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Summary

Markers that predict treatment effect have the potential to improve patient outcomes. For example,
the Oncotype DX ® Recurrence Score® has some ability to predict the benefit of adjuvant
chemotherapy over and above hormone therapy for the treatment of estrogen-receptor-positive
breast cancer, facilitating the provision of chemotherapy to women most likely to benefit from it.
Given that the score was originally developed for predicting outcome given hormone therapy
alone, it is of interest to develop alternative combinations of the genes comprising the score that
are optimized for treatment selection. However most methodology for combining markers is
useful when predicting outcome under a single treatment. We propose a method for combining
markers for treatment selection which requires modeling the treatment effect as a function of
markers. Multiple models of treatment effect are fit iteratively by upweighting or “boosting”
subjects potentially misclassified according to treatment benefit at the previous stage. The
boosting approach is compared to existing methods in a simulation study based on the change in
expected outcome under marker-based treatment. The approach improves upon methods in some
settings and has comparable performance in others. Our simulation study also provides insights as
to the relative merits of the existing methods. Application of the boosting approach to the breast
cancer data, using scaled versions of the original markers, produces marker combinations that may
have improved performance for treatment selection.
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1. Introduction

Discovering and describing heterogeneity in treatment effects across patient subgroups has
emerged as a key objective in clinical trials and drug development. If the treatment effect
can be predicted given marker values such as biological measurements and clinical
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6. Supplementary Materials
Web Appendix A, referenced in Sections 2.3 and 4, and Web Appendix B, referenced in Section 4, and R code to perform the
estimation are available with this paper at the Biometrics website on Wiley Online Library
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characteristics, providing patients and clinicians with these marker values can help them
make more informed treatment decisions. For example, the Oncotype DX Recurrence Score
is a leading marker for predicting the benefit of adjuvant chemotherapy over and above
tamoxifen among breast cancer patients with estrogen receptor-positive (ER-positive)
tumors (Albain al., 2010a). The Recurrence Score is a proprietary combination of expression
levels of 21 genes (16 cancer-related and 5 reference) measured in breast cancer tumor
tissue, and is used to identify a subgroup of patients for whom the likelihood of benefitting
from adjuvant chemotherapy is small. These patients can therefore avoid unnecessary and
potentially toxic treatment.

There is a large literature on statistical methods for combining markers, but the vast majority
of them have focused on combining markers for predicting outcome under a single treatment
(for example, Etzioni et al. (2003); Pepe et al. (2005); Zhao et al. (2011)). However,
combinations of markers for risk prediction or classification under a single treatment are not
optimized for treatment selection. Being at high risk for the outcome does not necessarily
imply a larger benefit from a particular treatment (Henry and Hayes (2006); Janes et al.
(2011, 2013a)). In particular, the Recurrence Score was originally developed for predicting
the risk of disease recurrence or death given treatment with tamoxifen alone (Paik et al.,
2004), and was later shown to have value for predicting chemotherapy benefit (Paik et al.
(2006); Albain at al. (2010a, b)). Therefore, it is of interest to explore alternative
combinations of gene expression measures that are optimized for treatment selection.

Statistical methods for combining markers for treatment selection are being developed (see
Gunter et al. (2007); Brinkley et al. (2010); Cai et al. (2011); Claggett et al. (2011); Lu et al.
(2011); Foster et al. (2011); Gunter et al. (2011a); Zhang et al. (2012); Zhao et al. (2012)). A
simple approach uses generalized linear regression to model the expected disease outcome
as a function of treatment and markers, including an interaction between each marker and
treatment (Gunter et al. (2007); Cai et al. (2011); Lu et al. (2011); Janes et al. (2013b)). This
model is difficult to specify, particulary with multiple markers as in the breast cancer
example, and hence an approach that is robust to model mis-specification is warranted. This
is a key motivation for our approach to combining markers for treatment selection. We call
our approach “boosting” since it is a natural generalization of the Adaboost (Adaptive
boosting) method used to predict disease outcome under a single treatment (Freund and
Schapire (1997); Friedman et al. (2000)).

Candidate approaches for combining markers should be compared with respect to a
clinically relevant performance measure, and yet a few of the existing studies have
performed such comparisons. In a simulation study and in our analysis of the breast cancer
data, we evaluate methods for combining markers using the cardinal measure of model
performance: the improvement in expected outcome under marker-based treatment (Song
and Pepe (2004); Brinkley et al. (2010); Gunter et al. (2011b); Zhang et al. (2012); Janes et
al. (2013a, b)). To the best of our knowledge, only two other papers (Qian and Murphy
(2011); Zhang et al. (2012)) have used this approach for evaluating new methodology.

The structure of the paper is as follows. In Section 2, we introduce our approach to
evaluating marker combinations for treatment selection and describe the boosting method. A
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simulation study used to evaluate the boosting approach in comparison to other candidate
approaches is described in Section 3. Section 4 describes our application of the boosting
approach to the breast cancer data. We conclude with a discussion of our findings and
further research topics to pursue.

2. Methods

2.1 Context and notation

Let D be a binary indicator of an adverse outcome following treatment which we refer to as
“disease”. In the breast cancer example, D indicates death or cancer recurrence within 5
years of study enrollment. We assume that D captures all the consequences of treatment,
such as subsequent toxicity, morbidity, and mortality; more general settings are addressed in
Section 5. Suppose that the task is to decide, for each individual patient, between two
treatment options denoted by T, where we call T = 1 “treatment” and T = 0 “no treatment”.
We assume that the default treatment strategy is to treat all patients. The marker, Y € RP,
may be useful for identifying a subgroup of patients who can avoid treatment. This setup is
motivated by the breast cancer context, wherein adjuvant chemotherapy in addition to
hormone therapy (T = 1) is the standard of care and markers are used to identify women who
can forego adjuvant chemotherapy (T = 0). The setting where T = 0 is the default and Y'is
used to identify a subgroup to treat can be handled by simply switching treatment labels (T =
0 for treatment and 1 for no treatment). We assume that the data { D;, 7;, Y; }""_, come from
the ideal setting for evaluating treatment efficacy, a randomized clinical trial comparing T =
0to T =1 where Y is measured at baseline and D is a clinical outcome observed for all
subjects.

2.2 Measures for evaluating marker performance

Let AY)=P(D=1T=0,Y)-P(D=1|T=1,Y) denote the marker-specific treatment
effect. Given marker values Y for all subjects, the treatment policy that minimizes the
population disease rate is to recommend no treatment if o(Y) = 1{A(Y) <0} = 1, where 1(")
is the indicator function (Vickers et al. (2007); Brinkley et al. (2010); Lu et al. (2011);
Zhang et al. (2012)). In the breast cancer example, this policy would recommend hormone
therapy alone to patients with negative treatment effects and adjuvant chemotherapy to
patients with positive treatment effects. The function A(Y) is therefore the combination of
markers that we seek, and ¢(Y) is the associated treatment rule. Given data {Dj, T;, Y;} for i
=1, ..., nsubjects, we estimate the marker-specific treatment effect by fitting a model for
P(D = 1|T Y), termed the “risk model”, and calculate A(Y) P(D 1T=0,V) - P(D Ut

=1, V) and oY) = 1{A(Y) < 0}.

We characterize the performance of an arbitrary estimated treatment rule go(AY) by evaluating
the benefit of marker-based treatment (Song and Pepe (2004); Brinkley et al. (2010); Gunter
et al. (2011b); Zhang et al. (2012); Janes et al. (2013a, b)). This is measured by the
difference in the disease rate under marker-based treatment assignment versus the default
strategy of providing treatment to all patients:
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A 0{¢(Y)} = P(D=1]T=1) )
—[P{D=1|T=0,p(Y)=1}P{¢(Y)=1}+P{D=1|T=1, (Y)=0} P{$(Y)=0}]
=[P{D=1|T=1,$(Y)=1}-P{D=1|T=0,$(Y)=1}] x P{$(Y)=1}.

In the breast cancer example, & denotes the reduction in the 5-year death or recurrence rate
under marker-based treatment; in general, a higher value of &indicates greater marker value.

. .. Pn(é) = Zniléi - . ..
Using the standard empirical measure — , Ois estimated empirically as
follows:

P,1{D=1,T=1,(Y)=1} P,1{D=1,T=0,(Y)=1}

P,1{T=1,¢(Y)=1} P, 1{T=0,0(Y)=1} xBp1{p(Y)=1}.

{o(v)}=

Another important measure of the population performance of the marker is the rate of
incorrect treatment recommendations, which we call the misclassification rate of treatment
benefit, MCRTa{@(V)} = P{(Y) # »(Y)}, and estimate by

MCR.,., {¢(Y)}=P,1{p(Y) # ¢(Y)}. Similar measures have been used by Foster et al.
(2011) and Lu et al. (2011). Although this measure can not be evaluated in practice since
A(Y) is unknown, it can be evaluated in simulated data where A(Y) is known.

2.3 The boosting method of combining markers for treatment selection

A simple approach for estimating A(Y) is to use a generalized linear model for the outcome,
D, as a function of markers, Y, and treatment, T, including interactions between each marker
and treatment. That is, to stipulate that

h{P(D:]-‘Ta Y)}ZU(T> Y)a (1)

where the linear predictor 7T, Y) = Y3 + T, V=T, YT, B and 5, are (p + 1)-
dimensional vectors of regression coefficients for the markers’ main effects and interactions
with treatment, respectively, and his a link function. The logit link is the most common
choice for a binary outcome. This risk model, if correctly specified, produces the
combination of markers, A(Y), with optimal performance, that is, & ¢(Y)}. However if the
risk model is mis-specified, it will produce a biased estimate of treatment effect, resulting in
a suboptimal combination of markers and rule for assigning treatment. With multiple
markers, the likelihood of risk model mis-specification is increased. Our method seeks to
improve upon logistic regression by providing an estimate of treatment effect, and a
combination of markers, that is more robust to risk model mis-specification.

To achieve this goal, we adopt the idea of Adaboost, which iteratively fits classifiers, at each
stage assigning higher weights to subjects whose outcomes are misclassified at the previous
stage in order to minimize classification error. Analogously, we repeatedly fit a “working
model” for P(D = 1|T, Y), and at each stage give more weight to subjects who lie close to the
decision boundary, A(Y) = 0, who have greater potential to be recommended the incorrect
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treatment. In other words, we extend Adaboost from the classification setting, where the
outcome to be predicted is D, to the treatment selection setting, where the outcome is 1{A(Y)
< 0}. The added complexity is that 1{A(Y) < 0} is not directly observable. Details of the
boosting algorithm are given below.

Boosting algorithm

L with initial weight w”=w© (v;) for subject i, i = 1, ..., n, fit the working risk

model and calculate POMD=1T=tY),t=0,1and AOY)=POD=1T=0,Y)
-POD=1T=1,V).

2. n
_ ) w(l):w%(l)/zw%(l)

Update weights accordingto * =" ,where
wiW= min[@{A(O) (Y;)}, C,,); for w(l) decreasing in |u] and a specified maximum
weight Cy. In our simulations, we use 5 f A (v;)}=|A) (Yi)[_% and Cy; = 500.
This upweights subjects with small |A©)(Y)| and limits the maximum size of the
weights.

3.

Re-fit the working model with updated weights w to obtain POD = 1T =t, V), t
=0,1and AO(Y) =POMD = 1T =0, Y;) - PA(D = 1|T = 1, ;) for all subjects.

4. Repeat steps (2)—(3) until either a pre-specified convergence criterion is satisfied or
a specified maximum number of iterations (Mmax) is reached. In our simulations,
we set Mmax = 500 as an upper limit on the number of iterations that would be
necessary.

5. After the last iteration, denoted by M < My, we have {POD=1T=t,Y), ...,
PM(D =1T=t,Y)},t=0, 1 and {AD(Y)), ..., AM)Y)} fori =1, ..., n. The
estimated disease rate and treatment effect for subject i are

M
P(D=1|Ti=t,Y;) =M P (Di=1|T;=, Yi),

m=1

ort=0,1, and

M
Av)=m1S AM v . .
(¥) mzz:1 (¥) , and the estimated treatment rule is ¢(Y;) = 1{AY;) < 0}.
6. Given a new subject with covariate Y0, say in an independent test data set, we apply

the set of working risk models in (5) and calculate A(m)(YO) form=1, ..., M. The

M
AX)=m13 A (o)

— and o(Y) = 1{A(Y0) < 0}.

estimated treatment effect is

We explore use of the linear logistic regression model (1) and a binary classification tree
(Breiman et al., 1984) as working models. However, the boosting method applies to any
arbitrary model for P(D = 1|T, Y). Choice of the weight function, w(u), maximum weight,
Cwm:, and algorithm stopping rule are discussed in Web appendix A. With the logistic
working model, we stop the iterations when [|f® - A1 < 10~7, where A is the vector of
estimated regression coefficients at the kN iteration, or when M = Myay; and with the
classification tree working model, we stop the iterations when M = Max.
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3. Simulation study

A simulation study was performed to compare the boosting method to existing approaches
for combining markers for treatment selection. The boosting method is compared to four
comparator approaches: 1) using Adaboost (Friedman et al. (2000)) to combine
classification trees for predicting disease outcome under each treatment separately; 2) fitting
a classification tree to both treatment groups including all marker-by-treatment interactions
as predictors; 3) the classic logistic regression approach which fits model (1) using
maximum likelihood; and 4) the approaches of Zhang et al. (2012) that maximize the
Inverse Probability Weighted (IPW) or Augmented Inverse Probability (AIPW) estimators
of 6.

3.1 Comparator methods for combining markers

3.1.1 Applying Adaboost separately to each treatment group—A natural
approach is to use a risk model to combine markers to predict outcome under each treatment
separately. We consider the Adaboost algorithm (Freund and Schapire (1997); Friedman et
al. (2000)) which combines predictions across multiple binary classification trees (Breiman
et al., 1984) (“base trees” (Hastie et al., 2001)). Hereafter this is referred to as the “Adaboost
trees” method. Each base tree is built by assigning higher weights to subjects that are
misclassified at the previous stage. The associated risk model for each treatment group is a
function of individual markers and, potentially, interactions between markers. We use
Friedman et al.’s method (Friedman et al., 2000) for estimating P(D = 1|T, Y). Adaboost
trees is implemented by the R function ada (R package ada (Culp et al., 2012)) using the
following default settings: exponential loss function, discrete boosting algorithm, and 500
base trees. Since Adaboost trees is a non-parametric approach, the obtained combination of
markers is expected to be more robust than logistic regression. However, fitting a separate
classifier to each treatment group may not yield the optimal marker combination for
treatment selection.

3.1.2 A single classification tree with marker-by-treatment interactions—An
alternative nonparametric approach is to fit a single classification tree to both treatment
groups including {T, TYy, ..., TYp, (1 = )Yy, ..., (1 = T)Yp} as predictors. Using this
classification tree, P(D = 1|T, Y) can be estimated using the empirical proportion of D = 1
observations in each terminal node. We use the R function rpart (R package rpart (Therneau
et al., 2012)) with default settings: the minimal number of observations required to split is
20, the minimum number of observations in any terminal node is 7, and the maximal number
of nodes prior to terminal node is 30. We do not prune the tree to stabilize the probability
estimates (Provost and Domingos (2003); Chu et al. (2011)), but these estimates are
improved by averaging across multiple tree classifiers (Chu et al., 2011).

3.1.3 Maximizing the IPW or AIPW estimators of 8&—Recently, Zhang et al. (2012)
proposed an approach that finds a combination of markers by directly maximizing the mean
outcome (in our context, minimizing the disease rate) under marker-based treatment. This is
equivalent to maximizing ﬁ,}he estimated decrease in disease rate under marker-based
treatment. Zhang et al. (2012) consider maximizing both IPW and AIPW estimators.
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Briefly, let D(t) denote the potential disease outcome under treatment t. For arbitrary

treatment rule g : Y {0, 1} (in our context, assigning no treatment), the goal is to estimate
°PL(Y )=arg min F{D(g)}=1{A(Y) < 0}

the optimal treatment rule defined by 99 , Where

D(g) = D(1){1 - g(Y)} + D(0)g(Y). Given a parametric working risk model P(D = 1|T, Y; /)

parameterized by finite-dimensional parameter f, let 7= 7(/) denote a scaled version of g

satisfying ||71] = 1 with ||-|| denoting the ¢,-norm. Treatment rules in this class of risk models

. L . 7P = arg minQ)(n)
are written g(Y, 7). The scaling is used to ensure that the solution n ,

where Q(7) = E[D{g(Y, 1)}, is unique. Specifically, 7Pt is estimated by minimizing the
IPW or AIPW estimators of Q(7) as follows:

C,D

IPWE(n)=P, {m J )

C,D _ Cn_77<:(Y;77a 7)

AIPWE(n)=P.
WEO) =Pl S ™ )

m(Yn,B)}, @)

where Y.= (1Y), 7(Y;y)=P(T=1|Y ;y)=—= . > _js a known or estimated probability of
treatment (the “propensity score™), 7o(Y: 7, 7) = (Y T+ {1 - a(Y: P}~ T ,Cy=T{1-
(Y, )} + (1 - Tg(Y, n) is the treatment recommend by the rule g(Y, 7), and m(Y 7, ,@ =
PO=1T=1Y; A{Ll-oY, n}+PD=1T=0,Y; Aa(Y, 7) is the model-estimated
disease rate under g(Y, 7). In our randomized trial setting, the propensity score model is
known by design. The IPW estimator (2) thus reduces to the empirical disease rate under
marker-based treatment. The AIPW estimator (3) is more efficient in large samples.
Maximizing (2) or (3) therefore yields the marker combination with the highest IPW or
AIPW Q{Aq)(?)} in the training data within the class of the working risk model. However,
when the working model is mis-specified, this combination may perform poorly, and it is in
this setting where the boosting approach may generate marker combinations with closer-to-
optimal performance.

To implement the approach, we find rf’f’t that minimizes IPWE(7) or AIPWE(7) under the
linear logistic working model (1) where 7= A/||A|. Under this model, 1{A(Y) <0} is
equivalent to 1{ ¥ < 0}, and so the class of treatment rules is % = {g(¥ ; 1) = 1{ < 0}, ||
=1 Y=Yy, ..., Yp)}. Following Zhang et al. (2012), the R function genoud (R
package rgenoud (Mebane, Jr. and Sekhon, 2011)) is utilized to minimize IPWE(7) (2) or
AIPWE(7) (3) using the genetic algorithm (Sekhon and Mebane, Jr., 1998).

3.2 Simulation set-up

We generate simulated data sets with 500 or 5,000 observations in the following fashion.
Binary treatment indicators T ~ Bernoulli (0.5). In most scenarios we generate three
independent continuous markers Y1, Y, and Yz (Y = (Y1, Y», Y3)) each following a standard
normal distribution; exceptions are noted below. The binary outcome D ~ Bernoulli {P(D =
1|T, Y)}. The risk model P(D = 1T, Y) varies among the seven scenarios as shown in Table 1
and described below. Figure 1 displays the distribution of A(Y) for each scenario. The linear
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logistic regression model (1) and the classification tree including {T, TY, (1 - T)Y} as
predictors are used as working models for the boosting method.

Simulation scenarios

Scenario 1. The true risk model is linear logistic where Yy, Yo, and Y3 have strong,
intermediate, and weak interactions with treatment: logit P(D = 1|T, Y) = 0.3 + 0.2Y; -
0.2Y, -0.2Y3 + T(-0.1 — 2Y; — 0.7Y, — 0.1Y3). The marker combination obtained by
fitting the linear logistic working model with maximum likelihood estimation (MLE) is
expected to achieve the best performance. However, it is of interest to determine the
extent to which other methods produce comparable results.

Scenario 2. The true risk model is the same as in Scenario 1, but now Y7 has high
leverage points. Specifically, a random 2% of Y; values are replaced with draws from a
Uniform (8, 9) distribution. This scenario is used to compare the performance of the
approaches that use the correct linear logistic working model in the context of high
leverage observations.

Scenario 3. The true risk model is log{-log P(D = 1|T, Y)} =-0.7 - 0.2Y1 - 0.2Y, +
0.1Y3 + T(0.1 + 2Y7 — Yo — 0.3Y3), where Y3, Yo, and Y3 have strong, intermediate, and
weak interactions with treatment. The linear predictor of the linear logistic working
model is correct but the link function is incorrect. This scenario is used to compare the
robustness of the boosting approach to other approaches in the context of minor
working model mis-specification.

Scenario 4. The true risk model is
log{—logP(D=1|T,Y)}=2—1.5Y?~1.5Y4+3Y, Yo+ T(—0.1-Y1+Y3). Y1 and Y,
follow a Uniform (=1.5, 1.5) distribution. The link function and main effects of the
linear logistic working model are incorrectly specified, the latter due to omission of
quadratic and marker-by-marker interaction terms, but the interaction terms are correct.
This scenario is chosen for its similarity to the first scenario in Zhang et al. (2012) who
found that, in a continuous outcome setting, maximizing the IPW or AIPW estimators
of Ayielded substantial improvement over standard linear regression.

Scenario 5. The true risk model is

logit P(D=1|T, Y )=—0.1—0.2Y; +0.2Y5—0.1Y3+ Y+ T(—0.5—2Y; — Yo —0.1Y3+2Y7)
including a non-linear main effect and interaction of Y; with treatment. The linear
logistic working model mis-specifies these Y; effects, but the classification tree working
model should be able to detect them.

Scenario 6. The true risk model is a logistic regression model including an interaction
between Y; and Yo where Y1, Yo and Y1Ys have intermediate, intermediate, and strong
interactions with treatment: logit P(D = 1|T, Y) =0.1 - 0.2Y; + 0.2Y, — Y7 Y, + T(-0.5 -
Y1 + Yo + 3Y1Yo). The linear logistic working model does not include Y;Ys and TY; Y,
interaction terms whereas a classification tree working model does allow for them.
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Scenario 7. The true risk model is the same linear logistic model as in Scenario 1 except
for the presence of 2% outlying observations. Specifically, for a random 2% sample, Y;
is replaced with a draw from a Uniform (8, 9) distribution and D is replaced with 1 - D.

For each scenario, 1000 data sets are generated and used as training data to build a
prediction model and treatment assignment rule, g/)(AY) = l{A(Y) < 0}. To avoid overoptimism
associated with fitting and evaluating the risk model using the same data, a single large
independent test data set with n = 105 observations is generated and used to evaluate the
performance of the fitted treatment rule, (9{¢(Y)} Mean and Monte-carlo standard deviation
(SD) of 9{¢(Y)} and mean MCRTB{go(Y)} are reported. The performance of the true
treatment rule, {o(Y)}, is calculated as an average of 6{¢(Y)} over 100 Monte-carlo
simulations where each Q{A(D(Y)} is obtained using n = 3 x 107 observations.

3.3 Results of the simulation study

Tables 2 and 3 summarize the simulation results for sample sizes n = 500 and n = 5000,
respectively. The performances of marker combinations obtained using the following
methods are compared: Logistic regression with maximum likelihood estimation (hereafter
“linear logistic MLE”), the boosting method described in Section 2.3 with linear logistic
working model (“linear logistic boosting™), maximizing the IPW or AIPW estimators of das
proposed by Zhang et al. (2012) (“maximizing IPWE or AIPWE of &), a single
classification tree with marker-by-treatment interactions (“single classification tree”), the
boosting method with a classification tree working model including marker-by-treatment
interactions (“classification tree boosting™), and applying Adaboost trees to each treatment
group separately (“separate Adaboost”). For each scenario, the method with the highest
mean @is marked in bold.

When the linear logistic working model was correctly specified (Scenario 1), as expected the
combination of markers obtained using linear logistic MLE had the highest mean &, smallest
SD of 6, and smallest MCRyg. Linear logistic boosting produced almost identical results,
whereas all other methods produced modestly lower mean @and substantially higher SD of &
and MCRTg.

In the presence of high leverage points (Scenario 2), linear logistic MLE continued to
produce the highest mean #and smallest MCRyg. However, the SD of &was slightly lower
with linear logistic boosting and substantially lower when maximizing the AIPWE of 6, or
employing classification tree boosting, even while the associated mean &'s were close to
optimal. This suggests that, as expected, linear logistic MLE yields variable estimates in the
presence of high leverage points; this effect disappears with large n (Table 3). Another
observation is that only linear logistic boosting produced MCRtg near that of linear logistic
MLE; all other methods produced substantially higher classification error.

Mis-specifying the link function of the logistic working model (Scenario 3) had minimal
impact on @and both linear logistic MLE and linear logistic boosting produced nearly
optimal mean @and similarly low SD of #and MCRtg. All other methods yielded slightly
lower mean fand substantially higher SD of §and MCRyg. The superiority of the linear
logistic regression methods persisted with larger n (Table 3). When both the link function
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and main effects were mis-specified (Scenario 4), methods with linear logistic working
models produced similar mean & (close to the optimal value) but linear logistic boosting had
some advantage in terms of lower SD of dand MCRyg. Differences among methods were
smaller again for larger n (Table 3).

Scenarios 5 and 6 explore substantial mis-specification of the linear logistic working model;
the mean @for linear logistic MLE is far from the optimal value. In these scenarios, boosting
improved upon linear logistic MLE. Classification tree boosting yielded the best
performance with the most dramatic improvement over logistic regression in the highly
nonlinear setting of Scenario 6. These results persisted for large n (Table 3).

When the risk model mis-specification was due to outlying observations (Scenario 7),
maximizing the AIPWE of #and boosting provided marker combinations with improved
performance over those generated by linear logistic MLE.

In summary, these simulation results demonstrate that the boosting method can improve
upon existing methods for combining markers in certain settings. Under a substantially mis-
specified working model, boosting can dramatically improve model performance. When the
working model is mis-specified but not far from the true risk model, boosting may slightly
improve performance. When high leverage points exist, boosting reduces variability without
compromising mean performance. Boosting can perform better than direct maximization of
the IPWE and AIPWE of 6, under mild or substantial working model mis-specification. As
expected, linear logistic boosting performs best with minor mis-specification of the logistic
risk function while classification tree boosting better captures nonlinear main effects and
interactions with treatment.

4. Breast cancer data

The boosting method was then applied to the breast cancer data. The performance of the On-
cotype DX Recurrence Score was most recently evaluated in the Southwest Oncology Group
(SWOG)-SS8814 trial (Albain al., 2010a), which randomized women with node-positive,
ER-positive breast cancer to tamoxifen plus adjuvant chemotherapy (cyclophosphamide,
doxorubicin, and fluorouracil before or concurrent with tamoxifen) or tamoxifen alone. For
367 women (219 on tamoxifen plus adjuvant chemotherapy sequentially (T=1) and 148 on
tamoxifen alone (T=0)), expression levels of 16 breast cancer-related and 5 reference genes
were measured on tumor samples obtained at surgery (before adjuvant chemotherapy), and
the Recurrence Score was calculated.

We use the SS8814 data to explore alternative combinations of the 16 breast cancer related
genes that are optimized for treatment selection. In these data, there were 80 deaths or breast
cancer recurrences by 5 years (35 given T =0 and 45 given T = 1). There was little
censoring; for 9 subjects censored before 5 years, we assume D = 0. Because the data are not
currently available for public use, we modified the gene values but preserved the basic
underlying structure of the data. Specifically, we use scaled versions of the markers (mean
centered with unit variance) and un-labeled genes. A modified version of the original
Recurrence Score was used. Combinations of the following marker sets were considered for
their potential to guide treatment decisions: 1) The modified risk score (MRS); 2) three
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genes, Gy, Gy, and Gg, that showed evidence of marker-by-treatment interactions in a
multivariate linear logistic regression model; and 3) two genes, G4 and Gs, that exhibited a
significant three-way interaction TG4Gg in a linear logistic regression model.

We implement the following approaches: Linear logistic MLE, linear logistic boosting,
maximization of the IPWE or AIPWE of @described by Zhang et al. (2012), a single
classification tree with marker-by-treatment interactions, and classification tree boosting.
The tuning parameters Mpay and W{A(Y)} varied across marker sets and were determined
using cross-validation (see Web Appendix A); Cinax Was set to 500 (See Web Appendix A).
To assess model performance, we calculate the apparent performance (Q{(p(Y)}) using the
original (training) data and use the percentile bootstrap to calculate a 95% confidence
interval. A bootstrap-bias-corrected estimate of model performance (<9CA{(pbA(Y)}) (Efron and
Tibshirani, 1993) is also calculated along with a 95% confidence interval obtained using the
double-bootstrap (see Web Appendix B).

Performance measures of the various marker combinations are shown in Table 4. For every
set of markers, maximizing the AIPWE of &, linear logistic boosting, a single classification
tree, or classification tree boosting yields a combination of markers with better performance
(higher @Athan that obtained using linear logistic MLE. For example, for the models
including Gy, Gs, and G4Gs, classification tree boosting yields a marker combination
associated with a 9% decrease in 5-year recurrence or death (95% CI: 8% to 18%) and the
marker combination maximizing the AIPWE of dyields a 3% decrease (95% CI: 2% to
11%). In contrast, the combination derived using linear logistic MLE yields a 0.3% decrease
(95% CI: —2% to 8%). These new combinations of markers may have improved ability to
identify a subgroup of women who can avoid adjuvant chemotherapy, in terms of providing
a lower population rate of 5-year death or recurrence. For example, the best function of the
MRS is estimated to yield a 5% reduction in 5-year death or recurrence (95% CI 4% to
13%), while allowing 64% women to avoid adjuvant chemotherapy.

Observe in Table 5 that the differences in performance between models are due to a large
proportion of subjects being differently classified according to treatment benefit using linear
logistic MLE versus the other approaches. The results also suggest that the linear logistic
model may not hold for the modified risk score since maximizing the AIPWE of and
classification tree boosting produce substantially higher Othan linear logistic MLE.

These results must be interpreted with caution, however, since even our bootstrap-bias-
corrected estimates of model performance may be overoptimistic. With the small sample
size, cross-validation did not produce satisfactory estimates of test data performance; results
were highly dependent on the random seed used to split the data. Other bias correction
approaches such as the .632 bootstrap method (Efron and Tibshirani, 1993) do not appear to
apply to the measure €. Obtaining sufficiently large data sets to validate marker
combinations is a pervasive challenge for the treatment selection field.

5. Discussion

This paper describes a novel application of boosting to combining markers for predicting
treatment effect. The approach is intended to build in robustness to risk model mis-
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specification, by averaging across risk models fit by iteratively upweighting subjects
potentially misclassified according to treatment benefit at the previous stage. We evaluate
the performance of the approach using clinically relevant measures and find several settings
in which the boosting method results in combinations of markers that have closer-to-optimal
performance than combinations derived using less-robust existing approaches. Specifically,
boosting appears advantageous under substantial risk model mis-specification and in settings
with high leverage points. Our analysis of the breast cancer data suggests that, in these data,
boosting can yield new marker combinations that may have superior ability to identify
women who do not benefit from adjuvant chemotherapy.

A simple approach to combining markers for treatment selection is to apply one of the
plethora of methods available for combining markers for classification separately to each
treatment group. As discussed by Claggett et al. (2011), however, the two best performing
risk models for each treatment group do not necessarily produce the best model for
treatment effect. This strategy risks missing markers that are strongly associated with
treatment effect but which have modest main effects, and risks including markers which
have strong main effects but modest interactions with treatment. For example, human
epidermal growth factor receptor 2 (HER-2) is not considered a significant predictor of
cancer recurrence in breast cancer patients while it is an important predictor of the effects of
some adjuvant chemotherapies and hormone therapies (Clark (1995); Henry and Hayes
(2006)). In our simulations, fitting a risk model to each treatment group separately tended to
produce marker combinations with inferior performance compared to those that
simultaneously considered both treatment groups, such as the novel boosting method.

When evaluating candidate approaches for combining markers, it is important that methods
be compared with respect to compelling and clinically relevant measures of model
performance. Measures such as the frequency of correct variables selected (Gunter et al.
(2007); Lu et al. (2011)), the area under the receiver operating characteristic curve (AUC)
for each treatment group (Claggett et al., 2011) and the Mean Squared Error (MSE) of
model coefficients (Lu et al., 2011) suffer from lack of clinical interpretation and do not
characterize the benefit of the marker combination. The rate of incorrect treatment
recommendation, MCRp, is appealing and useful for simulation studies evaluating new
methods. The decrease in the disease rate under marker-based treatment, measured by 6, has
clear relevance. This measure, or a variation on it, has been advocated in several recent
papers on evaluating treatment selection markers (Song and Pepe (2004); Gunter et al.
(2007, 2011b); Brinkley et al. (2010); Qian and Murphy (2011); Janes et al. (2011, 2013a,
b); Zhang et al. (2012)). @is comprised of the proportion of subjects who are marker-
negative and the treatment effect in the marker-negative subgroup. While these constituents
inform about the nature of markers’ effect, neither can serve as the sole basis for comparing
combinations of markers.

The relative performance of the different approaches to combining markers for treatment
selection depends on the scale of the outcome. While many of the methods to-date have
focused on the continuous outcome setting, this paper compares approaches given a binary
outcome. In particular, we present results on the IPWE or AIPWE of & maximization
approach compared to logistic regression MLE, whereas the original paper (Zhang et al.,
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2012) focused on a continuous outcome and linear regression. In our simulation study,
improving upon logistic regression proved difficult. Even under risk model mis-
specification, maximizing the IPWE or AIPWE of donly resulted in moderately higher
mean &in most scenarios. In Scenario 4, constructed to be similar to the first simulation
scenario of Zhang et al. (2012), maximizing the IPWE or AIPWE of ddid not yield a marker
combination with superior performance to that associated with logistic regression MLE.
Based on these results, it appears more difficult to improve upon logistic regression for
binary outcomes than it is to improve upon linear regression for continuous outcomes. Pepe
et al. (2005) also found logistic regression to be remarkably robust in the classification
context.

The boosting method described here warrants further research along several avenues. The
method can be generalized naturally to settings where the outcome does not capture all
consequences of treatment and therefore the optimal treatment rule is A(Y) < & for some 6>
0 (Vickers et al. (2007); Janes et al. (2013a)). Continuous outcomes and time-to-event
outcomes could be also accommodated. Further investigation of the optimal weight function
for the boosting method is of interest. The method could be extended to settings with marker
values missing at random, multiple treatment options, or to the observational study setting.
Another challenge is doing variable selection in the treatment selection context. Application
of boosting with a penalized regression working model is one potential approach that would
accommodate high dimensional makers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Digstribution of the marker-specific treatment effect, A(Y) =P(D =1|T=0, Y)-P(D=1T=1,
Y), for each of the seven simulation scenarios. The proportion of individuals with negative
treatment effects is indicated on the Y-axis,and 6= [P{D=1T=1, oY) =1} -P{D = 1T
=0, oY) = 1}] x P{e(Y) = 1}, measuring the impact of marker-based treatment assignment,
is shown.
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