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This paper demonstrates that significant improvements to au-

tomatic parallelization technology require that existing sys-

tems be extended in two ways: (1) they must combine high-

quality compile-time analysis with low-cost run-time test-

ing; and (2) they must take control flow into account dur-

ing analysis. We support this claim with the results of an ex-

periment that measures the safety of parallelization at run

time for loops left unparallelized by the Stanford SUIF com-

piler’s automatic parallelization system. We present results

of measurements on programs from two benchmark suites

– SPECFP95 and NAS sample benchmarks – which identify

inherently parallel loops in these programs that are missed

by the compiler. We characterize remaining parallelization

opportunities, and find that most of the loops require run-

time testing, analysis of control flow, or some combination

of the two. We present a new compile-time analysis tech-

nique that can be used to parallelize most of these remain-

ing loops. This technique is designed to not only improve the

results of compile-time parallelization, but also to produce

low-cost, directed run-time tests that allow the system to de-

fer binding of parallelization until run-time when safety can-

not be proven statically. We call this approach predicated ar-

ray data-flow analysis. We augment array data-flow analysis,

which the compiler uses to identify independent and privati-

zable arrays, by associating predicates with array data-flow

values. Predicated array data-flow analysis allows the com-

piler to derive “optimistic” data-flow values guarded by pred-

icates; these predicates can be used to derive a run-time test

guaranteeing the safety of parallelization.
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1. Introduction

Parallelizing compilers are becoming increasingly

successful at exploiting coarse-grain parallelism in sci-

entific computations, as evidenced by recent experi-

mental results from both the Polaris system at Uni-

versity of Illinois and the Stanford SUIF compiler [3,

15]. While these results are impressive overall, some

of the programs presented achieve little or no speedup
when executed in parallel. This observation raises

again questions that have been previously addressed

by experiments in the early 90s [4,8,26]: Is the com-

piler exploiting all of the inherent parallelism in a set

of programs, and if not, can we identify the techniques

needed to exploit remaining parallelism opportunities?

These earlier experiments motivated researchers and
developers of parallelizing compilers to begin incor-

porating techniques for locating coarse-grain paral-

lelism, such as array privatization and interprocedu-

ral analysis, that have significantly enhanced the ef-

fectiveness of automatic parallelization. Now that the

identified techniques are performed automatically by
some compilers, it is an appropriate time to revisit

these questions to determine whether further improve-

ments are possible. This paper empirically evaluates

the remaining parallelism opportunities using an auto-

matic run-time parallelization testing system. Our ap-

proach is based on the Lazy Privatizing Doall (LPD)

test, which tests whether a loop contains data depen-
dences (different iterations access the same memory

location, where at least one of the accesses is a write),

and if so, whether such dependences can be safely

eliminated with privatization (whereby each processor

accesses a private copy of the data) [23]. For our sys-

tem, we have defined and implemented the extended-

LPD test (ELPD). ELPD extends LPD to test all loops
in a loop nest simultaneously, rather than a single loop

in a nest at a time, including when loop nests cross

procedure boundaries. We use ELPD to instrument and

test whether any of the candidate unparallelized loops

in the program can be safely parallelized at run time.

The implementation is based on the automatic paral-
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lelization system that is part of the Stanford SUIF com-

piler. We present measurements on programs from the

SPECFP95 and NAS sample benchmarks.

The results of this experiment indicate that a new

analysis technique, predicated array data-flow anal-

ysis, can be used to parallelize most of the remain-

ing loops missed by the compile-time analysis in the

SUIF compiler. This technique extends an existing im-

plementation of array data-flow analysis by associat-

ing with each data-flow value a predicate; analysis

interprets these predicate-value pairs as describing a

relationship on the data-flow value when the predi-

cate evaluates to true. A few existing techniques in-

corporate predicates, most notably guarded array data-

flow analysis by Gu, Li, and Lee [10]. Our approach

goes beyond previous work in several ways, but the

most fundamental difference is the application of these

predicates to derive run-time tests used to guard safe

execution of parallelized versions of loops that the

compiler cannot parallelize with static analysis alone.

Run-time parallelization techniques that use an inspec-

tor/executor model to test all access expressions and

decide if parallelization is safe can be applied to these

same loops [23,24]. However, such techniques can po-

tentially introduce too much space and time overhead

to make them profitable. The run-time tests introduced

by predicated analysis are, by comparison, much sim-

pler.

Predicated array data-flow analysis unifies in a sin-

gle analysis technique several different approaches that

combine predicates with array data-flow values. By

folding predicates into data-flow values, which we call

predicate embedding, we can produce more precise

data-flow values such as is achieved in the PIPS sys-

tem by incorporating constraints derived from control-

flow tests [18]. By deriving predicates from operations

on the data-flow values, which we call predicate ex-

traction, we can obtain breaking conditions on depen-

dences and for privatization, such that if the conditions

hold, the loop can be parallelized. The notion of break-

ing conditions has been suggested by Goff and by Pugh

and Wonnacott [9,22]. We discuss how such conditions

can be derived in much broader ways, and present how

to use these conditions both to improve compile-time

analysis or as the basis for run-time tests.

The remainder of the paper is organized into four

main sections, related work and a conclusion. The

next section presents background on the existing paral-

lelization analysis in SUIF. We describe our instrumen-

tation system and results of the instrumentation exper-

iment in Section 3. The subsequent section describes

predicated array data-flow analysis. Section 5 presents

speedup measurements from applying predicated array

data-flow analysis.

2. Background on parallelization analysis

The system described in this paper augments and

extends an existing automatic parallelization system

that is part of the Stanford SUIF compiler [14–16].

SUIF parallelizes loops whose iterations can be exe-

cuted in parallel on different processors. To meet this

criterion, the memory locations accessed by each itera-

tion of a loop (and thus by each processor) must be in-

dependent of locations written by other iterations (and

other processors). In some cases, accesses to a scalar

or array variable within a loop must be transformed to

make each processor’s memory accesses independent.

As one example, if all locations read by an iteration are

first written within the same iteration, it may be possi-

ble to privatize the variable so that each processor ac-

cesses its own copy. Privatization is possible if there

are no read accesses within an iteration of the loop that

are upwards exposed to the beginning of the iteration;

a read access is upwards exposed if there is a possible

control flow path from the beginning of the loop body

to the read access that contains no definition of the ac-

cessed location.

The compiler uses an interprocedural array data-

flow analysis to determine which loops access inde-

pendent memory locations, or for which privatization

eliminates remaining dependences [16]. The analysis

computes data-flow values for each program region,

where a region is either a basic block, a loop body,

a loop, a procedure call, or a procedure body. The

data-flow value at each region consists of four compo-

nent sets, 〈Read, Exposed, Write, MustWrite〉, defined

as follows. Read describes the portions of arrays that

may be read inside the program region. Exposed de-

scribes the portions of arrays that may have upwards

exposed reads inside the program region (Exposed ⊆
Read). Write describes the portions of arrays that may

be written inside the program region. MustWrite de-

scribes the portions of arrays that must be written in-

side the program region (MustWrite ⊆ Write). These

four components consist of summaries to represent the

array regions accessed within the program region. The

summary for a given array contains a set of array re-

gions, with each array region represented by a system

of inequalities describing the constraints on the bound-

aries of the array region. A set of array regions is used
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instead of a single array region to avoid loss of infor-

mation when multiple, very different accesses to an ar-

ray appear in the same loop; in previous work, we have

found this feature of the implementation to be very im-

portant to the precision of the result and have not found
the size of the summaries to grow unmanageably.

We omit discussion of how these data-flow values

are calculated, and refer the reader to previous publi-

cations [1,13,16]. At each loop, analysis tests whether

there are arrays involved in data dependences, and if
so, whether privatization is safe. If all dependences

can be eliminated with privatization, the compiler de-

termines that the loop is parallelizable. At a particu-

lar program region corresponding to loop L, the por-

tions of arrays described by each component of the

data-flow value are parameterized by loop index vari-
able i (where, for clarity of presentation, i is assumed

to be normalized to start at 1 and step by 1). Below

we define the dependence and privatization tests for

loop L, IndependentL and PrivatizableL. The notation

WriteL|
i1

i refers to replacing i with some other index i1

in the iteration space.

IndependentL ⇔

∀i1, i2 ∈ I , i1 6= i2,
(

WriteL|
i1

i ∩ ReadL|
i2

i = ∅
)

∧
(

WriteL|
i1

i ∩ WriteL|
i2

i = ∅
)

PrivatizableL ⇔

∀i1, i2 ∈ I , i1 6= i2,
(

WriteL|
i1

i ∩ ExposedL|
i2

i = ∅
)

An array is involved in a data dependence if: (1) the
same location is written in some iteration i1 and is read

in some other iteration i2 (a true or anti-dependence);

or, (2) the same location is written in two different iter-

ations i1 and i2 (an output dependence). An array is not

privatizable if the same location is written in some iter-
ation i1 and is upwards exposed to the beginning of the

loop in some other iteration i2. This test for privatiza-

tion permits exposed reads for some of the array loca-

tions, but only if they are either not written in the loop

or are written in the same iteration as the read. To cor-

rectly privatize such arrays requires that the compiler
initialize the upwards exposed locations in the private

copy of the array prior to executing the loop.

3. Instrumentation

The previously described dependence and privatiza-

tion tests must err on the conservative side. In cases

where array subscript expressions are too complex for

the compiler to analyze, the compiler may report a de-

pendence and that privatization is not possible when,

in fact, the loop can be safely parallelized. The pur-

pose of the instrumentation system is to test at run-time

whether parallelization is safe for all candidate loops

that the compiler failed to parallelize statically.

At each loop, the instrumentation system performs

a run-time dependence and privatization test based on

the Lazy Privatizating Doall (LPD) test [23]. We could

not use the LPD test because, as it is defined, it only

instruments a single loop in a loop nest. A loop nest

might contain several loops left unparallelized by the

compiler. Because our goal is to pinpoint all the can-

didate parallelizable loops in a nest, we need to know

which of the unparallelized loops in a nest is inherently

parallel. For this purpose, we have defined and imple-

mented the extended-LPD test (ELPD). ELPD extends

LPD to test all loops in a loop nest simultaneously, in-

cluding when loop nests cross procedure boundaries.

Using ELPD, we are thus able to locate all the loops

in the program whose iterations can be safely executed

in parallel for a particular program input, possibly re-

quiring array privatization to create private copies of

an array for each processor.

We now describe the ELPD test, which reformu-

lates the previously defined dependence and privatiza-

tion tests, and present the results of applying the instru-

mentation system to the benchmark programs.

3.1. ELPD (extended-LPD) test

The instrumentation system uses the results of ar-

ray data-flow analysis and dependence and privatiza-

tion tests to decide which loops and which variables

in each loop should be instrumented. An initial instru-

mentation analysis phase designates loops and arrays

for instrumentation. The system reduces the amount of

work performed by not instrumenting loops nested in-

side already parallelized loops. This feature is impor-

tant because the SUIF run-time system only exploits a

single level of parallelism, so the inner loop would not

be parallelized even if proven to be parallel. The results

of the instrumentation analysis phase are two sets at

each loop L, Instr(L) and GInstr(L). Instr(L) is the set

of arrays in L that must be instrumented to test for de-

pendence and privatization within L. GInstr(L) is the

set of arrays accessed in L that must be instrumented to

test for dependence and privatization in some outer en-

closing loop (i.e., globally requiring instrumentation).
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A detailed explanation of the instrumentation analysis

phase can be found in [27].

A subsequent transformation phase actually inserts

the instrumentation code. The instrumentation analysis

is fully interprocedural, and it is implemented in the

interprocedural framework that is part of the SUIF sys-

tem [13,16].

We begin by presenting how instrumentation is

performed within a single loop. For some array in

Instr(L), with dimension sizes specified as A[1 : d1, 1 :

d2, . . . , 1 : dn], for loop L with bound b = [1 : bu],

the system introduces four shadow arrays: Sw (marks

elements written within L), Sr (marks elements read

but not written within at least one iteration of L), Snp

(marks elements that are read only or read before writ-

ten within at least one iteration of L, for use in the pri-

vatization test), and Srf (marks elements read first be-

fore any writes for all of L). These arrays are of the

same dimensionality as A but are integer or boolean

only. We also introduce a single boolean O that is set

if the loop contains an output dependence.

Let I = (i1, i2, . . . , in) refer to a subscript expres-

sion for array A appearing in the code for loop L,

which we call an access function. To clarify the algo-

rithms presented below, we first define the shadow ar-

rays and a set of properties of the values of shadow ar-

ray elements for the location described by access func-

tion I at completion of loop L’s execution.

• Sw[I] = b ⇔ b is the last iteration of L that

writes location A[I].

• Sr[I] = b ⇔ b is the first iteration of L that reads

and does not write location A[I].

• Snp[I] = true ⇔ A[I] has an upwards exposed

read in some iteration of L.

• Srf [I] = true ⇔ the first access to A[I] in L is a

read.

• O = true ⇔ write accesses to some location A[I]

occur in different iterations of L.

The shadow array elements for Sr and Sw are initial-

ized to 0. The elements for Snp and Srf , and boolean O,

are initialized to false.

During program execution, the system performs the

following added computations in response to read and

write accesses of A. The term bc refers to the current

iteration of loop L, and ba indicates any iteration value

6= 0.

Write A[I]

if (Sw[I] 6= bc)

if (Sw[I] 6= 0) O = true

if (Sr[I] = bc) Sr[I] = 0

Sw[I] = bc

Read A[I]

if (Sw[I] 6= bc)
if (Sr[I] = 0) Sr[I] = bc
if (Sw[I] = 0) Srf [I] = true

Snp[I] = true

Upon exit of the loop, the ELPD test examines the
shadow arrays to determine whether accesses to the ar-
ray are independent, or if not, whether dependences

can be safely eliminated with privatization. We now
show how to reformulate the dependence and priva-

tization tests from Section 2 as run-time tests on the
shadow arrays, for a particular array accessed in L.

The dependence test is defined as follows.

IndependentL ⇔

(∀I ∈ [1 : d1, 1 : d2, . . . , 1 : dn],

(Sr[I] = 0) ∨ (Sw[I] = 0)) ∧ (O = false)

The first term of the dependence test determines
whether there are loop-carried true or anti-dependences,
while the second term determines whether there are

loop-carried output dependences. If there is an output
dependence but no true or anti-dependence, we can ap-
ply the following test to determine whether the output

dependence could be eliminated by privatization.

PrivatizableL ⇔

∀I ∈ [1 : d1, 1 : d2, . . . , 1 : dn],

(Snp[I] = false) ∨ (Sw[I] = 0)

Given that we have already proven that there is an out-
put dependence and no true or anti-dependences, the

privatization test determines whether there is a read up-
wards exposed to the beginning of some iteration that
is also written in some other iteration of the loop.

As compared to the LPD test, this formulation of
the single-loop ELPD test introduces the additional

shadow array Srf to recognize whether the first access
to an array element in a loop is a read. This shadow
array is needed only to derive the solution at an outer

loop based on accesses in the inner loop, as described
below. This shadow array can be omitted for the out-
ermost loop in a nest for which the ELPD test is per-

formed.
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A distinguishing feature of our system is that it may
instrument multiple loops in a nest. Suppose loop Lk is
nested inside loop Lj and for both loops, array A must
be instrumented (i.e., A ∈ Instr(Lk) ∧A ∈ Instr(Lj)).
Then each loop will have its own shadow arrays for ar-
ray A. In this case, we need to update the values of the
shadow arrays of the outer loop following completion
of each invocation of the inner loop. Given shadow ar-
rays Sk

w, Sk
r , and Sk

rf for the inner loop and shadow ar-

rays Sj
w, Sj

r , Sj
np, and S

j
rf , and boolean Oj for the outer

loop, the updated values for the outer loop’s shadow
arrays is defined below. (When shadow arrays for the
outer loop appear on the right hand side of equations
below, we are referring to the value prior to performing
these updates.)

Oj
=







true if (Sj
w[I] = ba)∧

(Sk
w[I] 6= 0) ∧ (ba 6= bjc)

Oj otherwise

Sj
w[I] =

{

bjc if (Sk
w[I] 6= 0)

Sj
w[I] otherwise

Sj
r [I] =































0 if (Sj
r[I] = bjc)∧

(Sk
w[I] 6= 0)

bjc if (Sj
r[I] = 0)∧

(Sj
w[I] 6= bjc) ∧ (Sk

r [I] 6= 0)∧
(Sk

w[I] = 0)

Sj
r[I] otherwise

Sj
np[I] =







true if (Sj
w[I] 6= bjc)∧

(Sk
rf [I] = true)

Sj
np[I] otherwise

S
j
rf [I] =







true if (Sj
w[I] = 0)∧

(Sk
rf [I] = true)

S
j
rf [I] otherwise

The shadow arraySj
w[I] sets its iteration value to the

current iteration if it is written in the inner loop. The
shadow array Sj

r [I] sets its value to the current itera-
tion if it was previously unread in the outer loop, was
not written in the current iteration of the outer loop and
was read but not written in the inner loop; its value is
set to 0 if it was previously the current iteration, and it
is written by the inner loop. The shadow array Sj

np[I]’s
value is only set to true if it was not written in the cur-
rent iteration of the outer loop, and is read in the inner
loop before possibly being written. Similarly, S

j
rf [I] is

set to true if it has never been written in the outer loop
and is read in the inner loop before possibly being writ-
ten.

In general, this computation is necessary whenever

A ∈ GInstr(L) ∧ A ∈ Instr(L). The global arrays

to be updated are the shadow arrays either from the

immediately enclosing loop or, if L is the outermost

instrumented loop in the procedure, the shadow arrays

passed into the procedure as parameters. In the latter

case, the index of the loop from the invoking procedure

is also passed as a parameter.

3.2. Instrumentation results

We have evaluated the instrumentation system on

the SPECFP95 and NAS sample benchmark suites. We

used reference inputs for SPECFP95 and the small in-

puts for NAS. One program was omitted from our re-

sults, fpppp, due to non-standard Fortran that our com-

piler does not accept.

Our experiments consider two benchmark suites for

which the SUIF compiler was already mostly success-

ful at achieving good speedups. In a previous pub-

lication, SUIF achieved a speedup on seven of the

SPECFP95 programs; of these seven, su2cor achieved

a speedup of only 4 on 8 processors of a Digital Al-

phaserver 8400 [15]. The remaining six obtained a

speedup of more than 6. The programs apsi, wave5 and

fpppp were the only three not to obtain a speedup. In

the NAS benchmark suite, only buk and fftpde failed to

achieve a speedup. To obtain the results presented be-

low, we executed the instrumented program to locate

the ELPD-proven parallel loops.

Collectively, these 17 programs contain almost 2000

loops, and the base SUIF system parallelizes over 70%

of them [1]. (Note that the base SUIF system used in

this paper parallelizes a few more loops than in previ-

ous work.) Of the remaining roughly 500 loops, some

are not candidates for parallelization because of read

I/O or internal exits or because they are nested inside

already parallelized loops; others do not execute at run

time. The system instruments 176 candidate loops that

execute at run time and have more than a single iter-

ation per invocation. Of these, just 59 are found to be

parallel by the ELPD test.

From the results, we see that overall the compiler

was already doing a good job of parallelizing these

applications. Only eight of the seventeen programs

(where mgrid and applu are counted twice) contain

ELPD-proven parallelizable loops that the compiler

missed. Once we identified the programs with remain-

ing parallelism opportunities, we examined the ELPD-

proven parallelizable loops in these programs to eval-

uate how a parallelizing compiler might exploit this
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Table 1

Requirements of remaining parallel loops

Program RA CF BC CF+BC OD IE DD Total

apsi 1 10 0 6 0 0 0 17

mgrid 0 0 0 0 0 1 0 1

su2cor 0 9 5 0 4 1 0 19

wave5 0 1 9 2 1 0 2 15

buk 0 0 0 0 0 1 0 1

cgm 0 0 0 0 2 0 0 2

fftpde 0 3 0 0 0 0 0 3

mgrid 0 0 0 0 0 1 0 1

Total 1 23 14 8 7 4 2 59

additional parallelism automatically. We characterized

the requirements of these additional loops as presented

in Table 12.

In the table, the programs are listed in the first

column, with counts of additional inherently parallel

loops appearing in the final column. The remaining

seven columns provide a count of how many of the

loops could potentially be parallelized with a particu-

lar technique. These techniques and requirements are

defined as follows:

• RA: Identifies loops for which simple range anal-

ysis would permit the loop to be parallelized [5].

• CF: Identifies loops for which parallelization

analysis fails because of control flow within the

loop. The control flow paths that would result

in a dependence can potentially be ruled out at

compile time by associating predicates with array

data-flow values during analysis and comparing

predicates on reads and writes to rule out impossi-

ble control flow paths. While not in common prac-

tice, a few techniques refine their array data-flow

analysis results in this way [10,30].

• BC: Identifies certain loops whose safe paral-

lelization depends on values of variables not

known at compile time. For the loops in this cate-

gory, it is straightforward to derive breaking con-

ditions by extracting constraints on dependences

directly from the dependence and privatization

tests [9,22].

• CF+BC: Identifies loops that require both break-

ing conditions and analysis taking control flow

into account. In some cases, derivation of break-

2The difference in these results as compared to a previously pub-

lished version is mostly due to eliminating from the count those

loops that only execute a single iteration. Parallelizing such loops

is obviously not going to improve performance, and counting them

skews the results. Also, we have made a few corrections.

ing conditions is not as simple as extracting them

directly from the dependence test.

• OD: Identifies loops with only output depen-

dences, for which SUIF’s analysis was unable to

determine how to finalize their values. The loops

are parallelizable with some run-time assistance

to determine the iteration of the last write of each

location.

• IE: Identifies loops that can probably only be par-

allelized with an inspector/executor model such

as LPD [23]. These loops contain potential depen-

dences on arrays with subscript expressions that

include other arrays (i.e., index arrays).

• DD: Identifies loops where an inspector/executor

model is probably not even suitable, because they

contain dependences that occur only under certain

control flow paths through the loop, and the con-

trol flow tests are based on loop-varying variables

within the loop. The only approach we know that

could parallelize such loops is a speculative in-

spector/executor model, where the loop is paral-

lelized speculatively, and the inspector is run con-

currently with executing the loop [23].

The eight programs contain a total of 59 additional

parallelizable loops found by the ELPD test. (Note that

this number contains only loops that were executed

at run time.) The two programs apsi and su2cor have

the most loops, 17 and 19 loops. The keys to paral-

lelizing apsi are to take control flow tests into account

during analysis and derive simple run-time tests. Sev-

eral of the loops in the CF column have compiler-

assumed dependences on scalar variables only. The

bulk of the large loops in su2cor can be parallelized by

taking control flow into account. Wave5 has two large

loops that require analysis that incorporates control-

flow tests and introduces some run-time testing. The

NAS program fftpde has large loops that can be par-
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allelized by taking control flow into account, but they

also have complex nonlinear subscript expressions.

Overall, we see that most of the loops require some

sort of run-time testing to verify the safety of paral-

lelization, at least 35 of the 59 loops (all categories ex-

cept RA and CF). But rather than always reverting to

a potentially expensive inspector/executor model, we

see that in 29 of the 35 loops requiring run-time test-

ing, a less expensive and more directed run-time test

can potentially be derived with other techniques (all

categories requiring run-time tests other than IE and

DD). We also observe from the table that taking control

flow tests into account in analysis is very important, re-

quired for 31 of the 59 loops (in the CF and CF+BC

categories). These results indicate that there is still

some room for improvement in automatic paralleliza-

tion in two areas: incorporating control flow tests into

analysis and extracting low-cost run-time tests wher-

ever applicable instead of using an inspector/executor.

4. Predicated array data-flow analysis

In this section, we present an overview of predicated

array data-flow analysis. A more complete treatment is

found elsewhere [19,20]. This technique can be used to

parallelize the 45 loops that fall into the CF, BC and

CF+BC categories from the experiment in the previous

section.

4.1. Extending traditional data-flow analysis

Traditional program analysis computing a meet-

over-all-paths (MOP) solution produces data-flow val-

ues that conservatively approximate the true data flow.

A MOP solution assumes that all possible control-flow

paths through a program may be taken; at points of

confluence where separate control-flow paths merge, a

meet function is applied to the data-flow values repre-

senting the different paths to derive a single data-flow

value that conservatively approximates the values for

both paths. Also, analysis must derive data-flow val-

ues that conservatively approximate analysis results for

all possible program inputs. Predicated data-flow anal-

ysis, instead, produces “optimistic” data-flow values

guarded by predicates. Dependence and privatization

tests on predicated data-flow values lead to increased

parallel loops in two ways: through improved compile-

time analysis, and by enabling analysis to derive run-

time parallelization and privatization tests.

To make this argument more concrete, we present
four examples in Fig.1. Fig. 1(a) shows an example
that could be parallelized by previous array data-flow
analysis techniques incorporating predicates [11,29].
In Fig. 1(a), traditional data-flow analysis determines
that there may be an upwards-exposed use of array help

because there is a possible control flow path through
the loop that references help but bypasses the preced-
ing assignment to it. Predicated data-flow analysis dis-
covers that the predicates for the assignment and ref-
erence of y are equivalent; thus, none of array help is
upwards exposed.

The next three examples require additional features
of predicated array data-flow analysis, which we sum-
marize here and discuss in more detail below. Fig. 1(c)
shows how predicate embedding can also be used to
improve the results of compile-time analysis. Run-time
tests are required for safe parallelization in the exam-
ples in Figs. 1(b) and (d); we show how our analysis
derives run-time tests to parallelize more loops than
these previous approaches.

In Fig. 1(b), help is upwards exposed for certain
values of x. Deriving predicates during dependence
and privatization testing on predicated data-flow val-
ues leads to the appropriate run-time test for this loop.
First, we consider whether a dependence exists on
help, which occurs if there is an intersection of read
and write regions and their predicates both hold. Thus,
there is a dependence only if both x > 2 and x > 5
hold, which is equivalent to x > 5. Thus, if NOT(x >

5), the loop can be parallelized as written. Second,
we compare the upwards exposed read regions and the
write regions to determine if privatization is safe and
discover that array help is privatizable if x > 5, the
only condition where an upwards exposed read inter-
sects with a write. These two cases enable the compiler
to parallelize all possible executions of the loop.

In examples such as in Fig. 1(c), most compilers
would assume that the element help[0] is upwards ex-
posed because the loop assigns to only help[1 : d] but
it possibly references help[j − 1] and j ranges from 1
to d. Through predicate embedding, the compiler can
use the constraint j > 1 from the control-flow predi-
cate inside the else branch of the second j loop to prove
that help[0] is not accessed by the loop, and, as a result,
help can be safely privatized and the loop parallelized.

In Fig. 1(d), help[1] may be upwards exposed if
d < 2, since in this case the first loop containing the
writes to help would not execute. Predicate extraction
can be used to derive the condition d < 2 as a run-time
test to determine whether to privatize help or leave it
as written. Both versions of the loop can then be paral-
lelized.
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for i = 1 to c for i = 1 to c

for j = 1 to d for j = 1 to d

if (x > 5) then if (x > 5) then

help[j] = . . . help[j] = . . .

endfor endfor

for j = 1 to d for j = 1 to d

if (x > 5) then if (x > 2) then

. . . = help[j] . . . = help[j]

endfor endfor

endfor endfor

(a) improves compile-time analysis (b) derives run-time test

for i = 1 to c for i = 1 to c

for j = 1 to d for j = 2 to d

help[j] = . . . help[j-1] = . . .

endfor help[j] = . . .

for j = 1 to d endfor

if (j = 1) then for j = 1 to d

. . . = help[j] . . . = help[j]

else endfor

. . . = help[j-1] endfor

endfor

endfor

(c) benefits from predicate embedding (d) benefits from predicate extraction

Fig. 1. Examples benefitting from predicated analysis.

4.2. Description of technique

The above presentation describes features of a pro-

totype implementation of predicated array data-flow

analysis that is part of the Stanford SUIF compiler.

While space considerations preclude a formal descrip-

tion of predicated array data-flow analysis, we touch on

what modifications to an existing array data-flow anal-
ysis are required to realize this solution. The technique

is described in more detail elsewhere [19,20].

1. Analysis augments array data-flow values with

predicates. Array data-flow analysis in the base

SUIF compiler maintains, for a particular array,
a set of array regions (instead of a single re-

gion that conservatively approximates all of the

accesses within a loop). Since SUIF is already

maintaining multiple array regions per array, it

is straightforward to extend each array region to

have an associated predicate. Depending on the

data-flow problem being solved, this predicate

is interpreted as being conservative towards true

(for union problems such as Read, Write and Ex-

posed) or conservative towards false (for inter-

section problems such as MustWrite). That is, for

union problems, analysis errs towards assuming

a value holds, while for intersection problems,

analysis errs towards assuming a value cannot

hold.

2. Analysis redefines key operators to correctly sup-

port predicated array data-flow values. At a

given program point, calculating upwards ex-

posed read regions involves a subtraction of the

Exposed regions of a body of code (such as a ba-

sic block) with the MustWrite regions of the pre-

ceeding body of code. The subtraction operator,

as well as intersection and union operators (the

meet functions for MustWrite, and the other data-

flow problems, respectively) have been redefined

for predicated array data-flow analysis. All other

operators remain unchanged.

3. The system modifies dependence and privatiza-

tion tests. The dependence and privatization tests

described in Section 2 that return just true or false

must be extended to derive as solutions run-time

parallelization tests that can be used to guard

execution of a parallelized version of the loop.

Fig. 2 presents the predicated versions of the de-

pendence and privatization tests. We introduce
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Intersect(r, s) = ∃i1, i2 ∈ I | (i1 6= i2) ∧
(

r|i1

i ∩ s|i2

i 6= ∅
)

VPS(r,S) =

{

true, if ∀〈p, s〉 ∈ S, Intersect(r, s) = false

¬
(

∨

〈p,s〉∈S∧Intersect(r,s) p
)

, otherwise

IndependentL =

∧

〈p,r〉∈RL
(¬p ∨ VPS(r,WL)) ∧

∧

〈p,w〉∈WL
(¬p ∨ VPS(w,WL))

PrivatizableL =

∧

〈p,e〉∈EL
(¬p ∨ VPS(e,WL))

InitializeL =

{⋃

〈p,e〉∈EL
〈p, e〉, if PrivatizableL 6= false

∅, otherwise

Fig. 2. Dependence and privatization test on predicated data-flow values.

a test Intersect to determine if a region inter-
sects another region on different iterations. When
modifying the tests for predicated array data-flow
analysis, we make use of the Value-to-Predicate

Solution, (VPS(r,S)) to compare a data-flow set
S to a single array region r and provide a pred-
icate guaranteeing that r does not intersect with
any array regions in S. This predicate is derived
from the predicates on all regions that intersect
with r. If VPS(r,S) returns false, the analysis
must assume that r always intersects with the ar-
ray regions in S. If VPS(r,S) returns true, the
compiler has proven r never intersects with the
array regions in S. If neither true nor false, the
result corresponds to a run-time evaluable predi-
cate that may be either compared with other pred-
icates at compile time or tested at run time. To
improve the precision of the VPS solution, we
may derive additional predicates in the form of
breaking conditions from the constraints arising
from intersecting two regions. The conjunction
of these breaking conditions with the predicate
on the region in S refines the solution.
The dependence test uses the VPS solution to de-
termine whether predicates guarding reads and
writes of an array can be true simultaneously. The
modified privatization test is similar. The initial-
ization computation is augmented to return the
set of 〈p, e〉 elements from exposed reads where
privatization for the current array is possible; the
result region must be initialized if predicate p

holds.

5. Experimental results

In this section, we summarize a series of experimen-
tal results to measure the impact of predicated array

data-flow analysis at finding additional parallelism. We

applied our prototype implementation to programs in

the SPECFP95 benchmark suite. Previously published

results on this benchmark suite demonstrated speedups

on 7 of the 10 programs. For 6 of these 7 programs,

the speedup was 6 or better on an 8-processor Digi-

tal AlphaServer 8400, but the program su2cor obtained

a speedup of less than 4. The three programs that did

not speed up were apsi, fpppp, and wave5. We have

identified loops in three of the four programs for which

speedup was previously limited (see discussion in Sec-

tion 3, apsi, su2cor, and wave5, that would benefit from

predicated array data-flow analysis).

As one measure of the value of predicated data-

flow analysis, we first consider how many more of the

loops in our benchmark programs with inherent loop-

level parallelism can be parallelized. By inherent loop-

level parallelism, we refer to loops that either have no

data dependences at run time, or for which privatiza-

tion eliminates remaining dependences. There are 59

remaining inherently parallel loops in SPECFP95 and

NAS found by using the ELPD test, as shown in Ta-

ble 1.

Of these 59 parallelizable loops that were missed by

the previous SUIF system, our predicated array data-

flow analysis implementation parallelizes 35 of them,

across 3 programs, as shown in Table 2. In the table,

the first column gives the subroutine and line number

for the loop. The second column provides the number

of lines of code in the loop body. All of these loops

span multiple procedure boundaries, so this line count

is the sum of the number of lines of code in each proce-

dure body invoked inside the loop. Even if a procedure

is invoked more than once in the loop, it is counted

only once. The column labeled Coverage is a measure

of the percentage of sequential execution time of the

program spent in this loop body. The column labeled
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Table 2

Additional loops parallelized by predicated analysis

Loop # of Lines Coverage Granularity Category Requirement

apsi

run-909 1288 4.32 10.02 CF+BC ⇐,R

run-953 1288 4.31 9.99 CF+BC ⇐,R

run-1015 1288 4.31 9.98 CF+BC ⇐,R

run-1044 1218 3.23 7.48 CF+BC ⇐,R

run-1083 1287 4.31 10.00 CF+BC ⇐,R

run-1155 1268 3.47 8.03 CF+BC ⇐,R

dcdtz-1331 235 6.96 16.12 CF ⇒

dtdtz-1448 281 10.43 24.17 CF ⇒

dudtz-1642 258 10.24 23.72 CF ⇒

dvdtz-1784 261 9.86 22.83 CF ⇒

setall-4128 14 0.0005 1.21 CF(scalar)

setall-4130 10 CF(scalar)

topo-4539 30 0.0006 0.64 CF(scalar)

dkzmh-6265 218 7.58 17.55 CF ⇐,R

su2cor

sweep-420 237 28.97 22.88 CF ⇐

loops-1557 185 0.89 100.21 CF ⇐

loops-1558 184 CF ⇐

loops-1559 183 CF ⇐

loops-1613 265 2.61 292.67 CF ⇐

loops-1614 264 CF ⇐

loops-1659 573 22.46 2522.48 CF ⇐

loops-1660 572 CF ⇐

loops-1661 571 CF ⇐

trngv-2182 3 0.15 0.0098 BC R

trngv1-2266 3 0.0011 0.0085 BC R

wave5

field-3087 4 0.0018 0.097 BC R

field-3118 4 0.0016 0.086 BC R

field-3367 26 0.42 22.91 BC R

field-3396 4 0.0013 0.072 BC R

field-3420 27 0.47 25.80 BC R

field-3450 4 0.0011 0.061 BC R

field-3465 25 0.34 18.39 CF

field-3493 4 0.0005 0.025 BC R

fftf-5064 1154 1.50 16.38 CF+BC ⇐,R

fftb-5082 1147 2.27 24.69 CF+BC ⇐,R

Granularity provides a per-invocation measure of the
loop in milliseconds, indicating the granularity of the
parallelism. (In our experience, granularities on the or-
der of a millisecond are high enough to yield speedup.)
Both coverage and granularity results were obtained
on a single processor of a 195 MHz SGI Origin 2000.
The next column provides a category for the loop cor-
responding to classifications defined in Section 3. The
final column describes what components of the anal-

ysis are needed to parallelize each loop. The symbols
⇒ and ⇐ refer to whether predicate embedding or ex-
traction are required, and R refers to loops that are
only parallelizable under certain run-time values and
require a run-time test.

In performing these experiments, we encountered
some limitations in the base SUIF system that inter-
fered with our analysis, most notably the interface be-
tween the symbolic analysis and the array data-flow
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Fig. 3. Speedups due to predicated array data-flow analysis.

analysis. To focus on issues specific to predicated data-

flow analysis, we performed a few transformations

by hand to parallelize some of the loops. The sec-

ond group of eight loops in apsi were parallelized

completely automatically with no transformations to

the code. The first six loops in apsi and the last two

loops in wave5 required transformations to the orig-

inal source before performing our analysis: forward

substitution and cloning and loop peeling to enable

forward substitution. The loops in su2cor were paral-

lelized completely automatically.

We point to a few key results in the table. Embed-

ding, extraction, and run-time tests, distinguishing fea-

tures of our analysis, are common requirements for

these programs. At least one is needed in 31 of the 35

loops. Further, many of the loops parallelized by pred-

icated array data-flow analysis have high granularity

and high coverage, and thus have the potential to yield

speedup improvements on a moderate-scale multipro-

cessor system.

For these three programs with additional parallel

loops, we measured the speedup on 4 processors of the

SGI Origin as well as an 8-processor 300 MHz Digital

AlphaServer 8400, as presented in Fig. 3. Each graph

contains four lines. For each of the two machines, there

is a line for the base SUIF system and a line for the

predicated analysis version. Speedups are compared

against a sequential version of the program. For those

requiring a run-time test, we produced the parallel ver-

sion using a user tool and modifications to the final out-

put of the SUIF compiler; that is, the analysis is auto-

mated but the generation of conditionally parallel code

is not.

On the DEC system, we obtained solid speedups for

the first two programs and more modest speedups for

wave5. On the SGI, we see that the speedups are not

nearly as high as on the DEC, but predicated analysis

yields improvements on every program. Su2cor does

not yield an improvement on the DEC due to a more re-

strictive stacksize limitation than the SGI that requires

us to allocate privatized arrays on the heap rather than

on the stack.

Certainly, the most dramatic results are from apsi,

which contains 14 loops benefitting from predicated

array data-flow analysis, comprising roughly 70% of

the program’s execution time. Most of the loops cross

multiple procedure boundaries, and the first six are

the largest loops ever parallelized by the SUIF com-

piler. Parallelizing these additional loops translates

to substantial improvement in speedup for the pro-

gram, while without parallelizing these loops, the 4-

processor parallel program does not speed up at all.

The compiler finds 11 additional loops to parallelize

in su2cor, comprising 55% of the program’s execution

time. During experiments, we sequentialize the first

loop sweep-420. While the sweep-420 loop is reason-

ably coarse-grained and makes up over 28% of the pro-

gram’s execution time, parallelizing it actually slightly

degrades overall speedup of the program because it

executes only a few iterations and has a load imbal-

ance problem. Moreover, loops nested inside sweep-

420 loop that are parallelized by the base SUIF com-

piler, scale much better. These problems could be mit-

igated if the SUIF run-time system exploited multiple

levels of parallelism in a loop nest, but in the current

system, it is more cost-effective to execute the inner

loops nested inside of this one in parallel. (The current

SUIF system can be configured not to execute such a

loop because of its small number of iterations.) Note

that the real benefit of predicated analysis for su2cor is

in parallelizing the fourth loop, which has a extremely

large granularity of 2.5 seconds per invocation.
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On wave5, improvements are more modest because

the loops parallelized by predicated analysis comprise

only about 4% of the program’s execution time. Never-

theless, the program goes from little or no speedup to

modest speedups on both systems.

6. Related work

A number of experiments in the early 90s performed

hand parallelization of benchmark programs to identify

opportunities to improve the effectiveness of paralleliz-

ing compilers [4,8,26]. These experiments compared

hand-parallelized programs to compiler-parallelized

versions, pointing to the large gap between inher-

ent parallelism in the programs and what commercial

compilers of the time were able to exploit. The Po-

laris Group performed such a comparison for 13 pro-

grams from the Perfect benchmark suite [4,8]. They

cited the need for compilers to incorporate array pri-

vatization and interprocedural analysis, among other

things, to exploit a coarser granularity of parallelism.

These early studies focused developers of commer-

cial and research compilers to investigate incorporat-

ing these techniques, and now they are beginning to

make their way into practice. As stated earlier, our ex-

periment goes beyond these previous studies because it

measures parallelism potential empirically using run-

time testing. Further, now that these previously missing

techniques are performed automatically by the SUIF

compiler, a new experiment can identify the next set of

missing analysis techniques.

Analysis techniques exploiting predicates have been

developed for specific data-flow problems including

constant propagation [31], type analysis [28], sym-

bolic analysis for parallelization [5,12], and the ar-

ray data-flow analysis described above [11,29]. Tu and

Padua present a limited sparse approach on a gated

SSA graph that is demand based, only examining pred-

icates if they might assist in loop bounds or sub-

script values for parallelization, a technique that ap-

pears to be no more powerful than that of Gu, Li and

Lee [29]. Related to these array analysis techniques

are approaches to enhance scalar symbolic analysis

for parallelization. Haghighat describes an algebra on

control flow predicates [12] while Blume presents a

method for combining control flow predicates with

ranges of scalar variables [5]. As compared to these

previous approaches [5,11,12,28,29,31] our approach

is distinguished in several ways: (1) it is capable of de-

riving low-cost run-time tests, consisting of arbitrary

program expressions, to guard conditionally optimized

code; (2) it incorporates predicates other than just con-

trol flow tests, particularly those derived from the data-

flow values using predicate extraction; and (3) it uni-

fies a number of previous approaches in array data-flow

analysis, as previously discussed.

Some previous work in run-time parallelization uses

specialized techniques not based on data-flow analy-

sis. An inspector/executor technique inspects array ac-

cesses at run time immediately prior to execution of the

loop [23,24]. The inspector decides whether to execute

a parallel or sequential version of the loop. Predicated

data-flow analysis instead derives run-time tests based

on values of scalar variables that can be tested prior to

loop execution. Thus, our approach, when applicable,

leads to much more efficient tests than inspecting all of

the array accesses within the loop body.

There are some similarities between our approach

and much earlier work on data-flow analysis frame-

works. Holley and Rosen describe a construction of

qualified data-flow problems, but with only a fixed, fi-

nite, disjoint set of predicates [17]. Cousot and Cousot

describe a theoretical construction of a reduced car-

dinal power of two data-flow frameworks, in which a

data-flow analysis is performed on the lattice of func-

tions between the two original data-flow lattices, and

this technique has been refined by Nielson [7,21]. Nei-

ther of the latter two prior works were designed with

predicates as one of the data-flow analysis frameworks,

and none of the three techniques derives run-time tests.

Recently, additional approaches that, in some way,

exploit control-flow information in data-flow analy-

sis have been proposed [2,6,25]. Ammons and Larus’s

approach improves the precision of data-flow analy-

sis along frequently taken control flow paths, called

hot paths, by using profile information. Bodík et al.

describe a demand-driven interprocedural correlation

analysis that eliminates some branches by path spe-

cialization. Both approaches utilize code duplication

to sharpen data-flow values but are only applicable if

the information is available at compile time. Deferred

data-flow analysis proposed by Sharma et al. attempts

to partially perform data-flow analysis at run time, us-

ing control-flow information derived during execution.

7. Conclusion and future work

This paper has presented the results of an experi-

ment to determine whether there are remaining oppor-

tunities for improving automatic parallelization sys-
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tems for a set of 17 programs from two benchmark

suites. With a model where a loop’s iterations can only

execute in parallel if it accesses independent mem-

ory locations, possibly after privatization of array data

structures, we have identified all the remaining loops

not parallelized by the SUIF compiler for which paral-

lelization is safe. Our results indicate that there is still

some room for improvement in automatic paralleliza-

tion in two areas: incorporating control flow tests into

analysis and extracting low-cost run-time tests wher-

ever applicable instead of using an inspector/executor.

These two requirements can be met with a single new

analysis technique, predicated array data-flow analysis,

whereby predicates are associated with data-flow val-

ues. We have shown preliminary results that predicated

array data-flow analysis can improve the speedup for

three out of the four programs in the SPECFP95 bench-

mark suite that previously did not speed up well.

In future work, we envision extending predicated

data-flow analysis to derive more aggressive run-time

tests to enable parallelization of additional loops. A

particularly interesting area of future study is how to

integrate run-time tests derived from predicated ar-

ray data-flow analysis with an inspector/executor ap-

proach. We observed a few inherently parallel loops in

our experiments where predicated array data-flow anal-

ysis is not applicable, such as when arrays are used in

subscript expressions. The run-time tests arising from

predicated analysis and an inspector/executor approach

are complementary, and a parallelization system that

combines the two techniques and uses array data-flow

analysis to optimize run-time tests as much as possi-

ble is desirable to exploit all of the remaining inherent

parallelism in these programs.
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