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Abstract. When implementing a tutoring system that attempts a deep
understanding of students’ natural language explanations, there are three
basic approaches to choose between; symbolic, in which sentence strings
are parsed using a lexicon and grammar; statistical, in which a corpus
is used to train a text classifier; and hybrid, in which rich, symbolically
produced features supplement statistical training. Because each type of
approach requires different amounts of domain knowledge preparation
and provides different quality output for the same input, we describe
a method for heuristically combining multiple natural language under-
standing approaches in an attempt to use each to its best advantage.
We explore two basic models for combining approaches in the context
of a tutoring system; one where heuristics select the first satisficing rep-
resentation and another in which heuristics select the highest ranked
representation.

1 Introduction

Implementing an intelligent tutoring system that attempts a deep understand-
ing of a student’s natural language (NL) explanation is a challenging and time
consuming undertaking even when making use of existing NL processing tools
and techniques [1-3]. A motivation for attempting a deep understanding of an
explanation is so that a tutoring system can reason about the domain knowl-
edge expressed in the student’s explanation in order to diagnose errors that are
only implicitly expressed [4] and to provide substantive feedback that encourages
further self-explanation [5]. To accomplish these tutoring system tasks, the NL
technology must be able to map typical student language to an appropriate do-
main level representation language. While some NL mapping approaches require
relatively little domain knowledge preparation there is currently still a trade-off
with the quality of the representation produced especially as the complexity of
the representation language increases.

Although most NL mapping approaches have been rigorously evaluated, the
results may not scale-up or generalize to the tutoring system domain. First it
may not be practical to carefully prepare large amounts of domain knowledge in
the same manner as may have been done for the evaluation of an NL approach.
This is especially a problem for tutoring systems since they need to cover a large



amount of domain knowledge to have an impact on student learning. Second,
acceptable performance results may vary across applications if the requirements
for representation fidelity vary. For example, a document retrieval application
may not require a deep understanding of every sentence in the document to be
successful whereas providing tutorial feedback to students on the content of what
they write may. Finally, while one approach may be more promising than another
for providing a better quality representation, the time required to prepare the
domain knowledge to achieve the desired fidelity is not yet reliably predictable.
For these reasons, it may be advisable to include multiple approaches and to
re-examine how the approaches are integrated within the tutoring system as the
domain coverage expands and improves over time.

Our goal in this paper is to examine ways in which multiple language mapping
approaches can be integrated within one tutoring system so that each approach
is used to its best advantage relative to a particular time-slice in the life-cycle of
the knowledge development for the tutoring system. At a given time-slice, one
approach may be functioning better than another but we must anticipate that
the performances may change when there is a significant change in the domain
knowledge provided. Our approach for integrating multiple mapping approaches,
each with separate evolving knowledge sources, is to set up a competition be-
tween them and allow a deliberative process to decide for every student sentence
processed which representation is the best one to use. This approach is similar
to what is done in multi-agent architectures [6]. We will experimentally explore
a variety of ways of competitively combining three types of NL understanding
approaches in the context of the Why2-Atlas tutoring system; 1) symbolic, in
which sentence strings are parsed using an NL lexicon and grammar 2) statisti-
cal, in which a corpus is used to train a text classifier and 3) hybrid, in which
rich symbolic features are used to supplement the training of a text classifier.

First we will describe the Why2-Atlas tutoring domain and representation
language to give an impression of the difficulty of the NL mapping task. Next
we will characterize the expected performance differences of the individual ap-
proaches. Next we will describe how we measure performance and discuss how to
go about selecting the best configuration for a particular knowledge development
time-slice. Next we will describe two types of competition models and their se-
lection heuristics where the heuristics evaluate representations relative to typical
(but generally stated) representation failings we anticipate and have observed for
each approach. Finally, we will examine the performance differences for various
ways of combining the NL understanding approaches and compare them to two
baselines; the current best single approach and tutoring on all possible topics.

2 Overview of the Why2-Atlas Domain and
Representation Language

The Why2-Atlas system covers 5 qualitative physics problems on introductory
mechanics. For each problem the student is expected to type an answer and
explanation which the system analyzes in order to identify appropriate elicita-



Table 1. Slots for one body vector quantities with examples of slot filler constants.

Description Slot sorts (examples of

slot filler constants)
quantity Quantitylb (velocity, acceleration)
identifier Id (ID100)

body (or two bodies in case of force)
axial component or not

qualitative derivative of the magnitude
quantitative derivative of the magnitude
Zero or non-zero magnitude

quantitative magnitude

sign for axial component

qualitative derivative of the direction
beginning of time interval

Body (pumpkin, man)

Comp (horizontal, vertical)

D-mag (constant, increase, decrease)
D-mag-num (none)

Mag-zero (zero, nonzero)

Mag-num (none)

Dir (pos,neg)

D-dir (constant, nonconstant)
Time (problem specific)

end of time interval Time (problem specific)

tion, clarification and remediation tutoring goals. The details of the Why2-Atlas
system are described in [1] and only the mapping of an isolated NL sentence to
the Why2-Atlas representation language will be addressed in this paper. In this
section we give an overview of the rich domain representation language that the
system uses to support diagnosis and feedback.

The Why2-Atlas ontology is strongly influenced by previous qualitative physics
reasoning work, in particular [7], but makes appropriate simplifications given the
subset of physics the system is addressing. The Why2-Atlas ontology comprises
bodies, states, physical quantities, times and relations. The ontology and repre-
sentation language are described in detail in [4].

For the sake of simplicity, most bodies in the Why2-Atlas ontology have the
semantics of point-masses. Body constants are problem specific. For example the
body constants for one problem covered by Why2-Atlas are pumpkin and man.

Individual bodies can be in states such as freefall. Being in a particular
state implies respective restrictions on the forces applied on the body. There is
also the special state of contact between two bodies where attached bodies
can exert mutual forces and the positions of the two bodies are equal, detached
bodies do not exert mutual forces, and moving-contact bodies can exert mutual
forces but there is no conclusion on their relative positions. The latter type of
contact is introduced to account for point-mass bodies that are capable of push-
ing/pulling each other for certain time intervals (a non-impact type of contact),
for example the man pushing a pumpkin up.

Physical quantities are represented as one or two body vectors. The one body
vector quantities are position, displacement, velocity, acceleration, and
total-force and the only two body one in the Why2-Atlas ontology is force.
The single body scalar quantities are duration, mass, and distance.

Every physical quantity has slots and respective restrictions on the sort of a
slot filler as shown in Table 1, where examples of slot filler constants of the proper
sorts are shown in parentheses. Note that the sorts Id, D-mag, and D-mag-num



do not have specific constants. These slots are used only for cross-referencing
between different propositions.

Time instants are basic primitives in the Why2-Atlas ontology and a time
interval is a pair (¢;,t;) of instants. This definition of time intervals is sufficient
for implementing the semantics of open time intervals in the context of the
mechanics domain.

Some of the multi-place relations in our domain are before, rel-position
and compare. The relation before relates time instants in the obvious way.
The relation rel-position provides the means to represent the relative posi-
tion of two bodies with respect to each other, independently of the choice of
a coordinate system—a common way to informally compare positions in NL.
The relation compare is used to represent the ratio and difference of two quan-
tities’ magnitudes or for quantities that change over time, magnitudes of the
derivatives.

The domain propositions are represented using order-sorted first-order logic
(FOL) (see for example [8]). For example, “force of gravity acting on the pumpkin
is constant and nonzero” has the following representation in which the generated
identifier constants £1 and phl appear as arguments in the due-to relation
predicate (sort information is omitted):

(force f1 ?bodyl pumpkin ?comp constant ?d-mag-num nonzero ?mag-num ?7dir
?7d-dir 7t1 ?7t2)

(due-to d1 f1 phi)

(phenomenon phl gravity)

There is no explicit negation so a negative student statement such as “there
is no force” is represented as the force being zero. The version of the system
currently under development is extending the knowledge representation to cover
disjunctions, conditional statements and other types of negations.

3 Overview of the language understanding approaches

In general, symbolic approaches are expected to yield good coverage and ac-
curacy if sufficient knowledge of the domain can be captured and efficiently
utilized. Whereas statistical and hybrid approaches are much easier to develop
for a domain than symbolic ones and can provide just as good of coverage, those
that use little more than a text corpus are expected to provide less accurate
representations of what the student meant than pure symbolic approaches (once
the knowledge engineering problem is adequately addressed).

Although there are many tools available for each type of approach, we devel-
oped Why2-Atlas domain knowledge sources for the symbolic approach CARMEL
[9], the statistical approach RAINBOW [10] and the hybrid symbolic and statis-
tical approach RAPPEL [11]. The knowledge development for each approach is
still ongoing and at different levels of completeness, yet the system has been
successfully used by students in two tutoring studies. Below we describe each of
the approaches, as well as the tools we use, in more detail. We use the theoretical



strengths and weaknesses of each general type of approach as the basis for our
hand-coded selection heuristics.

3.1 Symbolic Approach

The traditional approach for mapping NL to a knowledge representation lan-
guage is symbolic; sentence strings are parsed using an NL lexicon and grammar.
There are many practical and robust sentence-level syntactic parsers available
for which wide coverage NL lexicons and grammars exist [12, 13, 9], but syntactic
analysis can only canonicalize relative to syntactic aspects of lexical semantics
[14]. For example, the similarity of “I baked a cake for her” and “I baked her
a cake” is found but their similarity to “I made her a cake” is not.! The latter
sort of canonicalization is typically provided by semantic analysis. But there is
no general solution at this level because semantic analysis falls into the realm
of cognition and mental representations [15] and must be engineered relative to
the domain of interest.

CARMEL provides combined syntactic and semantic analysis using the LCFlex
robust syntactic parser, a broad coverage grammar, and semantic constructor
functions that are specific to the domain to be covered [9]. Given a specification
of the desired representation language, it then maps the resulting analysis to the
domain representation language. Until recently, semantic constructor functions
had to be completely hand-generated for every lexical entry. Although tools to
facilitate and expedite this level of knowledge representation are currently being
developed [16, 17], it is still a significant knowledge engineering effort.

Because the necessary lexical-level knowledge engineering is difficult and time
consuming and it is unclear how to predict when such a task will be sufficiently
completed, there may be unexpected gaps in the semantic knowledge. Also robust
parsing techniques can produce partial analyses and typically have a limited
ability to self-evaluate the quality of the representation into which it maps a
student sentence. So the ability to produce partial analyses in conjunction with
gaps in the knowledge sources suggest that symbolic approaches will tend to
undergenerate representations for sentences that weren’t anticipated during the
creation of their knowledge sources.

3.2 Statistical Approach

More recent approaches for processing NL are statistical; a corpus is used to train
a wide variety of approaches for analyzing language. Statistical approaches are
popular because there is relatively little effort involved to get such an approach
working, if a representative corpus already exists. The most useful of these ap-
proaches for intelligent tutoring systems has been text classification in which a
subtext is tagged as being a member of a particular class of interest and uses just
the words in the class tagged corpus for training a classifier. This particular style

! The need to distinguish the semantic differences between “bake” and “made” de-
pends on the application for which the representation will be used.



of classification is called a bag of words approach because the meaning that the
organization of a sentence imparts is not considered. The classes themselves are
generally expressed as text as well and are at the level of an exemplar of a text
that is a member of the class. With this approach, the text can be mapped to
its representation by looking up a hand-generated propositional representation
for the exemplar text of the class identified at run-time.

RAINBOW is one such bag of words text classifier; in particular it is a Naive
Bayes text classifier. The classes of interest must first be decided and then a
training corpus developed where subtexts are annotated with the class to which
it belongs. For the Why2-Atlas training, each sentence was annotated with one
class. During training RAINBOW computes an estimate of the probability of a
word in a particular class relative to the class labellings for the Why2-Atlas
training sentences. Then when a new sentence is to be analyzed at run-time,
RAINBOW calculates the posterior probabilities of each class relative to the words
in the sentence and selects the class with the highest probability [10].

Like most statistical approaches, the quality of RAINBOW’s analysis depends
on the quality of its training data. Although good annotator agreement is pos-
sible for the classes of interest for the Why2-Atlas domain [18], we found the
resulting training set for a class sometimes includes sentences that depend on a
particular context for the full meaning of that class to be licensed. In practice
the necessary context may not be present for the new sentence that is to be
analyzed. This suggests that the statistical approach will tend to overgenerate
representations. It is also possible for a student to express more than one key
part of an explanation in a single sentence so that multiple class assignments
would be more appropriate. This suggests that the statistical approach will also
sometimes undergenerate since only the best classification is used. However, we
expect the need for multiple class assignments to happen infrequently since the
Why2-Atlas system includes a sentence segmenter that attempts to break up
complex sentences before sentence understanding is attempted by any of the
approaches.

3.3 Hybrid Approach

Finally, there are hybrids of symbolic and statistical approaches. For example,
syntactic features can be used to supplement the training of a text classifier. Al-
though the syntactic features often are obtained via statistical parsing methods,
they are sometimes obtained via symbolic methods instead since the resulting
feature set is richer [18]. With text classification, the classes are still generally
defined via an exemplar of the class so the desired propositional representation
must still be obtained via a look-up according to the class identified at run-time.

RAPPEL is a hybrid approach that uses symbolically-derived syntactic de-
pendency features (obtained via MINIPAR [13,19]) to train for classes that are
defined at the representation language level [11] instead of at an informal text
level. There is a separate classifier for each type of proposition in the knowl-
edge representation language. Each classifier indicates whether a proposition of
the type it recognizes is present and if so, which class it is. The class indicates



which slots are filled with which slot constants. There is then a one-to-one cor-
respondence between a class and a proposition in the representation language.
To arrive at the representation for a single sentence, RAPPEL applies all of the
trained classifiers and then combines their results during a post-processing stage.

For Why2-Atlas we trained separate classifiers for every physics quantity,
relation and state for a total of 27 different classifiers. For example, there is a
separate classifier for velocity and another for acceleration. Bodies are also
handled by separate classifiers; one for one body propositions and another for two
body propositions. The basic approach for the body classifiers is similar to that
used in statistical approaches to reference resolution (e.g. [20,21]). The number
of classes within each classifier depend on the number of slot constant filler com-
binations possible. For example, the class v_h encodes the proposition (velocity
id1 horizontal ?body ?var; ... ?var,) and the class v_hip encodes the proposition
(velocity id2 horizontal ?body increase ?mag-zero ?mag-num pos 7t1 ?7t2) where
v represents the predicate velocity, h represents the slot constant horizontal,
i represents the slot constant increase and p represents the constant pos.

Having a large number of classifiers and classes requires a larger, more com-
prehensive set of training data than is needed for a typical text classification
approach. And just as with the preparation of the training data for the statisti-
cal approach, the annotator may still be influenced by the context of a sentence.
However, we expect the impact of contextual dependencies to be less severe
since the representation-defined classes are more formal and finer-grained than
text-defined classes. For example, annotators may still resolve intersentential
anaphora and ellipsis but the content related inferences needed to select a class
are much finer-grained and therefore a closer fit to the actual meaning of the
sentence.

Although we have classifiers and classes defined that cover the entire Why2-
Atlas representation language, we have not yet provided training for the full
representation language. Given the strong dependence of this approach on the
completeness of the training data, we expect this approach to sometimes un-
dergenerate just as an incomplete symbolic approach would and sometimes to
overgenerate because of overgeneralizations during learning, just as with any
statistical approach.

4 Computing and Comparing Performances

To measure the overall performance of the Why2-Atlas system when using dif-
ferent understanding approach configurations, we use a test suite of 35 held-out
multi-sentence student essays (235 sentences total) that are annotated for the
elicitation and remediation topics that are to be discussed with the student. Elic-
itation topics are tagged when prescribed, critical physics principles are missing
from the student’s explanation and remediation topics are tagged when the es-
say implicitly or explicitly exhibits any of a small number of misconceptions or
errors that are typical of beginning students. From a language analysis perspec-



tive, the representation of the essay must be accurate enough to detect when
physics principles are both properly and improperly expressed in the essay.

For the entire test suite we compute the number of true positives (TP), false
positives (FP), true negatives (TN) and false negatives (FN) for the elicitation
topics selected by the system relative to the elicitation topics annotated for the
test suite essays. From this we compute recall = TP/(TP+FN), precision =
TP/(TP+FP), and false alarm rate = FP/(FP+TN).

As a baseline measure, we compute the recall, precision and false alarm rate
that results if all possible elicitations for a physics problem are selected. For
our 35 essay test suite the recall is 1, precision is .61 and false alarm rate is 1.
Although NL evaluations compute an F-measure (the harmonic average of recall
and precision) in order to arrive at one number for comparing approaches, it
does not allow errors to be considered as fully as with other analysis methods
such as receiver operating characteristics (ROC) areas [22] and d’ [23]. These
measures are similar in that they combine the recall and the false alarm rates
into one number but allow for error skewing [22]. Rather than undertaking a full
comparison of the various NL understanding approach configurations for this
paper, we will instead look for those combinations that result in a high recall
and a low false alarm rate. Error skewing depends on what costs we need to
attribute to false negatives and false positives. Both potentially have negative
impacts on student learning in that the former leaves out important information
that should have been brought to the student’s attention and the latter can
confuse the student or cause lack of confidence in the system.

5 The Selection Heuristics

Although an NL understanding approach is not strictly an agent in the sense
of [24] (e.g. it doesn’t reason about goals or other agents) it can be treated ar-
chitecturally as a service agent in the sense of [25] as has been done in many
dialogue systems (e.g. [26, 3]). Generally the service agents supply slightly differ-
ent information or are relevant in slightly different contexts so that the evaluator
or coordinator decides which single service agent will be assigned a particular
task. For example, [26] describes a system architecture that includes compet-
ing discourse strategy service agents and an evaluator that rates the competing
strategies and selects the highest rated strategy agent to perform the communi-
cation task.

However, in the case of competing NL understanding approaches, an eval-
uator would need to predict which approach will provide the highest quality
analysis of a sentence that needs to be processed in order to decide which one
should be assigned the task. Because such a prediction would probably require
at least a partial analysis of the sentence, we take the approach of assigning the
task to all of the available language understanding approaches and then assess-
ing the quality of the results relative to the expected typical accuracy faults of
each approach.



The first competition model tries each approach in a preferred sequential or-
dering, stopping when a representation is acceptable according to a general fil-
tering heuristic and otherwise continuing. The filtering heuristic estimates which
representations are over or undergenerated and excludes those representations
so that it appears that no representation was found for the sentence. A represen-
tation for a sentence is undergenerated if any of the word stems in a sentence are
constants in the representation language and none of those are in the representa-
tion generated or if the representation produced is too sparse. For Why2-Atlas,
it is too sparse if 50% of the propositions in the representation for a sentence
have slots with less than two constants filling them. Most propositions in the
representation language contain six slots which can be filled with constants.
Propositions that are defined to have two or fewer slots that can be filled with
constants are excluded from this assessment (e.g. the relations before and rel-
position are excluded). Representations are overgenerated if the sentences are
shorter than 4 words since in general the physics principles to be recognized
cannot be expressed in fewer words.

For the sequential model, we use a preference ordering of symbolic, statistical
and hybrid in these experiments because of the way in which Why2-Atlas was
originally designed and our expectations for which approach should produce the
highest quality result at this point in the development of the knowledge sources.
We also created some partial sequential models as well to look at whether the
more expensive understanding approaches add anything significant at this point
in their development.

The other competition model requests an analysis from all of the under-
standing approaches and then uses the filtering heuristic along with a ranking
heuristic (as described below) to select the best analysis. If all of the analyses
for either competition model fail to meet the selection heuristics then the sen-
tence is regarded as uninterpretable. The run-time difference between the two
competition models are nearly equivalent if each understanding approach in the

second model is run in parallel using a distributed multi-agent architecture such
as OAA [25].

The ranking heuristic again focus on the weaknesses of all the approaches.
It computes a score for each representation by first finding the number of words
in the intersection of the constants in the representation and the word stems
in the sentence (justified), the number of word stems in the sentence that are
constants in the representation language that do not appear in the representation
(undergenerated) and the number of constants in the representation that are
not word stems in the sentence (overgenerated). It then selects the one with
the highest score, where the score is; justified — 2 * undergenerated — .5 %
overgenerated. The weightings reflect both the importance and approximate
nature of the terms.

The main difference between the two models is that the ranking approach
will choose the better representation (as estimated by the heuristics) as opposed
to one that merely suffices.



6 Results of the Combined Competing Approaches

The top part of Table 2 compares the baseline of tutoring all possible topics and
the individual performances of the three understanding approaches when each is
used in isolation from the others. We see that only the statistical approach lowers
the false alarm rate but does so by sacrificing recall. The rest are not significantly
different from tutoring all topics. However, the results of the statistical approach
are clearly not good enough.

Table 2. Performance of individual language understanding approaches for actions
taken in the Why2-Atlas system

lapproach [recall[precision[false alarm rate‘
lbaselinel (tutor all topics) ‘1.0 ‘.61 ‘1.0 ‘
symbolic 1.0 |.61 1.0
statistical (baseline2) .60 [.93 .07
hybrid 94 [.59 1.0
all (satisficing) .67 |.80 .26
hybrid + statistical (satisficing) [.70 |.78 31
symbolic + statistical (satisficing)|.69 |.80 .26
all (highest ranked) 73 |.76 .36

The bottom part of Table 2, shows the results of combining the NL ap-
proaches. The satisficing model that includes all three NL mapping approaches
performs better than the individual models in that it modestly improves recall
but at the sacrifice of a higher false alarm rate. The satisficing model checks
each representation in order 1) symbolic 2) statistical 3) hybrid, and stops with
the first representation that is acceptable according to the filtering heuristic. We
also see that both of the satisficing models that include just two understanding
approaches perform better than the model in which all approaches are com-
bined; with the symbolic + statistical model being the best since it increases
recall without further increasing the false alarm rate. Finally, we see that the
model, which selects the best representation from all three approaches, provides
the most balanced results of the combined or individual approaches. It provides
the largest increase in recall and the false alarm rate is still modest compared
to the baseline of tutoring all possible topics. To make a final selection of which
combined approach one should use, there needs to be an estimate of which errors
will have a larger negative impact on student learning. But clearly, selecting a
combined approach will be better than selecting a single NL. mapping approach.

7 Discussion and Future Work

Although none of the NL mapping approaches adequately represent the physics
content covered by the Why2-Atlas system at this point in their knowledge de-



velopment, they can be combined advantageously by estimating representations
that are over or undergenerated.

We are considering two future improvements. One is to automatically learn
ranking and filtering heuristics using features that represent differences between
annotated representations and the representations produced by the understand-
ing approaches. The heuristics can then be tuned to the types of representa-
tions that the approaches are producing at a particular time-slice in the domain
knowledge development. The second future improvement is to add reference res-
olution to the heuristics in order to canonicalize words and phrases to their body
constants in the representation language. Although we could try canonicalizing
other lexical items to their representation language constants, this might not be
as fruitful. While a physics expert could use push and pull and know that this
implies that forces are involved, this is not a safe assumption for introductory
physics students.

8 Acknowledgments

This research was supported by ONR Grant No. N00014-00-1-0600 and by NSF
Grant No. 9720359.

References

1. VanLehn, K., Jordan, P., Rosé, C., Bhembe, D., Béttner, M., Gaydos, A.,
Makatchev, M., Pappuswamy, U., Ringenberg, M., Roque, A., Siler, S., Srivas-
tava, R.: The architecture of Why2-Atlas: A coach for qualitative physics essay
writing. In: Proceedings of Intelligent Tutoring Systems Conference. Volume 2363
of LNCS., Springer (2002) 158-167

2. Aleven, V., Popescu, O., Koedinger, K.: Pilot-testing a tutorial dialogue system
that supports self-explanation. In: Proceedings of Intelligent Tutoring Systems
Conference. Volume 2363 of LNCS., Springer (2002) 344

3. Zinn, C., Moore, J.D., Core, M.G.: A 3-tier planning architecture for managing
tutorial dialogue. In: Proceedings of Intelligent Tutoring Systems Conference (ITS
2002). (2002) 574-584

4. Makatchev, M., Jordan, P., VanLehn, K.: Abductive theorem proving for analyzing
student explanations and guiding feedback in intelligent tutoring systems. Journal
of Automated Reasoning: Special Issue on Automated Reasoning and Theorem
Proving in Education (2004) to appear.

5. Aleven, V., Popescu, O., Koedinger, K.R.: A tutorial dialogue system with
knowledge-based understanding and classification of student explanations. In:
Working Notes of 2nd IJCAI Workshop on Knowledge and Reasoning in Prac-
tical Dialogue Systems. (2001)

6. Sandholm, T.W.: Distributed rational decision making. In Weiss, G., ed.: Multia-
gent Systems: A Modern Approach to Distributed Artificial Intelligence. The MIT
Press, Cambridge, MA, USA (1999) 201-258

7. Ploetzner, R., VanLehn, K.: The acquisition of qualitative physics knowledge dur-
ing textbook-based physics training. Cognition and Instruction 15 (1997) 169-205



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Walther, C.: A many-sorted calculus based on resolution and paramodulation.
Morgan Kaufmann, Los Altos, California (1987)

Rosé, C.P.: A framework for robust semantic interpretation. In: Proceedings of the
First Meeting of the North American Chapter of the Association for Computational
Linguistics. (2000) 311-318

McCallum, A., Nigam, K.: A comparison of event models for naive bayes text
classification. In: Proceeding of AAAI/ICML-98 Workshop on Learning for Text
Categorization, AAAT Press (1998)

Jordan, P.W.: A machine learning approach for mapping natural language to a
domain representation language. in preparation (2004)

Abney, S.: Partial parsing via finite-state cascades. Journal of Natural Language
Engineering 2 (1996) 337-344

Lin, D.: Dependency-based evaluation of MINIPAR. In: Workshop on the Evalu-
ation of Parsing Systems, Granada, Spain (1998)

Levin, B., Pinker, S., eds.: Lexical and Conceptual Semantics. Blackwell Publishers,
Oxford (1992)

Jackendoff, R.: Semantics and Cognition. Current Studies in Linguistics Series.
The MIT Press (1983)

Rosé, C., Gaydos, A., Hall, B., Roque, A., VanLehn, K.: Overcoming the knowledge
engineering bottleneck for understanding student language input. In: Proceedings
of of AT in Education 2003 Conference. (2003)

Dzikovska, M., Swift, M., Allen, J.: Customizing meaning: building domain-specific
semantic representations from a generic lexicon. In Bunt, H., Muskens, R., eds.:
Computing Meaning. Volume 3. Academic Publishers (2004)

Rosé, C., Roque, A., Bhembe, D., VanLehn, K.: A hybrid text classification ap-
proach for analysis of student essays. In: Proceedings of HLT /NAACL 03 Workshop
on Building Educational Applications Using Natural Language Processing. (2003)
Lin, D., Pantel, P.: Discovery of inference rules for question answering. Journal of
Natural Language Engineering Fall-Winter (2001)

Strube, M., Rapp, S., Miiller, C.: The influence of minimum edit distance on
reference resolution. In: Proceedings of Empirical Methods in Natural Language
Processing Conference. (2002)

Ng, V., Cardie, C.: Improving machine learning approaches to coreference resolu-
tion. In: Proceedings of Association for Computational Linguistics 2002. (2002)
Flach, P.: The geometry of ROC space: Understanding machine learning metrics
through ROC isometrics. In: Proceedings of 20th International Conference on
Machine Learning. (2003)

MacMillan, N., Creelman, C.: Detection Theory: A User’s Guide. Cambridge
University Press, Cambridge, UK (1991)

Franklin, S., Graesser, A.: Is it an agent, or just a program?: A taxonomy for
autonomous agents. In: Proceedings of the Third International Workshop on Agent
Theories, Architectures, and Languages, Springer-Verlag (1996)

Cheyer, A., Martin, D.: The open agent architecture. Journal of Autonomous
Agents and Multi-Agent Systems 4 (2001) 143-148

Jokinen, K., Kerminen, A., Kaipainen, M., Jauhiainen, T., Wilcock, G., Turunen,
M., Hakulinen, J., Kuusisto, J., Lagus, K.: Adaptive dialogue systems - interaction
with interact. In: Proceedings of the 3rd SIGdial Workshop on Discourse and
Dialogue. (2002)



