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Combining and Automating Classical and Non-Classical
Logics in Classical Higher-Order Logics

Christoph Benzmüller

Abstract Numerous classical and non-classical logics can be elegantly embedded
in Church’s simple type theory, also known as classical higher-order logic. Exam-
ples include propositional and quantified multimodal logics, intuitionistic logics,
logics for security, and logics for spatial reasoning. Furthermore, simple type the-
ory is sufficiently expressive to model combinations of embedded logics and it has
a well understood semantics. Off-the-shelf reasoning systems for simple type the-
ory exist that can be uniformly employed for reasoning within and about embedded
logics and logics combinations.

In this article we focus on combinations of (quantified) epistemic and doxastic
logics and study their application for modeling and automating the reasoning of
rational agents. We present illustrating example problems and report on experi-
ments with off-the-shelf higher-order automated theorem provers.

Keywords classical and non-classical logics, quantified multimodal logics, logic
combinations, classical higher-order logic, semantic embeddings, knowledge
representation, higher-order automated theorem proving

1 Introduction

Church’s simple type theory (ST T ) [29,4], also known as classical higher-order
logic, is suited as a framework for combining and automating classical and non-
classical logics. This claim is what this article investigates. The special focus in
this article is on combinations of (quantified) epistemic and doxastic logics and
their application for modeling and automating the reasoning of rational agents.

Building reasoning systems that support combinations of logics is a very de-
manding endeavor. One option is to develop a specific system for each particular
logic combination in question. Doing this for all relevant and interesting combina-
tions is hardly feasible. In fact, there is a strong discrepancy between the number
of combined reasoning systems that have been sketched on paper (see e.g. [27,28,
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32,22,23] and the references therein), and the number of (non-trivial) combined
reasoning systems that have actually been implemented. A second option is to de-
velop flexible, plug-and-play frameworks for various logics and their combinations.
Notable developments in this direction include the Logic Workbench, LoTREC,
Tableaux Workbench, FaCT, ileanCoP, leanK, and the translation based MSPASS
system.1 However, these systems are mainly restricted to comparably inexpressive
propositional logics and their support for flexible logic combinations is still lim-
ited. For example, none of these systems supports quantified modal logics and
their combinations.

In this article we take on the logics combinations challenge from a fresh per-
spective, and we propose an analytical, top-down approach based on semantic
embeddings in ST T . This approach is complementary to synthesis based, bottom-
up approaches to combining logics. Even challenge combinations of logics can be
achieved in our approach: as an example we outline a combination of spatial and
epistemic reasoning. Moreover, our approach supports the analysis and verifica-
tion of meta-properties of combined logics. It can thus serve as a useful tool for
engineers of logic combinations.

Another advantage of our embeddings based approach is that the semantics of
ST T is well understood and that powerful proof assistants and automated theorem
provers for ST T already exist. The automation of ST T currently experiences a
renaissance that has been fostered by the recent extension of the successful TPTP
infrastructure for first-order logic to higher-order logic, called TPTP THF [53].
Exploiting this new infrastructure we demonstrate how higher-order automated
theorem provers can be employed for reasoning within and about combinations of
logics.

In Sect. 2 we outline our embedding of quantified multimodal logics in ST T .
Further logic embeddings in ST T are discussed in Sect. 3; our examples comprise
intuitionistic logic, access control logics and the region connection calculus. In
Sect. 4 we illustrate how the reasoning about logics and their combinations is facil-
itated in our approach, and in Sect. 5 we employ simple examples to demonstrate
the application of our approach for reasoning within combinations of (quantified)
epistemic and doxastic logics. A combination of spatial and epistemic reasoning is
studied in Sect. 6. The results of a small case study with off-the-shelf, TPTP THF
compliant higher-order theorem provers are presented and discussed in Sect. 7.

This article significantly extends a preceding workshop paper [11].

2 (Normal) Quantified Multimodal Logics in ST T

ST T [29] is based on the simply typed λ-calculus. The set T of simple types
is usually freely generated from a set of basic types {o, ι} (where o is the type
of Booleans and ι is the type of individuals) using the right-associative function
type constructor �. Instead of {o, ι} we here consider a set of base types {o, ι, µ},
providing an additional base type µ (the type of possible worlds).

1 We give the system websites: Logic Workbench: http://www.lwb.unibe.ch/, LoTREC:
http://www.irit.fr/Lotrec/, Tableaux Workbench: http://twb.rsise.anu.edu.au/, FaCT:
http://www.cs.man.ac.uk/~horrocks/FaCT/, ileanCoP: http://www.leancop.de/ileancop/,
MSPASS: http://www.cs.man.ac.uk/~schmidt/mspass/. A good systems overview is provided
at: http://www.cs.man.ac.uk/~schmidt/tools/
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The simple type theory language ST T is defined by (where α, β, o ∈ T ):

s, t ::= pα | Xα | (λXα sβ)α�β | (sα�β tα)β | (¬o�o so)o |
(so ∨o�o�o to)o | (sα =α�α�o tα)o | (Π(α�o)�o sα�o)o

pα denotes typed constants and Xα typed variables (distinct from pα). Complex
typed terms are constructed via abstraction and application. Our logical connec-
tives of choice are ¬o�o, ∨o�o�o, =α�α�o and Π(α�o)�o (for each type α).2 From
these connectives, other logical connectives can be defined in the usual way (e.g.,
∧ and ⇒). We often use binder notation ∀Xα s for Π(α�o)�o(λXα so).

3

We assume familiarity with α-conversion, β- and η-reduction, and the existence
of β- and βη-normal forms. Moreover, we obey the usual definitions of free variable
occurrences and substitutions.

The semantics of ST T is well understood and thoroughly documented in the
literature [1,2,13,38]. The semantics of choice for our work is Henkin semantics.

Quantified modal logics have been studied by Fitting [30] (further related work
is available by Blackburn and Marx [24] and Braüner [25]). In contrast to Fitting we
are here not interested only in S5 structures but in the more general case of K from
which more constrained structures (such as S5) can be easily obtained. First-order
quantification can be constant domain or varying domain. Below we only consider
the constant domain case: every possible world has the same domain. While Fitting
[30] studies quantified monomodal logic, we are interested in quantified multimodal
logic. Hence, we introduce multiple 2r operators for symbols r from an index set
S. The grammar for our quantified multimodal logic QML thus is

s, t ::= P | k(X1, . . . , Xn) | ¬ s | s ∨ t | ∀X s | ∀P s | 2r s

where P ∈ PV denotes propositional variables, X,Xi ∈ IV denote first-order
(individual) variables, and k ∈ SYM denotes predicate symbols of any arity (n ≥
0). Further connectives, quantifiers, and modal operators can be defined as usual.
We also obey the usual definitions of free variable occurrences and substitutions.

Fitting introduces three different notions of Kripke semantics for QML:
QS5π−, QS5π, and QS5π+. In our work [16] we study related notions QKπ−,
QKπ, and QKπ+ for a modal context K, and we support multiple modalities.

ST T is an expressive logic and it is thus not surprising that QML can be
elegantly modeled and even automated as a fragment of ST T . The idea of the
encoding, called QMLSTT , is simple. Choose type ι to denote the (non-empty)
set of individuals and choose the second base type µ to denote the (non-empty)
set of possible worlds. As usual, the type o denotes the set of truth values. Certain
formulas of type µ � o then correspond to multimodal logic expressions. The
multimodal connectives ¬, ∨, and 2, become λ-terms of types (µ � o) � (µ � o),
(µ � o) � (µ � o) � (µ � o), and (µ � µ � o) � (µ � o) � (µ � o) respectively.

Quantification is handled as in ST T by modeling ∀X p as Π(λX .p) for a
suitably chosen connective Π. Here we are interested in defining two particular
modal Π-connectives: Πι, for quantification over individual variables, and Πµ�o,

2 This choice is not minimal (from =α�α�o all other logical constants can already be defined
[4]). It useful though in the context of resolution based theorem proving.

3 We use the -notation to avoid brackets; the convention is as follows: stands for a pair
of brackets whose right counterpart reaches as far to the right as is consistent with the logical
structure and the type structure of an expression.
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for quantification over modal propositional variables that depend on worlds. They
become terms of type (ι � (µ � o)) � (µ � o) and ((µ � o) � (µ � o)) � (µ � o)
respectively.

The QMLSTT modal operators ¬,∨,2,Πι, and Πµ�o are now simply defined
as follows:

¬ (µ�o)�(µ�o) = λφµ�o λWµ ¬φW

∨ (µ�o)�(µ�o)�(µ�o) = λφµ�o λψµ�o λWµ φW ∨ ψW

2 (µ�µ�o)�(µ�o)�(µ�o) = λRµ�µ�o λφµ�o λWµ ∀Vµ ¬RW V ∨ φV

Πι
(ι�(µ�o))�(µ�o) = λφι�(µ�o) λWµ ∀Xι φXW

Πµ�o
((µ�o)�(µ�o))�(µ�o) = λφ(µ�o)�(µ�o) λWµ ∀Pµ�o φP W

Note that our encoding actually only employs the second-order fragment of
ST T enhanced with lambda-abstraction.

Further operators can be introduced as usual, for example, > = λWµ >,⊥ =
¬ >, ∧ = λφ, ψ ¬ (¬φ ∨ ¬ψ), ⊃= λφ, ψ ¬φ ∨ ψ, ⇔= λφ, ψ (φ ⊃ ψ) ∧
(ψ ⊃ φ), 3 = λR, φ ¬ (2R (¬φ)), Σι = λφ ¬ Πι(λX ¬φX), Σµ�o =
λφ ¬ Πµ�o(λP ¬φP ).

For defining QMLSTT -propositions we fix a set IVSTT of individual vari-
ables of type ι, a set PVSTT of propositional variables4 of type µ � o, and a
set SYMSTT of n-ary (curried) predicate symbols of types ι � . . . � ι| {z }

n

� (µ � o).

Moreover, we fix a set SSTT of accessibility relation constants of type µ � µ � o.
QMLSTT -propositions are now defined as the smallest set of ST T -terms for which
the following hold:

– if P ∈ PVSTT , then P ∈ QMLSTT

– if Xj ∈ IVSTT (j = 1, . . . , n; n ≥ 0) and k ∈ SYMSTT , then (kX1 . . . Xn) ∈
QMLSTT

– if φ, ψ ∈ QMLSTT , then ¬ φ ∈ QMLSTT and φ ∨ ψ ∈ QMLSTT

– if r ∈ SSTT and φ ∈ QMLSTT , then 2 r φ ∈ QMLSTT

– if X ∈ IVSTT and φ ∈ QMLSTT , then Πι(λX φ) ∈ QMLSTT

– if P ∈ PVSTT and φ ∈ QMLSTT , then Πµ�o(λP φ) ∈ QMLSTT

We write 2r φ for 2 r φ, ∀Xι φ for Πι(λXι φ), and ∀Pµ�o φ for Πµ�o(λPµ�o φ).
Note that the defining equations for our QML modal operators are themselves

formulas in ST T . Hence, we can express QML formulas in a higher-order prover
elegantly in the usual syntax. For example, 2r ∃Pµ�o P is a QMLSTT proposition;
it has type µ � o.

Validity of QMLSTT propositions is defined in the obvious way: a QML-
proposition φµ�o is valid if and only if for all possible worlds wµ we have w ∈ φµ�o,
that is, if and only if φµ�o wµ holds. Hence, the notion of validity is modeled via
the following equation (alternatively we could define valid simply as Π(µ�o)�o):

valid = λφµ�o ∀Wµ φW

Now we can formulate proof problems in QMLSTT , e.g., valid2r ∃Pµ�o P .
Using rewriting or definition expanding, we can reduce such proof problems to

4 Note that the denotation of propositional variables depends on worlds.
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corresponding statements containing only the basic connectives ¬, ∨, =, Πι, and
Πµ�o of ST T . In contrast to the many other approaches no external transforma-
tion mechanism is required. For our example formula valid2r ∃Pµ�o P unfolding
and βη-reduction leads to ∀Wµ ∀Yµ ¬rW Y ∨(¬∀Xµ�o ¬(X Y )). It is easy to check
that this formula is valid in Henkin semantics: put X = λYµ >.

We have proved soundness and completeness for this embedding [16], that is,
for s ∈ QML and the corresponding sµ�o ∈ QMLSTT ⊂ ST T we have:

Theorem 1 |=ST T (valid sµ�o) if and only if |=QKπ s.

This result also illustrates the correspondence between QKπ models and
Henkin models; for more details see [16].

Obviously, the reduction of our embedding to first-order multimodal logics
(which only allow quantification over individual variables), to propositional quan-
tified multimodal logics (which only allow quantification over propositional vari-
ables) and to propositional multimodal logics (no quantifiers) is sound and com-
plete. Extending our embedding for hybrid logics is straightforward [40]; note in
particular that denomination of individual worlds using constant symbols of type
µ is easily possible.

In the remainder we will often omit type information. It is sufficient to re-
member that worlds are of type µ, multimodal propositions of type µ � o, and
accessibility relations of type µ � µ � o. Individuals are of type ι. Moreover, in
some examples problems in the remainder we will employ constant symbols.

3 Embeddings of Other Logics in ST T

We have studied several other logic embeddings in ST T , some of which will be
sketched next.

Intuitionistic Logics. Gödels interpretation of propositional intuitionistic logic in
propositional modal logic S4 [35] can be combined with our results from the pre-
vious section in order to provide a sound and complete embedding of propositional
intuitionistic logic into ST T [16].

Gödel studies the propositional intuitionistic logic IPL defined by

s, t ::= p | ¬̇ s | s ⊃̇ t | s ∨̇ t | p ∧̇ t

He introduces a mapping from IPL into propositional modal logic S4 which
maps ¬̇ s to ¬ 2r s, s ⊃̇ t to 2r s ⊃ 2r t, s ∨̇ t to 2r s ∨ 2r t, and s ∧̇ t to s ∧ t.5

By simply combining Gödel’s mapping with our mapping from before we obtain
the following embedding of IPL in ST T .

Let IPL be a propositional intuitionistic logic with atomic primitives p1, . . . ,
pm (m ≥ 1) . We define the set IPLST T of corresponding propositional intuition-
istic logic propositions in ST T as follows:

1. For the atomic IPL primitives p1, . . . , pm we introduce corresponding IPLST T
predicate constants p1µ�o, . . . , pm

µ�o. Moreover, we provide the single accessi-
bility relation constant rµ�µ�o.

5 Alternative mappings have been proposed and studied in the literature which we could
employ here equally as well.
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2. Corresponding to Gödel’s mapping we introduce the logical connectives of
IPLST T as abbreviations for the following λ-terms (we omit the types here):

¬̇ = λφ λW ¬∀V ¬rW V ∨ φV
⊃̇ = λφ λψ λW ¬(∀V ¬rW V ∨ φV ) ∨ (∀V ¬rW V ∨ ψ V )

∨̇ = λφ λψ λW (∀V ¬rW V ∨ φV ) ∨ (∀V ¬rW V ∨ ψ V )

∧̇ = λφ λψ λW ¬(¬φW ∨ ¬ψW )

3. We define the set of IPLST T -propositions as the smallest set of simply typed
λ-terms for which the following hold:
– p1µ�o, . . . , pm

µ�o define the atomic IPLST T -propositions.

– If φ and ψ are IPLST T -propositions, then so are ¬̇ φ, φ ⊃̇ψ, φ ∨̇ψ, and
φ ∧̇ψ.

The notion of validity we adopt is the same as for QMLSTT . However, since
Gödel connects IPL with modal logic S4, we transform each proof problem t ∈
IPL into a corresponding proof problem t′ in ST T of the following form

t′ := ((valid ∀φµ�o 2r φ ⊃ φ) ∧ (valid∀φµ�o 2r φ ⊃ 2r 2r φ)) ⇒ (valid tµ�o)

where tµ�o is the IPLST T term for t according to our definition above. Alterna-
tively we may translate t into t′′ := ((reflexive r) ∧ (transitive r)) ⇒ (valid tµ�o)
and provide appropriate definitions for reflexivity and transitivity (cf. Section ).

Combining soundness [35] and completeness [41] of Gödel’s embedding with
Theorem 1 we obtain the following soundness and completeness result: Let t ∈ IPL
and let t′ ∈ ST T as constructed above. t is valid in propositional intuitionistic logic
if and only if t′ is valid in ST T .

Example problems in intuitionistic logic have been encoded in THF syntax
[20] and added to the TPTP THF library6 and are accessible under identifiers
SYO058̂ 4 – SYO074̂ 4.

Access Control Logics. Garg and Abadi recently translated several prominent access
control logics into modal logic S4 and proved these translations sound and complete
[33]. We have combined this work with our above results in order to obtain a
sound and complete embedding of these access control logics in ST T and we have
carried out experiments with the prover LEO-II [10]. Example problems have been
added to the TPTP THF library and are accessible under identifiers SWV425̂ x –
SWV436̂ x (for x ∈ {1, . . . , 4}).

Logics for Spatial Reasoning. Evidently, the region connection calculus [48] is a
fragment of ST T : choose a base type r (’region’) and a reflexive and symmetric

6 TPTP THF problems for various problem categories are available at http://www.tptp.
org/cgi-bin/SeeTPTP?Category=Problems; all problem identifiers with an ’̂ ’ in their name re-
fer to higher-order THF problems. The TPTP library meanwhile contains about 3000 example
problems in THF syntax.
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relation c (’connected’) of type r � r � o and define (where X,Y, and Z are
variables of type r):

disconnected : dc = λX, Y ¬(c X Y )

part of : p = λX, Y ∀Z (c Z X) ⇒ (c Z Y )

identical with : eq = λX, Y (p X Y ) ∧ (p Y X)

overlaps : o = λX, Y ∃Z (p Z X) ∧ (p Z Y )

partially overlaps : po = λX, Y (o X Y ) ∧ ¬(p X Y ) ∧ ¬(p Y X)

externally connected : ec = λX, Y (c X Y ) ∧ ¬(o X Y )

proper part : pp = λX, Y (p X Y ) ∧ ¬(p Y X)

tangential proper part : tpp = λX, Y (pp X Y ) ∧ ∃Z (ec Z X) ∧ (ec Z Y )

nontang. proper part : ntpp = λX, Y (pp X Y ) ∧ ¬∃Z (ec Z X) ∧ (ec Z Y )

4 Reasoning about Logics and Combinations of Logics

We illustrate how our approach supports reasoning about modal logics and their
combinations. First, we focus on the well known relationships between proper-
ties of accessibility relations and corresponding modal axioms (respectively axiom
schemata) [37]. Such meta-theoretic insights can be elegantly encoded (and, as we
will later see, automatically proved) in our approach. We begin with the encoding
of various accessibility relation properties in ST T :

reflexive = λR ∀S (RS S) (1)

symmetric = λR ∀S, T (RS T ) ⇒ (RT S) (2)

serial = λR ∀S ∃T (RS T ) (3)

transitive = λR ∀S, T, U ((RS T ) ∧ (RT U)) ⇒ (RS U) (4)

euclidean = λR ∀S, T, U ((RS T ) ∧ (RS U)) ⇒ (RT U) (5)

partially functional = λR ∀S, T, U ((RS T ) ∧ (RS U)) ⇒ T = U (6)

functional = λR ∀S ∃T (RS T ) ∧ ∀U (RS U) ⇒ T = U (7)

weakly dense = λR ∀S, T (RS T ) ⇒ ∃U (RS U) ∧ (RU T ) (8)

weakly connected = λR ∀S, T, U ((RS T ) ∧ (RS U)) ⇒
((RT U) ∨ T = U ∨ (RU T )) (9)

weakly directed = λR ∀S, T, U ((RS T ) ∧ (RS U)) ⇒
∃V (RT V ) ∧ (RU V ) (10)

Remember, that R is of type µ � µ � o and S, T, U are of type µ. The corresponding
axioms are given next.
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M : ∀φ 2r φ ⊃ φ (11)

B : ∀φ φ ⊃ 2r 3r φ (12)

D : ∀φ 2r φ ⊃ 3r φ (13)

4 : ∀φ 2r φ ⊃ 2r 2r φ (14)

5 : ∀φ 3r φ ⊃ 2r 3r φ (15)

∀φ 3r φ ⊃ 2r φ (16)

∀φ 3r φ ⇔ 2r φ (17)

∀φ 2r 2r φ ⊃ 2r φ (18)

∀φ, ψ 2r ((φ ∧ 2r φ) ⊃ ψ)∨
2r ((ψ ∧ 2r ψ) ⊃ φ) (19)

∀φ 3r 2r φ ⊃ 2r 3r φ (20)

Problem 1 For (k) = (1), . . . , (10) we can now easily formulate the well known
correspondence theorems (k) ⇒ (k + 10) and (k + 10) ⇒ (k):

(1) ⇒ (11) : |=ST T ∀R (reflexive R) ⇒ (valid ∀φ 2R φ ⊃ φ) (1.1)

(2) ⇒ (12) : |=ST T ∀R (symmetric R) ⇒ (valid ∀φ φ ⊃ 2R 3R φ) (1.2)

. . .

(11) ⇒ (1) : |=ST T ∀R (valid ∀φ 2R φ ⊃ φ) ⇒ (reflexive R) (1.11)

(12) ⇒ (2) : |=ST T ∀R (valid ∀φ φ ⊃ 2R 3R φ) ⇒ (symmetric R)) (1.12)

. . .

(20) ⇒ (10) : |=ST T ∀R (valid ∀φ 3R 2R φ ⊃ 2R 3R φ) ⇒ (weakly direct. R))
(1.20)

Problem 2 There are well known relationships between different modal logics and
there exist alternatives for their axiomatization (cf. the relationship map in [34]).
For example, for modal logic S5 we may choose M and 5 as standard axioms. Re-
spectively for logic KB5 we may choose B and 5. We may then want to investigate
the following conjectures:

S5 = M5 ⇔ MB5 (2.1)

⇔ M4B5 (2.2)

⇔ M45 (2.3)

⇔ M4B (2.4)

⇔ D4B (2.5)

⇔ D4B5 (2.6)

⇔ DB5 (2.7)

KB5 ⇔ K4B5 (2.8)

⇔ K4B (2.9)

Exploiting the correlations from Problem 1, these problems can be formulated as
follows; we give the case for (2.5):

|=ST T ∀R ((reflexive R) ∧ (euclidean R))

⇔ ((serial R) ∧ (transitive R) ∧ (symmetric R)) (2.5)

Extending the above ideas, we can in fact employ our approach to effectively verify
the entire modal logic cube [12].
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Problem 3 We can also encode the Barcan formula and its converse. They are
theorems in our approach, which confirms that we are ’constant domain’.

BF : |=ST T ∀R ∀P valid ∀X 2R (P X) ⊃ 2R ∀Xι (P X) (3.1)

BF−1 : |=ST T ∀R ∀P valid 2R ∀X (P X) ⊃ ∀Xι 2R (P X) (3.2)

Problem 4 An interesting meta-property for combined logics with modalities
3i,2j ,2k, and 3l is the correspondence between the following axiom and the
(i, j, k, l)-confluence property:

|=ST T (valid ∀φ (3i 2j φ) ⊃ 2k 3l φ)

⇔ (∀A ∀B ∀C (((i AB) ∧ (k AC)) ⇒ ∃D ((j B D) ∧ (l C D)))) (4.1)

Problem 5 Segerberg [50] discusses a 2-dimensional logic providing two epistemic
S5 modalities 2a and 2b. He adds further axioms stating that these modalities are
commutative and orthogonal. It actually turns out that orthogonality is already
implied in this context. Exploiting the correspondences from Problem 1, this state-
ment can be encoded in our framework as follows:

(reflexive a), (transitive a), (euclidean a), (reflexive b), (transitive b), (euclidean b),

(valid ∀φ 2a 2b φ ⇔ 2b 2a φ)

|=ST T (valid ∀φ, ψ 2a (2a φ ∨ 2b ψ) ⊃ (2a φ ∨ 2a ψ))∧

(valid ∀φ, ψ 2b (2a φ ∨ 2b ψ) ⊃ (2b φ ∨ 2b ψ)) (5.1)

Problem 6 Suppose we work with a 2-dimensional logic combining an epistemic
S5 modality 2k (knowledge) with an doxastic D45 modality 2b (belief). Moreover,
suppose we add two axioms, as given below, characterizing their relationship. We
may then want to check whether knowledge includes belief, that is, whether 2k

and 2b coincide:

(reflexive k), (transitive k), (euclidean k), (serial b), (transitive b), (euclidean b),

(valid ∀φ 2k φ ⊃ 2b φ), (valid ∀φ 2b φ ⊃ 2b 2k φ)

|=ST T (valid ∀φ 2b φ ⊃ 2k φ) (6.1)

Problem 7 Nguyen [44,45] studies doxastic multimodal logics. The logics he con-
siders are built up from base logic K by adding axioms A ∈ {D, I, 4, 4s, 5, 5s}.
Axioms D and 4 are defined as at the beginning of this section. However, instead
of axiom 5 as given earlier, Nguyen uses the variant ∀φ ¬ 2i φ ⊃ 2i ¬ 2i φ. The
equivalence of these two variants of axiom 5 can easily be formalized:

|=ST T ∀R (valid ∀φ ¬ 2R φ ⊃ 2R ¬ 2R φ)

⇔ (valid ∀φ 3R φ ⊃ 2R 3R φ) (7.1)

Exploiting the correspondence results from before, we may alternatively state:

|=ST T ∀R (valid ∀φ ¬ 2R φ ⊃ 2R ¬ 2R φ) ⇔ (euclidean R) (7.2)
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Axioms I, 4s, and 5s are given next:

I : ∀φ 2i φ ⊃ 2j φ if i > j

4s : ∀φ 2i φ ⊃ 2j 2i φ

5s : ∀φ ¬ 2i φ ⊃ 2j ¬ 2i φ

The inclusion axioms I assume a total ordering > for the considered accessibility
relations; they express that whatever agent i beliefs is also believed by agent j. In
the doxastic context, axioms 4 and 4s express weak and strong positive introspec-
tion. Similarly, axioms 5 and 5s express weak and strong negative introspection.

For I, 4s and 5s the following correspondence theorems hold:

|=ST T ∀I ∀J (valid ∀φ 2I φ ⊃ 2J φ) ⇔ ∀U ∀V (J U V ) ⇒ (I U V ) (7.3)

|=ST T ∀I ∀J (valid ∀φ 2I φ ⊃ 2J 2I φ)

⇔ ∀U ∀V ∀W ((J U V ) ∧ (I V W )) ⇒ (I U W ) (7.4)

|=ST T ∀I ∀J (valid ∀φ ¬ 2I φ ⊃ 2J ¬ 2I φ)

⇔ ∀U ∀V ∀W ((J U V ) ∧ (I U W )) ⇒ (I V W ) (7.5)

Different doxastic logics can be defined from K. For instance, the logic KDI4s5
adds the axioms D, I, 4s, and 5 to base logic K. An interesting observation (cf.
Footnote 2 in [45]) is that axioms 5s are already implied in logic KDI4s5. We can
easily formalize this claim for particular instances of KDI4s5. For example, for
i, j ∈ {r1, r2, r3} with r3 > r2 > r1 we get:

(valid ∀φ 2r1 φ ⊃ 3r1 φ), (valid ∀φ 2r2 φ ⊃ 3r2 φ), (valid ∀φ 2r3 φ ⊃ 3r3 φ),

(valid ∀φ 2r2 φ ⊃ 2r1 φ), (valid ∀φ 2r3 φ ⊃ 2r1 φ), (valid ∀φ 2r3 φ ⊃ 2r2 φ),

(valid ∀φ 2r1 φ ⊃ 2r1 2r1 φ), (valid ∀φ 2r1 φ ⊃ 2r2 2r1 φ),

(valid ∀φ 2r1 φ ⊃ 2r3 2r1 φ), (valid ∀φ 2r2 φ ⊃ 2r1 2r2 φ),

(valid ∀φ 2r2 φ ⊃ 2r2 2r2 φ), (valid ∀φ 2r2 φ ⊃ 2r3 2r2 φ),

(valid ∀φ 2r3 φ ⊃ 2r1 2r3 φ), (valid ∀φ 2r3 φ ⊃ 2r2 2r3 φ),

(valid ∀φ 2r3 φ ⊃ 2r3 2r3 φ),

(valid ∀φ ¬ 2r1 φ ⊃ 2r1 ¬ 2r1 φ), (valid ∀φ ¬ 2r2 φ ⊃ 2r2 ¬ 2r2 φ)

(valid ∀φ ¬ 2r3 φ ⊃ 2r3 ¬ 2r3 φ)

|=ST T (valid ∀φ ¬ 2r1 φ ⊃ 2r1 ¬ 2r1 φ) ∧ (valid ∀φ ¬ 2r1 φ ⊃ 2r2 ¬ 2r1 φ)∧

(valid ∀φ ¬ 2r1 φ ⊃ 2r3 ¬ 2r1 φ) ∧ (valid ∀φ ¬ 2r2 φ ⊃ 2r1 ¬ 2r2 φ)∧

(valid ∀φ ¬ 2r2 φ ⊃ 2r2 ¬ 2r2 φ) ∧ (valid ∀φ ¬ 2r2 φ ⊃ 2r3 ¬ 2r2 φ)∧

(valid ∀φ ¬ 2r3 φ ⊃ 2r1 ¬ 2r3 φ) ∧ (valid ∀φ ¬ 2r3 φ ⊃ 2r2 ¬ 2r3 φ)∧

(valid ∀φ ¬ 2r3 φ ⊃ 2r3 ¬ 2r3 φ) (7.6)

In the remainder we refer to the formulas left/above of the |=ST T symbol as axioms
for KDI4s5.

The example problems above can be solved automatically by general purpose
higher-automated theorem provers (except for (1.19), which was not solved in our
experiments). Further details on our experiments and the provers performances
will be presented in Section 7.
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5 Epistemic and Doxastic Reasoning in Multi-Agent Scenarios

This section illustrates how our approach supports reasoning within combined log-
ics. We present example problems that address aspects of epistemic and doxastic
reasoning for rational agents. In these examples the knowledge or belief of different
agents ai is modeled by different modalities 2ai .

First, two example problems on epistemic reasoning are presented. The mod-
eling in both cases adapts Baldoni’s work [8].

Problem 8 (Epistemic reasoning: The friends puzzle) (i) Peter is a friend of

John, so if Peter knows that John knows something, then John knows that Peter knows

the same thing. (ii) Peter is married, so if Peter’s wife knows something, then Peter

knows the same thing. John and Peter have an appointment. Let us consider the fol-

lowing situation: (a) Peter knows the time of their appointment. (b) Peter also knows

that John knows the place of their appointment. Moreover, (c) Peter’s wife knows that

if Peter knows the time of their appointment, then John knows that too (since John

and Peter are friends). Finally, (d) Peter knows that if John knows the place and the

time of their appointment, then John knows that he has an appointment. From this

situation we want to prove (e) that each of the two friends knows that the other one

knows that he has an appointment.

For modeling the knowledge of Peter, Peter’s wife, and John we consider a 3-
dimensional logic combining the modalities 2p, 2(w p), and 2j. Actually modeling
them as S4 modalities turns out to be sufficient for this example. Hence, we intro-
duce three corresponding accessibility relations j, p, and (w p). The S4 axioms for
x ∈ {j,p, (wp)} are

valid ∀φ 2x φ ⊃ φ (21) valid ∀φ 2x φ ⊃ 2x 2x φ (22)

As done before, we could alternatively postulate that the accessibility relations
are reflexive and transitive. Next, we encode the facts from the puzzle. For (i) we
provide a persistence axiom and for (ii) an inclusion axiom:

valid ∀φ 2p 2j φ ⊃ 2j 2p φ (23) valid ∀φ 2(w p) φ ⊃ 2p φ (24)

Finally, the facts (a)-(d) and the conclusion (e) are encoded as follows (time, place,
and appointment are propositional constants, that is, constants of type µ � o in
our framework):

valid 2p time (25)

valid 2p 2j place (26)

valid 2(w p) (2p time ⊃ 2j time) (27)

valid 2p 2j (place ∧ time ⊃ appointment) (28)

valid 2j 2p appointment ∧ 2p 2j appointment (29)

The combined proof problem is

(21), . . . , (28) |=ST T (29) (8.1)
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Problem 9 (Wise men puzzle) Once upon a time, a king wanted to find the wisest

out of his three wisest men. He arranged them in a circle and told them that he would

put a white or a black spot on their foreheads and that one of the three spots would

certainly be white. The three wise men could see and hear each other but, of course,

they could not see their faces reflected anywhere. The king, then, asked to each of them

to find out the color of his own spot. After a while, the wisest correctly answered that

his spot was white.

We employ a 4-dimensional quantified multimodal logic combining the modalities
2a, 2b, and 2c, for encoding the individual knowledge of the three wise men,
with a box operator 2fool, for encoding common knowledge. The entire encoding
consists of the following axioms for X,Y, Z ∈ {a, b, c} and X 6= Y 6= Z:

valid 2fool ((ws a) ∨ (ws b) ∨ (ws c)) (30)

valid 2fool ((ws X) ⊃ 2Y (ws X)) (31)

valid 2fool (¬ (ws X) ⊃ 2Y ¬ (ws X)) (32)

valid ∀φ 2fool φ ⊃ φ (33)

valid ∀φ 2fool φ ⊃ 2fool 2fool φ (34)

valid ∀φ 2fool φ ⊃ 2a φ (35)

valid ∀φ 2fool φ ⊃ 2b φ (36)

valid ∀φ 2fool φ ⊃ 2c φ (37)

valid ∀φ ¬ 2X φ ⊃ 2Y ¬ 2X φ (38)

valid ∀φ 2X φ ⊃ 2Y 2X φ (39)

valid ¬ 2a (ws a) (40)

valid ¬ 2b (ws b) (41)

From these assumptions we want to conclude that

valid 2c (ws c) (42)

Axiom (30) says that a, b, or c must have a white spot and that this information
is known to everybody. Axioms (31) and (32) express that it is generally known
that if someone has a white spot (or not), then the others see and hence know this.
2fool is axiomatized as an S4 modality in axioms (33) and (34). For 2a, 2b, and 2c

it is sufficient to consider K modalities. The relation between those and common
knowledge (2fool modality) is axiomatized in inclusion axioms (35)–(38). Axioms
(38) and (39) encode that whenever a wise man does (not) know something, the
others know that he does (not) know this. Axioms (40) and (41) say that a and b
do not know whether they have a white spot. Finally, conjecture (42) states that
that c knows he has a white spot. The combined proof problem is

(30), . . . , (41) |=ST T (42) (9.1)

The above version of the wise men puzzle, which has been adapted from Baldoni,
does not take temporal aspects into account. This clearly makes the scenario a
kind of unrealistic, at least unsatisfying. However, in our framework we can easily
further refine the above formalization so that temporal aspects are also addressed.



Combining and Automating Classical and Non-Classical Logics in ST T 13

This is what we sketch next. In our refined formalization, the axioms (30)–(39)
remain the same. However, Axioms (40) and (41) are modified as follows:

valid 2priorG ¬ 2a (ws a) (43)

valid 2priorG 2priorG ¬ 2b (ws b) (44)

Axioms (43) and (44) employ a temporal modality 2priorG , which is intended to
model Prior’s G operator [47,55] (read 2priorG as “It will always be that . . . ”).
(43) expresses that at all future time points the wise man a does not know that
he has a white spot. (44) expresses that one further moment later in time it holds
that for all futures times the wise man b does not know that he has a white spot.
From these assumptions we want to conclude that two time points later from now
for all future times it holds that the wise man c does know that he has a white
spot:

valid 2priorG 2priorG 2priorG 2c (ws c) (45)

We may want to appropriately constrain the accessibility relation associated with
the temporal modality 2priorG . Irreflexivity and transitivity are usually considered
minimal requirements for relations intended to characterize the flow of time:

(irreflexive priorG) (46)

(transitive priorG) (47)

Transitivity is defined as before, and irreflexivity7 as follows:

irreflexive = λR ∀S ¬(RS S) (48)

Further properties for the time relation, e.g. linearity, can easily be postulated.
The extended, temporalized wise men problem is:

(30), . . . , (38), (43), (44), (46), (47) |=ST T (45) (9.2)

Example problems (8.1), (9.1), and (9.2) can all be effectively solved by higher-
order automated theorem provers.

Several example problems addressing different degrees of belief in agents are
presented by Nguyen [44,45]. Nguyen argues for the direct approach and he has
developed the modal logic programming system MProlog [43]. Below we adapt
some of his example problems. They can be solved automatically by general pur-
pose higher-order automated theorem provers (except for (12.6), which was not
solved in our experiments).

Problem 10 (Multimodal logic program about two different degrees of be-

liefs) Nguyen presents a small multimodal logic program formulated for logic
KDI4s5 (cf. Figure 1 in [45]). Translated into our framework, Nguyen’s program is
formalized as follows (p, q, r, and s are unary predicates, and r1 and r2 are agent

7 The irreflexivity property of an accessibility relation cannot be axiomatized with the help of
a corresponding modal logic axiom in the sense of Problem 1, since there exists no such formula.
Hence, our extended, temporalized wise men problem well demonstrates the flexibility and
expressive power of our framework: we can easily directly model and postulate the irreflexivity
property.
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accessibility relations; we assume that r2 > r1, that is, whatever r2 believes is also
believed by r1):

valid ∀X 2r2 (3r2 (q X) ⊃ (p X)),

valid ∀X 2r1 (((r X) ∧ (s X)) ⊃ (q X)),

valid ∀X 2r1 ((s X) ⊃ 2r1 (r X)),

valid ∀X 3r1 (s a),

axioms for KDI4s5 (only those mentioning r1 or r2)

|=ST T valid ∃X 2r1 (p X) (10.1)

This example problem is actually already solvable in logic KI4s. Hence, we intro-
duce the following variation: Problem (10.1.KI4s) is identical to (10.1) except that
the axioms D and 5 are omitted.

Problem 11 (Multimodal logic program about five different degrees of be-

liefs) For agents i ∈ {r1, . . . , r5} the converted clauses and queries of this self-
explaining program of Nguyen [44] are:

valid ∀X (maths teacher X) ⊃ 2r4 (good in maths X),

valid ∀X 2r5 (2i (mathematician X) ⊃ 2i (good in maths X)),

valid ∀X 2r3 ((maths student X) ⊃ 3i (good in maths X)),

valid ∀X 2r3 ((physics student X) ⊃ 3i (good in physics X)),

valid ∀X 2r2 ((good in physics X) ⊃ 3r2 (good in maths X)),

valid (maths teacher john),

valid 2r2 (mathematician tom),

valid 2r5 (maths student peter),

valid 2r5 (physics student mike),

axioms for KDI4s5 (for r1, . . . , r5)

|=ST T valid ∃X 2r4 (good in maths X) (11.1)

. . . |=ST T valid ∃X 2r2 (good in maths X) (11.2)

. . . |=ST T valid ∃X 3r1 (good in maths X) (11.3)

The query (11.1) already has a solution in base logic K. We therefore define the
problem variant (11.1.K), which is identical to (11.1), except that the axioms for
KDI4s5 are omitted.

Problem 12 (A company with different branches) This example problem of
Nguyen [44] models three different branches of a company as different agents a1,
a2, and a3. The data and knowledge of each branch (which may contain noise and
which may not be highly recognized by other branches) is modeled by Nguyen
as belief rather than knowledge. Hence, 2a1 φ and 3a1 ψ express that branch a1
beliefs φ and considers ψ possible. The logic employed by Nguyen is KDI4s5s,
which is equivalent to KDI4s5 (cf. Problem (7.6)). In addition to the different
company branches, the example assumes a central database (modeled as agent
a4), which in a sense hides information stemming from the other branches, and



Combining and Automating Classical and Non-Classical Logics in ST T 15

which is used for communication with the user(s). Translated into our framework
the problem’s clauses are formalized as follows:

B1 =

8>><>>:
valid 2a1 (likes jan cola),
valid 2a1 (likes piotr pepsi),
valid ∀X 2a1 ((likes X pepsi) ⊃ (3a1 (likes X cola))),
valid ∀X 2a1 ((likes X cola) ⊃ (3a1 (likes X pepsi)))

B2 =

8>>>><>>>>:
valid 2a2 (likes jan pepsi),
valid 2a2 (likes piotr cola),
valid 2a2 (likes piotr beer),
valid ∀X 2a2 ((likes X pepsi) ⊃ (likes X cola)),
valid ∀X 2a2 ((likes X cola) ⊃ (likes X pepsi))

B3 =

8>>>>>><>>>>>>:

valid 2a3 (likes jan cola),
valid 2a3 (likes piotr pepsi),
valid 2a3 (likes piotr beer),
valid ∀X ∀Y

2a3 (((likes X Y ) ∧ (2a1 (likes X Y )) ∧ (2a2 (likes X Y )))
⊃ (very much likes X Y ))

B4 =

8>>>><>>>>:
valid ∀X ∀Y 2a3 (very much likes X Y ) ⊃ (very much likes X Y ),
valid ∀X ∀Y 3a3 (very much likes X Y ) ⊃ (likes X Y ),
valid ∀X ∀Y 3a1 (likes X Y ) ⊃ (possibly likes X Y ),
valid ∀X ∀Y 3a2 (likes X Y ) ⊃ (possibly likes X Y ),
valid ∀X ∀Y 3a3 (likes X Y ) ⊃ (possibly likes X Y )

We formalize various queries (queries (12.4)–(12.11) verify possible answer in-
stantiations for the query variables in (12.1)–(12.3)):

B1,B2,B3,B4, axioms of KBDI4s5 (for a1, a2, a3, a4)

|=ST T valid ∃X ∃Y (very much likes X Y ) (12.1)

. . . |=ST T valid ∃X ∃Y (likes X Y ) (12.2)

. . . |=ST T valid ∃X ∃Y (possibly likes X Y ) (12.3)

. . . |=ST T valid (very much likes jan cola) (12.4)

. . . |=ST T valid (likes jan cola) (12.5)

. . . |=ST T valid (likes piotr pepsi) (12.6)

. . . |=ST T valid (possibly likes jan cola) (12.7)

. . . |=ST T valid (possibly likes piotr pepsi) (12.8)

. . . |=ST T valid (possibly likes jan pepsi) (12.9)

. . . |=ST T valid (possibly likes piotr cola) (12.10)

. . . |=ST T valid (possibly likes piotr beer) (12.11)

Some queries are already solvable in K, and therefore we introduce the following
problem variations, where the axioms for KDI4s5 are omitted: (12.1.K), (12.2.K),
(12.3.K), (12.4.K), (12.5.K), (12.7.K).
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6 A Combination of Spatial and Epistemic Reasoning

In this section we illustrate that our approach is not limited to combinations of
modal logics. For this, we combine the region connection calculus [48] with an
epistemic logic.

Problem 13 A trivial example problem for the region connection calculus is
(adapted from [32], p. 80):

(tpp catalunya spain),

(ec spain france),

(ntpp paris france),

|=ST T (dc catalunya paris) ∧ (dc spain paris) (13.1)

The assumptions express that (i) Catalunya is a border region of Spain, (ii) Spain
and France are two different countries with a common border, and (iii) Paris is
an inner region of France. The conjecture is that (iv) Catalunya and Paris are
disconnected as well as Spain and Paris.

Problem 14 Within our ST T framework we can easily put such spatial reasoning
problems in an epistemic context, that is, we can model common spatial knowledge
and also the individual spatial knowledge of single agents. Similar to before, we use
2fool for modeling common knowledge (fool) and 2a for modeling the knowledge
of agent a:

valid ∀φ 2fool φ ⊃ 2a φ,

valid 2a λW (tpp catalunya spain),

valid 2fool λW (ec spain france),

valid 2a λW (ntpp paris france)

|=ST T valid 2a λW (dc catalunya paris) ∧ (dc spain paris) (14.1)

We here express that (ii) from above, namely that Spain and France have a common
border, is commonly known, while (i) and (iii) are not. Instead we assume that (i)
and (iii) are known to the educated agent a. In this situation, conjecture (iv) is still
known to agent a. But (iv) is not commonly known, and the following statement
is countersatisfiable:

. . . |=ST T valid 2fool λW (dc catalunya paris) ∧ (dc spain paris) (14.2)
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We present some further example queries; they are all theorems:

. . . |=ST T valid 2a λW ¬(po catalunya paris) (14.3)

. . . |=ST T valid 2a λW (o catalunya spain) ∧ (o france paris) (14.4)

. . . |=ST T valid 2a λW ¬(eq catalunya paris) (14.5)

. . . |=ST T valid 2a λW (eq catalunya paris) ⇒ (o france spain) (14.6)

. . . |=ST T valid 2a λW ∃Z ¬(o Z paris) ∧ ¬(eq Z spain) (14.7)

. . . |=ST T valid 2a λW ∀Z (p Z catalunya) ⇒ ¬(p Z paris) (14.8)

. . . |=ST T valid 2a λW ∀Z ((ntpp france Z) ∧ (ntpp spain Z))

⇒ ((pp paris Z) ∧ (pp catalunya Z)) (14.9)

. . . |=ST T valid 2a λW ∀Z ((ntpp france Z) ∧ (ntpp spain Z))

⇒ ((ntpp paris Z) ∧ (ntpp catalunya Z)) (14.10)

. . . |=ST T valid 2a λW ∃Z ∃Y ¬(eq Z Y ) (14.11)

. . . |=ST T valid 2fool λW ∀Z ∀Y ((p Z spain) ∧ (p Y france))

⇒ ¬(o Z Y ) (14.12)

. . . |=ST T valid 2fool λW ¬∃Z ∀Y (ntpp Z Y ) (14.13)

. . . |=ST T valid 2a λW ∀Z ((o Z paris) ∧ (o Z catalunya))

⇒ ((o Z spain) ∧ (o Z france)) (14.14)

In order to facilitate the combination of spatial and epistemic reasoning we
have lifted the region connection calculus propositions (originally of type o) to
modal propositions of type µ � o by λ-abstraction. This way the region connection
calculus statements can be applied to possible worlds — they evaluate statically
though for all possible worlds, since the λ-abstracted variable W is fresh for the
encapsulated region connection calculus propositions, for example:

(tpp catalunya spain)| {z }
type o

−→ (λW (tpp catalunya spain))| {z }
type µ�o

7 Experiments

In this section we apply off-the-shelf automated reasoning systems for ST T in
order to solve the problems presented in the previous sections. The particular
theorem provers employed in our case study are:8

LEO-II (version v1.2.5). LEO-II [21], the successor of LEO [14], is an automated
theorem prover for ST T which is based on extensional higher-order resolution.
More precisely, LEO-II employs a refinement of extensional higher-order RUE
resolution [9]. LEO-II is designed to cooperate with specialist systems for frag-
ments of higher-order logic. By default, LEO-II cooperates with the first-order

8 The short system sketches given here have been extracted and adapted from http://tptp.
org/CASC/J5/SystemDescriptions.html and [53]; see there for further information.
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ATP systems E [49]. LEO-II is often too weak to find a refutation amongst the
steadily growing set of clauses on its own. However, some of the clauses in LEO-
II’s search space attain a special status: they are first-order clauses modulo the
application of an appropriate transformation function. The default transfor-
mation is Hurd’s fully typed translation [39]. Therefore, LEO-II launches a
cooperating first-order ATP system every n iterations of its (standard) reso-
lution proof search loop (e.g., n = 10). If the first-order ATP system finds a
refutation, it communicates its success to LEO-II, which causes LEO-II to ter-
minate and to report overall success. Communication between LEO-II and the
cooperating first-order ATP system uses the TPTP language and standards.

TPS (version 3.080227G1d). TPS is a fully automated version of the higher-
order theorem proving system TPS [5,6]. TPS can be used to prove theorems
of ST T automatically, interactively, or semi-automatically. When searching
for a proof automatically, TPS first searches for an expansion proof [42] or an
extensional expansion proof [26] of the theorem. Part of this process involves
searching for acceptable matings [3]. Using higher-order unification, a pair of
occurrences of subformulae (which are usually literals) is mated appropriately
on each vertical path through an expanded form of the theorem to be proved.
The behavior of TPS is controlled by hundreds of flags. A set of flags, with
values for them, is called a mode. Forty-nine modes have been found that
collectively suffice for automatically proving virtually all the theorems that
TPS has proved automatically thus far. As the modes have quite different
capabilities, and it is expected that any proofs found by any mode will be
found quickly, strategy scheduling the modes is a simple way of obtaining
greater coverage. A Perl script has been used to do this, running each of the
49 modes for a specified amount of time.

Satallax (version 1.4). Satallax is a higher-order automated theorem prover with
additional model finding capabilities. The system is based on a complete ground
tableau calculus for ST T with a choice operator [7]. An initial tableau branch
is formed from the axioms of the problem and negation of the conjecture (if
any is given). From this point on, Satallax tries to determine unsatisfiability
or satisfiability of this branch. Satallax progressively generates higher-order
formulae and corresponding propositional clauses. These formulae and propo-
sitional clauses correspond to instances of the tableau rules. Satallax uses the
SAT solver MiniSat as an engine to test the current set of propositional clauses
for unsatisfiability. If the clauses are unsatisfiable, then the original branch is
unsatisfiable. If there are no quantifiers at function types, the generation of
higher-order formulae and corresponding clauses may terminate. In such a
case, if MiniSat reports the final set of clauses as satisfiable, then the original
set of higher-order formulae is satisfiable (by a standard model in which all
types are interpreted as finite sets).

IsabelleP (version 2009-2). The higher-order proof assistant Isabelle/HOL [46]
is normally used interactively. In this mode it is possible to apply various au-
tomated tactics that attempt to solve the current goal without further user
interaction. Examples of these tactics are blast, auto, and metis. It is also pos-
sible to run Isabelle from the command line, passing in a theory file containing
a lemma to prove. Finally, Isabelle theory files can include ML code to be ex-
ecuted when the file is processed. While it was probably never intended to use
Isabelle as a fully automatic system, these three features have been combined
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to implement a fully automatic Isabelle/HOL, called IsabelleP. The TPTP2X
Isabelle format module outputs a THF problem in Isabelle/HOL syntax, aug-
mented with ML code that runs tactics in sequence, each with a CPU time
limit until one succeeds or all fail.

The reasoning systems described above are available online via the SystemOn-
TPTP tool [51] and they support the new TPTP THF infrastructure for typed
higher-order logic [20]. Exploiting the TPTP World infrastructure [52], all exper-
iment runs reported below were done remotely at the University of Miami on
2.80GHz computers with 1GB memory and running the Linux operating system.

The axiomatizations of QMLSTT and the region connections calculus are avail-
able as LCL013ˆ0.ax and LCL014ˆ0.ax in the TPTP library.9 Satallax proves the
satisfiability of LCL013ˆ0.ax and LCL014ˆ0.ax in 0.29 seconds and 0.28 seconds
respectively. Countersatisfiability of problem (14.2) cannot be detected by any of
the above reasoners.

Table 1 presents the further results of our experiments. All example problems
in this table are actually theorems. Only three of these theorems cannot be solved
by any of the above provers: (1.19), (12.6), and (14.10). For all other example
problems at least one system finds a proof.

Probl. – TPTP id LEO-II TPS Satallax IsabelleP

Reasoning about Logics and Combined Logics
(1.1)/LCL699̂ 1 .03/.03 .36/.37 .28/.28 4.37/19.38
(1.2)/LCL700̂ 1 .04/.04 .37/.37 .29/.29 5.40/28.67
(1.3)/LCL701̂ 1 .04/.04 .37/.37 .32/.32 4.49/19.52
(1.4)/LCL702̂ 1 .05/.05 .38/.38 .39/.39 5.40/35.49
(1.5)/LCL703̂ 1 .04/.05 .38/.38 .39/.40 5.42/35.45
(1.6)/LCL704̂ 1 .04/.04 .39/.39 .48/.52 4.48/19.49
(1.7)/LCL705̂ 1 .12/.11 –/45.34 .57/.57 4.58/19.61
(1.8)/LCL706̂ 1 .05/.05 .38/.38 .46/.46 4.50/19.54
(1.9)/LCL707̂ 1 .07/.07 .48/.48 .52/.52 4.50/19.57
(1.10)/LCL708̂ 1 .06/.05 .40/.49 .49/.49 4.44/19.58
(1.11)/LCL709̂ 1 .04/.03 .36/.37 –/– 4.47/19.52
(1.12)/LCL710̂ 1 .14/.14 .37/.37 –/– 9.46/84.58
(1.13)/LCL711̂ 1 .04/.04 .38/.39 –/54.45 4.51/19.53
(1.14)/LCL712̂ 1 .05/.05 .38/.38 –/– 4.51/19.56
(1.15)/LCL713̂ 1 10.74/120.73 .39/.40 –/– 8.80/83.84
(1.16)/LCL714̂ 1 .10/.10 .71/.70 –/– 6.65/51.69
(1.17)/LCL715̂ 1 –/– –/69.18 –/– –/–
(1.18)/LCL716̂ 1 –/– 6.67/6.69 –/– –/–
(1.19)/LCL717̂ 1 –/– –/– –/– –/–
(1.20)/LCL718̂ 1 .11/.11 .40/.40 –/– 5.43/23.42
(2.1)/LCL859̂ 1 .11/.10 .50/.49 .52/.52 4.44/19.50
(2.2)/LCL860̂ 1 .17/.17 –/21.71 2.93/2.92 4.53/19.54
(2.3)/LCL861̂ 1 .12/.12 9.07/9.07 14.83/14.37 4.46/19.54
(2.4)/LCL862̂ 1 .11/.11 1.29/1.29 3.04/3.04 4.61/19.68
(2.5)/LCL863̂ 1 .11/.12 1.74/1.74 –/84.42 5.21/21.14
(2.6)/LCL864̂ 1 .17/.17 –/41.62 –/84.44 10.67/21.14
(2.7)/LCL865̂ 1 .11/.11 .65/.65 –/– 4.62/19.69
(2.8)/LCL866̂ 1 .16/.16 2.35/2.35 3.48/3.48 4.45/19.50
(2.9)/LCL867̂ 1 .11/.11 .95/.97 3.45/3.46 4.53/19.56
(3.1)/LCL606̂ 1∗ .04/.04 .37/.37 .29/.29 4.37/19.38
(3.2)/LCL611̂ 1∗ .03/.03 .34/.35 .28/.28 4.01/19.35

9 For the axiomatization of IPLST T see LCL010ˆ0.ax and for Access Control Logic see the
files SWV008ˆ0.ax, SWV008ˆ1.ax, and LCL008ˆ0.ax.
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Probl. – TPTP id LEO-II TPS Satallax IsabelleP

(4.1)/LCL872̂ 1 .12/.12 .49/.49 –/– 4.94/19.60
(5.1)/LCL873̂ 1 .14/.14 .96/.95 5.71/5.70 12.64/147.74
(6.1)/LCL874̂ 1 1.74/1.73 –/– –/– –/–
(7.1)/LCL877̂ 1 9.63/121.03 .63/.64 –/– –/–
(7.2)/LCL877̂ 2 .09/.09 .43/.44 –/– 5.49/35.66
(7.3)/LCL878̂ 1 .07/.07 .39/.39 –/– 4.59/19.61
(7.4)/LCL879̂ 1 .09/.09 .42/.41 –/– 4.64/19.69
(7.5)/LCL880̂ 1 .09/.09 .41/.42 –/– 4.68/19.68
(7.6)/LCL881̂ 1 10.63/10.66 –/– –/– –/–

Reasoning within Combined Logics
(8.1)/PUZ086̂ 1 .15/.15 –/– .75/.76 12.87/147.95
(9.1)/PUZ087̂ 1 3.27/4.17 –/– –/– –/–
(9.2)/PUZ087̂ 2 .84/.83 –/– –/– –/–
(10.1)/AGT027̂ 1 .87/.86 –/– –/– –/–
(10.1.KI4s)/AGT027̂ 2 11.08/120.63 –/– –/– –/–
(11.1)/AGT028̂ 1 .88/.92 –/– –/31.15 –/150.03
(11.1.K)/AGT028̂ 2 .24/.24 2.24/2.24 2.52/2.52 6.44/22.61
(11.2)/AGT029̂ 1 .96/.96 –/– –/– –/–
(11.3)/AGT030̂ 1 4.01/4.07 –/– –/– –/–
(12.1)/AGT031̂ 1 3.35/40.42 –/– –/– –/–
(12.1.K)/AGT031̂ 2 .28/.28 –/102.19 –/– –/–
(12.2)/AGT032̂ 1 3.35/40.42 –/– –/42.85 –/–
(12.2.K)/AGT032̂ 2 .29/.28 –/101.44 7.93/8.02 –/136.00
(12.3)/AGT033̂ 1 .42/.42 –/96.27 5.18/5.20 12.56/132.66
(12.3.K)/AGT033̂ 2 .18/.18 1.57/1.58 1.24/1.25 12.03/132.16
(12.4)/AGT034̂ 1 3.40/40.49 –/– –/84.91 –/–
(12.4.K)/AGT034̂ 2 .34/.35 –/101.47 –/31.84 –/138.53
(12.5)/AGT035̂ 1 3.38/40.49 –/– –/– –/–
(12.5.K)/AGT035̂ 2 .33/.33 –/101.09 –/– –/134.14
(12.6)/AGT036̂ 1 –/– –/– –/– –/–
(12.7)/AGT037̂ 1 .78/.79 –/– 5.51/5.59 12.48/132.59
(12.7.K)/AGT037̂ 2 .18/.18 1.47/1.48 1.40/1.40 12.03/132.18
(12.8)/AGT038̂ 1 .39/.39 –/24.57 5.25/5.25 12.46/132.62
(12.9)/AGT039̂ 1 .70/.69 –/– 5.41/5.44 12.47/132.69
(12.10)/AGT040̂ 1 .65/.65 –/– 5.33/5.35 12.52/132.59
(12.11)/AGT031̂ 1 .40/.41 –/24.61 5.25/5.24 12.50/132.64
(13.1)/GEG002̂ 1 11.23/122.29 –/– –/– 13.74/158.34
(14.1)/GEG003̂ 1 –/138.29 –/– –/– –/–
(14.3)/GEG005̂ 1 .56/.56 –/– –/– –/–
(14.4)/GEG006̂ 1 6.60/44.81 –/– 12.63/12.74 13.23/148.24
(14.5)/GEG007̂ 1 .50/.49 –/– –/– –/–
(14.6)/GEG008̂ 1 .44/.44 –/– 3.57/3.67 –/–
(14.7)/GEG009̂ 1 .69/.70 –/– –/– –/–
(14.8)/GEG010̂ 1 .59/.59 –/– –/– –/–
(14.9)/GEG011̂ 1 .90/.89 –/– 1.13/1.14 –/149.16
(14.10)/GEG012̂ 1 –/– –/– –/– –/–
(14.11)/GEG013̂ 1 .36/.36 10.29/10.34 14.42/14.41 13.10/37.32
(14.12)/GEG014̂ 1 .42/.42 –/33.62 2.92/2.98 –/–
(14.13)/GEG015̂ 1 .45/.45 1.39/1.41 2.71/2.72 5.93/35.99
(14.14)/GEG016̂ 1 7.21/81.78 –/– –/– –/–

Total solved 73/74 40/50 36/43 48/53

Table 1: Performance results of ST T provers for example problems.
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The first column in Table 1 lists the problem numbers, and additionally a
respective TPTP identifier.10 The remaining columns present the performance
results of our theorem provers in seconds for each example problem. The provers
were applied twice to every problem. The first run was with a prover timeout of just
15 seconds and the second run with a prover timeout of 200 seconds. For instance,
the result entry 4.37/19.38 for Problem (1.1) in the column of IsabelleP says that
IsabelleP proved this problem in the first run in 4.37 seconds, while it needed 19.38
seconds in the second run. This effect is caused by the fact that IsabelleP — like
LEO-II and TPS — applies a time slicing approach, in which the initially given
time resource is split into slices, and in each time slice a different IsabelleP tactic is
applied. Each problem that IsabelleP could solve in 15 seconds, it could also solve
in 200 seconds. However, the performance of IsabelleP significantly decreased for
all example problems in the second run. For LEO-II we only occasionally witnessed
such a performance decrease in the second run, and TPS and Satallax did not show
it all in our case study. There is only one problem, namely (14.1), which LEO-II
could solve only in the second run.11 For IsabelleP there are 5 such problems, for
Satallax 7, and for TPS 10.

Overall, LEO-II was by far the strongest prover in our experiments. With a
timeout of 200 seconds, LEO-II could solve 75 out of the 80 proof problems in
Table 1. IsabelleP comes second with 53 solved problems, followed by TPS with
50 and Satallax with 43. The distance between LEO-II and the other provers was
even bigger for the 15 seconds timeout setting: LEO-II still proved 74 problems.
IsabelleP comes second with 48 solved problems, followed by TPS and Satallax
with 40 and 36.

There were no problems in our experiments that could be solved by IsabelleP
or Satallax but not by LEO-II. Hence, both provers are subsumed by LEO-II in
our case study. There were 15 problems that only LE0-II could solve, and there
were 2 problems that only TPS could solve.

In summary, all but three example problems could be solved by our off-the-shelf
provers, and most results were obtained in less than second.

We are not aware of any other running system, in particular no prover in the
direct approach, that can handle all of the above problems.

8 Conclusion

Our overall goal has been to show that prominent classical and non-classical logics
and their combinations can be elegantly modeled as fragments of classical higher-
order logic ST T and (partly) automated with off-the-shelf higher-order theorem
provers.

Our experiments are encouraging and they provide first evidence for our claim
that ST T is suited as a generic and flexible framework for combining classical and

10 See http://www.tptp.org/cgi-bin/SeeTPTP?Category=Problems; the TPTP problem files
marked with ∗ are only similar and not identical to the problem files used in the experiments.
11 Note, that version v1.1 of LEO-II, which did not yet employ time slicing, did in fact show

a significantly better performance for this particular example [11]. Hence, (14.1) is one of
those interesting cases where LEO-II got worse after introduction of the time slicing approach.
Overall, time-slicing did significantly increase the number of problems that can be solved by
LEO-II in CASC-J5.
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non-classical logics. It is obvious, however, that ST T provers should be signifi-
cantly improved for fruitful application to more challenge problems in practice.
The author is convinced that significant improvements — in particular for frag-
ments of ST T as illustrated in this article — are possible and that they will be
fostered by the new TPTP infrastructure and the new yearly higher-order CASC
competitions.

Note that when working with our provers from within a proof assistant such
as Isabelle/HOL the user may also provide interactive help if the reasoning tasks
are still to challenging, for example, by formulating some lemmas or by splitting
proof tasks in simpler subtasks.

An advantage of our approach also is that provers such as our LEO-II are
generally capable of producing verifiable proof output, though much further work is
needed to make these proof protocols exchangeable between systems or to explain
them to humans. Furthermore, it may be possible to formally verify the entire
theory of our embedding(s) within a proof assistant.

Future work includes the study of the overall philosophical and computational
characteristics of our approach, and the investigation of its range and its limita-
tions. In particular, prominent notions for combining logics, such as fusions [54],
products [50] and fibrings [31], will be re-investigated in the context of our frame-
work. For this, note that the accessibility relations r associated with 2r operators
in this article all range over the same world type µ. In this sense the particular
notion of logic combination employed here is related to that of a fusion. In order
to model our example problems as products, different world types µi can be in-
troduced and the modal connectives can be copied for each of those. Moreover,
respective axioms can be postulated to model the desired product properties.

The work presented in this article has its roots in the LEO-II project (in
2006/2007 at University of Cambridge, UK) in which we first studied and employed
the presented embedding of quantified and propositional multimodal logics in ST T
[15,17]. This research, amongst others, is currently continued in the DFG project
ONTOLEO (BE 2501/6-1). In ONTOLEO we study whether our approach can
be applied to automate modalities in ontology reasoning [19,18]. However, our
work is obviously relevant also for many other application directions. Studying
the scalability of our approach for a range of these applications is thus important
future work.
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project at Cambridge University (EPRSC grant LEO-II EP/D070511/1). Geoff
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on the work presented in this article. Moreover, Chad Brown provided some early
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thanks goes to the developers of the ST T provers employed in this article.

References

1. Peter B. Andrews. General models and extensionality. Journal of Symbolic Logic, 37:395–
397, 1972.



Combining and Automating Classical and Non-Classical Logics in ST T 23

2. Peter B. Andrews. General models, descriptions, and choice in type theory. Journal of
Symbolic Logic, 37:385–394, 1972.

3. Peter B. Andrews. Theorem Proving via General Matings. Journal of the ACM, 28(2):193–
214, 1981.

4. Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth
Through Proof. Kluwer Academic Publishers, second edition, 2002.

5. Peter B. Andrews, Matt Bishop, Sunil Issar, Dan Nesmith, Frank Pfenning, and Hongwei
Xi. TPS: A Theorem-Proving System for Classical Type Theory. Journal of Automated
Reasoning, 16(3):321–353, 1996.

6. Peter B. Andrews and Chad Brown. TPS: A Hybrid Automatic-Interactive System for
Developing Proofs. Journal of Applied Logic, 4(4):367–395, 2006.

7. Julian Backes and Chad E. Brown. Analytic tableaux for higher-order logic with choice. In
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