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A diagnostic method consisting of a combination of Kalman filters and Bayesian Belief
Network (BBN) is presented. A soft-constrained Kalman filter uses a priori information
derived by a BBN at each time step, to derive estimations of the unknown health param-
eters. The resulting algorithm has improved identification capability in comparison to the
stand-alone Kalman filter. The paper focuses on a way of combining the information
produced by the BBN with the Kalman filter. An extensive set of fault cases is used to test
the method on a typical civil turbofan layout. The effectiveness of the method is thus
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Introduction

Diagnostic methods employing statistical inference can be
mainly categorized into regression methods and classification
methods, depending on the way information is processed. In clas-
sification problems the task is to assign an input to one of a num-
ber of discrete classes or categories. However, in regression prob-
lems the outputs represent the values of continuous variables [1].
For example, in the case of aircraft engine diagnostics, outputs of
the regression algorithm is a set of numerical health parameter
values, whereas for a classification algorithm each parameter is
assigned to a given class (“faulty not faulty” or “low correct
high”).

Applying regression techniques such as Kalman filtering on gas
turbine engine diagnosis [2,3] poses some stability problems when
few measurements are available; health parameter estimation is
unstable when a low redundancy is encountered. Indeed, for com-
mercial aircraft engines (twin spool high bypass ratio turbofan
engines), it is typical to have more than 10 parameters to estimate
from only seven to nine measurements. As a result of the negative
redundancy, the problem is underdetermined and the solution is
not unique. Moreover, this estimation relies on uncertain observa-
tions available under the form of a noisy measurement set. In-
creasing the number of samples could make the redundancy posi-
tive, but because they are related to nearly the same operating
points they do not represent a set of independent observations, and
therefore, the estimation remains unstable. Some approaches in
turbine engine diagnostics where few measurements are available
in [4-8], but they all assume some predefined configurations for
the faults. Those predefined configurations are built into the algo-
rithm, and it is not possible for the user to interact with them.

As stated above besides regression algorithms, classification al-
gorithms solve the same problem in a different way and, therefore,
give a different kind of results. Although less accurate, classifica-
tion algorithms are more reliable and usually more stable. More-
over, some classification algorithms allow some qualitative
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its advantages over individual constituent methods are

knowledge (i.e., user experience, some events that have been ob-
served but cannot be modeled, etc.) to be introduced into the
classification rule. Those characteristics make classification algo-
rithms very complementary to regression algorithms. Some results
of classification techniques applied to turbine engine diagnostic
can be found in [9,10].

In [11], a physical state variable model is combined with a
neural network model to improve the diagnostic of a turbine en-
gine by including empirical knowledge. Although the present con-
tribution uses a different method, the final scope is the same: to
decrease the proportion of false alarms and to increase the propor-
tion of fault detection by taking advantage of two different kind of
methods.

The approach presented in this contribution is based on a soft-
constrained Kalman filter (SCKF) developed in [8] and a Baye-
sian Belief Network (BBN) developed in [9]. The principal diag-
nostic tool is the Kalman filter, which produces the estimations of
the unknown health parameters. The estimation process incorpo-
rates information derived by the BBN—a fact that is shown to
improve fault detection efficiency. A way of combining the two
techniques is described in the following. For completeness, a brief
description of the diagnostic problem and the structure of each of
the two techniques is given first.

Problem Statement

The identification problem consists of recursively estimating a
set of health parameters representing possible degradations of spe-
cific components (fan, high pressure turbine, etc.) on the basis of
successive measurement samples performed on a turbine engine.
A steady-state model of this engine must be made available for
measurement simulation. This model is based on a set of health
parameters w;, engine operating point X;, and command param-
eters u,. The set of predicted measurement y is generated through
this nonlinear model G

Vi = G(ug.x;, wy) (1)

Health parameter identification is intended to solve the inverse
problem of measurement prediction: inputs are the raw measure-
ments ¥, and outputs are the health parameters W, to be estimated.
The process starts with initial values for the health parameters w;.
Residuals are built as ¥=y,—¥, to compare predicted measure-
ments ¥, to observed measurements y;. Although classification
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Fig. 1 Classification procedure using BBN

algorithms are aimed at associating a given class to each residuals
I}, the purpose of regression algorithm is to fit health parameters
to observed raw measurements y; and leads to drive residuals 1 to
zero. Regression problems are thus solved through the minimiza-
tion of the following inner product, which is also known as the
weighted least-squares approach where the weighting factor R, is
the residual covariance

J=FR;'F, (2)

Classification Techniques: BBN

The classification technique is a Bayesian Belief Network
(BBN), presented in [9] (to which the interested reader is referred
for more details). The structure of such a network, which will be
employed later in the paper, is shown in Fig. 1. It includes 18
nodes representing deviations of 11 health parameters (W), and
seven measurements (y;) for the test case of a turbofan engine.

The BBN is supported by an engine performance model. A set
of measurement readings (¥}) is preprocessed together with X, and
u, to derive the deviation of the seven measurements from their
nominal value. These deviations are presented to the BBN, from
which the output probabilities P(w;) are estimated. Each output
node produces the probability for a health parameter to belong to
a certain interval, for example, to be around the value that repre-
sents a “healthy” component or to be away from this value for a
fault condition. The output is thus an indication of what the most
probable values of health parameters are, and from this informa-
tion the stand-alone BBN derives a fault diagnosis.

Soft-Constrained Kalman Filters

The soft-constrained Kalman filter (SFKF) has a typical struc-
ture depicted in Fig. 2. Details on the specific SCKF employed
here can be found in [8], where the development of this filter is

~

engine performance
model

Kl

Fig. 2 Description of the soft-constrained Kalman filter
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Fig. 3 Data preprocessing for operating-point estimation

described. A Kalman filter is a regression algorithm, meaning that
its outputs are numerical values of health parameters. Differences
between regression methods found in the literature reside in the
update rule selected to minimize 7 regarding w;. Many methods
found in the aircraft-engine diagnostic literature are batch meth-
ods where the whole set of available data is processed in one
batch. In the case of non-linear engine performance model such an
estimation involves the use of non-linear iterative optimization
methods and the estimation is therefore called batch iterative. At
the other hand, recursive procedures do not involve the batch
processing of the full block of data but only a simple update of the
parameters each time new data are available. Moreover, the up-
dating scheme does not imply any optimization procedure. Gen-
erally speaking, the advantage of a recursive approach resides in
the quick and simple update formula provided by those algorithms
that is well suited for on-line estimation.

As outlined in Fig. 2, prior information is introduced into the
identification loop. This is done through a penalizing term added
to the objective function and favoring health parameters, which
are in the neighborhood of predetermined values Wy, This pro-
cess is called ridge regression [12,13]. Because this prior infor-
mation is assumed to be Gaussian, it is parametrized by its mean
Worior and covariance matrix D. Prior information on health pa-
rameters are assumed to be uncorrelated, and D is thus strictly
diagonal. W;_; is updated by combining Wy, to current raw mea-
surements ¥ to assess W. It is through wp, that coupling the
BBN is achieved, as explained in the next section.

In Fig. 2, the engine operating point X; is assumed to be known.
In this contribution it is estimated using a Kalman filter together
with an additional measurement set Z;. The complete sequence is
described in Fig. 3. A set of measurements together with the set of
command parameters are preprocessed into a Kalman filter that
estimates the operating point X, which is used afterward in the
health-parameter estimation.

Combining Classification Techniques to Kalman Filters

The flowchart of the procedure combining the Kalman filter and
BBN is summarized in Fig. 4. Both the BBN and Kalman filter

Z, available
information
y
%01 Lo .| operatingpoint | residual
el estimation (KF) . pre-filtering

classification
algorithm

v
Bayesian Belief
Network (BBN)

} diagnosis

Fig. 4 Procedure followed to combine classification algorithm
with Kalman filter
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Fig. 5 Conversion of probability density from a piecewise con-
stant function into a Gaussian function

use the same preprocessing through operating-point estimation. It
increases the measurement prediction accuracy for both algo-
rithms. BBN results are fed into the SCKF as prior information to
achieve the health-parameter estimation. The final outcome of the
combination is the SCKF result called hereafter “results of the
combination.”

The communication between a classification algorithm, such as
the BBN, and a Kalman filter is not straightforward because they
use different probability density functions. Although prior infor-
mation needed by the Kalman filter has to be Gaussian, outputs of
classification algorithms are the probabilities of a measurement set
to belong to a specific class and, therefore, no probability density
function is attached to the results. This situation is depicted in Fig.
5. Probabilities related to outputs of the classification algorithm
are assumed to be piecewise constant and must be converted into
a Gaussian one to be fed into the SCKF.

The problem of Fig. 5 underlines the more general situation
where qualitative knowledge is to be compared to quantitative
knowledge. This difference in usually sufficient to prevent the
combination between classification techniques and regression
techniques. The solution proposed herein is to preserve, as much
as possible, the distribution of probability given by the BBN. If
the BBN diagnoses that a given parameter belongs to a specific
fault case with a probability of 100%, then this must appear in the
Gaussian function fed into the Kalman filter by a small covari-
ance. Conversely, if the BBN is unable to make a diagnostic, then
the probability is spread on the whole set of possible categories;
this must also appear in the Gaussian function fed into the Kalman
filter by an important variance. The most efficient way to translate
this knowledge is to go back to the definition of the mean u and
the variance o2 of a given probability function p

,u,:f wp(w)dw (3)

—

o= f (w = w)?p(w)dw (4)

Applying relations (3) and (4) to the situation in Fig. 5 yields

e Wi P. e P.
M=Ef w : dW:E_I(Wi"'WiH) (5)

i=0 J o, Wiv1 = Wi 0 2

Wisi "t

2= | v —T—aw= Eilw, - w2+ 0 - 2
i=0 Wit =W i 3
+ (Wi - M)(Wi+1 - M)] (6)

The mean and covariance needed by the Kalman filter are, respec-
tively, built using relations (5) and (6). These are the key relations
that allow the flow of information from BBN to SCKF.

Application of the Method

In order to show how the method achieves a diagnosis and
“examine” its effectiveness, its application to a test case of a twin-
spool mixed-flow turbofan is presented. This type of engine is
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Fig. 6 Turbofan engine layout. Measurement uncertainties
represent three times the standard deviation

representative of current-day civil aircraft propulsors. The particu-
lar engine layout chosen is shown in Fig. 6. This engine and fault
cases examined has been used as a test case by several previously
published diagnostic methods (e.g., [5,7-9]). It can therefore be
considered as a benchmark case. The available sensors with their
accuracies and the set of 11 health parameters representing some
degradations of specific components (fan, high pressure turbine,
etc.) are shown in Fig. 6.

An extensive set of faults, shown in Table 2, representative of
possible situations expected to be encountered in practice, defined

Table 1 Detailed nomenclature of Fig. 6

ALT=flight altitude

DTAMB=AT from iso

M=flight Mach number

Tx=total temperature at station x
Px=total pressure at station x
SEx=efficiency degradation at component x
SWxR=flow capacity at component x
A8IMP=fouling factor of the nozzle
LPC=low-pressure compressor
HPC=high-pressure compressor
HPT=high-pressure turbine
LPT=low-pressure turbine

Table 2 Fault cases of a turbofan engine

FAN, LPC

i+

—0.7% on SW2R
—1% on SWI2R
—1% on SE12

—1% on SW26R
—1% on SE26

—1% on SW26R
+1% on SW42R
—1% on SW42R
—1% on SE42

—1% on SE49

—1% on SW49R
—1% on SW49R
+1% on SW49R
+1% on ASIMP
—1% on ASIMP
+2% on ASIMP

—0.4% on SE2
—0.5% on SE12

—0.7% on SE26 HPC

HPT
—1% on SE42

LPT
—0.4% on SE49

—0.6% on SE49
Nozzle

S BB —F——Tr me a6 o
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Fig. 7 Identification results of individual methods for HPC
fault case c (dotted lines refer to actual values)

in [14], is used. Faults in all individual components are included.
Different types of faults are considered by involving one or more
health parameters of a component.

A steady-state model of this engine is also employed [15] to
simulate the measurements ¥y, given:

1. set of command parameters u;
2. operating point X
3. health parameters Wy

Simulated measurements have been generated using the steady-
state engine model during a cruise flight (ALT=10,800 m, M
=0.82, DTAMB=0 K). Data sequences are generated with a du-
ration of 5000 s with a data acquisition rate of 2 Hz. Profile of
simulated faults is a steep fault with amplitude defined in Table 2
occurring at =50 s followed by a slow drift of the same fault
occurring at r=2500 s. In this way, the behavior of the method for
both abrupt faults and gradual deteriorations is examined.

The time evolution of estimated health parameters will first be
presented to show how the method traces their changes, abrupt or
gradual. Representative test cases are chosen to demonstrate that
the combined method performs better, not only when both con-
stituents point to the same kind of answer, but also when the
results of each method alone are different. Three such situations
are chosen to be presented:

1. a fault on the high-pressure compressor (fault case c), which
is solved by the Kalman filter, but not by the BBN

2. an LPT flow-capacity fault (case k), which is not solved by
the Kalman filter but is solved by the BBN

3. an LPT fault involving two health parameters where none of
the algorithms find the solution

HPC Fault: Case c. This case is dedicated to demonstrate the
stability of the combination between the BBN and the Kalman
filter. Both algorithms have been separately run on the same data
set. The upper graph in Fig. 7 shows results of the diagnostic
using the Kalman filter alone. It compares actual values of health
parameter related to the high-pressure compressor (dotted lines) to
identified values. Identified values are close to actual ones, show-
ing that the identification is effective. No spreading of the fault is
observed on the high-pressure turbine (not shown in the figure)
nor on the fan and the low-pressure compressor. The lower graph
in Fig. 7 shows similar results given by the BBN. Values in the
ordinate of this graph are the corresponding mean computed by
relation (5). As long as the fault is of small magnitude, namely, for
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Fig. 8 Identification results of combined method for HPC fault
case c (dotted lines refer to actual values)

~4000 s, the BBN produces a wrong diagnosis of an LPC fault
(SE2). Only for the last period of the interval, when the deviation
magnitude becomes larger, is the correct component indicated.

Results of the combined method are summarized in Fig. 8
showing that the fault is still correctly located by the Kalman
filter. This demonstrates that the combined algorithm is not simply
a weighted mean of Kalman filter and BBN results. It seems that
the SCKF estimation is robust enough not to be perturbed by BBN
information.

LPT Faults: Cases k and 1. Test case k involves only one
health parameter: the flow capacity of the low-pressure turbine
(SW49R). This case is solved by the BBN but not by the Kalman
filter. This situation is summarized in the upper graph in Fig. 9,
which shows results for the turbine and the nozzle using the
SCKEF alone. Identified health parameters SW49R, SE49, as well
as SE41 are detected faulty far from the actual values (dotted
lines). Conversely, the BBN is able to locate the fault. The lower
graph in Fig. 9 indicates that the parameter SW49R is low: mean
values of SW49R are around —1%, which is close to the actual
value. All other parameters are assigned to their nominal value
indicating that the isolation is correct.

The following results (Fig. 10) highlight the benefit of the com-
bination also for the BBN. Identified values related to SW49R are
close to the actual one, whereas the one related to SE41 and SE49
remain close to nominal values. In this case the SCKF is driven by
the BBN to the correct solution.

As another illustration of this, Fig. 11 shows the results of the
test case 1 where both SW49R and SE49 are involved in the com-
ponent fault. Values derived by the SCKF alone for SW49R and
SE49 remain far from the actual ones, and the difference is spread
on the other parameters (SW41R and SE41). The fault is correctly
located, but its magnitude is not accurately determined. The com-
bined algorithm identification is far more accurate. The fault is not
only located correctly but also accurately assessed.
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E FARFRAAAT A Ao ok Jok Ao TNk R R Rk - A 25\72 R
= S+ 9l
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Fig. 9 Identification results of individual methods for LPT fault

case k (dotted lines refer to actual values)
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Fig. 10 Identification results of combined method for LPT fault
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LPT Fault: Case j. Because no interturbine measurement is
available, case j is by far the most difficult one. This case is not
solved by the BBN nor the SCKF, which is represented in Fig. 12
where values of SW49R, SE49, and SE41 identified by the SCKF
remain far from actual values. Therefore, both low- and high-
pressure turbines are detected as faulty. The same kind of results
are obtained using the BBN where SW49R and SW41R are clas-
sified as faulty, while the fault related to SE49 is not detected.

Although identified values of SW49R and SE49 are closer to
the actual ones, the fault remains poorly located (Fig. 13). SE41 is
below —0.3%, and the high-pressure turbine also looks defective.
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Fig. 11 Identification results of SCKF (upper figure) and com-

bined method (lower figure) for LPT fault case | (dotted lines
refer to actual values of health parameters)
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This behavior is not surprising since not one of the constituent
methods provides information that could be used to lead the com-
bined method to the correct decision.

Diagnostic Effectiveness Overview. In order to illustrate the
capabilities of the method, application results related to a number
of different fault cases are shown. Table 3 compares the results of
the soft-constrained Kalman filter (SCKF) alone to the combina-
tion of the SCKF with the BBN. This table shows maximum ab-
solute value of biases Aw, achieved by both methods after 4900
measurement samples are observed, which represents an image of
the asymptotic efficiency of the method.

W, — actual
Aw, = IOOW (7)
Values of Aw, around 0.25% are considered acceptable. The main
conclusion of these results is that the combination especially im-
proves results of the Kalman filter in test cases j, k, and 1 related
to the low-pressure turbine.

Table 4 gives an overall picture of the efficiency and the gain
achieved by the combination is compared to SCKF and BBN
working separately. This combination is able to solve all the test
cases except the case j, which is known to be difficult to identify
with this set of seven measurements [7].

Discussion

The present recursive method allows one to identify component
faults based on associated measurement deviations whose ampli-
tude is around the standard deviation of measurement noise. The
signal-to-noise ratio mainly affects the identification process in
terms of convergence speed. The dependency of the convergence
speed on the measurement noise level is illustrated in Fig. 14.
Crosses represent the relative increase of time required to accu-
mulate enough data samples as needed to converge to the
asymptotic solution. The crosses compare well to the theoretical

Table 3 Comparison of identification results using soft-
constrained Kalman filter with noninformative a priori (left col-
umn) and BBN a priori (right column). Results are maximum
absolute values of biases defined by (7)

SCKF alone (%)

SCKF+BBN(%)

B =N IO o e TN

0.03 on SW49R 0.05 on SW49R
0.09 on SE12 0.10 on SE12
0.07 on SW26R 0.12 on SW26R
0.03 on SE12 0.06 on SE2
0.03 on SW26R 0.04 on SW49R
0.02 on SE42 0.02 on SE42
0.17 on SW49R 0.11 on SE49

0.24 on SW49R
0.19 on SW49R
0.82 on SW49R
0.53 on SW49R
0.41 on SW49R
0.06 on SE41
0.06 on SW2R

0.14 on SW49R
0.25 on SW49R
0.58 on SW49R
0.04 on SW49R
0.12 on SW49R
0.05 on SE41

0.03 on SE49
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Table 4 Summary of diagnosis success given by the SCKF
alone, BBN alone, and combination of the SCKF with BBN a
priori for the complete set of component fault detailed in Table
2

SCKF BBN SCKF+BBN

R R R
[ R

[

= E — e e TUIQ O QO TR

PR

prediction (plain line), which states that the number of data
samples required to obtain a given accuracy must increase as a
quadratic function of the noise level. Indeed, more accurate mea-
surements (less noise) means more adaptability (since the Kalman
gain K is higher), an improved tracking capability, and, therefore,
an increased convergence speed.

Moreover, systematic calculations have shown that the final di-
agnostic (asymptotic solution) is only slightly affected by the level
of noise in the measurements. Beside these effects of the noise
level, the nonobservability of some parameters can lead to a false
diagnostic even though the noise level is strongly reduced.

With the set of seven available measurements, those results are
the most meaningful that can be obtained with the combined al-
gorithm. In order to obtain a better location of the fault, additional
knowledge must be made available. In [8], two additional mea-
surements are considered: P26 and P49. Although this solution is
ideal because it provides the best results, those two measurements
may not be available. In a test bench configuration it may happen
that some other measurements are available (i.e., vibrations, some
measurements about the lubrication system, etc.) but are unlikely
to be predicted based on the health parameters since they do not
appear in the model. This underlines the weakness of the Kalman
filter for which a model has to be available. Any qualitative
knowledge is very difficult to include in the identification proce-
dure.

The combined method proposed in the present paper allows the
inclusion of additional information from sources other than mod-
eled measurements (information fusion). It can thus produce re-
sults that would have been possible for the Kalman filter only with
additional gas path measurements. This point is demonstrated by
considering again case j, but assuming now that some additional
information exists, such as historical records and related statistics.
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Fig. 14 Influence of the measurement noise level on the con-

vergence speed
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Fig. 15 Identification results of BBN alone (upper figure) and

combined method (lower figure) for LPT fault case j (dotted
lines refer to actual values)

The following test case assumes that such additional knowledge
favors a fault on the low-pressure turbine. The BBN is modified
by tuning the a priori knowledge about the health parameters (see
[9] for the detailed procedure) to make a fault on the low-pressure
turbine more likely to occur.

Results using this “modified” BBN are shown in Fig. 15. A
fault on SE49 is now detected in addition to the one related to
SW49R. Results of the combined algorithm (lower graph in Fig.
15) are far better: SW49R as well as SE49 converge to their actual
value, while SE41 is closer to its true value. Finally (after 2500 s),
the detection is effective and the health parameters are accurately
assessed. The diagnosis is effective and allows a more reliable
decision.

Conclusions

A new methodology combining classification methods and re-
gression methods has been developed in order to benefit of their
mutual advantages. This combination has been tested on cases
representative of a real-life application to underline the gain in
stability and accuracy that can be achieved. The number of unde-
tected faults are lowered and false alarms are avoided (Table 4)
when compared to regression or classification methods working
separately.

The estimation of the combined algorithm allows a more reli-
able detection of component faults but also achieves a better ac-
curacy and a better fault isolation by lowering the spread of the
fault on several parameters (“smearing effect”).

Besides the improvements in accuracy and stability, this kind of
method allows information or sensor fusion, which is a very im-
portant field of research for future works. The key advantage of
combining methods is that it replaces the problem of comparing
classification techniques to regression techniques by the problem
of choosing which information they can share.
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Nomenclature
BBN = Bayesian Belief Network
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