technique by choosing the order of
subsets so that the angular increment comes as close as possible to

V5—1
2

and satisfies gcf(L,m) = 1. Again, when L is prime, gcf(L, m) = 1 is satisfied
for all m € Z* that is not equal to L. We will refer to this scheme as the golden
ratio (GR) ordering scheme. In the case of five and seven subsets, the golden ratio
scheme becomes as shown in Figure 6.1 and 6.3 respectively.

Experimental investigation of both these methods has been performed for the
two-dimensional version of the geometry specified in Section 4.1. The underlying
assumption is that unwanted artifacts generated by the OS technique will prevail
in the same way in the 3D-case. The space of free parameters was restricted by
only considering oy, constant with respect to k, i.e. ap = «. In Table 6.1 the
different parameters for these experiments are shown. The leftmost and largest «
value in each row resulted in a divergent sequence, while the rightmost and lowest
lowest resulted in a slow rate of convergence.

Ten iterations per configuration were performed. Visual inspection reveals that
for high values of «, certain noise-like artifacts appear in the OS-IWFBP results.
As a numerical measure of these artifacts, the error (repetition of equation (4.5))

Oe¢ = \/|S:—lz| Z((frcc)i - (fphan)i)2 (65)
i€

LA (6.4)

has been calculated over the constant regions shown in Figure 4.6¢c. These error
measurements are presented in Figure 6.4. For comparison, the solid line without
any markers in these figures show the corresponding error for ordinary IWFBP.
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a) iOZO,i1:4

Figure 6.3: Illustration of the golden ratio ordering scheme when the number of subsets

is seven.

Table 6.1: Parameters for two-dimensional experiments with different numbers of sub-
sets, o values, and ordering schemes. The acronyms GR and HLBK refers to
the golden ratio and Hudson-Larkin-Beekman-Kamphuis ordering schemes
respectively. For two and five subsets, the GR and HLBK schemes are equiv-

alent.

Number of subsets « values

Ordering schemes

2 1.00,0.70,0.50,0.20
5 0.50,0.35,0.20,0.10
10 0.25,0.15,0.10,0.05

29 0.10,0.07,0.05,0.02

GR
GR
GR,HLBK
GR,HLBK




76 Ordered subsets IWFBP (OS-IWFBP)

Obviously, a low a value can be used to avoid introduction of artifacts in
constant regions. However, this implies a slow rate of cone artifact reduction.
Therefore, it is interesting to see how high « can be chosen without resulting in
unacceptable artifacts. These results will be used in Section 6.4 for determining
which values of « to use for three-dimensional cone-artifact reduction experiments.

Clearly, the highest allowable « varies strongly with the number of subsets. For
the different subset configurations included in this experiment, o = 1/Nges seem
to result in approximately the same error curve as the ordinary IWFBP method.
However, higher initial error increase than the one produced by IWFBP may be
allowed if the cone artifact reduction is such that the method can be terminated
already after a few iterations.

Square norms like o, give no information about the structure of the errors.
Therefore, to see what the numbers presented in Figure 6.4 mean in terms of
“real” image quality, reconstruction results after one and two full iterations with
five subsets are presented in Figure 6.5. These images reveal that after one full
iteration, circular artifacts emanating from the vertebra are more pronounced for
ordered subsets with & = 0.35 and a = 0.5 than for ordinary IWFBP. After two full
iterations, the difference between ordinary IWFBP and OS-IWFBP is diminished
for a = 0.35, but enhanced for oo = 0.5.

Regarding the ordering of subsets, we have already concluded that the GR
and HLBK ordering schemes are equivalent for two and five subsets respectively.
For higher numbers, the differences may be larger. However, with respect to the
measures presented in Figure 6.4, the differences between these two schemes seem
to be neglectable. In Figure 6.6, results after one full iteration using 10 and 29
subsets with both ordering schemes are shown. The images produced by the two
ordering schemes differ slightly. The ringing artifacts are more pronounced for the
GR scheme but at least in the case of 29 subsets, the noise-like artifacts are more
pronounced for the HLBK scheme.

6.3 Low-pass filtering of updates

High values of « (close to 1) imply efficient suppression of cone artifacts. However,
in the previous section it was shown that high « values also result in new artifacts
when combined with the ordered subsets technique. These artifacts seem to consist
of noise-like high-frequency effects as well as ringings with lower frequency. Since
these artifacts occur only for high « values, and are restricted to certain frequency
ranges, it might be possible to suppress at least the high-frequent errors by lowering
the gain for these frequencies, i.e. low-pass filtering the updates.

Here, we examine suppression of the observed artifacts by low-pass filtering
in the update step. For efficiency reasons, instead of applying the filter in the
reconstruction domain, low-pass filtering has been performed in the radial direction
of projection data differences (P;, fy —pin i, ). The kernel used for low-pass filtering
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Figure 6.4: 2D experiments. o. measurements on constant regions for 2, 5, 10 and 29
subsets. In the case of two and five subsets, the GR and HBL ordering

schemes are equivalent.
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(a) WEFBP reconstruction (b) IWFBP, f3

(c) OS5, fs (one full iter.), « = 0.5  (d) OS5, fs (one full iter.), a = 0.35

(c) OS5, f1; (two full iter.), « = 0.5 (d) OS5, f11 (two full iter.), & = 0.35

Figure 6.5: Reconstruction results for non-regularized IWFBP and OS-IWFBP with 5
subsets. Greyscale window +50HU.
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(a) OS10, GR, fi1, o = 0.15 (b) 0S10, HLBK, f1;, a = 0.15

(a) 0S29, GR, f30, a = 0.07 (b) 0829, HLBK, f30, o = 0.07

Figure 6.6: Reconstruction results from OS-IWFBP with 10 and 29 subsets after one
full iteration. The left images were reconstructed using the GR ordering
scheme and the right images using the HLBK ordering schemes. Greyscale
window +50HU.



80 Ordered subsets IWFBP (OS-IWFBP)

4 4 ¥
—NFEP | —NFEP
& 055, no Siler | & 055, no Siter
055, o= | 055, o=
as - D55, aeg a5 | I
[ ] #0585, aud 1] | #0585, aud
" .
i L
P
3w a—a—A
"
2.5 F.
e —f T e
. 2 i [ B 1] . 2 i [ B g
arations arabions
(a) 5 subsets, o = 0.35 (b) 5 subsets, o = 0.50
4 4
—PWFEP —MFEP
& 0E10, no Sler # 0E10, no Siter
& 0310, o=1 & 0310, o=1
a5 08B0, o=2 a5 08B0, o=2
&= 510, awd &= 510, awd

3 ‘.-_._‘..‘

-
- n— s = & &

25 ."'-'
——e— e

L 4 8 B 10 L 4 [ B 10
arations arabions
(c) 10 subsets, « = 0.15 (d) 10 subsets, « = 0.25

Figure 6.7: 0. measurements on constant regions for five and ten subsets and different
values of the low-pass parameter 0. By low-pass filtering projection data
differences, the amount of artifacts introduced at constant regions is clearly
reduced. This makes it possible to use a-values closer to unity.

is a truncated and sampled Gaussian given by

1 _m? _ _M-1 M—1
K, [m] = Cexp( 02> , m Ty g (6.6)
0 , otherwise

where C' =) exp (— ’:22 ) so that the DC-component of the filter equals one.

Experiments have been performed with five and ten subsets using the HLBK
ordering scheme. The o-values determining the amount of low-pass filtering were
set to 1, 2 and 4. Error measurements o, with respect to the number of iterations
are shown in Figure 6.7. In all four cases, the amount of artifacts at constant
regions are reduced as o is increased. For five subsets with o = 0.50 and ten subsets
with o = 0.25, the divergent sequences are turned into more stable sequences
showing no signs of divergence during the first ten iterations.

When o is further increased, the amount of artifacts at constant regions drops
below those introduced by the ordinary IWFBP. This is mainly because increasing
o also increase the required number of iterations for high frequencies to be recon-
structed. Therefore, for large o values we expect the o, values to slowly increase to
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(a) 5 subsets, fs, no LP-filter (b) 5 subsets, fs, 0 =1

(a) 10 subsets, f11, no LP-filter (b) 10 subsets, f1;, 0 =1

Figure 6.8: Reconstruction results for the OS-IWFBP with five and ten subsets using
the HLBK ordering scheme after one full iterations. The « values were
selected so that the methods diverge without low-pass filtering, and 0 =1
was used. Greyscale window £50HU.
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(a) 5 subsets, f11, no LP-filter (b) 5 subsets, f11, 0 =1

(a) 10 subsets, fo1, no LP-filter (b) 10 subsets, f31, 0 =1

Figure 6.9: Reconstruction results for the OS-IWFBP with five and ten subsets using
the HLBK ordering scheme after two full iterations. The « values were
selected so that the methods diverge without low-pass filtering, and 0 =1
was used. Greyscale window £50HU.
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levels similar to those of the ordinary IWFBP as the number of iterations increase.

6.4 Cone artifact reduction. 3D experiments.

The 2D experiments presented in Section 6.2 and 6.3 have dealt with (i) ordering of
subsets, (ii) selection of « for different numbers of subsets, and (iii) low-pass filter-
ing of updates. Guided by these results, more time-consuming three-dimensional
experiments on OS-IWFBP were designed. Two subset configurations have been
considered, one with five subsets and one with ten subsets ordered according to
the HLBK scheme. This scheme was chosen because of the slightly better result
after one full iteration with ten subsets according to Figure 6.6. For the five sub-
set configuration, = 0.5 and o = 0.35 were used together with low-pass filtering
with ¢ = 1. For the ten subset configuration, a = 0.25 and o = 0.15 were used
with and without low-pass filtering of updates.

RMSE and noise were measured by calculating the o, and o, values as de-
scribed in Section 4.2. These results are shown in Figure 6.10. As expected, the
o, values calculated over “cone artifact sets” drop faster for OS-IWFBP with high
a-values than for ordinary IWFBP. This seems to be true also when the RMSE is
measured over the “whole image” as specified in Section 4.2. From Figure 6.10, it is
clear that the amplification of noise is also accelerated for OS with high a-values.
Unfortunately, the difference in o, values between OS-IWFBP and IWFBP seem
to remain after three iterations, while the difference in o, values between the meth-
ods is diminished. This indicates that the ordered subset technique does not only
increase the rate of convergence but also increase the noise in the solution.

Figure 6.11 and 6.12 show images reconstructed with OS-IWFBP with five and
ten subsets respectively. For comparison, reconstruction results obtained with or-
dinary IWFBP are included. Both for five and ten subsets, the observed initial
reduction of cone artifacts is higher for the OS-IWFBP than for IWFBP. How-
ever, even if the result after one full iteration does not suffer from any visible cone
artifacts, new ringing-like artifacts appear in the area near the vertebra. These
artifacts are reduced after another iteration, but the contour of the vertebra over-
shoot is still not as sharp as for the ordinary IWFBP. After three iterations, the
contour is sharper and its amplitude has been reduced as a sign of sharpening of
the image, similar to what we can observe for ordinary non-regularized IWFBP in
Figure 5.3.

In order to better relate results presented in this section to those presented in
Figure 5.2, experiments have also been performed on the Turbell clock phantom
[77]. The cone angles were +4.8° and +9.6°, and the values of other scanning
parameters were the same as specified in Section 4.1. Figure 6.13 show the results
for Kmax = 4.8°. In this case, the ordered subset technique does not seem to
offer much improvement to the results obtained with ordinary IWFBP. Already
after one iteration, decent suppression of cone artifacts is achieved with ordinary
IWFBP. The OS-IWFBP result is only marginally better. However, for the higher
cone angle +£9.6° shown in Figure 6.14, the difference between the methods is more
pronounced. After two iterations, there are clearly visible cone artifacts remaining



84 Ordered subsets IWFBP (OS-IWFBP)

18 18
—Rh\FEP — WFEP
1 055 sl 50 =1 1 8- 0510080 25 a1
- 055 ol 38 auq B OE10.a=0 15,a%1
4 = OBS a=d). 35, =] 4 1= OE10,0=0.15, no Sor
12
10
B
8
4
3 3
1 15 2 25 3 15 4 1 15 2 25 3 15 4

It ations It ations
(a) 0OS-10, o, - “cone artifact areas”  (b) OS-5, o, - “cone artifact areas”

84 84
—WFEP — WFEP
- 055,080 50,a%1 5 - D510,0=0 25 01
o055 oul X5 au - CE10.ae0 15 w1
= 058, 0=l 35, no SHer = 081 0o=l 15, no SHer
a2 a2
a1 a1
B0 B0
T8 T8
iII!l 1.5 2 25 3 15 L} iII!l 1.5 2 2.5 3 15 4
I ations
(c) 0S-10, o, - “whole image” (d) 0S-5, o - “whole image”
8 8
= [WFEP — WFEP
- 085, ws0 50 au1 B D510 ,ws0 25 au1
T o055 oul X5 au T - CE10.ae0 15 w1
= 055, 0ml 35, no SHer = %1 0,o=l 15, no Sler

i 15 2 2% 3 35 4 i 15 2 25 3 35 4
adatons it ations
(e) 0S-10, oy, (f) 0S-5, o,

Figure 6.10: 0. and o, measurements for OS-IWFBP with five and ten subsets.
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v

(¢) IWFBP, f, ) 0S5, f5
(e) IWFBP, f; ) 0S5, f1,
(g) IWFBP, f, ) 0S5, fig

Figure 6.11: Comparison between non-regularized IWFBP and OS-IWFBP with 5 sub-
sets. a = 0.50 and o = 1. Greyscale window +50 HU.
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(a) IWFBP, f, 0810, f;
!
(c) IWFBP, f, | ) 0810, f;
!
(e) IWFBP, f; | 0810, 5
!
(g) IWFBP, f, - ) 0810, f3,

Figure 6.12: Comparison between non-regularized IWFBP and OS-IWFBP with 10
subsets ordered according to the HLBK scheme. o = 0.25 and o = 1.
Greyscale window £50 HU.
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in the ordinary IWFBP result, while in terms of cone artifacts, the image produced
by OS-IWFBP is close to perfect.

The reconstruction results in Figure 6.13 contain so called windmill artifacts:
diverging streak patterns that occur close to high gradients in the z-direction.
These artifacts were examined by Silver et al. [69] and are slightly more pro-
nounced after two full OS-iterations than after two simultaneous iterations.

6.5 Conclusions

From the experiments presented in Section 6.2 we conclude that if the a-values
are chosen approximately as 1/Nges, the proposed OS-IWFBP algorithm works in
two-dimensions without introducing severe artifacts during the first iterations.

Only subtle differences have been noted for ordering schemes and subset con-
figurations presented in Section 6.2. Since no experiments have been made with
larger number of subsets than 29, perhaps larger differences can be found for a
large number of subsets.

The value of « should be as high as possible to get maximal suppression of
cone artifacts. For a certain subset configuration, it was shown in Section 6.3
that a low-pass filter prior to backprojection reduces the ringing and the noise-like
artifacts caused by a high a-value in the update step. Our filter was a Gaussian
with ¢ = 1, which made it possible to avoid artifacts otherwise apparent when
a = 0.25 for ten subsets and a = 0.50 for five subsets. One side-effect of this
low-pass filtering is reduced convergence rate for high frequencies. This could lead
to blurred results in the first iterations before the high frequencies have converged.
However, o = 1 does not seem to change the spatial resolution of the images after
two iterations to any appreciable extent.

The main motivation for combining the ordered subsets technique with the
IWFBP algorithm is to accelerate the suppression of cone artifacts, hopefully so
much that only one iteration is needed. Indeed, in Section 6.4 it was shown that
for this scanning configuration, the cone-artifacts caused by WFBP can be almost
perfectly suppressed after one iteration. However, near edges, new ringing artifacts
appear. Another unfortunate side effect seems to be that noise is amplified more
than for the ordinary IWFBP.

From Figure 5.2, one may conclude that an almost perfect result can be ob-
tained after only one iteration. Unfortunately, this conclusion only holds when
input data are generated by the operator P used for projection generation in the
iterative loop. We have now shown that under more realistic circumstances, such
as a non-bandlimited object of interest and inconsistencies in input data due to
noise, the highest possible acceleration is lower than shown in Figure 5.2 (cf. Fig-
ure 6.14). The relatively small improvement comparison with ordinary IWFBP for
reasonable realistic input data and cone angles smaller than 4.8° combined with
the poor noise properties makes the OS-IWFBP technique less interesting than
have been expected from the seemingly impressive result in Figure 5.2.

Another drawback of the OS-IWFBP technique is that it is more difficult to
understand than ordinary IWFBP in terms of convergence and the possible ex-
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) IWFBP, f;

) IWFBP, £, ) OS10, fi;

) IWFBP, f3 ) 0S10, o

Figure 6.13: Clock phantom reconstructions with non-regularized IWFBP and OS-
IWFBP with 10 subsets respectively. Cone angle k ~ +4.8°. Greyscale
window +50 HU.
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) IWFBP, f, ) OS10, fi;
) IWFBP, f3 ) 0S10, o

Figure 6.14: Clock phantom reconstructions with non-regularized IWFBP and OS-
IWFBP with 10 subsets respectively. Cone angle k ~ +9.6°. Greyscale
window +50 HU.
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istence of a fixed point. This makes it hard to predict good parameters and to
augment the loop with, for instance the regularization concept from the previous
chapter.



Chapter 7

Frequency domain partitioning
(FDP) of projection data

7.1 Introduction

In Section 5, it was shown how IWFBP can be used to suppress cone artifacts
in a few iterations. Unfortunately, to avoid new artifacts caused by the iterative
scheme, reconstruction must be made to a sampling density that is unnecessarily
high with respect to the Nyquist limit of the input data. Another drawback is
that in contrast to non-iterative WFBP, the whole region of interest (ROI) must
be reconstructed even if just a small part is to be studied. Thus, it is interesting
to find ways to make the computation of one iteration cheaper.

Here, we examine a method that could make it possible to reduce the com-
putational cost by reducing the amount of data that the iterative loop operates
on. This method was suggested by Danielsson [10] and is illustrated in Figure
7.1. The first step is to divide the projection data after rebinning piep, into two
parts; one part ppr = Hpppreb containing only low frequencies in the radial direc-
tion and one part puyr = (I — Hygp)prep containing only high frequencies. In the
next step, prr is reconstructed with IWFBP while the high-frequency part pur
is reconstructed with the non-iterative WFBP. Hence, the reconstruction result is
given by

f = QrwrspHLpPreb + Qwrsp (I — HLp)Preb, (7.1)

where Qwrpp and Qrwrpp are the matrices corresponding to the WFBP and
IWFBP method respectively. This method will in the following be referred to as
the frequency domain partitioning (FDP) method.

The LP filter represented by Hyp in (7.1) is defined in the Fourier domain by

1 ) 0 < < Upass
Hip(u) = { cos? (T “tpass u < < u (7.2)
LP - 2 Ustop —Upass ) pass stop .
0 ;  Ustop < < Unyq
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Figure 7.1: Illustration of the FDP method. Rebinned projection data are divided into
one part pur containing high radial frequencies and one part prr containing
low radial frequencies. The high-frequency part is reconstructed with the
non-iterative WFBP and the low-frequency part is reconstructed with the
IWFBP method. Finally, the reconstruction results fur and fir are added
together.

where up,ss defines the point where the amplitude spectrum starts to drop from
one to zero, and ugop defines the point where the spectrum reaches zero. unyq is
the Nyquist frequency in the radial direction of projection data. In the following
experiments, the value of upass has been fixed to the relatively low 0.05upyq in
order to make the transition usiop — Upass @s long as possible. In order to study
how the choice of this parameter affect the result, the value of u., has been varied
between 0.1unyq to 0.6unyq as shown in Figure 7.2.

As previously mentioned, one motivating property of the FDP method is speed.
If the low-frequency part in Figure 7.1 can be implemented with downsampled
input and output data, a high number of iterations will be less painful.

A necessary condition is that pgr can do its task without iterations, i.e. with-
out being afflicted by cone artifacts. The amount of cone artifacts produced by
the WFBP method when applied to LP- and HP-filtered data has been examined
by studying differences between 2D and 3D reconstructions. Figure 7.3 show these
differences for HP-filtered input data. Clearly, the cone artifacts caused by the
high z-gradient close to the vertebra is absent in these images. In contrast, we see
in Figure 7.4 that this cone artifact is preserved when input data are LP-filtered.
This serves as a motivation for the following experiments.

7.2 Impact of the parameter ug,y

In order to evaluate the frequency domain partitioning scheme described in the
previous section, the configuration described in Chapter 4 has been used. The
values of the parameter ugop have been set to 0.1unyq, 0.2uUnyq, 0.4Unyq and 0.6uyyq.
If the image matrix sampling density is approximately 1mm (true when N, = 513),
the image matrix sampling density equals 1.3 times the radial detector sampling
density. Therefore, the above values of ugop correspond to 0.13, 0.26, 0.52 and
0.78 times the Nyquist frequency of the image matrix.
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Figure 7.2: Amplitude spectra for the filters Hrp used for frequency domain partition-
ing. Corresponding high-pass filters are defined as Hup(u) = 1 — Hrp(u).

(a) Ustop = 0.1tnyq (b) Ustop = 0.2unyq

(€) Ustop = 0.4Unyq (d) Ustop = 0.6Unyq

Figure 7.3: Differences between two-dimensional and non-exact three-dimensional re-
constructions of HP-filtered projection data for four different frequencies.
Note the absence of cone artifacts compared to the results for LP-filtered
data in Figure 7.4.
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ML‘

ustop = 0.1upyq ustop = 0.2upyq
ustop =0. 4Unyq ustop 6unyq

Figure 7.4: Differences between two-dimensional and non-exact three-dimensional re-
constructions of LP-filtered projection data for four different frequencies.
The cone artifact close to the vertebra is clearly preserved when the pro-
jection data are LP-filtered prior to WFBP reconstruction.

Figure 7.5 and 7.6 show axial slices of noise-free Thorax phantom reconstruc-
tions with WFBP, FDP after five iterations with different values of ugop, and
non-regularized IWFBP after five iterations. The grey scale window is +30HU,
i.e. slightly narrower than the greyscale windows used in Chapter 5 and 6. Three
different slices are shown for each value of ugop. These slices are located at (top
to bottom) z &~ —10mm, z &~ —11mm, and z ~ —12mm. The cone artifact appar-
ent in the WFBP result seem to be suppressed for all choices of ugo,. However,
for usiop = 0.1Unyq and ugiop = 0.2unyq, new low-frequent “blob” artifacts appear
close to high z-gradients. This effect is also observed in the Figure 7.7 showing
zoomed saggital slices of the same reconstruction results. For ugop = 0.1unyq and
Ustop = 0.2Unyq, the “blob” artifact is observed as a dark strip between the bottom
of the rib and the bottom of the sharp part of the vertebra.

Table 7.1 shows o, and o,, values for the FDP method. The initial reduction
of o, measured over “cone artifact sets” when ugop is increased from 0.1uyyq to
0.2upyq could be explained by a reduction of “blob” artifacts and improved cone-
artifact suppression. When wugop, is further increased, these o, values increase due
to more streak artifacts similar to those obtained with non-regularized IWFBP. o,
measured over “the whole image” is reduced when wug,p, is increased, i.e. when the
FDP is becoming more similar to the non-regularized IWFBP. The noise measure
oy, shows a similar behavior. For low values of ugtop, the noise properties are more
similar to those of WFBP, and for high values of ugp, the noise properties are
more similar to those of IWFBP.

Spatial resolution properties of the FDP method have been examined by mea-
suring modulation transfer functions (MTFs) and slice sensitivity profiles (SSPs)
as described in Chapter 4. The MTFs are shown in Figure 7.8a. For low fre-
quencies, the values of the FDP MTFs are close to those of the IWFBP method.
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(c) FDP, f5, tstop = 0.2Unyq (d) FDP, f5, tstop = 0.4Unyq

Figure 7.5:

Axial slices of non-regularized FDP reconstructions of the Thorax phantom
for different values of ustop. For each value of usop, three axial slices are
shown. The locations of these slices are given by (top to bottom) z ~
—10mm, z ~ —11lmm and z &~ —12mm. See also Figure 7.6. Grey scale
window +30HU.
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(a) FDP, f5, ustop = 0.6uUnyq (b) Non-regularized IWFBP, fg

Figure 7.6: Axial slices of non-regularized FDP reconstructions of the Thorax phantom
for different values of ustop. For each value of usop, three axial slices are
shown. The locations of these slices are given by (top to bottom) z =
—10mm, z = —11lmm and z = —12mm. See also Figure 7.5. Grey scale
window +30HU.

(a) WFBP reconstruction (b) FDP, f5, tstop = 0.1tnyq
- -

(c) FDP, f5, tstop = 0.2Unyq (d) FDP, f5, ustop = 0.4tnyq
w

(e) FDP, f5, tstop = 0.6Unyq (f) Non-regularized IWFBP, f5

Figure 7.7: Saggital slices of FDP reconstructions of the Thorax phantom for different
values of ustop. Grey scale window +30HU.



7.3 Regularization 97

Table 7.1: 0. and o, values after five iterations for different values of ustop. Images
shown in Figure 7.5, 7.6 and 7.7.

B o. (HU) o. (HU) o, (HU)
cone artifact areas whole image
WEFBP 16.21 83.54 3.50
FDP, ustop = 0.1unyq 3.91 83.47 3.53
FDP, ustop = 0.2unyq 3.40 83.18 3.65
FDP, tgiop = 0.4tUnyq 3.44 81.96 4.15
FDP, ustop = 0.6Unyq 3.56 80.71 4.68
IWFBP, 5 = 0.0000 4.00 78.80 5.78

Depending on the value of ugiop, as the frequency is increased, the FDP MTFs
look more similar to those of the ordinary WFBP. In two dimensions, the Fourier
slice theorem can be used to deduce that the MTF of the FDP method is given by

MTF(FDP) = Hpp x MTF(IWFBP) + (1 — Hip) x MTF(WFBP).  (7.3)

Figure 7.8b shows the difference between the actual MTF and this prediction for
Ustop = 0.4Unyq. Clearly, at least for this value of ugiop, the difference is very small
also in this cone-beam case.

SSP measurements are shown in Figure 7.9. For low values of ugtop, the SSP of
the FDP method seem to be similar to that of the WFBP method. When ugop, is
increased, this SSP becomes more similar to the IWFBP SSP. For ustop = 0.4%nyq
and Ustop = 0.6unyq, it is very difficult to distinguish between the SSP of the
non-regularized IWFBP reconstruction and the SSP of the FDP method.

In Table 7.2, @1 and @ values for the different methods are shown. Since for
low values of ustop, noise and axial spatial resolution properties are preserved while
the spatial resolution in z-direction is increased, ()1 and Q) values for these values
of ugop are high. However, it is not obvious that the FDP is better than WFBP
for these values of ugop, since new artifacts are introduced. Again, as concluded in
Chapter 5, it does not seem reasonable to use @)1 and @2 for comparing methods
at different spatial resolutions since this measure is equivariant with very simple
filtering operations that modify the spatial resolution.

7.3 Regularization

From the previous section, or more specifically Figure 7.8, we know that the MTF
of the FDP method is approximately given by Equation (7.3). If the transi-
tion band is very narrow, .e. Ustop — Upass is small, and the difference between
MTF(IWFBP) and MTF(WFBP) is large in this transition band, the slope of
the resulting MTF will be large in this band. This might be a source of arti-
facts. For instance, if ustop — Upass 18 close to zero, the FDP MTF will be close to
discontinuous in the transition band, resulting in ringing artifacts.
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(a) MTF measurements (b) Prediction error

Figure 7.8: a) MTF measurements for WFBP, IWFBP, and FDP with different values

of ustop. For low frequencies, the MTF of the FDP method is similar to that
of the IWFBP method, while for high frequencies, the MTF of the FDP
method is similar to that of the WFBP method. The plots corresponding
t0 Ustop = 0.1Unyq and ustop = 0.2unyq are difficult to see since they nearly
coincide with the WFBP. b) Difference between the MTF for FDP with
Ustop = 0.4Unyq and the corresponding prediction suggested by the Fourier
slice theorem in two dimensions (see accompanying text for details).

Table 7.2: Q1 = ¢/(0°p},SD), Q2 = c¢/(0”py; SD) and the entities used for calculat-

ing these figures of merit for different values of ustop. The dose is excluded,
since it is kept constant.

Ustop  0n (HU)  proy (em™)  psoy (cm™') S (mm) Q1 Q2
WFBP 3.50 3.30 1.84 2.01 1.47 0.69
0.1tUnyq 3.53 3.30 1.84 1.77 1.63 0.77
0. 2tinyq 3.65 3.29 184 167 161 0.76
0.4unyq 4.15 3.35 1.92 1.62 1.31 0.64
0.6unyq 4.68 3.55 2.03 1.62 1.06 0.55
IWFEFBP 5.78 3.55 2.22 1.62 0.83 0.44
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Figure 7.9: SSP measurements for WFBP, IWFBP, and FDP with different values of
Ustop- AS Ustop 1S Teduced towards zero, the SSP of the FDP method be-
comes increasingly similar to that of the WFBP method, and when ustop is
increased towards unyq, the SSP of the FDP method becomes increasingly
similar to that of the IWFBP method. The plots for ustop = 0.4unyq and
Ustop = 0.6Unyq are almost indistinguishable from the IWFBP SSP.
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Table 7.3: o. and o, values for regularized FDP with 8 = 0.0005 after five iterations
for different values of usiop. Images shown in Figure 7.10, 7.11 and 7.12.

16} o. (HU) o. (HU) o, (HU)
cone artifact areas whole image
WFBP 16.21 83.54 3.50
FDP, ustop = 0.1tnyq 3.65 83.54 3.51
FDP, ustop = 0.2unyq 3.37 83.47 3.55
FDP, ugtop = 0.4tnyq 3.30 83.23 3.72
FDP, ustop = 0.6Unyq 3.29 83.01 3.87
IWFBP, 5 = 0.0005 3.27 83.41 3.79

By regularizing the IWFBP method as described in Chapter 5, the difference
between the WFBP and IWFBP MTFs can be made comparably small. Thus, the
above described effect can be suppressed by using regularized IWFBP instead of
non-regularized IWFBP. This have been examined by repeating the experiments
in the previous section, but with § = 0.0005 in the iterative scheme.

Figure 7.10, 7.11 and 7.12 show result images from these experiments. Clearly,
the difference between FDP results and WFBP results in terms of edge response
and aliasing artifacts looks smaller than in the non-regularized case. The ampli-
tude of the “blob” artifacts for low values of usop also seem to have diminished.
One effect that might be related to the “blob” artifact is that as wusop is reduced,
the overshoots close to z-gradients become increasingly blurred in the xy-plane.
At the same time, the amplitude of the overshoots is reduced.

Table 7.3 shows the o, and o, values for the regularized FDP method. In con-
trast to the non-regularized FDP experiment, the o, value measured over “cone
artifact sets” is now monotonically decreasing as ustop is increased. This supports
the explanation for increasing o, values given in the last section, since for reg-
ularized FDP, aliasing artifacts are not increased as usop is increased. The o,
values measured over the “whole image” set defined in Section 4.2 are seemingly
unaffected by the choice of ugtop-

The MTFs for the regularized FDP method are shown in Figure 7.13. As
expected, these are very similar to each other. Even if it is not clear from Figure
7.13, the FDP MTFs follow the IWFBP MTFs for frequencies below the transition
band and the WFBP MTFs for frequencies above the transition band.

Figure 7.14 show the SSPs for the regularized FDP method. These are slightly
wider than for the non-regularized FDP method, and the amplitude is slightly
lower. Apart from this, the SSPs of the non-regularized and regularized FDP are
very similar.

7.4 Image matrix sampling densities

One conclusion in Chapter 5 was that in order not to enhance aliasing artifacts
more than necessary, reconstruction must be made to a grid with higher density
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(c) FDP, f5, tstop = 0.2Unyq (d) FDP, f5, tstop = 0.4Unyq

Figure 7.10: Axial slices of regularized (8 = 0.0005) FDP reconstructions of the Thorax
phantom for different values of ustop. For each value of usop, three axial
slices are shown. The locations of these slices are given by (top to bottom)
z~ —10mm, z & —11lmm and z =~ —12mm. See also Figure 7.11. Grey

scale window +30HU.
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(a) FDP, f5, tstop = 0.6tinyq (b) Regularized IWFBP, f5, 8 = 0.0005

Figure 7.11: Axial slices of regularized (8 = 0.0005) FDP reconstructions of the Thorax
phantom for different values of ugstop. For each value of ustop, three axial
slices are shown. The locations of these slices are given by (top to bottom)
z ~ —10mm, z ~ —11lmm and z = —12mm. See also Figure 7.11. Grey

scale window £30HU.

) WFBP reconstruction (b) FDP, f5, tstop = 0.1tnyq
) FDP, f5, tustop = 0.2unyq (d) FDP, f5, ustop = 0.4tnyq

) FDP, £, tstop = 0.6Unyq f) Regularized IWFBP, f5, 5 = 0.0005

Figure 7.12: Saggital slices of regularized (8 = 0.0005) FDP reconstructions of the
Thorax phantom for different values of ustop. Grey scale window +30HU.
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Table 7.4:
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Frequency, Ipfcm
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mq

MTF measurements for WFBP, regularized IWFBP (3 = 0.0005), and

regularized FDP with different values of usiop. Since the MTF of WFBP
and IWFBP are very similar, all plots presented here are very similar.

2 -3

Q1= c/(0%p1eSD), Q2 = ¢/(c?py; SD) and the entities used for calculat-
ing these figures of merit for regularized FDP with different values of ustop-

The dose is excluded, since this entity is kept constant.

Ustop on (HU)  piog (em™')  psoy (em™) S (mm) Q1  Q
WFBP 3.50 3.30 1.84 2.01 1.47 0.69
0.1unyq 3.51 3.31 1.85 1.92 154 0.73
0.2upyq 3.55 3.31 1.85 1.86 1.55 0.73
0.4unyq 3.72 3.31 1.86 1.82 1.44 0.69
0.6unyq 3.87 3.32 1.89 1.84 1.33 0.64
IWFBP 3.79 3.21 1.88 1.90 1.21 0.60
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Figure 7.14: SSP measurements for WFBP, regularized IWFBP (8 = 0.0005), and
regularized FDP with different values of usiop. These have a slightly larger
FWHM and lower overshoot amplitude than in the non-regularized case
(cf. 7.9).
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than needed by ordinary filtered backprojection methods. Since the computational
complexity of the backprojection step in the IWFBP method is O(N,N,N,Ny),
doubling the voxel density results in an eight times more expensive backprojection
operation. It is therefore meaningful to examine how this operation can be made
cheaper.

From Section 7.2, we know that ugop = 0.4unyq implies that prr contains no
frequencies higher than approximately 0.52 times the Nyquist frequency of the
sampling grid when reconstructing to a 513 x 513 grid. Therefore, it should be
possible to reduce the computational cost both by reconstructing to a sparser grid.

We repeated the experiment presented in Section 5.4 for the FDP methods with
Ustop = 0.1Unyq,Ustop = 0.2Unyq and ugiop = 0.4uUnyq. The low contrast phantom
presented in Section 4.2, has been two-dimensionally reconstructed to grids with
257 x 257, 385 x 385, and 513 x 513 pixels. Results for these grids are shown
in Figure 7.15, 7.16 and 7.17 respectively. For all sampling densities, the largest
artifact levels occurred with non-regularized IWFBP. High values of ugiop result
in artifacts levels similar to those of IWFBP, while low values of usop, result in a
significant reduction of artifacts.

7.5 Conclusions

The experiments presented in this chapter illuminates the behavior of the FDP
method in terms of spatial resolution and noise. This knowledge is a prerequisite
for understanding effects caused by downsampling. More specifically, the following
questions have been addressed.

1) How does the choice of the parameter ugop affect the result in terms of cone
artifact reduction?

2) How do the MTFs, SSPs and noise properties of the FDP method relate to
those of the WFBP and IWFBP methods?

3) If the answer to the previous question is that there is a significant difference,
can this difference be reduced by introducing regularization in the iterative
part?

4) Can the artifacts that occur in Section 5.4 be reduced by the FDP method?

The answer to the first question is not trivial since it depends on what is meant
by cone artifacts. For high values of ugiop, We observe that the overshoots caused
by the IWFBP method become blurred in the zy-plane. As ugop is reduced,
this blurring become more and more apparent, and at some point when usop
is approximately equal to 0.2unyq the blurred overshoots start to look like blob-
artifacts, and cone artifacts start to appear (see Figure 7.5 and 7.6).

Apparently, the frequency characteristics of the FDP method in the zy-plane
are such that for frequencies lower than wup,ss, the FDP MTF is almost equal to
the IWFBP MTF. For frequencies higher than ugop, the FDP MTF is very similar
to the WFBP MTF. The noise and SSPs of the FDP are similar to the WFBP
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(b) FDP, ustop = 0.1unyq

(c) FDP, ustop = 0.2unyq (d) FDP, ustop = 0.4unyq

e e v e W R e N
(e) FDP, ustop = 0.6unyq (f) Non-regularized IWFBP

Figure 7.15: FDP reconstructions of the low contrast phantom to a 257 x 257 grid.
Grey scale window +5HU.



7.5 Conclusions 107

(b) FDP, ustop = 0.1unyq

(c) FDP, ustop = 0.2unyq (d) FDP, ustop = 0.4unyq

(e) FDP, ustop = 0.6unyq (f) Non-regularized IWFBP

Figure 7.16: FDP reconstructions of the low contrast phantom to a 385 x 385 grid.
Grey scale window +5HU.
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(b) FDP, ustop = 0.1unyq

(c) FDP, ustop = 0.2unyq (d) FDP, ustop = 0.4unyq

(e) FDP, ustop = 0.6unyq (f) Non-regularized IWFBP

Figure 7.17: FDP reconstructions of the low contrast phantom to a 513 x 513 grid.
Grey scale window +5HU.



7.5 Conclusions 109

for low values of ustop and similar to IWFBP for high values of ugop. Altogether,
the spatial resolution and noise properties of the FDP method seems to be a
combination of corresponding properties of the WFBP and IWFBP methods.

By using regularization, the spatial resolution and noise properties of the
WFBP and IWFBP methods become very similar. From the results in Section
7.3, we see that this applies also to the FDP method. Indeed, apart from the over-
shoots of the FDP results in the z-direction and the cone artifacts in the WFBP
result, the images in Figure 7.10a are very similar to those in 7.10d and 7.11a.

Experiments with reconstructions to lower grid densities have shown that the
amount of artifacts of the type shown in Figure 7.15 to 7.17 are reduced when using
the FDP method instead of the IWFBP method. However, the spatial resolution
given by p1g9% puts a lower bound on the sampling grid density. In our case, this
is given by

500mm

(Nx)min = W =2X P10% X 500mm. (74)
T/max

This means that if pjog, = 0.3(mm) ', at least a 300 x 300-grid is needed for
any reconstruction method to be able to reconstruct the image without significant
aliasing distortion.
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Chapter 8

Conclusions and future
research

8.1 Summary of conclusions

In this thesis, we have investigated three methods for iterative suppression of
artifacts caused by non-exact analytical methods. These methods are the regular-
ized iterative weighted filtered backprojection (IWFBP) method, ordered subsets
IWFBP (OS-IWFBP), and the frequency domain partitioning (FDP) method, all
of them based on the IFBP scheme proposed by Chang [8], Walters et al. [81] and
Medoff et al. [53].

It was shown in Chapter 5 that the artifacts caused by the WFBP method
can be efficiently suppressed within less than five iterations. However, the general
image quality of the WFBP and the IWFBP methods are different. The latter
is characterized by higher spatial resolution (mostly for the good) and noise level
(always for the bad). In order to reduce this difference, a regularization opera-
tion, carefully chosen to preserve linearity, was augmented to the iterative loop.
The resulting method produced images with similar noise and spatial resolution
properties as those of WFBP. Another positive effect of the regularization became
evident when we compared rate of change, measured as log,(||fx+1 — fx||/C) in
Figure 5.6. Clearly, only the regularized IWFBP offers a possibility to use this as a
stopping criterion with predictable result. In the non-regularized case, a mistaken
guess may cost dearly in terms of many useless iterations. This effect can not be
achieved with post-smoothing, which otherwise could have been an alternative to
the proposed regularization.

The sampling density in the reconstruction domain together with the chosen
basis function determines the highest frequency that is possible to produce with
the projection operator P. Thus, if the sampling density is too low, structures con-
taining high frequencies will be erroneously reconstructed. Since projection and
backprojection rays that travel through these structures also visit other areas, the
artifacts caused by the insufficient sampling density are non-local as shown in Fig-
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ure 5.16. This is not the case for WFBP, since sampled data in the reconstruction
domain are never reused.

The main conclusion of Chapter 6 is that the reduction of cone artifacts in
the IWFBP method can indeed be accelerated by the OS technique. For instance,
two full OS iterations seem to reduce the cone artifacts as much as three full
non-0S iterations. A drawback of the OS-IWFBP method is that its convergence
properties are extremely difficult to analyze. The results are generally noisier
than for IWFBP and more care must be taken in the choice of gain factor a.
Experimentally, in order to maintain convergence at least over a small number of
iterations, we found that the gain factor o must be chosen approximately inversely
proportional to the number of subsets Ngets. By low-pass filtering projection data
in the radial direction prior to each update, the gain a could be increased which
resulted in a higher rate of convergence. Taking into account the drawbacks of noise
amplification and poorer convergence properties, the OS-IWFBP technique might
be more useful for cone angles above +4.8°, where the advantages of acceleration
become more apparent.

In Chapter 7, spatial resolution, noise, and cone artifact reduction were inves-
tigated for the FDP method with different choices of ustop, the parameter which
indicate how much of the frequency band will be subjected to iterative improve-
ment. It was shown that wugop, must be greater than or equal to 0.4unyq in order
to efficiently suppress cone artifacts. For smaller values, cone artifacts occurred
in the non-iterative high frequency part. By using regularization in the IWFBP
part, MTFs very similar to those of the WFBP method were obtained. In the
z-direction, the FDP method behaves more like the IWFBP method. So far, no
serious investigations of downsampling in the IWFBP part have been made.

8.2 Open questions and suggestions for future re-
search

IWFBP versus least squares methods

In all experiments presented in the thesis, the reconstruction operator Qwrpp
differs from the transpose of the projection operator PT in the following four
ways.

1) The rampfilter.

)
2) The cos®-weighting of detector data given by Equation (2.17).
)

3) The normalization in the backprojection operation.

4) The interpolation in the backprojection operation.

With the exception of number four, each step contributes to making the IWFBP
method faster than the original Landweber method. However, certain side effects
exist.

Step number 2, the cos?-weighting of detector data, reduces the weight for
certain rays, so that the objective is changed from ||Pf — pi,|| to |[VW (Pf —pi)|,
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where W correspond to the weighting performed. Intuitively, this increases the
amount of noise in the reconstructed images. In the experiments presented here,
the weighting parameter @ has always been equal to 0.7. It would be interesting
to examine how the number of necessary iterations and the signal to noise ratio
varies when this parameter is changed.

Step number 3, the normalization in the backprojection operation, can be
written as

By =DiP"Df + -+ Dy, ,PTDY, (8.1)

where D] and D7, I =0, ..., Ny — 1 are diagonal normalization matrices. Multipli-
cation with P from the right shows that in general, ByP is non-symmetric. This
fact prohibits the analysis in terms of square norms as described in Section 3.3.
From a theoretical as well as practical viewpoint, a relevant experiment would be
to examine how the required number of iterations and noise properties change if
this normalization is replaced with the “symmetric” normalization used in SIRT
[21, 30], namely

By =V 'PT, (8.2)

where V is a diagonal matrix with elements

M
Vij=Y Py, j=1,..,N. (8.3)
i=1

Step number 4, the interpolation in the backprojection operation, is another
cause for the non-symmetric QP matrix. As in the previous paragraph, such
non-symmetry make it difficult to understand whether the iterative method is
convergent. Therefore, it is of relevance to investigate projection operators that
allow for their transposes to be used as backprojectors. One example of such an
operator is given below in the paragraph on projection operator modeling.

Regularization and sampling density

In the experiments on regularization, the parameters d;; from Section 3.3 were
chosen without taking into account the sampling density in the reconstruction do-
main. This means that the amount of smoothing due to the regularization term
is changed if the spatial resolution is changed. Another consequence is that dif-
ferent sampling deunsities in the zy- and z-directions lead to different amounts of
smoothing. It would be interesting to investigate if and how these parameters
can be automatically selected so that the amount of smoothing is invariant to the
choice of sampling density.

Acceleration of the FDP method
Acceleration of the FDP method by means of downsampling input data and the
reconstruction volume as shown in Figure 8.1 remains to be investigated.

An alternative to downsampling is to use ordered subsets in the iterative part
of the FDP scheme. Since the highest frequencies have been removed, the noise
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Figure 8.1: Illustration of how downsampling in the angular and radial directions can
be used for accelerating the FDP scheme. Here, Hip denotes low-pass
filtering and G, G} and G} denotes down- and up-sampling operations.
The direct reconstruction Qwrpp now operates on (I — I:ILprGg’)preb

while the iterative reconstruction Qrwrep operates on I:ILpGlfpreb.

amplification observed in Chapter 6 is not expected to be significant. Instead of the
regularization in Section 7.3, post-smoothing can be used. In this way it seems like
a good result could be obtained after only two iterations (see Figure 6.11 and 6.12).

Modeling of the projection operator
There are at least two reasons to consider other projection operators than those
used in this thesis. These are given below.

1) The Joseph projection operator does not take into account the blurring
caused by the gantry rotation, finite size of detector and focus or non-linear
phenomena such as beam hardening and the non-linear partial volume effect.
Ignoring blurring could cause unnecessarily unsharp results, and ignoring the
non-linear effects is bound to generate beam hardening and non-linear partial
volume artifacts.

2) Reconstructing images by minimizing || Pf—piy||, where P is based on line in-
tegral calculations inherently lead to non-smooth reconstruction results. By
instead using a projection operator that calculates area integrals, smoother
results can be obtained without using penalty functions [50, 87].

Only preliminary experiments on modeling of the projection operator as de-
scribed in Section 3.2 have been made so far. There are many possibilities here.
By modifying the Joseph projection operator to calculate strip integrals instead of
line integrals (cf. De Man and Basu [50] and Ziegler et al. [87]), artifacts similar
to those in Section 5.4 can be suppressed. Danielsson [10] suggested that more
realistic linear physical models can be implemented by fast convolutions with rect-
angles of variable width. However, it should be noted that better linear modeling
is really worthwhile only when applied to non-rebinned data. The rebinning step
acts as a blurring screen between the original input data and the projection data
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generated in the iterative loop.

Beam hardening correction

De Man et al. [52] showed how a polychromatic model of the acquisition can be
used for suppressing artifacts due to beam hardening. It would be interesting to
investigate if these ideas can be transferred to the IWFBP method, and if better
results can be achieved in this way than with existing pre-correction methods.

Truncated projection data

Recently, the problem of truncated projection data has gained renewed interest.
It was shown by Noo et al. [58] and Zou and Pan [90] how a function can be
perfectly reconstructed along parallel lines that are fully contained in the scanned
region of interest. Later, Defrise et al. [14] showed experimentally that even better
results could be achieved with the iterative OSEM method. It is not obvious how
to extend the methods examined in this thesis to handle this type of truncated
projections, but one possibility could be to insert a smooth padding step before
rampfiltering in Qwrpp-
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Appendices

A Acronyms

Algebraic reconstruction technique

Computed tomography

Contrast recovery coefficient

Direct fourier method

Electrical and musical industries limited
Filtered backprojection

Frequency domain partitioning

Full width at half maximum

Golden Ratio

Hounsfield units
Hudson-Larkin-Beekman-Kamphuis

Iterative filtered backprojection

Iterative weighted filtered backprojection
Line spread function

Markov random field

Matlab Connecting ITK and VTK

Maximum a posteriori

Maximum likelihood

Maximum likelihood expectation maximization
Modulation transfer function

Ordered subsets

Ordered subsets IWFBP

Point spread function

Root mean squared error

Signal to noise ratio

Simultaneous algebraic technique
Simultaneous iterative reconstruction technique
Single photon emission computed tomography
Slice sensitivity profile

Weighted filtered backprojection

ART
CT
CRC
DFM
EMI
FBP
FDP
FWHM
GR

HU
HLBK
IFBP
IWFBP
LSF
MRF
MCIV
MAP
ML
MLEM
MTF
0OS
OS-IWFBP
PSF
RMSE
SNR
SART
SIRT
SPECT
SSP
WEBP

FEITTTTTTITITTITIITTTITITITTTTITITTITTITTTIISTTST
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B Notation

The following notational conventions are used. Scalars and functions are denoted
with italic lowercase letters, e.g. = and f(z). Bold lowercase letters, e.g. r, are
used for denoting vectors. The jth component of a vector r is written as r;.
Matrices are denoted by bold uppercase letters, e.g. P, and operators are denoted
by italic uppercase letters, e.g. Ppnys.- The superscript T is used for denoting the
transpose of a vector or a matrix.

Below follows a list of selected symbols used in the thesis. Unfortunately, the
symbols « and [ mean both fan-beam projection coordinates and parameters for
the iterative loop. However, their meaning at a certain location should be clear
from the context.

Geometry and sampling

Reconstruction space coordinates T,Y, 2 p. 2
Reconstruction space coordinate vector r p. 4
Parallel-beam projection data coordinates 0,t p. 9
Fan-beam projection data coordinates a, B p. 14
Projection data row coordinate q p. 14
Frequency coordinates U, v p. 10
Radial frequency coordinate P p. 10
Focus-isocenter distance Rp p. 14, 43
Detector height h p. 14, 43
Table feed P p. 14, 43
Maximal fan-angle Bmax p. 43
Maximal cone-angle Kmax p. 5
Number of voxels in the zy-plane Nz, Ny p. 59
Number of reconstructed slices N, p. 59
Sampling distance in the xy-plane A, p. 59
Sampling distance in the z-direction A, p. 59
Sampling density configurations C1,C5,C5  p. 59
Evaluation

Root mean squared error Oe p. 44
Noise measurement On p. 44
Set for error and noise measurement Q p. 44
Figure of merit Q1 p. 49
Figure of merit Q2 p. 49
WFBP, IWFBP, OS-IWFBP and FDP

Detector row down-weighting parameter (WFBP) @ p. 15
Regularization parameter (IWFBP) I} p. 34
Number of subsets (OS) L p. 71
Amount of radial smoothing (OS) o p. 80
Pass-band frequency (FDP) Upass p. 92
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Stop-band frequency (FDP)
Functions

Frequency for Projection data (2D)
Basis function

Irradiation function

Function to be reconstructed
Potential function

Vectors and malrices

Reconstruction matrix
Projection matrix
Step-length parameter
Input projection data vector
Projection data vector
Sequence of estimates

Limit point for estimates
Objective function
Regularization matrix

Transforms

1D Fourier transform

1D Fourier transform (radial direction)

2D Fourier transform
Radon transform

ustop

p(t,0)

b(r)

wj(r)

f(x), f(z,y)
V()

Q, Qwrsp
P

«

Pin

p

£, 6, ...
foo

z(+)
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