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Abstract Given an undirected graph with edge weights, the max-cut problem is to find a

partitionof the vertices into two subsets, such that thesumof the weights of theedges crossing

different subsets is maximized. Heuristics based on auxiliary function can obtain high-quality

solutions of the max-cut problem, but suffer high solution cost when instances grow large. In

this paper, we combine clustered adaptive multistart and discrete dynamic convexized

method to obtain high-quality solutions in a reasonable time. Computational experiments on

two sets of benchmark instances from the literature were performed. Numerical results and

comparisons with some heuristics based on auxiliary function show that the proposed

algorithm is much faster and can obtain better solutions. Comparisons with several state-of-

the-science heuristics demonstrate that the proposed algorithm is competitive.

Keywords Max-cut � Local search � Dynamic convexized method � Clustered

adaptive multistart

1 Introduction

Given an undirected graph G ¼ ðV ;EÞ with vertex set V ¼ f1; 2; � � � ; ng, edge set

E � V � V . Let W ¼ ðwijÞn�n be the symmetric weighted adjacency matrix of the
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graph G with wij 6¼ 0 for fi; jg 2 E and wij ¼ 0 otherwise. The max-cut problem

consists in finding a partition of the set V into two disjoint subsets ðS; SÞ such that the

sum of the weights of the edges between S and S is maximized. The sum of the weights

of the edges between S and S is called the cut value of partition ðS; SÞ, and given by

wðS; SÞ ¼
X

i2S; j2S

wij:

Let xi 2 f1;�1g; i ¼ 1; 2; � � � ; n; be variables such that xi ¼ 1 if i 2 S, and xi ¼ �1

otherwise. Let L ¼ 1
4
ðDiagðWeÞ �WÞ, where e 2 R

n is a column vector with all

components ones, and fmathrmDiagðWeÞ is a diagonal matrix with elements of the

vector ðWeÞ being the diagonal entries. Then the max-cut problem can be formu-

lated as the following integer quadratic program [24, 25]:

ðMCÞ max f ðxÞ ¼ xTLx

s:t: xi 2 f1;�1g; i ¼ 1; � � � ; n:

�

The max-cut problem is one of Karp’s [17] original NP-complete problems, and it is

NP-complete even for un-weighted graph [10]. Besides its theoretical significance,

the max-cut problem arises in a variety of real-world applications, including very

large scale integration design [6, 21, 30], statistical physics [2, 34], scientific

computing [16], network optimization, sports team scheduling [7].

The max-cut problem has recently gained much attention because of its

theoretical significance and wide range of applications. A number of methods have

been developed to solve this problem. These solution methods can be categorized

into three classes: exact approaches [11, 19, 31], approximate approaches [12, 32],

and heuristic approaches [1, 3–5, 8, 14, 18, 20, 22–26, 28, 33, 37].

Rendl [31] proposed a branch-and-bound framework to solve the max-cut

problem to optimality. At each node of the branch-and-bound tree, the bound was

calculated using a dynamic version of the bundle method that solved a basic

semidefinite relaxation of the max-cut problem strengthened by triangle inequal-

ities. Their experiments showed that their proposed exact algorithm can solve max-

cut problems up to n ¼ 100 in a reasonable time. Recently, Ghaddar [11] developed

a branch-and-cut algorithm based on a semidefinite programming relaxation of the

minimum k-partition problem, whose special case with k ¼ 2 is max-cut problem.

Inside the branch-and-cut algorithm, they used positive semidefinite relaxations that

were further tightened using polyhedral results, and feasible solutions were obtained

by an iterative clustering heuristic. Exact solution approaches can find optimal

solutions of the max-cut problem, however, since the problem is NP-complete, the

practical usefulness of these algorithms is limited to fairly small instances.

The max-cut problem is known to be APX-complete [29]. It does not exist a

polynomial time approximation scheme (PTAS) [36] unless P = NP. Some approxima-

tion algorithms have been proposed to get approximate solutions of the max-cut problem.

In 1976, Sahni and Gonzales [32] proposed a 1
2
-approximation algorithm. Let X ¼ xxT,

the max-cut problem can be relaxed to the following semidefinite programming

problem:
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ðSDPÞ
max L � X
s:t: diagðXÞ ¼ e;

X< 0;

8
><

>:

where diagðXÞ ¼ ðX11; � � � ;XnnÞT;Xii; i ¼ 1; 2; � � � ; n, are the diagonal entries of the

matrix X. For nonnegative weighted graphs, Goemans and Williams [12] presented

a 0.878 56-approximation algorithm by solving the semidefinite programming

relaxation of the max-cut problem, and using randomized rounding to obtain a

solution of problem (MC).

Because of the NP-hardness of the max-cut problem, heuristic approach plays a crucial

role for the solution on large graphs. A number of heuristic algorithms, based on different

ideas, were proposed recently in the literature. Most of them are based on the semidefinite

programming relaxation (SDP) of the max-cut problem. Burer et al. [5] proposed a rank-2

heuristic (CirCut) for the max-cut problem, which performed better in practice than the

method in [12] in terms of solution quality. The authors in [4, 14, 26] used different

methods to deal with the semidefinite programming problem (SDP) and proposed

different algorithms for the max-cut problem. Some well-known metaheuristics such as

variable neighborhood search [8], path-relinking [8], scatter search [20], grasp [37], tabu

search [1], breakout local search [3], were used to solve the max-cut problem effectively.

The other methods deal with the max-cut problem based on auxiliary functions [22–

25]. In 2008, Ling et al. [24] presented a discrete filled function, whose parameters

don’t need to be adjusted, for the max-cut problem, and proposed a discrete filled

function algorithm for approximate global solutions of the problem. In 2009, they [25]

presented a new discrete filled function for the max-cut problem, and employed a

continuation optimization algorithm to find local solutions of a continuous relaxation

of the max-cut problem, then global search was performed by minimizing the

proposed new filled function. More recently, Ling et al. [23] showed that the max-cut

problem is equivalent to the following discrete optimization problem:

ðMMCÞ min hðxÞ ¼ xTWx

s:t: xi 2 f1;�1g; i ¼ 1; � � � ; n:

�

A new filled function for the problem (MMC) was presented in [23] as follows:

Hðx; x�; a; bÞ ¼
�½hðxÞ � hðx�Þ� þ b

aþ kx� x�kp

; hðxÞ > hðx�Þ;

a½hðx�Þ � hðxÞ� þ b
aþ kx� x�kp

; hðxÞ 6 hðx�Þ;

8
>>><

>>>:

where a [ 0 and 1 6 p\1 are constants, a [ 0 and b[ 0 are two adjustable

parameters. Then a discrete filled function algorithm was proposed to solve the

max-cut problem. Numerical results and comparisons with [5, 8] were reported to

show that the proposed algorithm is efficient. In 2012, Lin et al [22] proposed a

discrete dynamic convexized method for solving the max-cut problem. Experiments

were conducted on three sets of standard test instances from the literature. It showed

that the proposed algorithm is effective for the three sets of standard test instances.
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The heuristics based on auxiliary functions can escape successfully from previously

converged discrete local optima and find high-quality solutions. However, the filled

function method may spend relative more time on large scale graphs due to the number

of the local optima of the auxiliary function and the times of minimization (or

maximization) of the auxiliary function from different initial points [22]. The discrete

dynamic convexized method used random multistart approach, i.e., each time it

restarted from random starting point. The number of runs required to achieve good

solutions grows and the time of maximization of the auxiliary function increases with

problem size. Clustered adaptive multistart (CAMS) approach [13] reduces the

problem size by clustering, and generates new starting points from previously found

local optima, then the efficiency of the search is rapidly improved.

In this paper, we focus primarily on combining clustered adaptive multistart

approach CAMS [13] and the discrete dynamic convexized algorithm ðDCMÞ [22]

for the max-cut problem to find high-quality solutions in acceptable computing

times on large scale graphs. In the work, we combine clustered adaptive multistart

CAMS [13] and discrete dynamic convexized algorithm DCM into an algorithm

(CAMS_DCM). The new algorithm takes advantage of both CAMS and DCM, so

that it can be capable of solving large scale problem, and rapidly obtains high-

quality solutions. Our main contributions can be summarized as follows:

• Reducing the problem size by dynamically clustering based on previously found

elite solutions, such that a smaller, more easily solvable problem instance is

obtained.

• Maximizing the discrete dynamic convexized function from new starting points,

which are based on previously found elite solutions, in order to escape from the

current best local maximizer.

The remainder of this paper is organized as follows. In Sect. 2, we review the

discrete dynamic convexized algorithm DCM for the max-cut problem in [22].

Section 3 describes the clustering method for obtaining a smaller graph. The

proposed algorithm CAMS_DCM combines the clustered adaptive multistart and

discrete dynamic convexized method, which is given in Sect. 4. Section 5 provides

a computational evaluation of the proposed algorithm on benchmark instances from

the literature, and the results are compared with other existing algorithms in the

literature. Concluding remarks are given in Sect. 6.

2 Discrete Dynamic Convexized Method for the Max-Cut Problem

This Section briefly reviews the discrete dynamic convexized method [22] for the

max-cut problem in order to explain the proposed hybrid algorithm clearly and

make the paper self-contained.

Local search heuristics are effective for solving NP-hard combinatorial

optimization problems, but early get struck in local optima. Dynamic convexized

method is one of the effective approaches to help the algorithm find better local

optima. It was originally proposed for solving nonlinear global optimization and

nonlinear integer programming problems [39–41]. This method uses an auxiliary
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function of the original problem, and then uses a local search method to minimize

the auxiliary function in order to escape from the current best local optima and thus

obtains better results. Recently, this method has been successfully applied to some

optimization problems, such as nonconvex mixed integer nonlinear programming

[42], max-k-cut problem [22, 43], etc.

2.1 Definitions and Local Search Method MCFM

Now, we introduce some following definitions used in [22]. A neighborhood NðxÞ of

a given solution x 2 f1;�1gn
is obtained by moving a vertex i from its original

subset to the complement subset, i.e.,

NðxÞ ¼ fy 2 f1;�1gn : ky� xk1 6 2g:

Therefore, for any x ¼ ðx1; � � � ; xnÞ 2 f1;�1gn
, the size of the neighborhood is

nþ 1.

Definition 2.1 [22] A solution y 2 f1;�1gn
is called a discrete local maximizer of

the problem (MC), if f ðxÞ 6 f ðyÞ, for all x 2 NðyÞ.

Definition 2.2 [22] A solution y 2 f1;�1gn
is called a discrete global maximizer

of the problem (MC), if f ðxÞ 6 f ðyÞ, for all x 2 f1;�1gn
.

An iterative improvement local search method (MCFM) was proposed in [22] to

find discrete local maximizers of problem (MC). It is a simple modification of the

Fiduccia-Mattheyses heuristic (FM) [9] for circuit partitioning.

Defining the gain gainði; xÞ of a vertex i as the objective value of the problem

would increase by moving the vertex i from its current subset to the complement

subset, which is as follows:

gainði; xÞ ¼ f ðx1; � � � ; xi�1;�xi; xiþ1; � � � ; xnÞ � f ðx1; � � � ; xi; � � � ; xnÞ

¼

P
fi;jg2E;j2S

wij �
P

fi;jg2E;j2S

wij i 2 S;

P

fi;jg2E;j2S

wij �
P

fi;jg2E;j2S

wij i 2 S:

8
>><

>>:

MCFM proceeds in a series of passes. At the beginning of a pass, all vertices are free

to be moved. MCFM iteratively moves a free vertex with the highest gain (but not

necessarily positive). After a move is carried out, the moved vertex is not allowed to

move again during that pass, and the gains of adjacent vertices are updated

accordingly. The moving process is iterated until p1 vertices have been moved, then

the best partition solution during the pass is adopted as the starting solution of the

next pass. The algorithm terminates when a pass fails to improve solution quality.

Denote the set of free vertices as UNLOCK, and let p1 be the number of vertices

which are allowed to be moved in a pass. The pseudo-code of the MCFM is given in

Algorithm 1. One pass of MCFM is bounded by Oðn2Þ.
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2.2 Auxiliary Function and Discrete Dynamic Convexized Method

Let x� be the current best discrete local maximizer of problem (MC). Following

auxiliary function is constructed:

Tðx; kÞ ¼
f ðxÞ � kkx� x�k1; if f ðxÞ 6 f ðx�Þ;
f ðxÞ; if f ðxÞ[ f ðx�Þ;

�
ð2:1Þ

where k is a nonnegative parameter, k � k1 designates the 1-norm. Then the fol-

lowing nonlinear integer programming problem (AMC) is constructed:

ðAMCÞ
max Tðx; kÞ
s:t: xi 2 f1;�1g; i ¼ 1; � � � ; n:

�

It have been showed that if x� is not a discrete global maximizer of problem (MC),

then problems (MC) and (AMC) have the same discrete global maximizers and

global maximal values.

When using the local search algorithm MCFM to maximize the auxiliary

function Tðx; kÞ, the gain gainði; xÞ of a vertex i is redefined as

Algorithm 1 MCFM (G, x)
Input: graph G = (V, E), initial solution x = (x1, x2, · · · , xn) ∈ {1, −1}n, positive

number p1 < n.
Output: discrete local maximizer xmax.

1: repeat
2: Set UNLOCK = {1, 2, · · · , n}, xmax := x, and xini := x. Calculate gain(i, x),

for all i ∈ UNLOCK.
3: repeat
4: Let gain(j, x) = max{gain(i, x) : i ∈ UNLOCK}. Set x :=

(x1, x2, · · · , −xj , · · · , xn), and UNLOCK := UNLOCK\{j}.
5: if f(xmax) < f(x ) then
6: Set xmax := x .
7: end if
8: if {i, j} ∈ E, i ∈ UNLOCK, and xi = xj then
9: Set gain(i, x ) := gain(i, x) + 2wij .

10: end if
11: if {i, j} ∈ E, i ∈ UNLOCK, and xi = xj then
12: Set gain(i, x ) := gain(i, x) − 2wij .
13: end if
14: if {i, j E, and i ∈ UNLOCK then
15: Set gain(i, x ) := gain(i, x).
16: end if
17: Set x := x .
18: until |UNLOCK| n − p1
19: Set x := xmax.
20: until f(xmax) = f(xini)
21: return xmax as a discrete local maximizer of problem (MC).
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gainði; xÞ ¼ Tðx0; kÞ � Tðx; kÞ;

where x ¼ ðx1; x2; � � � ; xnÞ; x0 ¼ ðx1; � � � ; xi�1;�xi; xiþ1; � � � ; xnÞ; i ¼ 1; � � � ; n.

[22] showed that if k was large enough, then maximizing Tðx; kÞ from any initial

solution, the maximization sequence will converge to the current best discrete local

maximizer x�, or converge to a better solution.

Theorem 2.1 [22] For any x 2 A ¼ fx 2 f1;�1gn : f ðxÞ 6 f ðx�Þg, x 6¼ x�, let

AðxÞ ¼ maxf0;minz2NðxÞ;kz�x�k1\kx�x�k1

1

2
ðf ðxÞ � f ðzÞÞg:

If k [ AðxÞ, then starting from any initial solution in f1;�1gn
to maximize Tðx; kÞ

using the algorithm MCFM will not converge to x. Especially, for all

x0 2 A ¼ fx 2 f1;�1gn : f ðxÞ 6 f ðx�Þg, x0 6¼ x�, if

k [ max
x2f1;�1gn

AðxÞ; ð2:2Þ

then starting from any initial solution in f1;�1gn
to maximize Tðx; kÞ using the

algorithm MCFM will not converge to x0.

Theorem 2.1 suggests that the value of k should be large enough in order to

escape from the current best discrete local maximizer. However, too large value of k

may make the search converge to the current best discrete local maximizer x�

quickly. So, an updating scheme is developed to identify a suitable value of k.

The general idea of the discrete dynamic convexized method is as follows: At the

beginning, initial k ¼ 0, find a solution x0 by local search method MCFM starting

from a random solution. If x0 6¼ x�, and f ðx0Þ 6 f ðx�Þ, by Theorem 2.1, the value of

k does not satisfy the inequality (2.2). Then the value of k increases, and applying

MCFM to maximize Tðx; kÞ starting from x0. If the obtained solution x00 satisfies

x00 6¼ x� and f ðx00Þ 6 f ðx�Þ. It implies that the value of k is still too small, then the

value of k increases, and applying MCFM to maximize Tðx; kÞ from x00 again, till the

maximization sequence converges to x� or a better solution.

3 Clustering Method

The discrete dynamic convexized method presented in [22] can obtain a better

discrete local maximizer of problem (MC) by applying the local search method

MCFM. Finally, an approximate global maximizer of (MC) can be obtained.

However, like the filled function method [23–25] for the max-cut problem, the

computing time may be relatively high for large graphs. Hence, it is necessary to

develop an effective way to reduce the computing time for large graphs.

One effective way to reduce the computing time for large scale optimization

problems is to reduce the problem size. Hagen and Kahng [13] proposed a clustered

adaptive multistart (CAMS) methodology for circuit partitioning. Their Numerical

results showed that the CAMS method was surprisingly fast and stable for large

benchmark instances. In this paper, we adopt the CAMS to construct a clustering,
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which groups the vertices in V into disjoint subsets or clusters. Then we contract the

vertices of each cluster into a single vertex, such that a smaller graph is generated.

Let xi; i ¼ 1; � � � ; t, be t different elite solutions, which can be initially generated

by applying local search method MCFM to problem (MC) starting from t different

solutions, respectively. Our clustering method (CAM) constructs a clustered graph

G0 ¼ ðV 0;E0Þ from t previous elite solutions of the original graph G. It groups the

vertices of G, which are partitioned in the same subset in all of the t solutions, into a

single condensed vertex in G0. Note that, for any solution vector x 2 f1;�1gn
,

xi ¼ 1 means that i 2 S, and i 2 S otherwise. Then, finding the clusters is to identify

vertices which have identical components in the given t solution vectors. The

clusters can be easily found by the bucket or radix sort on the t solution vectors.

a. b.

c.

e.

d.

Fig. 1 A simple example for finding clusters
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We take a simple example to show how to find clusters by the radix sort. Let V ¼
f1; 2; � � � ; 10g be the set of vertices, let x1 ¼ ð1;�1;�1; 1;�1; 1;�1;�1; 1;�1Þ,
x2 ¼ ð1;�1; 1; 1;�1; 1; 1;�1;�1; 1Þ, x3 ¼ ð�1; 1;�1;�1; 1; 1;�1; 1;�1;�1Þ,
x4 ¼ ð1; 1;�1; 1; 1;�1;�1; 1; 1;�1Þ be 4 different elite solutions. An illustration

of the radix sort on the solution vectors is provided in Fig. 1.

From Fig. 1e, one can observe that the data under the columns ‘‘3’’, ‘‘7’’, and

‘‘10’’ are equal, and the same is between the columns ‘‘2’’, ‘‘5’’, and ‘‘8’’. And the

data under the columns ‘‘1’’ and ‘‘4’’ are equal too. It means that vertices sets

f3; 7; 10g, f1; 4g , and f2; 5; 8g are partitioned in the same subset in 4 solutions.

Then the proposed clustering algorithm groups vertices sets f3; 7; 10g, f1; 4g and

f2; 5; 8g into condensed vertices in G0, respectively.

From the idea of the CAM, we can make the following observation.

Observation 3.1

(1) Applying CAM on the same elite solution sets will construct identical

clustered graph.

(2) The better the quality of solutions in the elite solution set, the more easily

solved the clustered graph.

(3) If the solutions in the elite solution set are too similar, it is hard to find better

solutions by applying MCFM on the clustered graph.

Vertices to be clustered together are chosen based on the previous found elite

solutions. However, if the elite solutions are too similar to each other, and the

clusters found by radix sort are too large, the number of the vertices of the clustered

graph G0 is too small. Then it is hard to find better solution by applying local search

algorithm MCFM on the clustered graph G0. So, if the number of vertices in a

cluster is bigger than s, which is a parameter of CAM, then CAM randomly

decomposes the cluster into some smaller subclusters until the number of vertices in

each subcluster is smaller than or equal to s. Algorithm 3 shows the clustering

method CAM procedure for the max-cut problem.

Algorithm 2 CAM(G = (V, E), M, s)
Input: graph G = (V, E), elite solution set M = {x1, x2, · · · , xt}, s > 0.
Output: a clustered graph G = (V , E ).

1: for i = 1, · · · , t do
2: sorting xi by radix sort.
3: end for
4: finding vertices which have identical components in the t solutions in M .
5: while there exists a cluster in which the number of vertices is bigger than s do
6: decomposing the cluster into some smaller subclusters until the number of vertices

in each subcluster is smaller than or equal to s.
7: end while
8: group all found clusters into a single condensed vertex, respectively. Denote the set of

condensed vertices as V .
9: Let E be the set of edges over V that is induced by E.

10: return G = (V , E ).
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The time complexity of the algorithm CAM can be analyzed as follows. It takes

OðtnÞ times to sort t elite solutions by the radix sort. The decomposition of clusters

into smaller subclusters need OðnÞ. In time OðmÞ, we can construct G0 and E0.
Therefore, the total running time of the clustering method CAM is OðmÞ.

4 The Proposed Algorithm

4.1 Discrete Dynamic Convexized Method on Clustered Graph

Let M ¼ fx1; x2; � � � ; xtg be the elite solution set, and xb ¼ Argmaxxi2MffðxiÞg.
Denote V10 ;V20 ; � � � ;Vn0 as the clusters found by the CAM from t elite solutions in

M. Let V 0 ¼ f10; 20; � � � ; n0g. Then, we have Vi0 � V , for all i0 2 V 0, andS
i02V 0 Vi0 ¼ V . The vertices in each cluster Vi0 are grouped into a condensed vertex

i0 in the clustered graph G0 ¼ ðV 0;E0Þ. Denote n0 and m0 be the number of vertices

and edges in the clustered graph G0 constructed by algorithm CAM, respectively.

Let L0 ¼ 1
4
ðDiagðW0e0Þ �W0Þ, where W 0 is the symmetric weighted adjacency

matrix of the graph G0, e0 2 Rn0 is a column vector with all components ones, and Diag

ðW 0e0Þ is a diagonal matrix with elements of the vector W 0e0 being the diagonal entries.

Then the max-cut problem on the clustered graph G0 can be formulated as follows:

ðCMCÞ max gðyÞ ¼ yTL0y

s:t: yi 2 f1;�1g; i ¼ 1; � � � ; n0:

�

Let y� 2 f1;�1gn0
be a solution of problem (CMC). Like [22], the auxiliary

function (CMC) is constructed as follows:

T 0ðy; k0Þ ¼
gðyÞ � k0ky� y�k1; if gðyÞ 6 gðy�Þ;
gðyÞ; if gðyÞ[ gðy�Þ;

�
ð4:1Þ

where k0 is a nonnegative parameter, k � k1 designates the 1-norm. Then the fol-

lowing auxiliary problem is constructed:

ðACMCÞ
max T0ðy; k0Þ
s:t: yi 2 f1;�1g; i ¼ 1; � � � ; n0:

�

The following result follows from Theorem 2.1 [22].

Corollary 1 For any y 2 A ¼ fy 2 f1;�1gn0 : gðyÞ 6 gðybÞg, y 6¼ yb, let

A0ðyÞ ¼ maxf0;minz2NðyÞ;kz�ybk1\ky�ybk1

1

2
ðgðxÞ � gðzÞÞg:

If k0[ A0ðxÞ, then starting from any initial solution in f1;�1gn0
to maximize

T 0ðy; k0Þ using the algorithm MCFM will not converge to y. Especially, for all

y0 2 A ¼ fy 2 f1;�1gn0 : gðyÞ 6 gðybÞg, y0 6¼ yb, if

k0[ max
y2f1;�1gn0

A0ðyÞ; ð4:2Þ

then starting from any initial solution in f1;�1gn0
to maximize T 0ðy; k0Þ using the

algorithm MCFM will not converge to y0.
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Like [22], the discrete dynamic convexized method DCM for problem (CMC) is

given by Algorithm 3.

In order to describe the relationship between the solutions of the clustered graph

and the original graph clearly, we introduce the following two definitions.

Definition 4.1 Suppose that the vertices in Vi0 ; i
0 ¼ 10; � � � ; n0 are grouped into a

condensed single vertex i0 in the clustered graph V 0, respectively. For a given

solution x ¼ ðx1; � � � ; xnÞ 2 f1;�1gn
, its clustered solution y ¼ ðy10 ; � � � ; yn0 Þ 2

f1;�1gn0
is defined as yi0 ¼ xj; i

0 2 V 0, where j 2 Vi0 .

Definition 4.2 Suppose that the vertices in Vi0 ; i
0 ¼ 10; � � � ; n0 are grouped into a

condensed single vertex i0 in the clustered graph V 0, respectively. For a given

solution y ¼ ðy10 ; � � � ; yn0 Þ 2 f1;�1gn0
, its projected solution x ¼ ðx1; � � � ; xnÞ 2

f1;�1gn
is defined as xi ¼ yj0 ; i 2 V , where i 2 Vj0 .

We take the example mentioned in Sect. 3 to illustrate the definitions of clustered

solution and projected solution. From Fig. 1e, we have V 010 ¼ f3; 7; 10g, V 020 ¼ f6g,
V 030 ¼ f9g, V 040 ¼ f1; 4g, V 050 ¼ f2; 5; 8g, and V 0 ¼ f10; 20; 30; 40; 50g. Then by

Definitions 4.1 and 4.2, the clustered solutions of x1 ¼ ð1;�1;�1; 1;�1; 1;

�1;�1; 1;�1Þ and x2 ¼ ð1;�1; 1; 1;�1; 1; 1;�1;�1; 1Þ are ð�1; 1; 1; 1;�1Þ, and

ð1; 1;�1; 1;�1Þ, respectively. Suppose that y ¼ ð1; 1;�1;�1; 1Þ is a solution of the

clustered graph, then its projected solution is ð�1; 1; 1;�1; 1; 1; 1; 1;�1; 1Þ.

Algorithm 3 DCM(G , y∗, δk , N1)

Input: graph G = (V , E ), a solution y∗ ∈ {1, −1}n , a positive number δk , the toler-
ance parameter N1 for terminating the algorithm.

Output: a solution y .
1: Set N = 0, and construct a function T (y, k ) with k , y∗.
2: repeat
3: Set k = 0, and N = N + 1.
4: Generate randomly a solution y ∈ {1, −1}n .
5: repeat
6: Search for a discrete local maximizer of problem (ACMC) using algorithm MCFM

starting from y. When using the algorithm MCFM to maximize T (y, k ) with
k = 0, we set p1 = n

3 . When using the algorithm MCFM to maximize T (y, k )
with k > 0, we set p1 = n . Suppose that y is an obtained local maximizer.

7: Set k := k + δk , y := y
8: until y = y∗ or g(y ) > g(y∗)
9: if f(y ) > f(y∗) then

10: Set y∗ = y , and construct a function T (y, k ) with k , y∗.
11: end if
12: until N > N1
13: y = y∗.
14: return y .
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By the construction of G0, and Definitions 4.1 and 4.2, it is easy to have

following proposition.

Proposition 4.1 if x 2 f1;�1gn
is the projected solution of y 2 f1;�1gn0

, or

y 2 f1;�1gn0
is the clustered solution of x 2 f1;�1gn

, then f ðxÞ ¼ gðyÞ.

Suppose that G0 ¼ ðV 0;E0Þ is constructed by CAM from the elite solution set

M ¼ fx1; � � � ; xtg, xb ¼ Argmaxxi2MffðxiÞg, and yb 2 f1;�1gn0
such that yb is the

clustered solution of xb. We construct a function T 0ðy; k0Þ with k0; yb. By

Corollary 1, if k0 satisfies the inequality (4.2), then starting from any initial

solution in f1;�1gn0
to maximize T 0ðy; k0Þ using the algorithm MCFM will

converge to (1) yb; or (2) a better solution yb0 such that gðyb0 Þ[ gðybÞ.
If a better solution yb0 is found by DCM on the clustered graph, then we can get

its projected solution xb0 by Definition 4.1. Since f ðxb0 Þ ¼ gðxb0 Þ[ gðybÞ, by

Proposition 4.1, gðybÞ ¼ f ðxbÞ, we have f ðxb0 Þ[ f ðxbÞ. Then we find a better

solution than xb. Therefore, we can find better partition of V by applying DCM on

clustered graph obtained from the previous partitions of V .

4.2 Algorithm

In this subsection, a hybrid algorithm, called CAM_DCM, is proposed for solving the

max-cut problem. The pseudo-code of CAM_DCM is given in Algorithm 4. It uses

clustering method CAM to construct smaller graphs from the previous elite solution

set M (jMj ¼ t). From the idea of CAM, we have that the same elite solution sets will

construct identical clustered graph. In order to generate different clustered graphs in

different iterations, CAM_DCM maintains a elite solution set P such that jPj[ t.

Denote x� 2 f1;�1gn
as the current best solution found. In each iteration, CAM_

DCM randomly selects t solutions from P to construct clustered graphs by CAM, and

denotes the best solution in M and its clustered solution as xb and yb, respectively

(Algorithm 4, line 6). Then, the local search algorithm MCFM is used to find a discrete

local maximizer of problem (CMC) starting from a randomly generated solution y0 2
f1;�1gn0

. Suppose that yl is an obtained local maximizer of problem (CMC). We con-

struct auxiliary function T 0ðy; k0Þ with k0; yb, and maximize T 0ðy; k0Þ by DCM from yl

(Algorithm 4, line 7). By Corollary 1, if k0 is large enough, then the search process will

converge to a better solution or yb. If a better solution y0 is found, CAM_DCM finds a

discrete local maximizer x0 of the problem (MC) by the local search algorithm MCFM

from the projected solution of y0 , and an updating strategy, which will be given in the

next subsection, is used to update the elite solution set P (Algorithm 4, lines 8, and 9).

Otherwise, CAM_DCM finds a discrete local maximizer x00 of the problem (MC)

by the local search algorithm MCFM from the projected solution of yl (Algorithm 4,

line 14), and applies CAM to a construct clustered graph G0 from fx00; x�g
(Algorithm 4, line 15). An auxiliary function T 0ðy; k0Þ with k0; yb is constructed,

where yb is the clustered solution of the current best solution x�. By Proposition 4.1,

we have f ðx�Þ ¼ gðybÞ. Then, CAM_DCM maximizes T 0ðy; k0Þ by DCM (Algorithm
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4, line 16). Suppose y0 is the obtained solution. By Corollary 1, y0 must be either

equal to yb or better than yb. If gðy0Þ[ gðybÞ, since gðybÞ ¼ f ðx�Þ, we have

gðy0Þ[ f ðx�Þ: ð4:3Þ

CAM_DCM finds a discrete local maximizer x0 of problem (MC) by MCFM from

the projected solution of y0 (Algorithm 4, line 18). By (4.3) and Proposition 4.1, we

have f ðx0Þ[ f ðx�Þ. Then the current best solution x� is updated, and an updating

strategy is applied to updated the elite solution set P (Algorithm 4, line 19).

Algorithm 4 CAM DCM
Input: graph G = (V, E), two positive numbers p, t such that p > t, the tolerance

parameter N3 for terminating the algorithm.
Output: approximate global maximal solution x∗.

1: for i = 1, · · · , p do
2: Use local search algorithm MCFM to search for a discrete local maximizer of prob-

lem (MC) starting from a randomly generated solution xi, also denote it by xi;
3: end for
4: Let N = 0, and P = {x1, x2, · · · , xp}. Set x∗ = argmax{f(xi), i = 1, · · · , p}.
5: repeat
6: Select t solutions from P , and put them into elite solution set M . Apply the cluster-

ing algorithm CAM to construct a clustered graph G = (V , E ) from elite solution
set M . Let xb = argmaxxi∈M{f(xi)}, and denote its clustered solution as yb.

7: Set y = DCM(G , yb, δk , N1), and yl be a discrete local maximizer of problem
(CMC) obtained by MCFM in DCM (i.e., a discrete local maximizer obtained from
maximizing T (y, k ) with k = 0 in Algorithm 3 line 6).

8: if g(y ) > g(yb) then
9: Find a discrete local maximizer x of problem (MC) by MCFM from the projected

solution of y . Use updating method (Section 4.3) to update P .
10: if f(x ) > f(x∗) then
11: Set x∗ = x .
12: end if
13: else
14: Find a discrete local maximizer x of problem (MC) by MCFM from the projected

solution of yl.
15: Apply CAM to construct a clustered graph G = (V , E ) from solution set

{x , x∗}. Set yb be the clustered solution of x∗.
16: Set y = DCM(G , yb, δk , N2).
17: if g(y ) > g(yb) then
18: Find a discrete local maximizer x of problem (MC) by MCFM from the pro-

jected solution of y .
19: Set x∗ = x . Use updating method (Section 4.3) to update P .
20: end if
21: end if
22: Set N = N + 1.
23: until N > N3
24: return x∗ and f(x∗) as an approximate global maximal solution and global maximal

value of the max cut problem.
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Remark 1 In Algorithm 4, line 7, we set N1 ¼ 1 for algorithm DCM. Then yl is the

only discrete local maximizer of (CMC) found by MCFM, and its projected solution

may be used as an initial solution of MCFM (Algorithm 4, line 14).

Remark 2 In Algorithm 4, line 15, CAM is used to construct clustered graph G0

from fx00; x�g. In this case, we set the parameters of CAM equal to n, that is to say,

we do not split the clusters into small clusters.

Remark 3 In Algorithm 4, line 16, we set N2 ¼ 5 for algorithm DCM. As the

algorithm progresses, the number of vertices, which are partitioned in the same

subset in x00 and the current best solution x�, becomes larger, and the clustered graph

G0 becomes smaller.

4.3 Elite Solution Set Updating Method

By the Observation 3.1, both solution quality and diversification of the selected solution

set M interplay the quality of clustered graph G0 generated by CAM. It is necessary to

preserve the diversity of the elite solution set P. A number of strategies have been

presented to control the diversity of the population in memetic algorithms [27, 35, 38].

[27, 35, 38] use a function to determine whether an offspring is added to the

population or not. The function takes two factors into account: the quality of the solution

and the diversity of the population after addition of the solution. This approach has been

successfully applied to solve many combinatorial optimization problems, such as the

graph coloring problem, the max-bisection problem, the multidimensional knapsack

problem, and the total weighted tardiness single-machine scheduling problem.

In this paper, we adopt an elite solution set updating strategy used in [27, 38]. It

takes both the quality and the diversity of the set P into account. Its basic idea is

using a function to decide whether a solution should be added to P or not, and which

solution in P should be deleted. A distance measure is used to evaluate how much a

solution diversifies the population. We first give the definitions of the distance

between two solutions and the distance between a solution and a solution set.

Definition 4.3 Given two solutions x ¼ ðx1; � � � ; xnÞ; y ¼ ðy1; � � � ; ynÞ, the distance

dðx; yÞ between x and y can be defined as the least number of vertices necessary to

transform x to y.

Since x; y 2 f1;�1gn
, We can calculate the distance dðx; yÞ as follows:

dðx; yÞ ¼ 1

2

Xn

i¼1

jxi � yij: ð4:4Þ

If a solution that has a small distance to x is already in the elite solution set P, then

inserts x into P , which will not diversify the elite solution set P.

Definition 4.4 Given a solution set Q ¼ fx1; � � � ; xqg, the distance of a given

solution x 62 Q to the solution set Q is defined as follows:

dðx;QÞ ¼ minxi2Qdðx; xiÞ: ð4:5Þ
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The quality of a solution x can be measured by the objective function value f ðxÞ. We

adopt a quality-and-distance scoring function, which was originally proposed in [27],

to decide whether a new solution x should be added to an elite solution set P or not.

Definition 4.5 Given a solution set Q ¼ fx1; � � � ; xqg and a solution x 62 Q, the

quality-and-distance scoring function [27, 38] is defined as:

hðx;QÞ ¼ beAðf ðxÞÞ þ ð1� bÞeAðdðx;QÞÞ: ð4:6Þ

where f ðxÞ is the objective function value, b is a parameter set to 0.6 according to

[27, 38], and eAð:Þ represents the normalized function:

eAðxÞ ¼ x� xmin

xmax � xmin þ 1
; ð4:7Þ

where xmin and xmax are respectively the minimum and maximum of x in the solution

set Q, and ‘‘?1’’ is used to avoid the possibility of a 0 denominator.

Algorithm 5 shows the solution set updating strategy. Suppose x0 is a new

solution which obtained by MCFM. Algorithm 5 uses the following strategy to

update the elite solution set P ¼ fx1; � � � ; xpg. The values of hðx;PÞ and

hðxi;P� fxig [ fxgÞ, for each xi 2 P are calculated according to (4.6), and suppose

xf and xs are the solutions with the smallest value and the second smallest value in

P [ fxg, respectively. If xf 6¼ x, then x is inserted into the population and xf is

deleted from the population. It either improves the quality of the population or

diversifies the population. Otherwise, the solution xs is replaced by x with a

probability pr ¼ 0:2. The population updating procedure is presented as follows.

Algorithm 5 solution set updating method

Input: an elite solution set P = {x1, · · · , xp}, and a solution x , update probability pr.
Output: Updated elite solution set P = {x1, · · · , xp}.

1: calculate d(x, P ) according to (7).
2: calculate h(x, P ) according to (8).
3: for i = 1, · · · , p do
4: calculate d(xi, P − {xi} ∪ {x}) according to (7).
5: calculate h(xi, P − {xi} ∪ {x}) according to (8).
6: end for
7: Let xf = argmin{h(x, P ), h(xi, P − {xi} ∪ {x}), i = 1, · · · , p}.
8: if xf = x then
9: x is inserted into P , and xf is deleted from P , i.e., P = P − {xf} ∪ {x}.

10: else
11: if rand(0, 1) < pr then
12: Let xs = argmin{h(xi, P − {xi} ∪ {x})|i = 1, · · · , p}.
13: x is inserted into P , and xs is deleted from P , i.e., P = P − {xs} ∪ {x}.
14: end if
15: end if
16: return P .
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5 Experimental Results

In this section, we report some computational results and comparisons to show the

efficiency of the proposed algorithm. The proposed algorithm CAM_DCM was

implemented using C?? language and was run on a 2.11 GHz clockpulse and 1.0

GB RAM under Windows XP.

5.1 Test Instances

Two well-known instance sets from the literature are used to evaluate the

performance of the proposed algorithm.

The first set of standard benchmarks are G-set graphs. These graphs were created

by Helmberg and Rendl [15], and have been used to test a lot of algorithms for the

max-cut problem, such as [5, 8, 20, 24, 25, 41]. These graphs vary in size from 800

to 20 000 vertices, and can be downloaded from http://www.stanford.edu/yyye/

yyye/Gset/.

The second set of benchmarks, which were proposed by Burer, Monteiro, and

Zhang [5], arising from Ising spin glasses cubic lattice graphs. It consists of two

groups of benchmarks. The first group contains 10 graphs with 1 000 vertices and

density 0:60 %. The second group contains 10 graphs with 2 744 vertices and

density 0:22 %.

5.2 Parameters Setting

Table 1 gives the parameters used in the proposed algorithm CAM_DCM. The local

search algorithm MCFM was original proposed in [22]. Like [22], if MCFM is used

to search the original problem, we set p1 ¼ n
3
, otherwise, we set p1 ¼ n. CAM_DCM

maintains an elite solution set P with p ¼ 20, each time t ¼ 12; elite solutions are

selected randomly from P to construct clusters, in which the vertices have identical

components of the t solutions. If there exists a cluster, in which the number of

vertices is bigger than s, then we randomly decompose the cluster into small

Table 1 Parameters setting
Parameters Section Value

p1 3.1 n
3

or n

p 3.1 20

t 3.1 12

s 3.1 2 or 3

N1 4.1 1

N2 4.1 5

N3 4.1 300 or 2 000

dk0 4.1 w0

10

b 4.3 0.4

pr 4.3 0.2
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clusters. For the graph with n \ 3 000, we set s ¼ 2; otherwise, s ¼ 3. In Algorithm

4, lines 7 and 16, we set N1 ¼ 1 and N2 ¼ 5, respectively. Let

w0 ¼ maxfw0i0j0 : fi0; j0g 2 E0g;

where E0 is the edge set of the clustered graph G0, and w0i0j0 is the weight of the edge

fi0; j0g. Like [22], we set dk0 ¼ w0

10
.

5.3 Comparison with Heuristics Based on Auxiliary Function

In this experiment, we compare the proposed algorithm CAM_DCM with the

discrete dynamic convexized method (DCMMC) [22] and with the new discrete

filled function method DF2A due to Ling et al. [23].

We run our proposed algorithm with the parameters in Table 1 (N3 ¼ 300, s ¼ 2)

and DCMMC [22] with the parameters NL ¼ 1 000 on benchmark G40 on our

computer, respectively. The cut value obtained by each algorithm and the

corresponding CPU time (in seconds) are reported in Fig. 2.

As shown in Fig. 2, compared with DCMMC, CAM_DCM used less CUP time,

and found the better solution on G40.

We run the proposed algorithm CAM_DCM with parameters in Table 1

(N3 ¼ 300) on the two sets of benchmark instances. We also implemented DCMMC

[22] with parameters NL ¼ 1 000 and dk ¼ w
10

on our computer. The experimental

results on two instance sets are reported in Tables 2 and 3, respectively, where

w ¼ maxfwij : fi; jg 2 Eg. The experimental results of DF2A on the first set

instances are also listed in Table 2. In Tables 2 and 3, the subcolumns ‘‘Cut’’ and

‘‘Time’’ list the best cut value and CPU time (in seconds) obtained by CAM_DCM,

Fig. 2 Cut value and CPU time obtained by CAM_DCM and DCM on G40.
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DCMMC and DF2A, respectively. And the subcolumn ‘‘To best’’ lists for each

graph the time taken to meet the best solution in the whole run. The last rows of

Tables 2 and 3 list the average time of the first and second instance sets,

respectively. the ‘‘–’’ in Table 2 denotes that a result for that particular instance was

not available. The data under column ‘‘DF2A’’ are completely cited from [23].

We can make the following observations about the results in Tables 2 and 3:

(1) [23] used 8 instances in the first instance set to test their algorithm. In terms of

solution quality, our proposed algorithm found better solutions on these

instances, except G12.

(2) The proposed algorithm obtained the cut value as large as the cut value

obtained by DCMMC in 14 out of 69 instances in the first instance set, and

found better solutions in 46 instances of the first instance set. For the first

instance set, the average CPU time of DCMMC and CAM_DCM is 2 035:943s

and 520:865s, respectively. The average time taken to meet the best solution in

the whole run of DCMMC and CAM_DCM are 1 503:942s and 410:283s. It

shows that runs for our proposed algorithm were about 3 times faster than

DCMMC in 1 000 iterations.

Table 3 Experimental results and comparisons on the second instance set

Instance DCMMC [22] CAM_DCM

Name n m Cut Time To best Cut Time To best

sg3dl101000 1 000 3 000 894 218.078 56.016 894 35.953 11.257

sg3dl102000 1 000 3 000 900 224.547 61.688 900 32.197 6.969

sg3dl103000 1 000 3 000 892 226.109 81.617 892 32.620 17.906

sg3dl104000 1 000 3 000 896 219.390 14.015 898 33.361 7.577

sg3dl105000 1 000 3 000 882 231.781 163.031 884 61.813 49.235

sg3dl106000 1 000 3 000 886 232.062 42.265 888 36.907 7.672

sg3dl107000 1 000 3 000 898 237.485 105.209 898 38.531 30.719

sg3dl108000 1 000 3 000 880 249.079 30.313 880 37.623 27.313

sg3dl109000 1 000 3 000 900 238.516 46.891 900 41.704 17.172

sg3dl1010000 1 000 3 000 892 236.371 106.687 892 34.781 22.906

sg3dl141000 2 744 8 232 2 426 1 869.624 589.343 2 432 361.563 278.453

sg3dl142000 2 744 8 232 2 424 1 872.515 1 580.089 2 448 365.406 304.435

sg3dl143000 2 744 8 232 2 426 1 940.157 1 003.578 2 430 345.109 284.562

sg3dl144000 2 744 8 232 2 426 1 845.516 822.672 2 432 420.266 272.174

sg3dl145000 2 744 8 232 2 420 1 837.141 207.157 2 428 442.110 265.297

sg3dl146000 2 744 8 232 2 426 1 870.938 1 508.922 2 434 512.109 346.842

sg3dl147000 2 744 8 232 2 416 1 885.176 489.381 2 428 390.781 369.867

sg3dl148000 2 744 8 232 2 422 1 873.584 872.382 2 438 442.328 284.031

sg3dl149000 2 744 8 232 2 394 1 843.579 1 479.308 2 412 455.121 301.953

sg3dl1410000 2 744 8 232 2 430 1 829.057 723.412 2 440 440.922 410.456

Average time 1 049.035 499.198 228.060 165.839
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(3) For the second instance set, the proposed algorithm obtained cut value at least

as large as the cut value obtained by DCMMC on each test instance. Moreover,

the proposed algorithm found better solutions in 23 of 40 instances. The

average CPU time of DCMMC and CAM_DCM is 1 049:035s and 228:060s,

respectively. The average time taken to meet the best solution in the whole run

of DCMMC and CAM_DCM is 499:198s and 165:839s. It shows that runs for

our proposed algorithm were about 3 times faster than DCMMC in 1 000

iterations.

The above observations show that CAM_DCM benefits a lot from clustered

adaptive multistart method both in terms of solution quality and solution time, and

CAM_DCM can obtain high-quality solutions of the max-cut problem in an

acceptable time.

5.4 Comparison with Other Heuristics

In this second experimental study, we focus on comparing the performance of the

proposed algorithm CAM_DCM with respect to scatter search (SS) [28], rank-two

relaxation heuristic [5], tabu search (TS) [18], breakout local search (BLS) [3].

These heuristics are able to obtain high-quality solutions of the max-cut problem. In

particular, the breakout local search (BLS) [3] has shown to be the best existing

technique to solve the max-cut problem up to now.

We ran the proposed algorithm CAM_DCM 20 times with parameters in Table 1

(N3 ¼ 2 000) on the first instance set. The column ‘‘CAM_DCM’’ of Table 4

presents the best cut values of the test instances among 20 runs of CAM_DCM. For

comparison purposes, the best cut values of the test instances obtained by scatter

search [28], rank-two relaxation heuristic [5], tabu search [18], breakout local search

[3] are also cited in the columns ‘‘SS’’, ‘‘CirCut’’, ‘‘TS’’, and ‘‘BLS’’ of Table 4,

respectively. A ‘‘–’’ in the Table 4 means that the algorithm does not report result

for the test instance.

The data under the columns ‘‘SS’’ and ‘‘TS’’ are from [18]. [18] presented the

best cut values found by tabu search [18] in 2.36, 8, 12, 20, and 24 h on their

computer for instances with n 6 3 000, 5 000 6 n 6 7 000, n ¼ 8 000, n ¼ 9 000,

and n ¼ 10 000, respectively. The results listed under ‘‘BLS’’ are taken from [3]. [3]

ran the breakout local search 20 times on each instance of the first instance set, each

run was limited to 200 000n iterations. And the best cut values were reported among

20 runs. The data under the column ‘‘CirCut’’ are taken from [37].

We make the following observations on the results shown in Table 4:

(1) Table 4 gives the best solutions found by the scatter search (SS) [28], rank-two

relaxation heuristic (CirCut) [5] on instances G1–G54. Compared with the

scatter search (SS), the proposed algorithm found better solutions on 44 of the

54 instances, and found the same solutions on 8 instances. The proposed

algorithm found the cut values at least as large as the cut values obtained by

the rank-two relaxation heuristic (CirCut) on the 54 instances, moreover, the

proposed algorithm found better solutions on 45 of the 54 instances.
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Table 4 Comparison with the state-of-the-art algorithms in terms of the best solutions obtained

Name n m SS CirCut TS BLS CAM_DCM

G1 800 19 176 11 624 11 624 11 624 1 1624 1 1624

G2 800 19 176 11 620 11 617 11 620 1 1620 1 1620

G3 800 19 176 11 622 11 622 11 622 1 1622 1 1622

G4 800 19 176 11 646 11 641 11 646 1 1646 1 1646

G5 800 19 176 11 631 11 627 11 631 1 1631 1 1631

G6 800 19 176 2 165 2 178 2 178 2 178 2 178

G7 800 19 176 1 982 2 003 2 006 2 006 2 006

G8 800 19 176 1 986 2 003 2 005 2 005 2 005

G9 800 19 176 2 040 2 048 2 054 2 054 2 054

G10 800 19 176 1 993 1 994 2 000 2 000 2 000

G11 800 1 600 562 560 564 564 564

G12 800 1 600 552 552 556 556 556

G13 800 1 600 578 578 580 582 582

G14 800 4 694 3 060 3 060 3 061 3064 3 063

G15 800 4 661 3 049 3 049 3 050 3050 3 050

G16 800 4 672 3 045 3 045 3 052 3052 3 052

G17 800 4 667 3 043 3 043 3 046 3047 3 047

G18 800 4 694 9 88 978 991 992 992

G19 800 4 661 903 888 904 906 906

G20 800 4 672 941 941 941 941 941

G21 800 4 667 930 931 931 931 931

G22 2 000 19 990 13 346 13 346 13 359 13 359 13 359

G23 2 000 19 990 13 317 13 317 13 342 13 344 13 339

G24 2 000 19 990 13 303 13 314 13 337 13 337 13 337

G25 2 000 19 990 13 320 13 326 13 332 13 340 13 333

G26 2 000 19 990 1 3294 13 314 13 328 13 328 13 324

G27 2 000 19 990 3 318 3 306 3 36 3341 3 336

G28 2 000 19 990 3 285 3 260 3 295 3298 3 295

G29 2 000 19 990 3 389 3 376 3 391 3405 3 404

G30 2 000 19 990 3 403 3 385 3 403 3412 3 412

G31 2 000 19 990 3 288 3 285 3 288 3309 3 309

G32 2 000 4 000 1 398 1 390 1 406 1410 1 410

G33 2 000 4 000 1 362 1 360 1 378 1382 1 382

G34 2 000 4 000 1 364 1 368 1 378 1384 1 382

G35 2 000 11 778 7 668 7 670 7 678 7684 7 675

G36 2 000 11 766 7 660 7 660 7 670 7 678 7 671

G37 2 000 11 785 7 664 7 666 7 682 7 689 7 681

G38 2 000 11 779 7 681 7 646 7 683 7 687 7 677

G39 2 000 11 778 2 393 2 395 2 397 2 408 2 398

G40 2 000 11 766 2 374 2 387 2 390 2 400 2 394
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(2) Compared with the tabu search (TS) [18], the proposed algorithm found better

solutions on 30 of the 69 instances, and found the same solutions on 26

instances.

(3) In terms of solution quality, the breakout local search (BLS) [3] found the best

solutions on all tested instances in the first instance set. Compared with the

breakout local search, the proposed algorithm found the same solutions on 35

out of 69 instances, and the average percent deviation from the best solution

obtained by breakout local search (BLS) in the first instance set is about

0.20 %.

Above observations show that the proposed algorithm is very competitive in terms

of solution quality.

Table 4 continued

Name n m SS CirCut TS BLS CAM_DCM

G41 2 000 11 785 2 386 2 398 2 400 2 405 2 405

G42 2 000 11 779 2 457 2 469 2 469 2 481 2 473

G43 1 000 9 990 6 656 6 656 6 660 6 660 6 660

G44 1 000 9 990 6 648 6 643 6 639 6 650 6 650

G45 1 000 9 990 6 642 6 652 6 652 6 654 6 654

G46 1 000 9 990 6 634 6 645 6 649 6 649 6 649

G47 1 000 9 990 6 649 6 656 6 656 6 657 6 657

G48 3 000 6 000 6 000 6 000 6 000 6 000 6 000

G49 3 000 6 000 6 000 6 000 6 000 6 000 6 000

G50 3 000 6 000 5 880 5 880 5 880 5 880 5 880

G51 1 000 5 909 3 846 3 837 3 847 3 848 3 847

G52 1 000 5 916 3 849 38 33 3 849 3 851 3 850

G53 1 000 5 914 3 846 3 842 3 848 3 850 3 847

G54 1 000 5 916 3 846 3 842 3 851 3 852 3 848

G55 5 000 12 498 – – 1 0236 10 294 10 265

G56 5 000 12 498 – – 3 934 4 012 3 984

G57 5 000 10 000 – – 3 460 3 492 3 472

G58 5 000 29 570 – – 19 248 19 263 1 9231

G59 5 000 29 570 – – 6 019 6 078 6 025

G60 7 000 17 148 – – 14 057 14 176 14 129

G61 7 000 17 148 – – 5 680 5 798 5 720

G62 7 000 14 000 – – 4 822 4 898 4 830

G63 7 000 41 459 – – 2 6963 26 997 26 933

G64 7 000 41 459 – – 8 610 8 735 8 628

G65 8 000 16 000 – – 5 518 5 558 5 522

G66 9 000 18 000 – – 6 304 6 360 6 302

G67 10 000 20 000 – – 6 894 6 940 6 874

G70 10 000 20 000 – – 9 458 9 541 9 444

G72 10 000 20 000 – – 6 922 6 998 6 918
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6 Conclusions

In this paper, we have presented a hybrid algorithm CAM_DCM by combining the

clustered adaptive multistart [13] and the discrete dynamic convexized method for

solving the max-cut problem. The proposed algorithm starts from building an initial

elite set of solutions by the local search procedure MCFM. In each subsequent

iteration, the proposed algorithm constructs a clustered graph from the previous elite

solutions. The local search procedure MCFM is applied to the clustered graph from

random solutions, and the discrete dynamic convexized method is used to escape from

the previous discrete local maximizers. Then, by collapsing the groups of vertices in

the clustered graph, a new solution is obtained, and inserted into the elite solution set

by an updating method. This iterative process ends when the termination criteria are

satisfied. Experiments were done on two sets of well-known benchmark instances.

Comparisons with the dynamic convexized method and the filled function method

showed that the proposed algorithm can find high-quality solutions in an acceptable

time. Compared with some well-known algorithms for the max-cut problem, it reveals

that our proposed algorithm is very competitive.
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