
Citation: Hu, P.; Aghajanirefah, H.;

Anvari, A.; Nehdi, M.L. Combining

Artificial Neural Network and Seeker

Optimization Algorithm for

Predicting Compression Capacity of

Concrete-Filled Steel Tube Columns.

Buildings 2023, 13, 391. https://

doi.org/10.3390/buildings13020391

Academic Editor: Andreas

Lampropoulos

Received: 24 December 2022

Revised: 13 January 2023

Accepted: 25 January 2023

Published: 1 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Article

Combining Artificial Neural Network and Seeker Optimization
Algorithm for Predicting Compression Capacity of Concrete-Filled
Steel Tube Columns
Pan Hu 1,2, Hamidreza Aghajanirefah 3, Arsalan Anvari 4 and Moncef L. Nehdi 5,*

1 School of Civil and Architectural Engineering, Technical University of Munich, 80333 Munich, Germany
2 Wuhan Municipal Construction Group Co., Ltd., Wuhan 430023, China
3 Department of Civil Engineering, Faculty of Engineering, Qazvin Branch Islamic Azad University,

Qazvin 3419915195, Iran
4 Engineering and Management, Faculty of Civil Engineering, Science and Research Branch,

Islamic Azad University, Tehran 1477893855, Iran
5 Department of Civil Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
* Correspondence: nehdim@mcmaster.ca

Abstract: Accurate and reliable estimation of the axial compression capacity can assist engineers
toward an efficient design of circular concrete-filled steel tube (CCFST) columns, which are gaining
popularity in diverse structural applications. This study proposes a novel methodology based
on computational intelligence for estimating the compression capacity of CCFST. Accordingly, a
conventional artificial neural network (ANN) is hybridized with a metaheuristic algorithm called the
seeker optimization algorithm (SOA). Utilizing information such as the column’s length, compressive
strength of ultra-high-strength concrete, and the diameter, thickness, yield stress, and ultimate
stress of the steel tube, the capacity of the column is predicted through non-linear calculations.
In addition to the SOA, the future search algorithm (FSA) and social ski driver (SSD) are used as
comparative benchmarks. The prediction results showed that the SOA-ANN can learn and predict
the compression capacity pattern with high accuracy (relative error < 2.5% and correlation > 0.99).
Also, this model outperformed both benchmark hybrids (i.e., FSA-ANN and SSD-ANN). Apart from
accuracy, the configuration of the SOA-ANN is simpler owing to the smaller population recruited
for the optimization task. An explicit formula for the proposed model is developed, which, owing
to its observed efficiency, can be reliably applied to CCFST columns for the early estimation of the
compression capacity.

Keywords: CCFST columns; axial compression capacity; composite structures; neural network;
seeker optimization algorithm

1. Introduction

The world of engineering has witnessed significant advances in computational and
evaluative methods during the past decades. It has enabled scholars of different domains to
develop sophisticated tools/programs towards enhancing their scientific capabilities [1–3].
Civil engineering is one of these fields that comprises a wide variety of subjects from
material-related analysis such as concrete [4,5]) to safety of structures [6]. Civil engineers
have successfully applied various experimental [7] and numerical [8] methods for solving
problems such as dealing with seismic events [9]. For this purpose, they need to profoundly
investigate the behavior of different parts of structures such as beams and columns for
design purposes.

Circular concrete-filled steel tube (CCFST) columns are fundamental structural ele-
ments that are broadly used because of their compressive strength [10–12]. Hence, analyz-
ing the axial compression capacity (ACC) of these elements has been the primary aim of
many studies that has been fulfilled using various numerical and analytical methodologies.
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Yu, et al. [13], for example, presented a unified formulation for designing hollow and
solid polygonal CCFST columns. As for analytical approaches, Lai, et al. [14] developed
a path-dependent stress-strain method for analyzing the behavior of CCFST columns.
The accuracy of the model was finally accepted with respect to the accommodation be-
tween the observed and modeled load-strain curves. A similar methodology was tested by
Chen, et al. [15] for concrete confined by fiber-reinforced polymer and corresponding CCFST
columns. An ABAQUS-based numerical method was suggested by Zhang, et al. [16] for
estimating the residual capacity of CCFST stub columns subjected to axial compression with
a combined freeze situation. The model was verified by comparison with the experiment.
Based on the executed sensitivity analysis, they professed that the influence of section size
can be disregarded in calculations.

Toward more convenient and more efficient analysis, machine learning methods
have recently been replaced with conventional models in many fields of research [17–19].
There is a wide variety of these models such as gene expression programming (GEP) [20],
adaptive neuro-fuzzy inference system (ANFIS) [21], and multivariate adaptive regression
splines [22] that have been effectively applied to problems related to the CCFST columns.
Ho and Le [23] investigated the feasibility of a regression model for analyzing the ulti-
mate load of CCFST columns by taking into account the variability propagated to the
response. Tran, et al. [24] applied an artificial neural network (ANN) for analyzing the
ACC of the CCFST columns. Utilizing the results of a series of finite element analyses,
they could establish a neural relationship between the ACC and effective parameters. The
resulting model was finally presented in the form of a graphical user interface. In a simi-
lar study by Nguyen, et al. [25], the feasibility of the ANN was proved for this purpose.
Cosgun, et al. [26] conducted a comparison among some popular machine-learning meth-
ods including the ANN, random forest (RF), support-vector machines (SVM), and multiple
linear regression (MLR), and showed that the ANN can present a more accurate approxi-
mation of the ultimate axial load carried by a CCFST.

Optimization algorithms are iterative techniques that aim to find the optimal solu-
tion to a problem. Defining the problem in a mathematical form, an optimization tech-
nique tries to minimize the cost function by improving the solution consecutively [27–30].
Sarir, et al. [31] conducted a comparison between a tree-based GEP and an ANN technique
trained by particle swarm optimization (PSO). The accuracy assessment showed the higher
capacity of the tree-GEP model. In the next phase of the study, they employed a whale
optimization algorithm (WOA) for achieving the maximum bearing capacity of the CCFST
columns. The findings revealed that the WOA can have significant contribution to the
mentioned task.

In combination with machine learning, these algorithms can play the role of training
strategies that tune the internal parameters (e.g., weights and biases). Nguyen, et al. [32]
coupled an ANN with step secant algorithm (OSS) to create a surrogate hybrid model for
analyzing the bearing capacity of rectangular CCFST columns. Likewise, Mai, et al. [33]
tuned a radial basis ANN with firefly algorithm (FFA) and achieved significant improve-
ments (around 52%) with respect to the basic model. Another application of the PSO can
be found in the research by Nguyen, et al. [34]. They combined the PSO with an ANN and
compared it with several benchmark techniques. According to the findings, the suggested
hybrid performs the best and can efficiently predict the compressive strength of CCFST
columns. Sine cosine algorithm (SCA) is another viable optimization technique that has
recently been developed. Lyu, et al. [35] synthesized this algorithm with support vector
regression (SVR) for estimating the ACC of the CCFST columns. Their results showed
that the proposed SCA-SVR model can predict the ACC with significantly higher accuracy
compared to a typical ANN, RF, and MLR. In detail, the correlation of the SVR model in-
creased from 0.6603 to 0.9849 as the effect of the SCA algorithm. Ngo and Le [36] developed
and tested a comparable hybrid model but with grey wolf optimization (GWO) instead
of SCA. The results showed a more reliable understanding of the intelligent approaches
relative to conventional empirical ones. Tran, et al. [37] used interior-point (IP) algorithm
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to improve the performance of the ANN in predicting the ACC of elliptical CFST columns.
Comparison of the results (e.g., correlation coefficients 0.983 vs. 0.938) showed that the
IP-ANN is superior to the conventional version of this method. They also professed that
this model can be efficient due to eliminating some costly experiments.

It is a well-accepted fact that such indirect evaluations can be of great interest to
design engineers, due to the easiness of implementation and reducing the cost of civil
engineering projects [38]. The successful performance of the metaheuristic optimization in
various prediction problems [39,40] addresses the main motivation of this study to test the
efficiency of novel hybrids in the field of ACC modeling. Although some previous studies
have used metaheuristic techniques for training models like ANFIS, [41,42], training of the
ANN can be more investigated. In this study, this task is assigned to seeker optimization
algorithm (SOA), future search algorithm (FSA), and social ski-driver (SSD) which are
among the potential metaheuristic optimizers. The algorithms are coupled with an ANN to
tune its parameters for predicting the ACC of the CCFST column with ultra-high-strength
concrete (UHSC). The models are also compared to previous literature to address the most
capable one for practical applications.

2. Materials and Methods
2.1. Data Provision

Data, as is known, provide the analyzable material for a data-mining system. In other
words, the system acquires knowledge by exploring the relationship between the provided
data. In this work, the target parameter is the ACC of the CCFST column with UHSC.
Hence, the models seek to realize the dependency of this parameter on its influencing
factors (i.e., input parameters). Since the basic network of this study is a neural network,
a highly nonlinear relationship is supposed to be established. This relationship takes
the effect of several input parameters simultaneously and calculates the ACC through a
feed-forward strategy.

Based on the existing dataset created by Tran, Thai and Nguyen [24], six input pa-
rameters affect the ACC of the CCFST column. The length of column (L), the compressive
strength of UHSC (fc’), as well as four characteristics of the steel tube including diam-
eter (D), thickness (t), yield stress (fy), and ultimate stress (fu). Figure 1a–g depicts a
histogram for each of these input parameters. The values of L, D, t, fy, fu, and fc’ range in
[900.0, 4800.0] mm, [300.0, 600.0] mm, [6.0, 30.0] mm, [235.0, 460.0] MPa, [360.0, 540.0] MPa,
and [100.0, 200.0] MPa, with skewness values equal to 0.51, 0.00, 0.73, 0.42, −0.28, and 0.00,
respectively. Also, the minimum and maximum ACC values are 8016.3 and 75,051.6 N with
an average 30,185.3 N and skewness 0.55.

Zheng, Jin, Jiang, Moradi, Khadimallah and Moayedi [42] performed an importance
assessment on this dataset using the random forest technique. According to their results,
D and fc’ play the most important role in predicting the ACC, whereas fu and L were
characterized with the lowest importance values.

It was explained that the knowledge of an intelligent model is obtained after analyzing
appropriate data. In more detail, only one group of data is dedicated to this objective. A
smaller part of data are set aside to be used afterwards for assessing the quality of the
acquired knowledge. It evaluates the prediction capability of the trained network when
new conditions are imposed. These two groups are named training and testing datasets. In
this work, a total of 768 records are available, out of which 614 records form the training
dataset, and the remaining 154 records are selected as testing data; noting that a random
selection is considered for this purpose. As is seen, the ratio of 80:20 is considered for this
division which is a well-accepted ratio for such works.
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2.2. The SOA

The SOA was introduced by Dai, et al. [43] as a stochastic approach for numerical
optimization. The basis of this algorithm is human searching, and due to this, it was later
renamed human group optimization. This algorithm has shown high convergence speed
and good search efficacy for many applications [44].

The agents in this algorithm are called seekers. A neighborhood is defined for each
agent for sharing social information. For each seeker I at time step t, two vectors of search
direction and step length are defined as follows:

→
d i(t) = [di1, di2, . . . , diD], (1)

→
λ t(t) = [λi1, λi2, . . . , λiD], (2)

where λij(t) ≥ 0 and dij ∈ {−1, 0, 1} (i = 1, 2, . . . , Npop (population size) and j = 1, 2, . . . ,
D (dimension of problem)). Equation (3) shows how the jth element of position of the seeker
i is updated.

xij(t + 1) = xij(t) + dij λij, (3)

Like many other search algorithms, the local minimum could be an important issue to
the SOA algorithm. It is because subpopulations perform a search by using their knowledge.
To overcome this issue, an inter-subpopulation learning method is devised for the algorithm.
In this method, a binomial crossover operator performs to combine the two least-fitted
positions of each subpopulation with the best-fitted position pertaining to each of the other
two subpopulations. Equation (4) expresses this process.

xkn , j,worst =

{
xmj,best i f Rj ≤ 0.5
xkn , j,worst else,

j = 1, 2, . . . , D, (4)

where xkn , j,worst denotes the jth element of the nth least-fitted position in the kth subpop-
ulation. Likewise, xmj,best denotes the jth element of the best-fitted position in the mth
subpopulation. Also, Rj is a random number uniformly placed within [0, 1] [45,46].

2.3. The FSA

Elsisi [47] developed the FSA based on the imitative behavior of individuals taken for
improving the life quality. The population is accordingly defined as some nations which
are sought by a person for his/her comfortable life. Unlike many existing algorithms in
which the population is once generated and the best individual is detected after a long
time, the FSA refreshes the irregular population at each iteration [48]. In this algorithm, a
random population is first generated based on the below equation:

S(k, :) = Lb + (Ub − Lb)× rand(1, D), (5)

where S stands for the solution, D is the dimension of the space (i.e., the number of
countries), k represents the present solution. Also, the lower and upper boundaries are
represented by Lb and Ub, respectively.

The objective functions of the initial individuals are considered as the local solutions
(LSs) and the best-fitted one is deemed as the global solution (GS). Both LS and GS are
used during optimization using the FSA algorithm. Equation (6) expresses the exploitation
phase of the algorithm which uses the LS of each country.

S(k, :)L = (LS(k, :)− S(k, :))× rand(), (6)

The exploration phase is then performed as shown in Equation (7). The GS is used in
this step.

S(k, :)G = (GS− S(k, :))× rand(), (7)
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By knowing the locally and globally persons across the world, one may decide to
change the life as given in Equation (8).

S(k, :) = S(k, :) + S(k, :)L + S(k, :)G, (8)

Equation (9) shows how the solutions are updated for modifying the initial population.

S(k, :) = GS + (GS− LS(k, :))× rand(), (9)

This process is iteratively repeated and stops when the algorithm meets one conver-
gence/stopping criterion [48]

2.4. The SSD

This algorithm was proposed by Tharwat and Gabel [49] for optimizing the parameters
of the SVM model. The SSD is drawn on the idea of different optimization algorithms.
The search scheme of this method is a simulation of the downhill path taken by ski-
drivers. Having n as the dimension of the problem, Rn shows the space in which the
agents take position (Xi). Like other optimization techniques, the cost function is calculated
with respect to the agents’ positions. Similar to the PSO technique, among different
positions that are obtained for an agent, the best one is stored and is compared to the
next positions [50]. Another simulated strategy that is embedded in the SSD algorithm is
the movement of agents toward a mean global solution (Mi). Referring to the grey wolf
optimizer algorithm [51], the Mi is calculated as the average of three outstanding solutions
(Xa, Xb, and Xc):

Mt
i =

Xa + Xb + Xc

3
, (10)

In the SSD algorithm, the agents update their position using a velocity term as follows:

Xt+1
i = Xt

i + Vt
i , (11)

in which the velocity of the ith agent is represented by Vi. Equation (12) expresses the
calculation of Vt+1

i .

Vt+1
i =

{
c cos(r1)

(
Pt

i − Xt
i
)
+ cos(r1)

(
Mt

i − Xt
i
)

i f r2 > 0.5
c sin(r1)

(
Pt

i − Xt
i
)
+ sin(r1)

(
Mt

i − Xt
i
)

i f r2 ≤ 0.5
, (12)

where r1 and r2 are random values randomly generated in the range [0, 1] and Pi represents
the best solution found so far. In addition, c is defined by Equation (13) to establish a
balance between exploration and exploitation.

ct+1 = βct, (13)

In the above equation, t stands for the iteration and β is a reducing factor that ranges
from 0 to 1. Thus, the value of c goes toward 0 as t approaches the maximum number.
Regarding the sine and cosine functions used in Equation (12), the moving strategy of
this algorithm is not straightforward (unlike the GWO and PSO). It enables the agents to
have a more diversified search path (i.e., higher exploration ability), however, in a guided
way [49].

3. Results and Discussion

Analyzing the parameters of the materials used in the construction sector has been
widely explored [52–54]. Following previous efforts for evaluating different structural units
(e.g., foundation [55], beams [56], and frames [57]), this study offers new methodologies for
approximating the capacity of the CCFST columns.

Evaluating the results consists of accuracy assessment using different indicators. It
can be done by a calculation of prediction error and correlation. In the present study, the
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three famous indices of RMSE, mean absolute error (MAE), and mean absolute percentage
error (MAPE) are responsible for representing the error, and the correlation between the
simulation outputs and expected Pus is calculated by the Pearson correlation coefficient
(RP). Having ACCiexpected and ACCisimulated as the ith (i = 1, 2, . . . , N) observed and estimated
values of the ACC, respectively, the formulations of these accuracy indicators are expressed
as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

[(ACCiexpected − ACCisimulated)]

2

, (14)

MAE =
1
N

N

∑
i=1

∣∣∣ACCiexpected − ACCisimulated

∣∣∣, (15)

MAPE =
1
N

N

∑
i=1

∣∣∣∣∣ACCiexpected − ACCisimulated

ACCiexpected

∣∣∣∣∣× 100, (16)

RP =

N
∑

i=1
(ACCisimulated − ACCsimulated)(ACCiexpected − ACCexpected)√

N
∑

i=1
(ACCisimulated − ACCsimulated)

2
√

N
∑

i=1
(ACCiexpected − ACCexpected)

2
(17)

3.1. Parameter Optimization

In this work, all coding and implementations are carried out in the MATLAB en-
vironment. A neural network can be the skeleton of hybrid models, when the second
incorporator plays the role of the training strategy [58,59]. Three hybrid models are tested
for estimating the ACC of the CCFST column with UHSC. In each model, one metaheuristic
algorithm, i.e., SOA, FSA, and SSD, is responsible for training the ANN. In this process, the
network has two to-be-optimized parameters, namely weight and bias.

To calculate the exact number of weights and biases, it is necessary to know the
general body of a neural network that partly corresponds to the used dataset. An ANN has
a minimum of three layers. In the first layer, the neurons receive the input data. Hence,
there are six neurons in the first layer (same as the number of input parameters). The second
layer (also known as a hidden layer) concerns with main calculations and its number of
neurons is experimentally determined to be five in this study. It is worth mentioning that a
series of trial-and-error efforts were performed to support this decision. Finally, the unique
neuron in the output layer is responsible for producing the final output (i.e., the ACC).
Considering the connection between the input and hidden neurons, the created network has
(6 × 5 =) 30 weights in the first part plus (5 × 1 =) 5 weights providing connections for the
hidden and output neurons. In addition, there are six bias terms: five for hidden neurons
and one for the output neuron. All in all, the ANN has 41 to-be-optimized parameters that
should be properly adjusted by the trainer. Besides, the activation function of the hidden
and output layers are Tansig and Purelin, respectively.

In each of the proposed models, i.e., SOA-ANN, FSA-ANN, and SSD-ANN, the
metaheuristic algorithm goes through the search space and finds the optimal solution. It
then reconstructs the ANN to predict the ACC using new weights and biases. This strategy
is recursively implemented until the given condition is satisfied. In this work, a total
of 1000 iterations are considered for the SOA, FSA, and SSD to have enough chance for
optimizing their ANN. However, such algorithms have an important parameter, called
population size, which can highly affect the quality of the solution. To solve this issue,
the used algorithms are tried with different population sizes and their performances are
compared to obtain the most accurate optimization. The criterion for evaluating the
solutions is the RMSE calculated for both training and testing data. The results are shown
in Table 1. As is seen, among the population sizes of 10, 25, 50, 100, 200, 300, 400, and 500,
the lowest error of the SOA, FSA, and SSD has resulted for 100, 400, and 400, respectively.
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Table 1. Computed errors for different population sizes.

Population Size

Error (RMSE)

SOA FSA SSD

Train Test Train Test Train Test

10 1025.3611 1112.7001 11,392.7308 12,078.6674 9342.3668 9225.4253

25 1004.0163 1049.8834 4145.1873 4244.6568 6810.4859 7444.0207

50 1004.0163 1049.8834 8435.5850 8679.0653 7559.0509 7667.1607

100 790.1621 825.3149 4109.1313 4184.6332 5773.8329 5380.2117

200 913.7759 971.8556 5140.9042 4832.3346 5413.4324 5092.9420

300 839.1691 938.2552 5136.5219 4562.0366 5611.5035 5533.1326

400 880.9083 951.6036 2215.2954 2136.6979 2614.6768 2604.5897

500 1025.3611 1112.7001 2468.9317 2742.0072 3855.7082 3459.6554

Minimum RMSE 790.1621 825.3149 2215.2954 2136.6979 2614.6768 2604.5897

Figure 2a–c illustrate the corresponding optimization curves. As is known, an op-
timization curve illustrates how the solution found by the algorithm is improving over
iterations. As is seen, the used algorithms show completely different behavior in finding
the optimal solution for the ANN. Another noticeable point is the distinction between the
results of large and small population sizes. It supports the necessity of having such efforts
toward finding an appropriate representative of the model.

3.2. Prediction Results and Comparison

This section presents the results of the used models in predicting the ACC. First, the
results of the training phase are statistically evaluated. Figure 3 depicts the error chart
for 614 training samples. The error on the y-axis is the exact difference between the pair
Pu iexpected and Pu isimulated (i = 1, 2, . . . , 614). Needless to say, the data on the line y = 0
represent ideal predictions where the error is zero.
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Figure 2a–c illustrate the corresponding optimization curves. As is known, an opti-
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erations. As is seen, the used algorithms show completely different behavior in finding 
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According to the obtained RMSEs, 790.1621, 2215.2954, and 2614.6768for the SOA-
ANN, FSA-ANN, and SSD-ANN, respectively, all three models could acquire an acceptable
understanding of the ACC behavior. This result can be similarly indicated by the MAE
values of 571.1356, 1673.6446, and 1971.9976. Moreover, based on very low relative er-
rors 2.2656%, 6.2182%, and 7.9524%, as well as high RP values 0.99862, 0.98909, and
0.98522, it can be deduced that the training process has been satisfactorily carried out by all
three algorithms.

However, referring to the same assessment, the superiority of the SOA algorithm can
be inferred. The solution provided by this algorithm is of higher accuracy because the
created ANN produces more accurate outputs. After that, the training process supervised
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by the FSA was more promising than the SSD. In other words, the weights and biases found
by the FSA could construct a more powerful neural network.
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In the second phase of evaluation, the testing dataset is concerned. The trained SOA-
ANN, FSA-ANN, and SSD-ANN predicted the ACC for 154 new conditions of CCFSTC
with UHSC. Having the expected values, the agreement between the outputs and targets
reflects the quality of prediction. Figure 4 is presented to show this concept. In such figures,
the ideal prediction occurs when all data are settled on the line y = x, which gives an RP = 1.
In this case, the RPs were 0.99836, 0.98896, and 0.98435. Accordingly, the results of all
three models have a nice correlation with expected values. The calculated RMSEs were
825.3149, 2136.6979, and 2604.5897 which give a tolerable range of error. As for the MAEs,
the calculated values were 633.4302, 1662.8879, and 2016.4144 which account for 2.4802%,
6.1011%, and 8.3695% relative error (i.e., MAPE).

3.3. Comparison and Further Assessment

From the above results, it can be deduced that all three models presented a reliable
prediction of the ACC. It means that by providing the information of L, D, t, fy, fu, and fc’, a
close-to-reality analysis of the behavior of CCFST columns can be expected. Going more
deeply into the networks, the weights and biases suggested by the SOA, FSA, and SSD
could create a generalizable pattern.

From the comparison point of view, there was no discrepancy between the training
and testing results; meaning that the model with a higher quality training achieved a
higher quality prediction. Hence, the ANN trained by the SOA was the most accurate
network, followed by the FSA and SSD. Having the results of both phases altogether, the
SOA emerged as a more powerful optimization technique compared to the FSA and SSD.
Likewise, the FSA surpassed the SSD. However, it should be noted that this conclusion is
derived for the objective of this study.
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Figure 4. The scatter charts of the testing results for (a) SOA-ANN, (b) FSA-ANN, and (c) SSD-ANN.

The achievement of this study is also compared to previous works that have applied
intelligent combined models to the same dataset. In studies by Karimi Sharafshadeh,
Ketabdari, Azarsina, Amiri and Nehdi [41] and Zheng, Jin, Jiang, Moradi, Khadimallah
and Moayedi [42], several metaheuristic techniques (including equilibrium optimization
(EO) [60], grey wolf optimization (GWO) [51], Harris hawk optimizer (HHO) [61], earth-
worm algorithm (EWA) [62], salp swarm algorithm (SSA) [63], and teaching learning-based
optimization (TLBO) [64]) incorporated the ANFIS model to similarly predict the ACC. As
shown in Table 2, the accuracy criteria of six models are compared to the ones obtained for
the SOA-ANN, FSA-ANN, and SSD-ANN in this study. At a glance, all accuracy criteria of
the SOA-ANN model show lower error and higher correlation for this model compared to
all eight models. These results indicate that a significant improvement is obtained in the
prediction accuracy of the ACC by using the SOA algorithm.

3.4. An Explicit Formula

Producing and presenting an explicit formula is the last objective of this study. As
explained, the configuration of an ANN is a layered non-linear combination of weights and
biases influenced by an activation function. On the other hand, since the SOA-ANN was
the most accurate model, it was decided to present this model in the form of a two-part
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formula. Equations (18) and (19) correspond to the calculations performed in the hidden
and output layer of the ANN, respectively. As is seen, each of the five neurons in the
hidden layer produces an output expressed by Zi (i = 1, 2, . . . , 5). These values are later
used by the output neuron to produce the ACC. In Equation (18), Tansig is the activation
function of the neurons that causes the non-linearity of the simulation. This function is
expressed in Equation (20).

Table 2. Computed values of RMSE, MAE, MAPE, RP in this study and previous literature.

Study Models

Network Results

Training Phase Testing Phase

RMSE MAPE MAE RP RMSE MAPE MAE RP

This study

SOA-ANN 790.16 2.27 571.14 0.99862 825.31 2.48 633.43 0.99836

FSA-ANN 2215.30 6.22 1673.64 0.98909 2136.70 6.10 1662.89 0.98896

SSD-ANN 2614.68 7.95 1972.00 0.98522 2604.59 8.37 2016.41 0.98435

[41]

EWA-ANFIS 3984.79 12.41 3085.06 0.96436 4033.84 12.92 12.92 0.96106

SSA-ANFIS 2950.36 10.39 2296.06 0.98055 2874.74 10.62 10.62 0.98004

TLBO-ANFIS 2923.11 10.29 2282.50 0.98092 2854.81 10.49 10.49 0.98037

[42]

EO-ANFIS 1275.95 4.05 956.77 0.99640 1346.17 4.18 1022.85 0.99564

GWO-ANFIS 2944.91 10.37 2291.41 0.98062 2872.76 10.59 2324.19 0.98006

HHO-ANFIS 1422.89 4.55 1071.82 0.99551 1492.50 4.89 1184.65 0.99462


Z1
Z2
Z3
Z4
Z5

 = Tansig






0.963 −0.800 −0.523 0.509 0.590 0.950
1.113 −0.274 0.320 −1.026 −0.823 −0.453
−1.017 −0.660 −0.347 −0.960 0.783 −0.476
−0.975 1.342 0.400 −0.319 0.137 0.566
0.147 −0.707 −1.099 −0.500 0.069 1.170





D
L
t
fy
fu
f ′c



+


−1.831
−0.915
0.000
−0.915
1.831



, (18)

ACC = −0.841× Z1 + 0.555× Z2 + 0.217× Z3 − 0.614× Z4 − 0.570× Z5 − 0.342, (19)

Tansig(x) =
2

1 + e−2x − 1, (20)

4. Conclusions

Analyzing the axial compression capacity of concrete-filled steel tube columns is sub-
stantial in structural engineering. Many recent works have reported successful applications
of machine learning models, especially metaheuristic-optimized ones, for this purpose.
This work suggested and tested a hybrid model (i.e., a neural network supervised by
seeker optimization algorithm) for predicting the ACC of the CCFST column. According
to the training results, the predictive model could effectively learn the behavior of the
CCFST column given the column characteristics. Evaluating the testing results proved
the high generalizability of this approach in dealing with unseen specimens. In addition,
several accuracy assessment criteria were applied to compare the proposed SOA-ANN to
two similar ANN hybrids (i.e., FSA-ANN and SSD-ANN), as well as six ANFIS hybrid
models from previous studies (i.e., EWA-ANFIS, SSA-ANFIS, TLBO-ANFIS, EO-ANFIS,
GWO-ANFIS, and HHO-ANFIS). The results revealed that the SOA-ANN performed the
task with higher accuracy. Hence, it can be a reliable alternative to traditional approaches
(e.g., finite elements) for designing the CCFST columns with respect to their compression
capacity. However, more algorithms and prediction strategies are suggested to be tried in
future relevant works towards improving the discovered solutions.
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