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Summary

Markers that predict treatment effect have the potential to improve patient outcomes. For example, 

the Oncotype DX ® Recurrence Score® has some ability to predict the benefit of adjuvant 

chemotherapy over and above hormone therapy for the treatment of estrogen-receptor-positive 

breast cancer, facilitating the provision of chemotherapy to women most likely to benefit from it. 

Given that the score was originally developed for predicting outcome given hormone therapy 

alone, it is of interest to develop alternative combinations of the genes comprising the score that 

are optimized for treatment selection. However most methodology for combining markers is 

useful when predicting outcome under a single treatment. We propose a method for combining 

markers for treatment selection which requires modeling the treatment effect as a function of 

markers. Multiple models of treatment effect are fit iteratively by upweighting or “boosting” 

subjects potentially misclassified according to treatment benefit at the previous stage. The 

boosting approach is compared to existing methods in a simulation study based on the change in 

expected outcome under marker-based treatment. The approach improves upon methods in some 

settings and has comparable performance in others. Our simulation study also provides insights as 

to the relative merits of the existing methods. Application of the boosting approach to the breast 

cancer data, using scaled versions of the original markers, produces marker combinations that may 

have improved performance for treatment selection.
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1. Introduction

Discovering and describing heterogeneity in treatment effects across patient subgroups has 

emerged as a key objective in clinical trials and drug development. If the treatment effect 

can be predicted given marker values such as biological measurements and clinical 
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characteristics, providing patients and clinicians with these marker values can help them 

make more informed treatment decisions. For example, the Oncotype DX Recurrence Score 

is a leading marker for predicting the benefit of adjuvant chemotherapy over and above 

tamoxifen among breast cancer patients with estrogen receptor-positive (ER-positive) 

tumors (Albain al., 2010a). The Recurrence Score is a proprietary combination of expression 

levels of 21 genes (16 cancer-related and 5 reference) measured in breast cancer tumor 

tissue, and is used to identify a subgroup of patients for whom the likelihood of benefitting 

from adjuvant chemotherapy is small. These patients can therefore avoid unnecessary and 

potentially toxic treatment.

There is a large literature on statistical methods for combining markers, but the vast majority 

of them have focused on combining markers for predicting outcome under a single treatment 

(for example, Etzioni et al. (2003); Pepe et al. (2005); Zhao et al. (2011)). However, 

combinations of markers for risk prediction or classification under a single treatment are not 

optimized for treatment selection. Being at high risk for the outcome does not necessarily 

imply a larger benefit from a particular treatment (Henry and Hayes (2006); Janes et al. 

(2011, 2013a)). In particular, the Recurrence Score was originally developed for predicting 

the risk of disease recurrence or death given treatment with tamoxifen alone (Paik et al., 

2004), and was later shown to have value for predicting chemotherapy benefit (Paik et al. 

(2006); Albain at al. (2010a, b)). Therefore, it is of interest to explore alternative 

combinations of gene expression measures that are optimized for treatment selection.

Statistical methods for combining markers for treatment selection are being developed (see 

Gunter et al. (2007); Brinkley et al. (2010); Cai et al. (2011); Claggett et al. (2011); Lu et al. 

(2011); Foster et al. (2011); Gunter et al. (2011a); Zhang et al. (2012); Zhao et al. (2012)). A 

simple approach uses generalized linear regression to model the expected disease outcome 

as a function of treatment and markers, including an interaction between each marker and 

treatment (Gunter et al. (2007); Cai et al. (2011); Lu et al. (2011); Janes et al. (2013b)). This 

model is difficult to specify, particulary with multiple markers as in the breast cancer 

example, and hence an approach that is robust to model mis-specification is warranted. This 

is a key motivation for our approach to combining markers for treatment selection. We call 

our approach “boosting” since it is a natural generalization of the Adaboost (Adaptive 

boosting) method used to predict disease outcome under a single treatment (Freund and 

Schapire (1997); Friedman et al. (2000)).

Candidate approaches for combining markers should be compared with respect to a 

clinically relevant performance measure, and yet a few of the existing studies have 

performed such comparisons. In a simulation study and in our analysis of the breast cancer 

data, we evaluate methods for combining markers using the cardinal measure of model 

performance: the improvement in expected outcome under marker-based treatment (Song 

and Pepe (2004); Brinkley et al. (2010); Gunter et al. (2011b); Zhang et al. (2012); Janes et 

al. (2013a, b)). To the best of our knowledge, only two other papers (Qian and Murphy 

(2011); Zhang et al. (2012)) have used this approach for evaluating new methodology.

The structure of the paper is as follows. In Section 2, we introduce our approach to 

evaluating marker combinations for treatment selection and describe the boosting method. A 
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simulation study used to evaluate the boosting approach in comparison to other candidate 

approaches is described in Section 3. Section 4 describes our application of the boosting 

approach to the breast cancer data. We conclude with a discussion of our findings and 

further research topics to pursue.

2. Methods

2.1 Context and notation

Let D be a binary indicator of an adverse outcome following treatment which we refer to as 

“disease”. In the breast cancer example, D indicates death or cancer recurrence within 5 

years of study enrollment. We assume that D captures all the consequences of treatment, 

such as subsequent toxicity, morbidity, and mortality; more general settings are addressed in 

Section 5. Suppose that the task is to decide, for each individual patient, between two 

treatment options denoted by T, where we call T = 1 “treatment” and T = 0 “no treatment”. 

We assume that the default treatment strategy is to treat all patients. The marker, Y ∈ ℝp, 

may be useful for identifying a subgroup of patients who can avoid treatment. This setup is 

motivated by the breast cancer context, wherein adjuvant chemotherapy in addition to 

hormone therapy (T = 1) is the standard of care and markers are used to identify women who 

can forego adjuvant chemotherapy (T = 0). The setting where T = 0 is the default and Y is 

used to identify a subgroup to treat can be handled by simply switching treatment labels (T = 

0 for treatment and 1 for no treatment). We assume that the data  come from 

the ideal setting for evaluating treatment efficacy, a randomized clinical trial comparing T = 

0 to T = 1 where Y is measured at baseline and D is a clinical outcome observed for all 

subjects.

2.2 Measures for evaluating marker performance

Let Δ(Y) ≡ P(D = 1|T = 0, Y) − P(D = 1|T = 1, Y) denote the marker-specific treatment 

effect. Given marker values Y for all subjects, the treatment policy that minimizes the 

population disease rate is to recommend no treatment if ϕ(Y) = 1{Δ(Y) ≤ 0} = 1, where 1(·) 

is the indicator function (Vickers et al. (2007); Brinkley et al. (2010); Lu et al. (2011); 

Zhang et al. (2012)). In the breast cancer example, this policy would recommend hormone 

therapy alone to patients with negative treatment effects and adjuvant chemotherapy to 

patients with positive treatment effects. The function Δ(Y) is therefore the combination of 

markers that we seek, and ϕ(Y) is the associated treatment rule. Given data {Di, Ti, Yi} for i 

= 1, …, n subjects, we estimate the marker-specific treatment effect by fitting a model for 

P(D = 1|T, Y), termed the “risk model”, and calculate Δ̂(Y) = P̂(D = 1|T = 0, Y) − P̂(D = 1|T 

= 1, Y) and ϕ̂(Y) = 1{Δ̂(Y) ≤ 0}.

We characterize the performance of an arbitrary estimated treatment rule ϕ̂(Y) by evaluating 

the benefit of marker-based treatment (Song and Pepe (2004); Brinkley et al. (2010); Gunter 

et al. (2011b); Zhang et al. (2012); Janes et al. (2013a, b)). This is measured by the 

difference in the disease rate under marker-based treatment assignment versus the default 

strategy of providing treatment to all patients:
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In the breast cancer example, θ denotes the reduction in the 5-year death or recurrence rate 

under marker-based treatment; in general, a higher value of θ indicates greater marker value. 

Using the standard empirical measure , θ is estimated empirically as 

follows:

Another important measure of the population performance of the marker is the rate of 

incorrect treatment recommendations, which we call the misclassification rate of treatment 

benefit, MCRTB{ϕ̂(Y)} ≡ P{ϕ(Y) ≠ ϕ̂(Y)}, and estimate by 

. Similar measures have been used by Foster et al. 

(2011) and Lu et al. (2011). Although this measure can not be evaluated in practice since 

Δ(Y) is unknown, it can be evaluated in simulated data where Δ(Y) is known.

2.3 The boosting method of combining markers for treatment selection

A simple approach for estimating Δ(Y) is to use a generalized linear model for the outcome, 

D, as a function of markers, Y, and treatment, T, including interactions between each marker 

and treatment. That is, to stipulate that

(1)

where the linear predictor η(T, Y) = Ỹβ1 + TỸβ2, Ỹ = (1T, YT)T, β1 and β2 are (p + 1)-

dimensional vectors of regression coefficients for the markers’ main effects and interactions 

with treatment, respectively, and h is a link function. The logit link is the most common 

choice for a binary outcome. This risk model, if correctly specified, produces the 

combination of markers, Δ(Y), with optimal performance, that is, θ{ϕ(Y)}. However if the 

risk model is mis-specified, it will produce a biased estimate of treatment effect, resulting in 

a suboptimal combination of markers and rule for assigning treatment. With multiple 

markers, the likelihood of risk model mis-specification is increased. Our method seeks to 

improve upon logistic regression by providing an estimate of treatment effect, and a 

combination of markers, that is more robust to risk model mis-specification.

To achieve this goal, we adopt the idea of Adaboost, which iteratively fits classifiers, at each 

stage assigning higher weights to subjects whose outcomes are misclassified at the previous 

stage in order to minimize classification error. Analogously, we repeatedly fit a “working 

model” for P(D = 1|T, Y), and at each stage give more weight to subjects who lie close to the 

decision boundary, Δ(Y) = 0, who have greater potential to be recommended the incorrect 
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treatment. In other words, we extend Adaboost from the classification setting, where the 

outcome to be predicted is D, to the treatment selection setting, where the outcome is 1{Δ(Y) 

≤ 0}. The added complexity is that 1{Δ(Y) ≤ 0} is not directly observable. Details of the 

boosting algorithm are given below.

Boosting algorithm

1. With initial weight  for subject i, i = 1, …, n, fit the working risk 

model and calculate P̃(0)(D = 1|T = t, Y), t = 0, 1 and Δ̃(0)(Y) = P̃(0)(D = 1|T = 0, Y) 

− P̃(0)(D = 1|T = 1, Y).

2.

Update weights according to , where 

, for w̃(u) decreasing in |u| and a specified maximum 

weight CM. In our simulations, we use  and CM = 500. 

This upweights subjects with small |Δ̃(0)(Y)| and limits the maximum size of the 

weights.

3. Re-fit the working model with updated weights  to obtain P̃(1)(D = 1|T = t, Y), t 

= 0, 1 and Δ̃(1)(Yi) = P̃(1)(D = 1|T = 0, Yi) − P̃(1)(D = 1|T = 1, Yi) for all subjects.

4. Repeat steps (2)–(3) until either a pre-specified convergence criterion is satisfied or 

a specified maximum number of iterations (Mmax) is reached. In our simulations, 

we set Mmax = 500 as an upper limit on the number of iterations that would be 

necessary.

5. After the last iteration, denoted by M ≤ Mmax, we have {P̃(1)(D = 1|T = t, Yi), …, 

P̃(M)(D = 1|T = t, Yi)}, t = 0, 1 and {Δ̃(1)(Yi), …, Δ ̃(M)(Yi)} for i = 1, …, n. The 

estimated disease rate and treatment effect for subject i are 

 for t = 0, 1, and 

, and the estimated treatment rule is ϕ̂(Yi) = 1{Δ ̂Yi) ≤ 0}.

6. Given a new subject with covariate Y0, say in an independent test data set, we apply 

the set of working risk models in (5) and calculate Δ̃(m)(Y0) for m = 1, …, M. The 

estimated treatment effect is  and ϕ̂(Y0) = 1{Δ ̂(Y0) ≤ 0}.

We explore use of the linear logistic regression model (1) and a binary classification tree 

(Breiman et al., 1984) as working models. However, the boosting method applies to any 

arbitrary model for P(D = 1|T, Y). Choice of the weight function, w̃(u), maximum weight, 

CM, and algorithm stopping rule are discussed in Web appendix A. With the logistic 

working model, we stop the iterations when ||β̃(k) − β(̃k−1)|| ≤ 10−7, where β̃(k) is the vector of 

estimated regression coefficients at the kth iteration, or when M = Mmax; and with the 

classification tree working model, we stop the iterations when M = Mmax.
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3. Simulation study

A simulation study was performed to compare the boosting method to existing approaches 

for combining markers for treatment selection. The boosting method is compared to four 

comparator approaches: 1) using Adaboost (Friedman et al. (2000)) to combine 

classification trees for predicting disease outcome under each treatment separately; 2) fitting 

a classification tree to both treatment groups including all marker-by-treatment interactions 

as predictors; 3) the classic logistic regression approach which fits model (1) using 

maximum likelihood; and 4) the approaches of Zhang et al. (2012) that maximize the 

Inverse Probability Weighted (IPW) or Augmented Inverse Probability (AIPW) estimators 

of θ.

3.1 Comparator methods for combining markers

3.1.1 Applying Adaboost separately to each treatment group—A natural 

approach is to use a risk model to combine markers to predict outcome under each treatment 

separately. We consider the Adaboost algorithm (Freund and Schapire (1997); Friedman et 

al. (2000)) which combines predictions across multiple binary classification trees (Breiman 

et al., 1984) (“base trees” (Hastie et al., 2001)). Hereafter this is referred to as the “Adaboost 

trees” method. Each base tree is built by assigning higher weights to subjects that are 

misclassified at the previous stage. The associated risk model for each treatment group is a 

function of individual markers and, potentially, interactions between markers. We use 

Friedman et al.’s method (Friedman et al., 2000) for estimating P(D = 1|T, Y). Adaboost 

trees is implemented by the R function ada (R package ada (Culp et al., 2012)) using the 

following default settings: exponential loss function, discrete boosting algorithm, and 500 

base trees. Since Adaboost trees is a non-parametric approach, the obtained combination of 

markers is expected to be more robust than logistic regression. However, fitting a separate 

classifier to each treatment group may not yield the optimal marker combination for 

treatment selection.

3.1.2 A single classification tree with marker-by-treatment interactions—An 

alternative nonparametric approach is to fit a single classification tree to both treatment 

groups including {T, TY1, …, TYp, (1 − T)Y1, …, (1 − T)Yp} as predictors. Using this 

classification tree, P(D = 1|T, Y) can be estimated using the empirical proportion of D = 1 

observations in each terminal node. We use the R function rpart (R package rpart (Therneau 

et al., 2012)) with default settings: the minimal number of observations required to split is 

20, the minimum number of observations in any terminal node is 7, and the maximal number 

of nodes prior to terminal node is 30. We do not prune the tree to stabilize the probability 

estimates (Provost and Domingos (2003); Chu et al. (2011)), but these estimates are 

improved by averaging across multiple tree classifiers (Chu et al., 2011).

3.1.3 Maximizing the IPW or AIPW estimators of θ—Recently, Zhang et al. (2012) 

proposed an approach that finds a combination of markers by directly maximizing the mean 

outcome (in our context, minimizing the disease rate) under marker-based treatment. This is 

equivalent to maximizing θ̂, the estimated decrease in disease rate under marker-based 

treatment. Zhang et al. (2012) consider maximizing both IPW and AIPW estimators.
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Briefly, let D(t) denote the potential disease outcome under treatment t. For arbitrary 

treatment rule g : Y ↦ {0, 1} (in our context, assigning no treatment), the goal is to estimate 

the optimal treatment rule defined by , where 

D(g) ≡ D(1){1 − g(Y)} + D(0)g(Y). Given a parametric working risk model P(D = 1|T, Y ; β) 

parameterized by finite-dimensional parameter β, let η = η(β) denote a scaled version of β 

satisfying ||η|| = 1 with ||·|| denoting the ℓ2-norm. Treatment rules in this class of risk models 

are written g(Y, η). The scaling is used to ensure that the solution , 

where Q(η) ≡ E[D{g(Y, η)}], is unique. Specifically, ηopt is estimated by minimizing the 

IPW or AIPW estimators of Q(η) as follows:

(2)

(3)

where Ỹ.= (1,Y),  is a known or estimated probability of 

treatment (the “propensity score”), πc(Y ; η, γ̂) = π(Y ; γ̂)T + {1 − π(Y ; γ̂)}1−T, Cη = T {1 − 

g(Y, η)} + (1 − T)g(Y, η) is the treatment recommend by the rule g(Y, η), and m(Y ; η, β̂) = 

P(D = 1|T = 1, Y ; β̂){1 − g(Y, η)} + P(D = 1|T = 0, Y ; β̂)g(Y, η) is the model-estimated 

disease rate under g(Y, η). In our randomized trial setting, the propensity score model is 

known by design. The IPW estimator (2) thus reduces to the empirical disease rate under 

marker-based treatment. The AIPW estimator (3) is more efficient in large samples. 

Maximizing (2) or (3) therefore yields the marker combination with the highest IPW or 

AIPW θ̂{ϕ̂(Y)} in the training data within the class of the working risk model. However, 

when the working model is mis-specified, this combination may perform poorly, and it is in 

this setting where the boosting approach may generate marker combinations with closer-to-

optimal performance.

To implement the approach, we find ηôpt that minimizes IPWE(η) or AIPWE(η) under the 

linear logistic working model (1) where η = β/||β||. Under this model, 1{Δ(Y) ≤ 0} is 

equivalent to 1{Ỹη ≤ 0}, and so the class of treatment rules is  = {g(Ỹ ; η) = 1{Ỹη ≤ 0}, ||

η|| = 1, Ỹ = (1, Y1, …, Yp)}. Following Zhang et al. (2012), the R function genoud (R 

package rgenoud (Mebane, Jr. and Sekhon, 2011)) is utilized to minimize IPWE(η) (2) or 

AIPWE(η) (3) using the genetic algorithm (Sekhon and Mebane, Jr., 1998).

3.2 Simulation set-up

We generate simulated data sets with 500 or 5,000 observations in the following fashion. 

Binary treatment indicators T ~ Bernoulli (0.5). In most scenarios we generate three 

independent continuous markers Y1, Y2, and Y3 (Y = (Y1, Y2, Y3)) each following a standard 

normal distribution; exceptions are noted below. The binary outcome D ~ Bernoulli {P(D = 

1|T, Y)}. The risk model P(D = 1|T, Y) varies among the seven scenarios as shown in Table 1 

and described below. Figure 1 displays the distribution of Δ(Y) for each scenario. The linear 
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logistic regression model (1) and the classification tree including {T, TY, (1 − T)Y} as 

predictors are used as working models for the boosting method.

Simulation scenarios

Scenario 1. The true risk model is linear logistic where Y1, Y2, and Y3 have strong, 

intermediate, and weak interactions with treatment: logit P(D = 1|T, Y) = 0.3 + 0.2Y1 − 

0.2Y2 −0.2Y3 + T(−0.1 − 2Y1 − 0.7Y2 − 0.1Y3). The marker combination obtained by 

fitting the linear logistic working model with maximum likelihood estimation (MLE) is 

expected to achieve the best performance. However, it is of interest to determine the 

extent to which other methods produce comparable results.

Scenario 2. The true risk model is the same as in Scenario 1, but now Y1 has high 

leverage points. Specifically, a random 2% of Y1 values are replaced with draws from a 

Uniform (8, 9) distribution. This scenario is used to compare the performance of the 

approaches that use the correct linear logistic working model in the context of high 

leverage observations.

Scenario 3. The true risk model is log{−log P(D = 1|T, Y)} = −0.7 − 0.2Y1 − 0.2Y2 + 

0.1Y3 + T(0.1 + 2Y1 − Y2 − 0.3Y3), where Y1, Y2, and Y3 have strong, intermediate, and 

weak interactions with treatment. The linear predictor of the linear logistic working 

model is correct but the link function is incorrect. This scenario is used to compare the 

robustness of the boosting approach to other approaches in the context of minor 

working model mis-specification.

Scenario 4. The true risk model is 

. Y1 and Y2 

follow a Uniform (−1.5, 1.5) distribution. The link function and main effects of the 

linear logistic working model are incorrectly specified, the latter due to omission of 

quadratic and marker-by-marker interaction terms, but the interaction terms are correct. 

This scenario is chosen for its similarity to the first scenario in Zhang et al. (2012) who 

found that, in a continuous outcome setting, maximizing the IPW or AIPW estimators 

of θ yielded substantial improvement over standard linear regression.

Scenario 5. The true risk model is 

including a non-linear main effect and interaction of Y1 with treatment. The linear 

logistic working model mis-specifies these Y1 effects, but the classification tree working 

model should be able to detect them.

Scenario 6. The true risk model is a logistic regression model including an interaction 

between Y1 and Y2 where Y1, Y2 and Y1Y2 have intermediate, intermediate, and strong 

interactions with treatment: logit P(D = 1|T, Y) = 0.1 − 0.2Y1 + 0.2Y2 − Y1Y2 + T(−0.5 − 

Y1 + Y2 + 3Y1Y2). The linear logistic working model does not include Y1Y2 and TY1Y2 

interaction terms whereas a classification tree working model does allow for them.
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Scenario 7. The true risk model is the same linear logistic model as in Scenario 1 except 

for the presence of 2% outlying observations. Specifically, for a random 2% sample, Y1 

is replaced with a draw from a Uniform (8, 9) distribution and D is replaced with 1 − D.

For each scenario, 1000 data sets are generated and used as training data to build a 

prediction model and treatment assignment rule, ϕ̂(Y) = 1{Δ ̂(Y) ≤ 0}. To avoid overoptimism 

associated with fitting and evaluating the risk model using the same data, a single large 

independent test data set with n = 105 observations is generated and used to evaluate the 

performance of the fitted treatment rule, θ{ϕ̂(Y)}. Mean and Monte-carlo standard deviation 

(SD) of θ{ϕ̂(Y)} and mean MCRTB{ϕ̂(Y)} are reported. The performance of the true 

treatment rule, θ{ϕ(Y)}, is calculated as an average of θ̂{ϕ(Y)} over 100 Monte-carlo 

simulations where each θ̂{ϕ(Y)} is obtained using n = 3 × 107 observations.

3.3 Results of the simulation study

Tables 2 and 3 summarize the simulation results for sample sizes n = 500 and n = 5000, 

respectively. The performances of marker combinations obtained using the following 

methods are compared: Logistic regression with maximum likelihood estimation (hereafter 

“linear logistic MLE”), the boosting method described in Section 2.3 with linear logistic 

working model (“linear logistic boosting”), maximizing the IPW or AIPW estimators of θ as 

proposed by Zhang et al. (2012) (“maximizing IPWE or AIPWE of θ”), a single 

classification tree with marker-by-treatment interactions (“single classification tree”), the 

boosting method with a classification tree working model including marker-by-treatment 

interactions (“classification tree boosting”), and applying Adaboost trees to each treatment 

group separately (“separate Adaboost”). For each scenario, the method with the highest 

mean θ is marked in bold.

When the linear logistic working model was correctly specified (Scenario 1), as expected the 

combination of markers obtained using linear logistic MLE had the highest mean θ, smallest 

SD of θ, and smallest MCRTB. Linear logistic boosting produced almost identical results, 

whereas all other methods produced modestly lower mean θ and substantially higher SD of θ 

and MCRTB.

In the presence of high leverage points (Scenario 2), linear logistic MLE continued to 

produce the highest mean θ and smallest MCRTB. However, the SD of θ was slightly lower 

with linear logistic boosting and substantially lower when maximizing the AIPWE of θ, or 

employing classification tree boosting, even while the associated mean θ’s were close to 

optimal. This suggests that, as expected, linear logistic MLE yields variable estimates in the 

presence of high leverage points; this effect disappears with large n (Table 3). Another 

observation is that only linear logistic boosting produced MCRTB near that of linear logistic 

MLE; all other methods produced substantially higher classification error.

Mis-specifying the link function of the logistic working model (Scenario 3) had minimal 

impact on θ and both linear logistic MLE and linear logistic boosting produced nearly 

optimal mean θ and similarly low SD of θ and MCRTB. All other methods yielded slightly 

lower mean θ and substantially higher SD of θ and MCRTB. The superiority of the linear 

logistic regression methods persisted with larger n (Table 3). When both the link function 
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and main effects were mis-specified (Scenario 4), methods with linear logistic working 

models produced similar mean θ (close to the optimal value) but linear logistic boosting had 

some advantage in terms of lower SD of θ and MCRTB. Differences among methods were 

smaller again for larger n (Table 3).

Scenarios 5 and 6 explore substantial mis-specification of the linear logistic working model; 

the mean θ for linear logistic MLE is far from the optimal value. In these scenarios, boosting 

improved upon linear logistic MLE. Classification tree boosting yielded the best 

performance with the most dramatic improvement over logistic regression in the highly 

nonlinear setting of Scenario 6. These results persisted for large n (Table 3).

When the risk model mis-specification was due to outlying observations (Scenario 7), 

maximizing the AIPWE of θ and boosting provided marker combinations with improved 

performance over those generated by linear logistic MLE.

In summary, these simulation results demonstrate that the boosting method can improve 

upon existing methods for combining markers in certain settings. Under a substantially mis-

specified working model, boosting can dramatically improve model performance. When the 

working model is mis-specified but not far from the true risk model, boosting may slightly 

improve performance. When high leverage points exist, boosting reduces variability without 

compromising mean performance. Boosting can perform better than direct maximization of 

the IPWE and AIPWE of θ, under mild or substantial working model mis-specification. As 

expected, linear logistic boosting performs best with minor mis-specification of the logistic 

risk function while classification tree boosting better captures nonlinear main effects and 

interactions with treatment.

4. Breast cancer data

The boosting method was then applied to the breast cancer data. The performance of the On-

cotype DX Recurrence Score was most recently evaluated in the Southwest Oncology Group 

(SWOG)-SS8814 trial (Albain al., 2010a), which randomized women with node-positive, 

ER-positive breast cancer to tamoxifen plus adjuvant chemotherapy (cyclophosphamide, 

doxorubicin, and fluorouracil before or concurrent with tamoxifen) or tamoxifen alone. For 

367 women (219 on tamoxifen plus adjuvant chemotherapy sequentially (T=1) and 148 on 

tamoxifen alone (T=0)), expression levels of 16 breast cancer-related and 5 reference genes 

were measured on tumor samples obtained at surgery (before adjuvant chemotherapy), and 

the Recurrence Score was calculated.

We use the SS8814 data to explore alternative combinations of the 16 breast cancer related 

genes that are optimized for treatment selection. In these data, there were 80 deaths or breast 

cancer recurrences by 5 years (35 given T = 0 and 45 given T = 1). There was little 

censoring; for 9 subjects censored before 5 years, we assume D = 0. Because the data are not 

currently available for public use, we modified the gene values but preserved the basic 

underlying structure of the data. Specifically, we use scaled versions of the markers (mean 

centered with unit variance) and un-labeled genes. A modified version of the original 

Recurrence Score was used. Combinations of the following marker sets were considered for 

their potential to guide treatment decisions: 1) The modified risk score (MRS); 2) three 
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genes, G1, G2, and G3, that showed evidence of marker-by-treatment interactions in a 

multivariate linear logistic regression model; and 3) two genes, G4 and G5, that exhibited a 

significant three-way interaction TG4G5 in a linear logistic regression model.

We implement the following approaches: Linear logistic MLE, linear logistic boosting, 

maximization of the IPWE or AIPWE of θ described by Zhang et al. (2012), a single 

classification tree with marker-by-treatment interactions, and classification tree boosting. 

The tuning parameters Mmax and w̃{Δ(Y)} varied across marker sets and were determined 

using cross-validation (see Web Appendix A); Cmax was set to 500 (See Web Appendix A). 

To assess model performance, we calculate the apparent performance (θ̂{ϕ̂(Y)}) using the 

original (training) data and use the percentile bootstrap to calculate a 95% confidence 

interval. A bootstrap-bias-corrected estimate of model performance (θĉ{ϕ̂
b(Y)}) (Efron and 

Tibshirani, 1993) is also calculated along with a 95% confidence interval obtained using the 

double-bootstrap (see Web Appendix B).

Performance measures of the various marker combinations are shown in Table 4. For every 

set of markers, maximizing the AIPWE of θ, linear logistic boosting, a single classification 

tree, or classification tree boosting yields a combination of markers with better performance 

(higher θ̂) than that obtained using linear logistic MLE. For example, for the models 

including G4, G5, and G4G5, classification tree boosting yields a marker combination 

associated with a 9% decrease in 5-year recurrence or death (95% CI: 8% to 18%) and the 

marker combination maximizing the AIPWE of θ yields a 3% decrease (95% CI: 2% to 

11%). In contrast, the combination derived using linear logistic MLE yields a 0.3% decrease 

(95% CI: −2% to 8%). These new combinations of markers may have improved ability to 

identify a subgroup of women who can avoid adjuvant chemotherapy, in terms of providing 

a lower population rate of 5-year death or recurrence. For example, the best function of the 

MRS is estimated to yield a 5% reduction in 5-year death or recurrence (95% CI 4% to 

13%), while allowing 64% women to avoid adjuvant chemotherapy.

Observe in Table 5 that the differences in performance between models are due to a large 

proportion of subjects being differently classified according to treatment benefit using linear 

logistic MLE versus the other approaches. The results also suggest that the linear logistic 

model may not hold for the modified risk score since maximizing the AIPWE of and 

classification tree boosting produce substantially higher θ̂ than linear logistic MLE.

These results must be interpreted with caution, however, since even our bootstrap-bias-

corrected estimates of model performance may be overoptimistic. With the small sample 

size, cross-validation did not produce satisfactory estimates of test data performance; results 

were highly dependent on the random seed used to split the data. Other bias correction 

approaches such as the .632 bootstrap method (Efron and Tibshirani, 1993) do not appear to 

apply to the measure θ. Obtaining sufficiently large data sets to validate marker 

combinations is a pervasive challenge for the treatment selection field.

5. Discussion

This paper describes a novel application of boosting to combining markers for predicting 

treatment effect. The approach is intended to build in robustness to risk model mis-
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specification, by averaging across risk models fit by iteratively upweighting subjects 

potentially misclassified according to treatment benefit at the previous stage. We evaluate 

the performance of the approach using clinically relevant measures and find several settings 

in which the boosting method results in combinations of markers that have closer-to-optimal 

performance than combinations derived using less-robust existing approaches. Specifically, 

boosting appears advantageous under substantial risk model mis-specification and in settings 

with high leverage points. Our analysis of the breast cancer data suggests that, in these data, 

boosting can yield new marker combinations that may have superior ability to identify 

women who do not benefit from adjuvant chemotherapy.

A simple approach to combining markers for treatment selection is to apply one of the 

plethora of methods available for combining markers for classification separately to each 

treatment group. As discussed by Claggett et al. (2011), however, the two best performing 

risk models for each treatment group do not necessarily produce the best model for 

treatment effect. This strategy risks missing markers that are strongly associated with 

treatment effect but which have modest main effects, and risks including markers which 

have strong main effects but modest interactions with treatment. For example, human 

epidermal growth factor receptor 2 (HER-2) is not considered a significant predictor of 

cancer recurrence in breast cancer patients while it is an important predictor of the effects of 

some adjuvant chemotherapies and hormone therapies (Clark (1995); Henry and Hayes 

(2006)). In our simulations, fitting a risk model to each treatment group separately tended to 

produce marker combinations with inferior performance compared to those that 

simultaneously considered both treatment groups, such as the novel boosting method.

When evaluating candidate approaches for combining markers, it is important that methods 

be compared with respect to compelling and clinically relevant measures of model 

performance. Measures such as the frequency of correct variables selected (Gunter et al. 

(2007); Lu et al. (2011)), the area under the receiver operating characteristic curve (AUC) 

for each treatment group (Claggett et al., 2011) and the Mean Squared Error (MSE) of 

model coefficients (Lu et al., 2011) suffer from lack of clinical interpretation and do not 

characterize the benefit of the marker combination. The rate of incorrect treatment 

recommendation, MCRTB, is appealing and useful for simulation studies evaluating new 

methods. The decrease in the disease rate under marker-based treatment, measured by θ, has 

clear relevance. This measure, or a variation on it, has been advocated in several recent 

papers on evaluating treatment selection markers (Song and Pepe (2004); Gunter et al. 

(2007, 2011b); Brinkley et al. (2010); Qian and Murphy (2011); Janes et al. (2011, 2013a, 

b); Zhang et al. (2012)). θ is comprised of the proportion of subjects who are marker-

negative and the treatment effect in the marker-negative subgroup. While these constituents 

inform about the nature of markers’ effect, neither can serve as the sole basis for comparing 

combinations of markers.

The relative performance of the different approaches to combining markers for treatment 

selection depends on the scale of the outcome. While many of the methods to-date have 

focused on the continuous outcome setting, this paper compares approaches given a binary 

outcome. In particular, we present results on the IPWE or AIPWE of θ maximization 

approach compared to logistic regression MLE, whereas the original paper (Zhang et al., 
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2012) focused on a continuous outcome and linear regression. In our simulation study, 

improving upon logistic regression proved difficult. Even under risk model mis-

specification, maximizing the IPWE or AIPWE of θ only resulted in moderately higher 

mean θ in most scenarios. In Scenario 4, constructed to be similar to the first simulation 

scenario of Zhang et al. (2012), maximizing the IPWE or AIPWE of θ did not yield a marker 

combination with superior performance to that associated with logistic regression MLE. 

Based on these results, it appears more difficult to improve upon logistic regression for 

binary outcomes than it is to improve upon linear regression for continuous outcomes. Pepe 

et al. (2005) also found logistic regression to be remarkably robust in the classification 

context.

The boosting method described here warrants further research along several avenues. The 

method can be generalized naturally to settings where the outcome does not capture all 

consequences of treatment and therefore the optimal treatment rule is Δ(Y) ≤ δ for some δ > 

0 (Vickers et al. (2007); Janes et al. (2013a)). Continuous outcomes and time-to-event 

outcomes could be also accommodated. Further investigation of the optimal weight function 

for the boosting method is of interest. The method could be extended to settings with marker 

values missing at random, multiple treatment options, or to the observational study setting. 

Another challenge is doing variable selection in the treatment selection context. Application 

of boosting with a penalized regression working model is one potential approach that would 

accommodate high dimensional makers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was funded by R01 CA152089, P30CA015704, and R01 GM106177-01.

References

Albain K, Barlow W, Ravdin P, Farrar W, Burton G, Ketchel S, Cobau C, Levine E, Ingle J, Pritchard 
K, et al. Adjuvant chemotherapy and timing of tamoxifen in postmenopausal patients with 
endocrine-responsive, node-positive breast cancer: a phase 3, open-label, randomised controlled 
trial. The Lancet. 2010; 374:2055–2063.

Albain K, Barlow W, Shak S, Hortobagyi G, Livingston R, Yeh I, Ravdin P, Bugarini R, Baehner F, 
Davidson N, et al. Prognostic and predictive value of the 21-gene recurrence score assay in 
postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on 
chemotherapy: a retrospective analysis of a randomised trial. The Lancet Oncology. 2010; 11:55–
65. [PubMed: 20005174] 

Breiman, L.; Friedman, J.; Stone, C.; Olshen, R. Classification and regression trees. Chapman & Hall/
CRC; 1984. 

Brinkley J, Tsiatis A, Anstrom K. A generalized estimator of the attributable benefit of an optimal 
treatment regime. Biometrics. 2010; 66:512–522. [PubMed: 19508237] 

Cai T, Tian L, Wong P, Wei L. Analysis of randomized comparative clinical trial data for personalized 
treatment selections. Biostatistics. 2011; 12:270–282. [PubMed: 20876663] 

Chu N, Ma L, Liu P, Hu Y, Zhou M. A comparative analysis of methods for probability estimation 
tree. WSEAS Transactions on Computers. 2011; 10:71–80.

Kang et al. Page 13

Biometrics. Author manuscript; available in PMC 2015 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Claggett, B.; Zhao, L.; Tian, L.; Castagno, D.; Wei, L. Harvard University Biostatistics Working Paper 
Series. 2011. Estimating subject-specific treatment differences for risk-benefit assessment with 
competing risk event-time data; p. 125

Clark G. Prognostic and predictive factors for breast cancer. Breast Cancer. 1995; 2:79–89. [PubMed: 
11091537] 

Culp, M.; Johnson, K.; Michailidis, G. R package version 2.0-3. 2012. ada: an R package for stochastic 
boosting. 

Efron, B.; Tibshirani, R. An Introduction to the Bootstrap. Vol. 57. CRC press; 1993. 

Etzioni R, Kooperberg C, Pepe M, Smith R, Gann P. Combining biomarkers to detect disease with 
application to prostate cancer. Biostatistics. 2003; 4:523–538. [PubMed: 14557109] 

Foster JC, Taylor JMG, Ruberg SJ. Subgroup identification from randomized clinical trial data. 
Statistics in Medicine. 2011; 30:2867–2880. [PubMed: 21815180] 

Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to 
boosting. Journal of Computer and System Sciences. 1997; 55:119–139.

Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting (with 
discussion and a rejoinder by the authors). Annals of Statistics. 2000; 28:337–407.

Gunter L, Zhu J, Murphy S. Variable selection for optimal decision making. Artificial Intelligence in 
Medicine. 2007; 4594:149–154.

Gunter L, Zhu J, Murphy S. Variable selection for qualitative interactions. Statistical Methodology. 
2011a; 8:42–55. [PubMed: 21179592] 

Gunter L, Zhu J, Murphy S. Variable selection for qualitative interactions in personalized medicine 
while controlling the family-wise error rate. Journal of Biopharmaceutical Statistics. 2011b; 
21:1063–1078. [PubMed: 22023676] 

Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: data mining, inference and 
prediction. 2001; 1 Springer Series in Statistics. 

Henry N, Hayes D. Uses and abuses of tumor markers in the diagnosis, monitoring, and treatment of 
primary and metastatic breast cancer. The Oncologist. 2006; 11:541–552. [PubMed: 16794234] 

Janes H, Brown M, Pepe M, Huang Y. An approach to evaluating and comparing biomarkers for 
patient treatment selection. International Journal of Biostatistics. 2013 (Revision under review). 

Janes H, Pepe M, Bossuyt P, Barlow W. Measuring the performance of markers for guiding treatment 
decisions. Annals of Internal Medicine. 2011; 154:253. [PubMed: 21320940] 

Janes H, Pepe M, Huang Y. A framework for evaluating markers used to select patient treatment. 
Medical Decision Making. 2013 (In press). 

Lu W, Zhang H, Zeng D. Variable selection for optimal treatment decision. Statistical Methods in 
Medical Research. 2011 (Online print). 10.1177/0962280211428383

Mebane WR Jr, Sekhon JS. Genetic optimization using derivatives: The rgenoud package for R. 
Journal of Statistical Software. 2011; 42:1–26.

Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, Baehner F, Walker M, Watson D, Park T, et al. A 
multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. New 
England Journal of Medicine. 2004; 351:2817–2826. [PubMed: 15591335] 

Paik S, Tang G, Shak S, Kim C, Baker J, Kim W, Cronin M, Baehner F, Watson D, Bryant J, et al. 
Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor–
positive breast cancer. Journal of Clinical Oncology. 2006; 24:3726–3734. [PubMed: 16720680] 

Pepe M, Cai T, Longton G. Combining predictors for classification using the area under the receiver 
operating characteristic curve. Biometrics. 2005; 62:221–229. [PubMed: 16542249] 

Provost F, Domingos P. Tree induction for probability-based ranking. Machine Learning. 2003; 
52:199–215.

Qian M, Murphy S. Performance guarantees for individualized treatment rules. Annals of Statistics. 
2011; 39:1180. [PubMed: 21666835] 

Sekhon JS, Mebane WR Jr. Genetic optimization using derivatives: Theory and application to 
nonlinear models. Political Analysis. 1998; 7:189–213.

Song X, Pepe M. Evaluating markers for selecting a patient’s treatment. Biometrics. 2004; 60:874–
883. [PubMed: 15606407] 

Kang et al. Page 14

Biometrics. Author manuscript; available in PMC 2015 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Therneau, T.; Atkinson, B.; Ripley, B. R package version 4.0-1. 2012. rpart: Recursive Partitioning. 

Vickers A, Kattan M, Sargent D. Method for evaluating prediction models that apply the results of 
randomized trials to individual patients. Trials. 2007; 8:14. [PubMed: 17550609] 

Zhang B, Tsiatis A, Laber E, Davidian M. A robust method for estimating optimal treatment regimes. 
Biometrics. 2012; 68:1010–1018. [PubMed: 22550953] 

Zhao X, Dai W, Li Y, Tian L. AUC-based biomarker ensemble with an application on gene scores 
predicting low bone mineral density. Bioinformatics. 2011; 27:3050–3055. [PubMed: 21908541] 

Zhao Y, Zeng D, Rush AJ, Kosorok MR. Estimating individualized treatment rules using outcome 
weighted learning. Journal of the American Statistical Association. 2012; 107:1106–1118. 
[PubMed: 23630406] 

Kang et al. Page 15

Biometrics. Author manuscript; available in PMC 2015 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Distribution of the marker-specific treatment effect, Δ(Y) = P(D = 1|T = 0, Y)−P(D = 1|T = 1, 

Y), for each of the seven simulation scenarios. The proportion of individuals with negative 

treatment effects is indicated on the Y-axis, and θ = [P{D = 1|T = 1, ϕ(Y) = 1} − P{D = 1|T 

= 0, ϕ(Y) = 1}] × P{ϕ(Y) = 1}, measuring the impact of marker-based treatment assignment, 

is shown.
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