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ABSTRACT

Visual exploration of multivariate data typically requires projection
onto lower-dimensional representations. The number of possible
representations grows rapidly with the number of dimensions, and
manual exploration quickly becomes ineffective or even unfeasi-
ble. This paper proposes automatic analysis methods to extract
potentially relevant visual structures from a set of candidate visu-
alizations. Based on features, the visualizations are ranked in ac-
cordance with a specified user task. The user is provided with a
manageable number of potentially useful candidate visualizations,
which can be used as a starting point for interactive data analy-
sis. This can effectively ease the task of finding truly useful visu-
alizations and potentially speed up the data exploration task. In
this paper, we present ranking measures for class-based as well
as non class-based Scatterplots and Parallel Coordinates visualiza-
tions. The proposed analysis methods are evaluated on different
datasets.

Index Terms: H.3.3 [Information Storage and Retrieval]: In-
formation Search and Retrieval I.3.3 [Computer Graphics]: Pic-
ture/Image Generation;

1 INTRODUCTION

Due to the technological progress over the last decades, today’s sci-
entific and commercial applications are capable of generating, stor-
ing, and processing massive amounts of data. Making use of these
archives of data provides new challenges to analysis techniques. It
is more difficult to filter and extract relevant information from the
masses of data since the complexity and volume has increased. Ef-
fective visual exploration techniques are needed that incorporate
automated analysis components to reduce complexity and to ef-
fectively guide the user during the interactive exploration process.
The visualization of large complex information spaces typically in-
volves mapping high-dimensional data to lower-dimensional visual
representations. The challenge for the analyst is to find an insight-
ful mapping, while the dimensionality of the data, and consequently
the number of possible mappings increases. For an effective visual
exploration of large data sources, it is therefore essential to support
the analyst with Visual Analytics tools that helps the user in finding
relevant mappings through automated analysis. One important goal
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of Visual Analytics, which is the focus of this paper, is to generate
representations that best show phenomena contained in the high-
dimensional data like clusters and global or local correlations.

Numerous expressive and effective low-dimensional visualiza-
tions for high-dimensional datasets have been proposed in the past,
such as Scatterplots and Scatterplot matrices, Parallel Coordinates,
Hyper-slices, dense pixel displays and geometrically transformed
displays [12]. However, finding information-bearing and user-
interpretable visual representations automatically remains a diffi-
cult task since there could be a large number of possible represen-
tations and it could be difficult to determine their relevance to the
user. Instead, classical data exploration requires from the user to
find interesting phenomena in the data interactively, starting from
an initial visual representation. In large scale multivariate datasets,
sole interactive exploration becomes ineffective or even unfeasible,
since the number of possible representations grows rapidly with the
number of dimensions. Methods are needed that help the user au-
tomatically find effective and expressive visualizations.

In this paper we present an automated approach that supports the
user in the exploration process. The basic idea is to either generate
or use a given set of potentially insightful candidate visualizations
from the data and to identify potentially relevant visual structures
from this set of candidate visualizations. These structures are used
to determine the relevance of each visualization to common prede-
fined analysis tasks. The user may then use the visualization with
the highest relevance as the starting point of the interactive analysis.
We present relevance measures for typical analysis tasks based on
Scatterplots and Parallel Coordinates. The experiments based on
class-based and non class-based datasets show that our relevance
measures effectively assist the user in finding insightful visualiza-
tions and potentially speed up the exploration process.

2 RELATED WORK

In the last years several approaches for selecting good views of
high-dimensional projections and embeddings have been proposed.
One of the first was the Projection Pursuit [6, 10]. Its main idea is
to search for low-dimensional (one or two-dimensional) projections
that expose interesting structures of the high-dimensional dataset,
rejecting any irrelevant (noisy or information-poor) dimensions. To
exhaustively analyze such a dataset using low-dimensional projec-
tions, Asimov presented the Grand Tour [3] that supplies the user
with a complete overview of the data by generating sequences of
orthogonal two-dimensional projections. The problem with this
approach is that an extensive exploration of a high-dimensional
dataset is effortful and time consuming. A combination of both
approaches, Projection Pursuit and the Grand Tour, is proposed in
[4] as a visual exploration system. Later on, different Projection
Pursuit indices have been proposed [5, 10], but all these techniques
do not consider possible class information of the data.

As an alternative to Projection Pursuit, the Scagnostics method
[21] was proposed to analyze high-dimensional datasets. Wilkinson



presented more detailed graph-theoretic measures [23] for comput-
ing the Scagnostics indices to detect anomalies in density, shape and
trend. These indices could be also used as a ranking for Scatterplot
visualizations depending on the analysis task.

We present an image-based measure for non-classified Scatter-
plots in order to quantify the structures and correlations between
the respective dimensions. Our measure can be used as an index in
a Scagnostics matrix as an extension to evaluate such correlations.

Koren and Carmel propose a method of creating interesting pro-
jections from high-dimensional datasets using linear transforma-
tions [13]. Their method integrates the class decomposition of the
data, resulting in projections with a clearer separation between the
classes. Another interesting visualization method for multivariate
datasets is Parallel Coordinates. Parallel Coordinates was first in-
troduced by Inselberg [11] and is used in several tools, e.g. Xmdv-
Tool [22] and VIS-STAMP [7], for visualizing multivariate data. It
is important for Parallel Coordinates to decide the order of the di-
mensions that are to be presented to the user. Aiming at dimension
reordering, Ankerst et al. [1] presented a method based on simi-
larity clustering of dimensions, placing similar dimensions close to
each other. Yang [24] developed a method to generate interesting
projections also based on similarity between the dimensions. Simi-
lar dimensions are clustered and used to create a lower-dimensional
projection of the data.

The approach most similar to ours is probably Pixnostics, pro-
posed by Schneidewind et al. [19]. They also use image-analysis
techniques to rank the different lower-dimensional views of the
dataset and present only the best to the user. The method pro-
vides to the user not only valuable lower-dimensional projections,
but also optimized parameter settings for pixel-level visualizations.
But while this approach concentrates on pixel-level visualizations
as Jigsaw Maps and Pixel Bar Charts, we focus on Scatterplots and
Parallel Coordinates.

Additional to the measure for classified and non-classified Scat-
terplots, we also propose two measures for classified Scatterplots as
an alternative to [13]. Our measures first select the best projections
of the dataset and therefore have the advantage, over embeddings
generated by linear combination of the the original variables, that
the orthogonal projection axes can be more easily interpreted by
the user. As an alternative to the methods for dimension reordering
for Parallel Coordinates we propose a method based on the structure
presented on the low-dimensional embeddings of the dataset. Three
different kind of measures to rank these embeddings are presented
in this paper for class and non-class based visualizations.

3 OVERVIEW AND PROBLEM DESCRIPTION

Increasing dimensionality and growing volumes of data lead to the
necessity of effective exploration techniques to present the hidden
information and structures of high-dimensional datasets. For sup-
porting visual exploration, the high-dimensional data is commonly
mapped to low-dimensional views. Depending on the technique,
exponentially many different low-dimensional views exist, which
can’t be analyzed manually.

A commonly used visualization technique to deal with multivari-
ate datasets is Scatterplots. This low-dimensional embedding of the
high-dimensional data in a 2D view can be interpreted easily, espe-
cially in the most common case of orthogonal linear projections.

Since there are n2−n
2 different plots for an n-dimensional dataset in

a Scatterplot matrix, an automatic analysis technique to preselect
the important dimensions is useful and necessary.

Another well known and widely used visualization method for
multivariate datasets is Parallel Coordinates. One problem of this
kind of visualization is the large number of possible arrangements
of the dimension axes. For an n-dimensional dataset it has been
shown, that n+1

2 permutations are needed to visualize all adjacen-
cies, but there are n! possible arrangements. An automated analysis

of the visualizations can help finding the best visualizations out of
all possible arrangements. We attempt to analyze the pairwise com-
binations of dimensions which are later assembled to find the best
visualizations, reducing the visual analysis to n2 visualizations.
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Figure 1: Working steps to get a ranked set of good visualizations of
high-dimensional data.

Some applications involve classified data. We have to take this
property into account when proposing our ranking functions. When
dealing with unclassified data, we search for patterns or correlations
between the data points. This might reveal important characteris-
tics that can be of interest to the user. In order to see the structure
of classified data, it is necessary for the visualizations to separate
the clusters or at least to have a minimal overlap. The greater the
number of classes, the more difficult the separation.
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Figure 2: Overview and classification of our methods. We present
measures for Scatterplots and Parallel Coordinates using classified
and unclassified data.

In our paper we describe ranking functions that deal with visu-
alizations of classified and unclassified data. An overview of our
approach is presented in Figure 1. We start from a given multivari-
ate dataset and create the low-dimensional embeddings (visualiza-
tions). According to the given task, there are different visualiza-
tion methods and different ranking functions, that can be applied
to these visualizations. The functions can measure the quality of
the views and provide a set of useful visualizations. An overview
of these techniques is shown in Figure 2. For Scatterplots on un-
classified data, we developed the Rotating Variance Measure which
highly ranks xy-plots with a high correlation between the two di-
mensions. For classified data, we propose measures that consider
the class information while computing the ranking value of the im-
ages. For Scatterplots we developed two methods, a Class Density
Measure and a Histogram Density Measure. Both have the goal to
find the best Scatterplots showing the separating classes. For Par-
allel Coordinates on unclassified data, we propose a Hough Space
Measure which searches for interesting patterns such as clustered
lines in the views. For classified data, we propose two measures,
one, the Overlap Measure, focusing on finding views with as little
overlap as possible between the classes, so that the classes sepa-
rate well. The other one, Similarity Measure, looks for correlations
between the lines.

As analysis tasks, we exemplarily chose correlation search in
Scatterplots (Section 4.1) and cluster search (i.e. similar lines) in



Parallel Coordinates (Section 5.1) for unclassified datasets. If class
information is given, the tasks are to find views, where distinct clus-
ters in the dataset are also well separated in the visualization (Sec-
tion 4.2 ) or show a high level of inter- and intraclass similarity
(Section 5.2).

4 QUALITY MEASURES FOR SCATTERPLOTS

Our approaches aim at two main tasks of visual analytics of Scat-
terplots: finding views which show a large extend of correlation
and separating the data into well defined clusters. In Section 4.1 we
propose analysis functions for task one, ranking functions for task
two are then proposed in Section 4.2. In the case of unclassified,
but well separable data, class labels can be automatically assigned
using clustering algorithms [16, 17, 18].

4.1 Scatterplots Measures for unclassified data

4.1.1 Rotating Variance Measure

Good correlations are represented as long, skinny structures in the
visualization. Due to outliers even almost perfect correlations can
lead to skewed distributions in the plot and attention needs to be
paid to this fact. The Rotating Variance Measure (RVM) is aimed
at finding linear and nonlinear correlations between the pairwise
dimensions of a given dataset.

First we transform the discrete Scatterplot visualization into a
continuous density field. For each pixel p and its position x = (x,y)
the distance to its k-th nearest sample points Np in the visualization
is computed. To obtain an estimate of the local density ρ at a pixel
p, we define ρ = 1/r, where r is the radius of the enclosing sphere
of the k-nearest neighbors of p given by

r = maxi∈Np
||x−xi||. (1)

Choosing the k-th neighbor instead of the nearest eliminates the
influence of outliers. k is chosen to be between 2 and n−1, so that
the minimum value of r is mapped to 1. We used 4 throughout the
paper. Other density estimations could of course be used as well.

Visualizations containing good correlations should, in general,
have corresponding density fields with a small band of larger val-
ues, while views with less correlation have a density field consisting
of many local maxima spread in the image. We can estimate this
amount of spread for every pixel by computing the normalized mass
distribution by taking s samples along different lines lθ centered at
the corresponding pixel positions xlθ and with length equal to the
image width, see Figure 3. For these sampled lines we compute the
weighted distribution for each pixel position xi.

ν i
θ =

∑
s
j=1 p

s j

lθ
||xi −xs j ||

∑
s
j=1 p

s j

lθ

(2)

ν i = min
θ∈[0,2π]

ν i
θ (3)

where p
s j

lθ
is the j-th sample along line lθ and xs j is its correspond-

ing position in the image. For pixels positioned at a maximum of
a density image conveying a real correlation the distribution value
will be very small, if the line is orthogonal to the local main di-
rection of the correlation at the current position, in comparison to
other positions in the image. Note that such a line can be found
even in non-linear correlation. On the other hand, pixels in density
images conveying no or few correlation will always have only large
ν values.

For each column in the image we compute the minimum value
and sum up the result. The final RVM value is therefore defined as:

RV M =
1

∑x miny ν(x,y)
, (4)

where ν(x,y) is the mass distribution value at pixel position (x,y).

(a) (b)

Figure 3: Scatterplot example and its respective density image. For
each pixel we compute the mass distribution along different direc-
tions and save the smallest value, here depicted by the blue line.

4.2 Scatterplot Measures for classified data

Most of the known techniques calculate the quality of a projec-
tion, without taking the class distribution into account. In classified
data plots we can search for the class distribution in the projection,
where good views should show good class separation, i.e. minimal
overlap of classes.

In this section we propose two approaches to rank the scatter-
plots of multivariate classified datasets, in order to determine the
best views of the high-dimensional structures.

4.2.1 Class Density Measure

The Class Density Measure (CDM) evaluates orthogonal projec-
tions, i.e. Scatterplots, according to their separation properties. The
goal is to identify those plots that show minimal overlap between
the classes. Therefore, CDM computes a score for each candidate
plot that reflects the separation properties of the classes. The can-
didate plots are then ranked according to their score, so that the
user can start investigating highly ranked plots in the exploration
process.

In order to compute the overlap between the classes, a continu-
ous representation for each class is necessary. In the case we are
given only the visualization without the data, we assume that every
color used in the visualization represents one class. We therefore
first separate the classes into distinct images, so that each image
contains only the information of one of the classes. For every class
we estimate a continuous, smooth density function based on local
neighborhoods. For each pixel p the distance to its k-th nearest
neighbors Np of the same class is computed and the local density is
derived as described earlier in Section 4.1.

Having these continuous density functions available for each
class we estimate the mutual overlap by computing the sum of the
absolute difference between each pair and sum up the result:

CDM =
M−1

∑
k=1

M

∑
l=k+1

P

∑
i=1

||pi
k −pi

l || , (5)

with M being the number of density images, i.e. classes respec-
tively, pi

k is the i-th pixel in the k-th density image and P is the
number of pixels. If the range of the pixel values is normalized
to [0,1] the range for the CDM is between 0 and P. This value is
large, if the densities at each pixel differ as much as possible, i.e. if
one class has a high density value compared to all others. There-
fore, the visualization with the fewest overlap of the classes will
be given the highest value. Another property of this measure is not
only in assessing well separated but also dense clusters, which eases
the interpretability of the data in the visualization.

4.2.2 Histogram Density Measure

The Histogram Density Measure (HDM) is a density measure for
Scatterplots. It considers the class distribution of the data points



Figure 4: 2D view and rotated projection axes. The projection on the
rotated plane has less overlap, and the structures of the data can be
seen even in the projection. This is not possible for a projection on
the original axes.

using histograms. Since we are interested in plots that show good
class separations, HDM looks for corresponding histograms that
show significant separation properties. To determine the best low-
dimensional embedding of the high-dimensional data using HDM,
a two step computation is conducted.

First, we search in the 1D linear projections which dimension is
separating the data. For this purpose, we calculate the projections
and rank them by the entropy value of the 1D projections separated
in small equidistant parts, called histogram bins. pc is the number
of points of class c in one bin. The entropy, average information
content of that bin, is calculated as:

H(p) = −∑
c

pc

∑c pc
log2

pc

∑c pc
(6)

H(p) is 0, if a bin has only points of one class, and log2M, if it con-
tains equivalent points of all M classes. This projection is ranked
with the 1D-HDM:

HDM1D = 100−
1

Z
∑
x

(∑
c

pcH(p)) (7)

= 100−
1

Z
∑
x

∑
c

pc(−∑
c

pc

∑c pc
log2

pc

∑c pc
). (8)

where 1
Z is a normalization factor, to obtain ranking values between

0 and 100, having 100 as best value:

1

Z
=

100

log2M ∑x ∑c pc
. (9)

In some datasets, paraxial projections are not able to show the struc-
ture of high-dimensional data. In these cases, simple rotation of the
projection axes can improve the quality of the measure. In Figure 4.
we show an example, where a rotation is improving the projection
quality. While the paraxial projection of these classes cannot show
this structures on the axes, the rotated (dotted projection) axes have
less overlay for a projection on the x′ axes. Therefore we rotate the
projection plane and compute the 1D-HDM for different angles θ .
For each plot we choose the best 1D-HDM value. We experimen-
tally found θ = 9m degree, with (m ∈ [0,20)) to be working well
for all our datasets.

Second, a subset of the best ranked dimensions are chosen to be
further investigated in higher dimensions. All the combinations of
the selected dimensions enter a PCA computation. The first two
components of the PCA are plotted to be ranked by the 2D-HDM.
The 2D-HDM is an extended version of the 1D-HDM, for which
a 2-dimensional histogram on the Scatterplot is computed. The
quality is measured, exactly as for the 1D-HDM, by summing up a

weighted sum of the entropy of one bin. The measure is normalized
between 0 and 100, having 100 for the best data points visualiza-
tion, where each bin contains points of only one class. Also the bin
neighborhood is taken into account, as for each bin pc we sum the
information of the bin itself and the direct neighborhood, labeled as
uc. Consequently the 2D-HDM is:

HDM2D = 100−
1

Z
∑
x,y

∑
c

uc(−∑
c

uc

∑c uc
log2

uc

∑c uc
) (10)

with the adapted normalization factor

1

Z
=

100

log2M ∑x,y(∑c uc)
. (11)

5 QUALITY MEASURES FOR PARALLEL COORDINATES

When analyzing Parallel Coordinate plots, we focus on the detec-
tion of plots that show good clustering properties in certain attribute
ranges. There exist a number of analytical dimension ordering ap-
proaches for Parallel Coordinates to generate dimension orderings
that try to fulfill these tasks [1, 24]. However, they often do not gen-
erate an optimal parallel plot for correlation and clustering proper-
ties, because of local effects which are not taken into account by
most analytical functions. We therefore present analysis functions
that do not only take the properties of the data into account, but also
the properties of the resulting plot.

5.1 Parallel Coordinate Measures for unclassified data

5.1.1 Hough Space Measure

Our analysis is based on the assumption that interesting patterns are
usually clustered lines with similar positions and directions. Our
algorithm for detecting these clusters is based on the Hough trans-
form [9].

Straight lines in the image space can be described as y = ax +
b.The main idea of the Hough transform is to define a straight line
according to its parameters, i.e. the slope a and the interception b.
Due to a practical difficulty (the slope of vertical lines is infinite)
the normal representation of a line is:

ρ = xcosθ + ysinθ (12)

Using this representation, for each non-background pixel in the vi-
sualization, we have a distinct sinusoidal curve in the ρθ -plane,
also called Hough or accumulator space. An intersection of these
curves indicates that the corresponding pixels belong to the line de-
fined by the parameters (ρi,θi) in the original space. Figure 5 shows
two synthetic examples of Parallel Coordinates and their respective
Hough spaces: Figure 5(a) presents two well defined line clusters
and is more interesting for the cluster identification task than Fig-
ure 5(b), where no line cluster can be identified. Note that the bright
areas in the ρθ -plane represent the clusters of lines with similar ρ
and θ .

To reduce the bias towards long lines, e.g. diagonal lines, we
scale the pairwise visualization images to an n×n resolution, usu-
ally 512×512. The accumulator space is quantized into a w×h cell
grid, where w and h control the similarity sensibility of the lines.
We use 50× 50 grids in our examples. A lower value for w and h
reduces the sensibility of the algorithm because lines with a slightly
different ρ and θ are mapped to the same accumulator cells.

Based on our definition, good visualizations must contain fewer
well defined clusters, which are represented by accumulator cells
with high values. To identify these cells, we compute the median
value m as an adaptive threshold that divides the accumulator func-
tion h(x) into two identical parts:



(a) (b)

Figure 5: Synthetic examples of Parallel Coordinates and their re-
spective Hough spaces: (a) presents two well defined line clusters
and is more interesting for the cluster identification task than (b),
where no line cluster can be identified. Note that the bright areas
in the ρθ -plane represent the clusters of lines with similar ρ and θ .

∑h(x)

2
= ∑g(x) , where (13)

g(x) =

{

x if x ≤ m;
m else.

Using the median value, only a few clusters are selected in an accu-
mulator space with high contrast between the cells (See Fig 5(a)),
while in a uniform accumulator space many clusters are selected
(See Fig 5(b)). This adaptive threshold is not only necessary to se-
lect possible line clusters in the accumulator space, but also to avoid
the influence of outliers and occlusion between the lines. In the oc-
clusion case, a point that belongs to two or more lines is computed
just once in the accumulator space.

The final goodness value for a 2D visualization is due to the num-
ber of accumulator cells ncells that have a higher value than m nor-
malized by the total number of cells (wḣ) to the interval [0,1]:

si, j = 1−
ncells

wh
, (14)

where i, j are the indices of the respective dimensions, and the com-
puted measure si, j presents higher values for images containing
well defined line clusters (similar lines) and lower values for im-
ages containing lines in many different directions and positions.

Having combined the pairwise visualizations, we can now com-
pute the overall quality measure by summing up the respective pair-
wise measurements. This overall quality measure of a parallel vi-
sualization containing n dimensions is:

HSM = ∑
ai∈I

sai,ai+1
, (15)

where I is a vector containing any possible combination of the n
dimensions indices. In this way we can measure the quality of any
given visualization, using Parallel Coordinates.

Exhaustively computing all n-dimensional combinations in or-
der to choose the best/worst ones, requires a very long computation
time and becomes unfeasible for a large n. In these cases, in or-
der to search for the best n-dimensional combinations in a feasible
time, an algorithm to solve a Traveling Salesman Problem is used,
e.g. the A*-Search algorithm [8] or others [2]. Instead of exhaus-
tively combining all possible pairwise visualizations, these kind of
algorithms would compose only the best overall visualization.

5.2 Parallel Coordinates Measures for classified data

While analyzing Parallel Coordinates visualizations with class
information, we consider two main issues. First, in good Par-
allel Coordinates visualizations, the lines that belong inside a
determined class must be quite similar (inclination and position
similarity). Second, visualizations where the classes can be

separately observed and that contain less overlapping are also
considered to be good. We developed two measures for classified
Parallel Coordinates that take these matters into account: the
Similarity Measure that encourages inner class similarities, and the
Overlap Measure that analyzes the overlap between classes. Both
are based on the measure for unclassified data presented in section
5.1.

5.2.1 Similarity Measure

The similarity measure is a direct extension of the measure pre-
sented in section 5.1. For visualizations containing class informa-
tion, the different classes are usually represented by different col-
ors. We separate the classes into distinct images, containing only
the pixels in the respective class color, and compute a quality mea-
sure sk for each class, using equation (14). Thereafter, an overall
quality value s is computed as the sum of all class quality measures:

SM = ∑
k

sk. (16)

Using this measure, we encourage visualizations with strong inner
class similarities and slightly penalize overlapped classes. Note that
due to the classes overlap, some classes have many missing pixels,
which results in a lower sk value compared to other visualizations
where less or no overlap between the classes exists.

5.2.2 Overlap Measure

In order to penalize overlap between classes, we analyze the differ-
ence between the classes in the Hough space (see section 5.1). As in
the similarity measure, we separate the classes to different images
and compute the Hough transform over each image. Once we have
a Hough space h for each class, we compute the quality measure as
the sum of the absolute difference between the classes:

OM =
M−1

∑
k=1

M

∑
l=k+1

P

∑
i=1

||hi
k −hi

l || (17)

Here M is the number of Hough space images, i.e. classes respec-
tively and P is the number of pixels. This value is high if the
Hough spaces are disjoint, i.e. if there is no large overlap between
the classes. Therefore, the visualization with the smallest overlap
between the classes receives the highest values.

Another interesting use of this measure is to encourage or search
for similarities between different classes. In this case, the overlap
between the classes is desired, and the previously computed mea-
sure can be inverted to compute suitable quality values:

OM INV = 1/OM. (18)

6 APPLICATION AND EVALUATION

We tested our measures on a variety of real datasets. We applied
our Class Density Measure (CDM), Histogram Density Measure
(HDM), Similarity Measure (SM) and Overlap Measure (OM) on
classified data, to find views on the data which try to either separate
the data or show similarities between the classes. For unclassified
data, we applied our Rotating Variance Measure (RVM) and Hough
Space Measure (HSM) in order to find linear or non-linear correla-
tions and clusters in the datasets, respectively. Except for the HDM,
we chose to present only relative measures, i.e. all calculated mea-
sures are scaled so that the best visualization is assigned 100 and
the worst 0. For the HDM, we chose to present the unchanged mea-
sure values, as the HDM allows an easy direct interpretation, with a
value of 100 being the best and 0 being the worst possible constel-
lation. If not stated otherwise our examples are proof-of-concepts,
and interpretations of some of the results should be provided by
domain experts.
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Figure 6: Results for the Parkinson’s Disease dataset using our RVM
measure (Section 4.1). While clumpy non-correlation bearing views
are punished (bottom row), views containing more correlation are
preferred (top row).

We used the following datasets: Parkinson’s Disease is a dataset
composed of 195 voice measures from 31 people, 23 with Parkin-
son’s disease [15, 14]. Each of the 12 dimensions is a particular
voice measure. Olives is a classified dataset with 572 olive oil sam-
ples from nine different regions in Italy [25]. For each sample the
normalized concentrations of eight fatty acids are given. The large
number of classes (regions) poses a challenging task to the algo-
rithms trying to find views in which all classes are well separated.
Cars is a previously unpublished dataset of used cars automatically
collected from a national second hand car selling website. It con-
tains 7404 cars listed with 24 different attributes, including price,
power, fuel consumption, width, height and others. We chose to
divide the dataset into two classes, benzine and diesel to find the
similarities and differences between these. Wisconsin Diagnostic
Breast Cancer (WDBC) dataset consists of 569 samples with 30
real-valued dimensions each [20]. The data is classified into ma-
lign and benign cells. The task is to find the best separating di-
mensions. Wine is a classified dataset with 178 instances and 13
attributes describing chemical properties of Italian wines derived
from three different cultivars.

First we show our results for RVM on the Parkinson’s Dis-
ease dataset [15, 14]. The three best and the three worst re-
sults are shown in Figure 6. Interesting correlations have been
found between the dimensions Dim 9(DFA) and Dim 12(PPE),
Dim 2(MDVP:Fo(Hz)) and Dim 3(MDVP:Fhi(Hz)), as well as Dim
2(MDVP:Fo(Hz)) and Dim 4(MDVP:Flo(Hz)) (Fig. 6). On the
other hand visualizations containing few or no correlation infor-
mation at all received a low value.

In Figure 7 the results for the Olives dataset using our CDM
measure are shown. Even though a view separating all different
olive classes does not exist, the CDM reliably choses three views
which separate the data well in the dimensions Dim 4(oleic) and
Dim 5(linoleic), Dim 1(palmitic) and Dim 5(linoleic) as well as
Dim 1(palmitic) and Dim 4(oleic).

We also applied our HDM technique to this dataset. First the 1D-
HDM tries to identify the best separating dimensions, as presented
in Section 4.2.2. The dimensions Dim 1(palmitic), Dim 2(palmi-
toleic), Dim 4(oleic), Dim 5(linoleic) and Dim 8(eicosenoic) were
ranked as the best separating dimensions. We computed all subsets
of these dimensions and ranked their PCA views with the 2D-HDM.
In the best ranked views presented in Figure 8 the different classes

Best ranked views using CDM
100 97 84

Worst ranked views using CDM
0 15 24

Figure 7: Results for the olive dataset using our CDM measure (Sec-
tion 4.2.1). The different colors depict the different classes (regions)
of the dataset. While it is impossible for this dataset to find views
completely separating all classes, our CDM measure still found views
where most of the classes are mutually separated (top row). In the
worst ranked views the classes clearly overlap with each other (bot-
tom row).

Best ranked PCA-views using HDM
85.45 84.98 84.9

Figure 8: Results for the Olives dataset using our HDM measure
(Section 4.2.2). The best ranked plot is the PCA of Dim(4,5,8)
were the classes are good visible, the second best is the PCA of
Dim(1,2,4) and the third is the PCA on all 8 dimensions. The differ-
ences between the last two are small, because the variance in that
additional dimensions for the 3rd relative to the 2nd is not big. The
difference between these and the first is good visible.

are well separated. Compared to the upper row in Figure 7, the vi-
sualization uses the screen space better, which is due to the PCA
transformation.

To measure the value of our approaches for Parallel Coordinates
we estimated the best and worst ranked visualizations of different
datasets. The corresponding visualizations are shown in Figure 9,
10 and 11. For a better comparability the visualizations have been
cropped after the display of the 4th dimension. We used a size of
50× 50 for the Hough accumulator in all experiments. The algo-
rithms are quite robust with respect to the size and using more cells
generally only increases computation time but has little influence
on the result. Figure 9 shows the ranked results for the Parkinsons
Disease dataset using our Hough Space Measure.

The HSM algorithm prefers views with more similarity in the
distance and inclination of the different lines, resulting in the promi-
nent small band in the visualization of the Parkinsons Disease
dataset, which is similar to clusters in the projected views of these
dimension, here between Dim 3(MDVP:Fhi(Hz)) and Dim 12(PPE)
as well as Dim 6(HNR) and Dim 11(spread2).

Applying our Hough Similarity Measure to the Cars dataset



we can see that there seem to be barely any good clusters in the
dataset (see Figure 10). We verified these by exhaustively looking
at all pairwise projections. However, the only dimension where the
classes can be separated and at least some form of cluster can be re-
liably found is (Dim 6(RPM)), in which cars using diesel generally
have a lower value compared to benzine (Fig. 10 top row). Also
the similarity of the majority in Dim 15(Height), Dim 18(Trunk)
and Dim 3(Price) can be detected. Obviously cars using diesel are
cheaper, this might be due to the age of the diesel cars, but age
was unfortunately not included in the data base. On the other hand
the worst ranked views using the HSM (Fig. 10, bottom row) are
barely interpretable, at least we weren’t able to extract any useful
information.

In Figure 11 the results for our Hough Overlap Measure applied
to the WDBC dataset are shown. This result is very promising.
In the top row, showing the best plots, the malign and benign are
pretty well separated. It seems that the dimensions Dim 22(ra-
dius (worst)), Dim 9(concave points (mean)), Dim 24 (perimeter
(worst)), Dim 29(concave points (mean)) and Dim 25(Area (worst))
separate the two classes pretty well. We showed these results to a
medical scientist who confirmed our findings, that these measures
are some of the most reliable to discern cancer cells, as cancer cells
tend to either divide themselves more often, which results in larger
nuclei due to the mitosis, or do not completely divide resulting in
deformed, concave nuclei.

7 CONCLUSION

In this paper we presented several methods to aid and potentially
speed up the visual exploration process for different visualization
techniques. In particular, we automized the ranking of Scatterplot
and Parallel Coordinates visualizations for classified and unclassi-
fied data for the purpose of correlation and cluster separation. In the
future a ground truth could be generated, by letting users choose the
most relevant visualizations from a manageable test set and com-
pare them to the automatically generated ranking in order to prove
our methods. Some limitations are recognized as it is not always
possible to find good separating views, due to a growing number
of classes and due to some multivariate relations, which is a gen-
eral problem and not related to our techniques. As future work,
we plan to apply α-transparency and clutter reduction to overcome
overplotting.

Furthermore, we will aim at finding measures for other, maybe
more complex tasks, and we would like to generalize our techniques
so that they can be applied and adapted to further visualization tech-
niques.
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Best ranked views using HSM
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Worst ranked views using HSM
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Figure 9: Results for the non-classified version of the Parkinsons Disease dataset. Best and worst ranked visualizations using our HSM measure
for non-classified data (ref. Section 5.1.1). (a) Top row: The three best ranked visualizations and their respective normalized measures. Well
defined clusters in the dataset are favored. Bottom row: The three worst ranked visualizations. The large amount of spread exacerbates
interpretation. Note that the user task related to this measure is not to find possible correlation between the dimensions but to detect good
separated clusters.

Best ranked views using SM
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Worst ranked views using SM
0 0.6 1.5

Figure 10: Results for the Cars dataset. Cars using benzine are shown in black, diesel in red. Best and worst ranked visualizations using
our Hough similarity measure (Section 5.2.1) for Parallel Coordinates. (a) Top row: The three best ranked visualizations and their respective
normalized measures. Bottom row: The three worst ranked visualizations.

Best ranked views using OM
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Worst ranked views using OM
0 0.1 0.2

Figure 11: Results for the WDBC dataset. Malign nuclei are colored black while healthy nuclei are red. Best and worst ranked visualizations
using our overlap measure (Section 5.2.1) for Parallel Coordinates. (a) Top row: The three best ranked visualizations. Despite good similarity,
which are similar to clusters, visualizations are favored that minimize the overlap between the classes, so the difference between malign and
benign cells becomes more clear. Bottom row: The three worst ranked visualizations. The overlap of the data complicates the analysis, the
information is useless for the task of discriminating malign and benign cells.


