
Combining Bipartite Graph Matching and Beam

Search for Graph Edit Distance Approximation

Kaspar Riesen1, Andreas Fischer2, and Horst Bunke3

1 Institute for Information Systems, University of Applied Sciences and Arts
Northwestern Switzerland, Riggenbachstrasse 16, 4600 Olten, Switzerland

kaspar.riesen@fhnw.ch
2 Biomedical Science and Technologies Research Centre, Polytechnique Montreal

2500 Chemin de Polytechnique, Montreal H3T 1J4, Canada
andreas.fischer@polymtl.ca

3 Institute of Computer Science and Applied Mathematics, University of Bern,
Neubrückstrasse 10, 3012 Bern, Switzerland

bunke@iam.ch

Abstract. Graph edit distance (GED) is a powerful and flexible graph
dissimilarity model. Yet, exact computation of GED is an instance of a
quadratic assignment problem and can thus be solved in exponential time
complexity only. A previously introduced approximation framework re-
duces the computation of GED to an instance of a linear sum assignment
problem. Major benefit of this reduction is that an optimal assignment of
nodes (including local structures) can be computed in polynomial time.
Given this assignment an approximate value of GED can be immediately
derived. Yet, the primary optimization process of this approximation
framework is able to consider local edge structures only, and thus, the
observed speed up is at the expense of approximative, rather than exact,
distance values. In order to improve the overall approximation quality,
the present paper combines the original approximation framework with
a fast tree search procedure. More precisely, we regard the assignment
from the original approximation as a starting point for a subsequent
beam search. In an experimental evaluation on three real world data sets
a substantial gain of assignment accuracy can be observed while the run
time remains remarkable low.

1 Introduction

Graphs, which consist of a finite set of nodes connected by edges, are the most
general data structure in computer science. Due to the ability of graphs to rep-
resent properties of entities and binary relations at the same time, a growing
interest in graph-based object representation can be observed in various fields.
In bio- and chemoinformatics, for instance, graph based representations are in-
tensively used [1–3]. Another field of research where graphs have been studied
with emerging interest is that of web content and data mining [4, 5]. Image clas-
sification [6, 7], graphical symbol and character recognition [8, 9], and computer
network analysis [10] are further areas of research where graph based represen-
tations draw the attention.

N. El Gayar et al. (Eds.): ANNPR 2014, LNAI 8774, pp. 117–128, 2014.
c© Springer International Publishing Switzerland 2014



118 K. Riesen, A. Fischer, and H. Bunke

Various procedures for evaluating the similarity or dissimilarity of graphs –
known as graph matching – have been proposed in the literature [11]. The present
paper addresses the issue of processing arbitrarily structured and arbitrarily
labeled graphs. Hence, the graph matching method actually employed has to be
able to cope with directed and undirected, as well as with labeled and unlabeled
graphs. If there are labels on nodes, edges, or both, no constraints on the label
alphabet should compromise the representational power of the employed graphs.
Anyhow, the matching framework should in any case be flexible enough to be
adopted and tailored to certain problem specifications. As it turns out, graph edit
distance [12, 13] meets both requirements, viz. flexibility and expressiveness.

The major drawback of graph edit distance is its computational complexity
which is is exponential in the number of nodes of the involved graphs. Conse-
quently, exact edit distance can be computed for graphs of a rather small size
only. In recent years, a number of methods addressing the high computational
complexity of graph edit distance computation have been proposed (e.g. [14–
17]). The authors of the present paper also introduced an algorithmic framework
which allows the approximate computation of graph edit distance in a substan-
tially faster way than traditional methods [18]. Yet, the substantial speed-up in
computation time is at the expense of an overestimation of the actual graph edit
distance.

The reason for this overestimation is that the core of our framework is able
to consider only local, rather than global, edge structure. The main objective of
the present paper is to significantly reduce the overestimation of edit distances.
To this end, the distance approximation procedure of [18] is combined with a
fast (but suboptimal) tree search algorithm, namely beam search. Beam search
has been employed before as a stand-alone approximation scheme for graph
edit distance computation [17]. The present paper adapts this search algorithm
for the task of systemically improving the original node assignment and the
corresponding edit distance approximation.

The remainder of this paper is organized as follows. Next, in Sect. 2 the
concept and computation of graph edit distance as well as the original frame-
work for graph edit distance approximation [18] are summarized. In Sect. 3 the
combination of this framework with a beam search procedure is introduced. An
experimental evaluation on diverse data sets is carried out in Sect. 4, and in
Sect. 5 we draw some conclusions.

2 Graph Edit Distance Computation

2.1 Exact Computation Based on A*

Given two graphs, the source graph g1 and the target graph g2, the basic idea of
graph edit distance is to transform g1 into g2 using some distortion operations.
A standard set of distortion operations is given by insertions, deletions, and
substitutions of both nodes and edges. We denote the substitution of two nodes
u and v by (u → v), the deletion of node u by (u → ε), and the insertion of node



Reverse Graph Edit Distance Computation 119

v by (ε → v)1. A sequence υ = (e1, . . . , ek) of k edit operations that transform
g1 completely into g2 is called an edit path between g1 and g2.

Let Υ (g1, g2) denote the set of all possible edit paths between two graphs g1
and g2. To find the most suitable edit path out of Υ (g1, g2), one introduces a
cost c(ei) for each edit operation ei ∈ υ, measuring the strength of the cor-
responding operation. The idea of such a cost is to define whether or not an
edit operation represents a strong modification of the graph. Clearly, between
two similar graphs, there should exist an inexpensive edit path, representing low
cost operations, while for dissimilar graphs an edit path with high cost is needed.
Consequently, the edit distance of two graphs is defined by the minimum cost
edit path between two graphs:

d(g1, g2) = min
(e1,...,ek)∈Υ (g1,g2)

k∑

i=1

c(ei)

The exact computation of graph edit distance is usually carried out by means
of a tree search algorithm which explores the space of all possible mappings of
the nodes and edges of the first graph to the nodes and edges of the second
graph. A widely used method is based on the A* algorithm [19]. The basic idea
is to organize the underlying search space as an ordered tree. The root node
of the search tree represents the starting point of our search procedure, inner
nodes of the search tree correspond to partial edit paths, and leaf nodes represent
complete – not necessarily optimal – edit paths.

Such a search tree is constructed dynamically at runtime as follows. The nodes
of the source graph g1 are processed in a fixed order u1, u2, . . . , un. The deletion
(ui → ε) and all available substitutions {(ui → v(1)), . . . , (ui → v(t))} of a node
ui are thereby considered simultaneously. This produces (t+ 1) successor nodes
in the search tree. If all nodes of the first graph have been processed in an inner
node of the tree, the remaining nodes of the second graph are inserted in a single
step (which completes the edit path).

A set open of partial edit paths contains the search tree nodes to be processed
in the next steps. The most promising partial edit path υ ∈ open, i.e. the one
with minimal cost so far, is always chosen first (best-first search algorithm).
This procedure guarantees that the complete edit path found by the algorithm
first is always optimal in the sense of providing minimal cost among all possible
competing paths.

2.2 Bipartite Graph Edit Distance Approximation

A major drawback of the procedure described in the last section is its computa-
tional complexity. In fact, the problem of graph edit distance can be reformulated
as an instance of a Quadratic Assignment Problem (QAP) [20]. QAPs have been

1 For edges we use a similar notation.



120 K. Riesen, A. Fischer, and H. Bunke

introduced in [21] and belong to the most difficult combinatorial optimization
problems for which only exponential run time algorithms are known to date2.

The graph edit distance approximation framework introduced in [18] reduces
the QAP of graph edit distance computation to an instance of a Linear Sum
Assignment Problem (LSAP) which can be – in contrast with QAPs – efficiently
solved.

In order to translate the problem of graph edit distance computation to an
instance of an LSAP, the graphs to be matched are subdivided into individ-
ual nodes plus local structures in a first step. Next, these independent sets of
nodes including local structures are optimally assigned to each other. Finally,
an approximate graph edit distance value is derived from this optimal node as-
signment. In the next paragraphs of this section, these three major steps of our
framework are discussed in greater detail.

Assume that the graphs to be matched consists of node sets V1 = {u1, . . . , un}
and V2 = {v1, . . . , vm}, respectively. A cost matrix C is then defined as follows:

C =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 · · · c1m c1ε ∞ · · · ∞

c21 c22 · · · c2m ∞ c2ε
. . .

.

.

.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

. . . ∞
cn1 cn2 · · · cnm ∞ · · · ∞ cnε

cε1 ∞ · · · ∞ 0 0 · · · 0

∞ cε2
. . .

.

.

. 0 0
. . .

.

.

.

.

.

.
. . .

. . . ∞
.
.
.

. . .
. . . 0

∞ · · · ∞ cεm 0 · · · 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Entry cij thereby denotes the cost of a node substitution (ui → vj), ciε denotes
the cost of a node deletion (ui → ε), and cεj denotes the cost of a node insertion
(ε → vj).

Obviously, the left upper corner of the cost matrix represents the costs of all
possible node substitutions, the diagonal of the right upper corner the costs of
all possible node deletions, and the diagonal of the bottom left corner the costs
of all possible node insertions. Note that each node can be deleted or inserted at
most once. Therefore any non-diagonal element of the right-upper and left-lower
part is set to ∞. The bottom right corner of the cost matrix is set to zero since
substitutions of the form (ε → ε) should not cause any costs.

Note that the described extension of cost matrix C to dimension (n +m) ×
(n+m) is necessary since assignment algorithms for LSAPs expect every entry
of the first set to be assigned with exactly one entry of the second set (and vice
versa), and we want the optimal matching to be able to possibly include several
node deletions and/or insertions. Moreover, matrix C is by definition quadratic.
Consequently, standard algorithms for LSAPs can be used to find the minimum
cost assignment.

In order to integrate knowledge about the graph’s edge structure, to each
cost of a node edit operation cij the minimum sum of edge edit operation costs,

2 QAPs belong to the class of NP-complete problems. That is, an exact and efficient
algorithm for the graph edit distance problem can not be developed unless P = NP.



Reverse Graph Edit Distance Computation 121

implied by the corresponding node operation, is added. That is, we encode the
matching cost arising from the local edge structure in the individual entries of
matrix C.

The second step of our framework consists in applying an assignment algo-
rithm to the square cost matrix C in order to find the minimum cost assignment
of the nodes and their local edge structure of g1 to the nodes and their local
edge structure of g2. Note that this task exactly corresponds to an instance of
an LSAP and can thus be solved in polynomial time by means of Munkres’
algorithm [22], the algorithm of Volgenant-Jonker [23], or others [24]3.

Formally, LSAP optimization procedures operate on a cost matrix C = (cij)
and find a permutation (ϕ1, . . . , ϕn+m) of the integers (1, 2, . . . , (n + m)) that

minimizes the overall mapping cost
∑(n+m)

i=1 ciϕi . In our scenario, this permuta-
tion corresponds to a mapping

ψ = {(u1 → vϕ1), (u2 → vϕ2), . . . , (um+n → vϕm+n)}

of nodes. Note that mapping ψ includes node assignments of the form (ui → vj),
(ui → ε), (ε → vj), and (ε → ε) (the latter can be dismissed, of course). Mapping
ψ can also be interpreted as partial edit path considering edit operations on nodes
only.

In the third step of our framework the partial edit path ψ is completed ac-
cording to the node edit operations. Note that edit operations on edges are
implied by edit operations on their adjacent nodes, i.e. whether an edge is sub-
stituted, deleted, or inserted, depends on the edit operations performed on all
of its adjacent nodes. Hence, given the set of node operations in ψ the global
edge structures from g1 and g2 can be edited accordingly. The cost of the com-
plete edit path is finally returned as an approximate graph edit distance. We
denote the approximated distance value between graphs g1 and g2 according to
mapping ψ with d〈ψ〉(g1, g2) (or d〈ψ〉 for short).

Note that the edit path corresponding to d〈ψ〉(g1, g2) considers the edge struc-
ture of g1 and g2 in a global and consistent way while the optimal node mapping
ψ from step 2 is able to consider the structural information in an isolated way
only (single nodes and their adjacent edges). Hence, the distances found by this
approximation framework are – in the optimal case – equal to, or – in a subopti-
mal case – larger than the exact graph edit distance. Yet, the proposed reduction
of graph edit distance to an LSAP allows the approximate graph edit distance
computation in polynomial time complexity. For the remainder of this paper we
denote this graph edit distance approximation algorithm with BP (Bipartite).

3 Improving the Node Assignment Using Beam Search

In an experimental evaluation in [18] we observed that the overestimation of BP
is very often due to a few incorrectly assigned nodes in ψ. That is, only few node

3 In [18] Munkres’ algorithm is deployed, while in [25] also other algorithms have been
tested for graph edit distance approximation.



122 K. Riesen, A. Fischer, and H. Bunke

assignments from the second step are responsible for additional (unnecessary)
edge operations in the third step (and the resulting overestimation of the true
edit distance). Our novel procedure ties in at this observation. That is, the node
assignment ψ of our framework is used as a starting point for a subsequent search
in order to improve the quality of the distance approximation (rather than using
the assignment for graph edit distance approximation directly).

The basic idea of our search procedure is that the original node assignment ψ
is systematically varied by swapping the target nodes vϕi and vϕj of two node
assignments (ui → vϕi) ∈ ψ and (uj → vϕj ) ∈ ψ. For each swap it is verified
whether (and to what extent) the derived distance approximation stagnates,
increases or decreases. For a systematic variation of mapping ψ a tree search
with ψ as the starting point is carried out.

The tree nodes in our search procedure correspond to triples (ψ, q, d〈ψ〉), where
ψ is a certain node assignment, q denotes the depth of the tree node in the search
tree and d〈ψ〉 is the approximate distance value corresponding to ψ. The root
node of the search tree refers to the optimal node assignment

ψ = {(u1 → vϕ1), (u2 → vϕ2), . . . , (um+n → vϕm+n)}

found by our former algorithm BP. Hence, the root node (with depth = 0) is
given by the triple (ψ, 0, d〈ψ〉). Subsequent tree nodes (ψ′, q, d〈ψ′〉) with depth
q = 1, . . . , (m + n) contain node assignments ψ′ with swapped element (uq →
vϕq ).

As usual in tree search based methods, a set open is employed that holds
all of the unprocessed tree nodes. We keep the tree nodes in open sorted in
ascending order according to their depth in the search tree (known as breadth-
first search). Thus, at position 1 of open the tree node with smallest depth
among all unprocessed tree nodes can be found. As a second order criterion
the approximate edit distance d〈ψ〉 is used. That is, if two tree nodes have same
depth in the search tree, they are queued in open according to ascending distance
values.

Note that a best-first search algorithm, where open is sorted in ascending
order according to the cost of the respective solution, would not be suitable for
the present task. Best-first search algorithms expect that the cost of a solution
increases monotonically with the increase of the depth in the search tree. Obvi-
ously, this is not the case in our scenario since for two tree nodes (ψ′, q′, d〈ψ′〉)
and (ψ′′, q′′, d〈ψ′′〉) with q′ < q′′, it must not necessarily hold that d〈ψ′〉 < d〈ψ′′〉.
This is due to the fact that each tree node in the search tree represents a com-
plete node mapping with the corresponding graph edit distance approximation
value (in contrast with exact computations of graph edit distance, where inner
tree nodes always refer to incomplete mappings).

The extended framework BP with the tree search based improvement is given
in Alg. 1 (the first three lines correspond to the three major steps of the original
approximation). Before the main loop of the search procedure starts, open is
initialized with the root node (line 4). As long as open is not empty, we retrieve
(and remove) the triple (ψ, q, d〈ψ〉) at the first position in open (the one with



Reverse Graph Edit Distance Computation 123

Algorithm 1. BP-Beam(g1, g2) (Meta Parameter: b)

1. Build cost matrix C = (cij) according to the input graphs g1 and g2
2. Compute optimal node assignment ψ = {u1 → vϕ1 , u2 → vϕ2 , . . . , um+n → vϕm+n

} on C

3. dbest = d〈ψ〉(g1, g2)
4. Initialize open = {(ψ, 0, d〈ψ〉(g1, g2))}
5. while open is not empty do
6. Remove first tree node in open: (ψ, q, d〈ψ〉(g1, g2))
7. for j = (q + 1), . . . , (m + n) do
8. ψ′ = ψ \ {uq+1 → vϕq+1

, uj → vϕj
} ∪ {uq+1 → vϕj

, uj → vϕq+1
}

9. Derive approximate edit distance d〈ψ′〉(g1, g2)
10. open = open ∪ {(ψ′, q + 1, d〈ψ′〉(g1, g2))}
11. if d〈ψ′〉(g1, g2) < dbest then

12. dbest = d〈ψ′〉(g1, g2)
13. end if
14. end for
15. while size of open > b do
16. Remove tree node with highest approximation value d〈ψ〉 from open

17. end while
18. end while

19. return dbest

minimal depth and minimal distance value), generate the successors of this spe-
cific tree node and add them to open (line 6 – 10). That is, similarly to exact
computation of the graph edit distance the search tree is dynamically built at
run time.

The successors of tree node (ψ, q, d〈ψ〉) are generated as follows. The assign-
ments of our original node matching ψ are processed according to the depth q
of the current search tree node. That is, at depth q the assignment uq → vϕq is
processed and swapped with other assignments. Formally, in order to build the
set of successor of node (ψ, q, d〈ψ〉) all pairs of node assignments (uq+1 → vϕq+1)
and (uj → vϕj ) with j = (q+1), . . . , (n+m) are individually regarded. For each
of these pairs, the target nodes vϕq+1 and vϕj are swapped resulting in two new
assignments (uq+1 → vϕj ) and (uj → vϕq+1). In order to derive node mapping ψ′

from ψ, the original node assignment pair is removed from ψ and the swapped
node assignment is added to ψ (see line 8). On line 9 the corresponding distance
value d〈ψ′〉 is derived and finally, the triple (ψ′, q + 1, d〈ψ′〉) is added to open
(line 10). Since index j starts at (q + 1) we also allow that a certain assignment
uq+1 → vϕq+1 remains unaltered at depth (q + 1) in the search tree.

Since every tree node in our search procedure corresponds to a complete solu-
tion and the cost of these solutions neither monotonically decrease nor increase
with growing depth in the search tree, we need to buffer the best possible dis-
tance approximation found during the tree search (lines 11 – 13 take care of that
by checking the distance value of every successor node that has been created).

Note that the algorithmic procedure described so far exactly corresponds to a
breadth-first search. That is, the procedure described above explores the space
of all possible variations of ψ through pairwise swaps and return the best pos-
sible approximation (which corresponds to the exact edit distance, of course).
However, such an exhaustive search is both unreasonable and intractable.



124 K. Riesen, A. Fischer, and H. Bunke

In [17] a variant of an A*-algorithm, referred to as beam search, has been
used in order to approximate graph edit distance from scratch. The basic idea
of beam search is that only a fixed number b of nodes to be processed are kept
in open. This idea can be easily integrated in our search procedure as outlined
above. Whenever the for-loop on lines 7 – 14 has added altered assignments to
open, only the b assignments with the lowest approximate distance values are
kept, and the remaining tree nodes in open are removed. This means that not
the full search space is explored, but only those nodes are expanded that belong
to the most promising assignments (line 15 – 17). Note that parameter b can be
used as trade-off parameter between run time and approximation quality. That
is, it can be expected that larger values of b lead to both better approximations
and increased run time (and vice versa).

From now on we refer to this variant of our framework as BP-Beam with
parameter b.

4 Experimental Evaluation

For experimental evaluations three data sets from the IAM graph database repos-
itory4 for graph based pattern recognition and machine learning are used. The
first graph data set involves graphs that represent molecular compounds (AIDS),
the second graph data set consists of graphs representing fingerprint images (FP),
and the third data set consists of graphs representing symbols from architectural
and electronic drawings (GREC). For details about the underlying data and/or
the graph extraction processes on all data sets we refer to [26].

In Table 1 the achieved results are shown. On each data set and for each
graph edit distance algorithm two characteristic numbers are computed, viz. the
mean relative overestimation of the exact graph edit distance (�o) and the mean
run time to carry out one graph matching (�t). The algorithms employed are
A* and BP (reference systems) and six differently parametrized versions of our
novel procedure BP-Beam (b ∈ {5, 10, 15, 20, 50, 100}).

First we focus on the degree of overestimation. The original framework (BP)
overestimates the graph distance by 12.68% on average on the AIDS data, while
on the Fingerprint and GREC data the overestimations of the true distances
amount to 6.38% and 2.98%, respectively. These values can be reduced with
our extended framework on all data sets. For instance on the AIDS data, the
mean relative overestimation can be reduced to 1.93% with b = 5. With b =
5 also on the other data sets a substantial reduction of �o can be reported
(from 6.38% to 0.61% and from 2.98% to 0.49% on the FP and GREC data set,
respectively). Increasing the values of parameter b allows to further decrease the
relative overestimation. That is, with b = 100 the mean relative overestimation
amounts to only 0.87% on the AIDS data set. On the Fingerprint data the
overestimation can be heavily reduced from 6.38% to 0.32% with b = 100 and
on the GREC data set the mean relative overestimation is reduced from 2.98%
to 0.27% with this parametrization.

4 www.iam.unibe.ch/fki/databases/iam-graph-database



Reverse Graph Edit Distance Computation 125

The substantial improvement of the approximation accuracy can also be ob-
served in the scatter plots in Fig. 1. These scatter plots give us a visual rep-
resentation of the accuracy of the suboptimal methods on the AIDS data set5.
We plot for each pair of graphs their exact (horizontal axis) and approximate
(vertical axis) distance value. The reduction of the overestimation using our pro-
posed extension is clearly observable and illustrates the power of our extended
framework.

(a) BP (b) BP-Beam(5))

Fig. 1. Exact (x-axis) vs. approximate (y-axis) graph edit distance

Table 1. The mean relative overestimation of the exact graph edit distance (�o) and
the mean run time for one matching (�t in ms) using a specific graph edit distance
algorithm

Algorithm

Data Set

AIDS FP GREC

� o � t � o � t � o � t

A* (Exact) - 5629.53 - 5000.85 - 3103.76

BP 12.68 0.44 6.38 0.56 2.98 0.43

BP-Beam(5) 1.93 3.98 0.61 2.91 0.49 5.83

BP-Beam(10) 1.79 7.27 0.56 5.17 0.47 10.97

BP-Beam(15) 1.68 10.51 0.51 7.32 0.41 15.90

BP-Beam(20) 1.28 13.48 0.46 9.41 0.33 20.71

BP-Beam(50) 0.95 31.39 0.35 21.58 0.29 46.49

BP-Beam(100) 0.87 60.40 0.32 41.87 0.27 86.00

As expected, the run time of BP-Beam is clearly affected by parameter b.
That is, doubling the values for parameter b (from 5 to 10, 10 to 20, or 50 to 100)

5 On the other data sets similar results can be observed.



126 K. Riesen, A. Fischer, and H. Bunke

approximately doubles the run time of our procedure. Comparing the mean run
time of BP-Beam(5) with the original framework, we observe that our extension
increases run time approximately by factor 9, 6, and 13 on the three data sets.
Yet, on all data sets the run time remains remarkable low (a few milliseconds
per matching on average only). Furthermore, even with b = 100 the average run
time lies below 0.1s per matching on every data set. Compared to the huge run
time for exact computation (3 or more seconds per matching), the increase of
the run time through our extension remains very small.

5 Conclusions

In the present paper we propose an extension of our previous graph edit dis-
tance approximation algorithm (BP). The major idea of our work is to combine
the bipartite approximation algorithm with a fast tree search algorithm. For-
mally, given the optimal assignments of nodes and local structures returned by
our approximation scheme, variations of this assignment are explored by means
of a fast, suboptimal tree search procedure (an exact tree search would be un-
reasonable, of course). Hence, the present work brings together two different
approximation paradigms for graph edit distance, viz. bipartite optimization of
local structures and fast beam search. With several experimental results we show
that this combination is clearly beneficial as it leads to a substantial reduction
of the overestimations typical for BP. Though the run times are increased when
compared to our former framework (as expected), they are still far below the
run times of the exact algorithm.

In the current version of our extension the node assignment (uq → vϕq ) to
be swapped at search step q are selected in fixed order. In future work we plan,
among other activities, to use heuristics for a more elaborated selection order of
the node operations to be swapped.

Acknowledgements. This work has been supported by the Hasler Foundation
Switzerland and the Swiss National Science Foundation project P300P2-151279.

References

1. Mahé, P., Ueda, N., Akutsu, T.: Graph kernels for molecular structures – activity
relationship analysis with support vector machines. Journal of Chemical Informa-
tion and Modeling 45(4), 939–951 (2005)

2. Borgwardt, K.: Graph Kernels. PhD thesis, Ludwig-Maximilians-University
Munich (2007)

3. Ralaivola, L., Swamidass, S., Saigo, H., Baldi, P.: Graph kernels for chemical in-
formatics. Neural Networks 18(8), 1093–1110 (2005)

4. Schenker, A., Bunke, H., Last, M., Kandel, A.: Graph-Theoretic Techniques for
Web Content Mining. World Scientific (2005)

5. Cook, D., Holder, L. (eds.): Mining Graph Data. Wiley-Interscience (2007)



Reverse Graph Edit Distance Computation 127

6. Harchaoui, Z., Bach, F.: Image classification with segmentation graph kernels. In:
IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

7. Luo, B., Wilson, R., Hancock, E.: Spectral embedding of graphs. Pattern Recog-
nition 36(10), 2213–2223 (2003)

8. Lladós, J., Sánchez, G.: Graph matching versus graph parsing in graphics recogni-
tion. Int. Journal of Pattern Recognition and Artificial Intelligence 18(3), 455–475
(2004)

9. Rocha, J., Pavlidis, T.: A shape analysis model with applications to a character
recognition system. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 16(4), 393–404 (1994)

10. Dickinson, P., Bunke, H., Dadej, A., Kraetzl, M.: Matching graphs with unique
node labels. Pattern Analysis and Applications 7(3), 243–254 (2004)

11. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching
in pattern recognition. Int. Journal of Pattern Recognition and Artificial Intelli-
gence 18(3), 265–298 (2004)

12. Sanfeliu, A., Fu, K.: A distance measure between attributed relational graphs for
pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics (Part
B) 13(3), 353–363 (1983)

13. Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recogni-
tion. Pattern Recognition Letters 1, 245–253 (1983)

14. Boeres, M.C., Ribeiro, C.C., Bloch, I.: A randomized heuristic for scene recognition
by graph matching. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS,
vol. 3059, pp. 100–113. Springer, Heidelberg (2004)

15. Sorlin, S., Solnon, C.: Reactive tabu search for measuring graph similarity. In:
Brun, L., Vento, M. (eds.) GbRPR 2005. LNCS, vol. 3434, pp. 172–182. Springer,
Heidelberg (2005)

16. Justice, D., Hero, A.: A binary linear programming formulation of the graph
edit distance. IEEE Trans. on Pattern Analysis ans Machine Intelligence 28(8),
1200–1214 (2006)

17. Neuhaus, M., Riesen, K., Bunke, H.: Fast suboptimal algorithms for the compu-
tation of graph edit distance. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F.,
de Ridder, D. (eds.) SSPR 2006 and SPR 2006. LNCS, vol. 4109, pp. 163–172.
Springer, Heidelberg (2006)

18. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image and Vision Computing 27(4), 950–959 (2009)

19. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions of Systems, Science, and Cybernetics 4(2),
100–107 (1968)

20. Cortés, X., Serratosa, F., Solé-Ribalta, A.: Active graph matching based on pair-
wise probabilities between nodes. In: Gimel’farb, G., Hancock, E., Imiya, A.,
Kuijper, A., Kudo, M., Omachi, S., Windeatt, T., Yamada, K. (eds.) SSPR&SPR
2012. LNCS, vol. 7626, pp. 98–106. Springer, Heidelberg (2012)

21. Koopmans, T., Beckmann, M.: Assignment problems and the location of economic
activities. Econometrica 25, 53–76 (1975)

22. Munkres, J.: Algorithms for the assignment and transportation problems. Journal
of the Society for Industrial and Applied Mathematics 5, 32–38 (1957)

23. Jonker, R., Volgenant, T.: A shortest augmenting path algorithm for dense and
sparse linear assignment problems. Computing 38, 325–340 (1987)

24. Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems. Society for In-
dustrial and Applied Mathematics, Philadelphia (2009)



128 K. Riesen, A. Fischer, and H. Bunke

25. Fankhauser, S., Riesen, K., Bunke, H.: Speeding up graph edit distance computa-
tion through fast bipartite matching. In: Jiang, X., Ferrer, M., Torsello, A. (eds.)
GbRPR 2011. LNCS, vol. 6658, pp. 102–111. Springer, Heidelberg (2011)

26. Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern
recognition and machine learning. In: da Vitoria Lobo, N., Kasparis, T., Roli, F.,
Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR
2008. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008)


	Combining Bipartite Graph Matching and BeamSearch for Graph Edit Distance Approximation
	1 Introduction
	2 Graph Edit Distance Computation
	2.1 Exact Computation Based on A*
	2.2 Bipartite Graph Edit Distance Approximation

	3 Improving the Node Assignment Using Beam Search
	4 Experimental Evaluation
	5 Conclusions
	References


