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Abstract

Model repositories such as the BioModels Database, the CellML Model Repository or

JWS Online are frequently accessed to retrieve computational models of biological sys-

tems. However, their storage concepts support only restricted types of queries and not

all data inside the repositories can be retrieved. In this article we present a storage con-

cept that meets this challenge. It grounds on a graph database, reflects the models’ struc-

ture, incorporates semantic annotations and simulation descriptions and ultimately con-

nects different types of model-related data. The connections between heterogeneous

model-related data and bio-ontologies enable efficient search via biological facts and

grant access to new model features. The introduced concept notably improves the ac-

cess of computational models and associated simulations in a model repository. This

has positive effects on tasks such as model search, retrieval, ranking, matching and filter-

ing. Furthermore, our work for the first time enables CellML- and Systems Biology

Markup Language-encoded models to be effectively maintained in one database. We

show how these models can be linked via annotations and queried.

Database URL: https://sems.uni-rostock.de/projects/masymos/

Introduction

Model repositories such as the BioModels Database (1), the

CellML model repository (2) or JWS Online (3) offer to the

community valuable, curated and reusable models describ-

ing biological systems. They enable researchers to study bio-

logical systems in the computer without necessarily
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implementing the models from scratch, thereby saving time,

effort and money. In addition, curation has a positive effect

on the quality of models used in modeling projects. Errors in

the models’ encoding are more likely to be detected, they

can be resolved and documented. Finally, models are distrib-

uted in standard formats, e.g. the Systems Biology Markup

Language (SBML) (4) or CellML (5), making them immedi-

ately available to a large number of computational tools for

simulation, analysis, visualization or comparison (6).

Each model describes certain aspects of a system. These

aspects may be of functional, behavioral or structural na-

ture (7) and need to be covered in the description of the

model. Semantic annotations relate model entities to exter-

nal resources describing the underlying biology. For ex-

ample, a model of the cell cycle may be annotated with a

term from Gene Ontology (GO) (8) defining the cell cycle

biologically, e.g.

The progression of biochemical and morphological

phases and events that occur in a cell during successive

cell replication or nuclear replication events.

Canonically, the cell cycle comprises the replication and

segregation of genetic material followed by the division

of the cell, but in endocycles or syncytial cells nuclear

replication or nuclear division may not be followed by

cell division. (Gene Ontology, GO:0007049)

Please note that the SBML file would only be equipped

with the GO identifier (here: GO:0007049). This identifier

can then be resolved computationally to access the full in-

formation from GO, making a semantic-based comparison

of models feasible, e.g. (9–12).

Over the past years, the focus shifted from encoding pure

model code toward providing full model-related informa-

tion (13, 14). As a consequence, researchers have access to

detailed descriptions of what a model is about, the rationale

behind building it and ultimately how to reuse it. The neces-

sary information to reuse a model is defined in the

Minimum Information guideline for the annotation of mod-

els, MIRIAM (13). A MIRIAM-compliant model contains

information about each biological entity, links to the publi-

cation describing a model (denoted as reference publication)

and instructions on how to use a model to reproduce a pub-

lished result. Driven by the definition of the MIRIAM re-

quirements and related efforts under the Computational

Network for Modeling in Biology [COMBINE (15)], model

repositories provide richly annotated models.

Before the era of semantic knowledge integration and

ontologies, model code contained only few meta-data.

Models could easily be kept in file systems and meta-data

in relational data tables (1). A main feature of relational

data tables is their fixed database schema which enables

fast storage of and search for homogeneous data items.

This storage concept has become unsuitable, because

today’s models contain heterogeneous meta-data. Even

MIRIAM-compliant annotations cannot be mapped effi-

ciently onto relational tables. The heterogeneous structure

and content of the various meta-data encoded in a model

do not comply with the homogenous and pre-defined prop-

erties of relational tables. This (technical) limitation led to

a situation where many types of model-related data are not

extracted from the model. Consequently, the information

contained in these meta-data items is not accessible for any

kind of comparison or reasoning. Meta-data that are in

principle available, but not retrievable include the structure

of the model (16), model versions (17) and simulation set-

ups (18). One consequence of inaccessible meta-data is that

modeling results may become irreproducible, because the

information on the simulation experiment is not associated

with the model code (19).

In this manuscript, we propose the concept of graph

databases for model storage and retrieval. Graph databases

support heterogeneous data structures. They furthermore

enable a flexible integration of model-related meta-data.

We focus our studies on models in SBML and CellML for-

mats, associated simulation setups in Simulation

Experiment Description Markup Language (SED-ML) for-

mat and semantic annotations from bio-ontologies. A key

feature of our work is the explicit linking of data. It en-

ables, for the first time, queries across different data for-

mats, e.g. ‘Return experiments observing entities

representing an “m-phase inducer phosphatase” and acting

as modifier in a reaction’. This query incorporates and

links several types of meta-data and creates a complete pic-

ture of the model: model code (identifying all models that

contain entity X); semantic annotations (identifying all

entities X that are annotated with concepts from a bio-

ontology that relate to ‘m-phase inducer phosphatase’); the

model’s network structure (filtering those models where X

is a modifier in a reaction); and simulation experiments

(identifying possible simulation setups for the chosen mod-

els). Our concept, when implemented in open and private

model repositories, supports modelers and biologists in

retrieving models and scientific findings, fosters the explor-

ation of published models and increases model reuse.

A graph database for simulation models and

associated data

Model reuse can be improved if models and meta-data are

considered together. In this article, we present a novel stor-

age concept that tightly links model code with model-

related data. Our concept is directly relevant for developers

of model repositories in computational biology, as it offers

new possibilities for model search and comparison. Our
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work also points out the possibilities of state-of-the-art

database techniques for handling the increasing amount of

data related to a modeling work.

Our work was driven by the question: If models encode

networks—why do we not store them as graphs rather

than as relational tables? In a graph database, nodes con-

tain the data and edges represent the links between the

data. Graph databases are a suitable technology for the in-

tegration and storage of modeling results, because: (1)

Many models in public databases encode networks that

can be represented as graphs. (2) No unified schema exists

for models and meta-data, making it difficult to define a

relational database schema. (3) The highly linked models,

model entities and meta-data are difficult to represent in a

table-based relational database management system such

as MySQL. Architectural choices in current model reposi-

tories date back to times when only a limited number of al-

ternatives existed, standardization of external knowledge

only began and model files were only scarcely associated

with meta-data. Since then the databases have grown and

functionality has been extended. The focus has shifted

from model code to ‘model-related data’. Interestingly,

only a few systems’ architectures have been revised.

Traditionally, relational databases were developed for

homogeneous, structured data, e.g. numerical data. Models,

however, take various size and structure. SBML models in

BioModels Database, for example, import data structures

from external standards and link to entries in bio-ontologies.

Among the external standards are ‘vCard’, electronic busi-

ness cards that identify the model author and curators

(http://www.w3.org/TR/vcard-rdf/), or ‘Dublin Core’, a vo-

cabulary mainly used to describe web resources (http://dub-

lincore.org/). Some models are provided with simulation

setups and graphical representations. Designing a relational

representation for these links and keeping the database effi-

cient at the same time are impossible. A core concept of rela-

tional databases is their fixed schema which defines the

structure of the data. Semi-structured documents, however,

have only loose constraints on the data structure (20), which

cannot be handled efficiently by relational databases (21). As

all standards for model encoding are semi-structured, rela-

tional databases are not the best choice for efficient storage.

NoSQL approaches, together with semantic web applica-

tions, more recently gained popularity in the life sciences

(22), e.g. as Key-Value Stores, BigTable (23), document data-

bases, triple stores or graph databases (24). We chose the

graph database Neo4J (25). It represents data in terms of

nodes, edges and attributes. Nodes are connected via directed

edges (relations) of certain types. Both nodes and edges can

then hold attributes. The Neo4J architecture follows the fun-

damental properties of databases, i.e. the ACID principles

(atomicity, consistency, isolation and durability).

Incorporated data domains

Several types of data are relevant for a meaningful descrip-

tion of computational models in biology (7, 18, 26).

Specifically Knüpfer et al. (7) distinguish data for the ex-

trinsic and intrinsic description of model function, behav-

ior and structure. Many of these aspects have already been

described in standard formats, including model structure

(27–29), simulation descriptions (30), simulation results

(31) and semantic annotations (32, 33, 34). In this work,

we focus on the data requested by two Minimum

Information Guidelines: MIRIAM for requested informa-

tion about models and MIASE, the Minimum Information

About a Simulation Experiment (14), for requested infor-

mation about simulation setups.

The development of standards is a continuous process,

and their uptake by software tools and users progresses at

varying speed. For example, while many journals today

recommend, or require, the provision of model code during

submission (e.g. in SBML), there is no such recommenda-

tion to submit also a graphical representation in the

Systems Biology Graphical Notations (SBGN) (29), nor to

submit the simulation description (in SED-ML). Some for-

mats are specified, but so far only used by a small number

of software tools, e.g. the Systems Biology Result Markup

Language (SBRML) (31). However, repeated calls for

model reproducibility have been published in the past years

(13, 14). The ongoing development of standards fosters

both the submission of model-related data to model reposi-

tories such as BioModels Database and the distribution of

archives such as the Research Objects (35) or the recently

launched COMBINE Archive (36). In the following, we

will only consider types of data that have been formally

specified and for which curated data is available. These are

basically the model code, simulation descriptions, semantic

annotations and cross-references, and the mathematical

characterization of models (18).

Model code in public repositories

Modelers predominantly implement their models in native

programming languages, most commonly C or Cþþ; script

languages such as MATLAB or Python and using graphical

representations. Program code and scripts, in general, are

hard to understand and share. An XML representation re-

duces the obstacles to sharing data among diverse applica-

tions by providing a common format for expressing data

structure and content (37). XML formats for the standar-

dized representation of models are SBML, CellML or

NeuroML (38). They all focus on the encoding of the mod-

els’ structure, for example the interactions in a pathway,

and describe sets of entities and the processes between

them. Hucka et al. (27) highlight the advantages of markup
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languages, in this case SBML, for model representations:

model definition becomes straight forward, and a tool

chain is available. BioModels Database, for example, guar-

antees persistence and long-term availability of 548 cura-

ted models (Release 28 of BioModels Database as of 16

September 2014) and several thousands of automatically

generated pathway models which have been generated

from the KEGG database (39). Many simulation tools read

and write models in SBML (6).

Simulation descriptions

The ability to represent increasingly complex biological phe-

nomena requires models to be instantiated using different

initial conditions and parameters, and these conditions must

be formally described together with the model itself (40).

For example, in pharmacometrics, the calculation of a

parameterization of an individualized model is itself a com-

plex procedure that requires the development of further

standards (41). To ensure the reproducibility of simulation

results, the SED-ML (19) is an XML-based format that en-

codes the necessary information to reproduce a particular re-

sult. SED-ML Level 1 Version 1 (30) enables the

reproduction of time course simulations. The more recent

Level 1 Version 2 covers a broader range of experiments,

including pulse experiments and parameter scans (42).

BioModels Database and the CellMLModel Repository pro-

vide SED-ML files for selected models in their repositories.

Surprisingly though these SED-ML files are not linked with

the models inside the databases. Consequently, the informa-

tion about applicable simulation experiments for a model is

not computationally accessible. This information is, how-

ever, desired by researchers who wish to define generic ex-

perimental setups, so-called virtual experiments (40), and

link these to sets of models for comparison, validation and

functional curation (43). Hence, simulation setups are a kind

of meta-data that are relevant for database design decisions.

Semantic annotations and cross-references

Semantic annotations link model entities to terms in bio-

ontologies. Ontologies, in general, are defined as specifica-

tions of a conceptualization (44). Bio-ontologies, e.g. GO,

that are ontologies with a focus on biological terms. Many

cross-references between ontologies are provided in

BioPortal (45). Both SBML and CellML use bio-ontologies

to enrich model descriptions with semantic annotations,

using Resource Description Framework (RDF) triples (46).

In BioModels Database, models carry between 3 and 800

annotations, but on average 71 annotations, per model

(47). For example, an annotation could be added to the

SBML species X, linking it to the ontology term ATP in

ChEBI (48) (ID CHEBI:15422). So-called qualifiers specify

the relation between entity and ontology term (49). A

model entity could be ATP or have a part ATP. The sum of

semantic annotations in a model describes its biological

and mathematical background.

Database design and data import

The following section describes the structure of our data-

base. For demonstration purposes, we use one of the early

Tyson models on cell division (50). This model is fairly

small, it is available in SBML [BioModels Database (http://

www.ebi.ac.uk/biomodels-main/BIOMD0000000005)] and

CellML [CellML Model Repository (http://models.cellml.

org/exposure/9bff394be3ade829feed94151b3d68b3/tyson_

1991.cellml/view)] format.

A so-called document root node is created for each data

item. It is the entry point to the database. Attached to this

node can be a model code (e.g. an SBML node) or model-

related data item (e.g. a SED-ML node). The entry point

for each ontology is a so-called ontology root node.

More specifically, SBML models (Figure 1, left) are rep-

resented by a model node which stores the model’s name

(in cyan color) and identifier. Attached to the model node

are annotation nodes, including the reference publication

(purple and gray). The model node is also connected to re-

action, species and compartment nodes to reflect the

underlying structures in the biological network. The ex-

ample in Figure 1 shows a subset of nodes and edges for

the Tyson model. All information about these nodes is dir-

ectly extracted from the model’s SBML representation.

The figure displays three species nodes (in green), one reac-

tion node (in red) and one compartment node (in orange).

The edge between the species node pM (a complex of phos-

phorylated Cyclin and phosphorylated cdc2) and the com-

partment node Cell represents the fact that the species pM

is located in the compartment Cell. The qualifiers in the

SBML model (13, 34) allow us to incorporate further in-

formation on the type of relation between an entity and an

ontology concept, e.g. that pM is linked to Cell via the re-

lation isContainedIn. Further model entities are stored

analogously, i.e. encoded parameters, events and other

SBML concepts. For example, for each global parameter a

node is created and attached to the model node. The same

procedure holds for functions. Only unit declarations are

currently omitted, they may be implemented in future ver-

sions of the graph database, e.g. for applications such as

model merging. Finally, the semantic annotations are ex-

tracted from the SBML model and stored. The use of graph

databases makes this mapping intuitive: nodes representing

some model entity are linked to nodes representing a par-

ticular term in a bio-ontology. The edge specifies that rela-

tion. An additional node is created and connected each

time a new URI is detected during model import. For our
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example, the species node pM is related via hasPart to the

InterPro term Diphthine synthase (in gray). Taken to-

gether, the sum of extracted information provides a de-

tailed representation of the models’ network structure and

all annotations.

CellML models represent networks of connections be-

tween so-called components. A component contains vari-

ables and mathematical relationships that manipulate

those variables (28). This is a different, more abstract ap-

proach to representing reaction networks, and one of the

reasons why an integrated storage of SBML and CellML

models on the XML level is so difficult (51). Examples for

CellML components are physical compartments, events,

species or other convenient modeling abstractions. As for

SBML models, the entry point is a document node that is

connected to a model node and serves as an anchor for the

component nodes. Each model entity can be related to a se-

mantic annotation. Figure 1 (right) shows the CellML rep-

resentation of the above-mentioned Tyson model.

Attached to the model node are the component nodes, for

example C2, Cp or environment. Each component holds

a number of variables. These variables are mapped to cor-

responding variables of connected components, e.g. the

variable time in component node C2 is connected to the

variable time in the environment node. Please note here

that the model node links to the identical publication node

as the SBML model. If existing, annotations are extracted

from the CellML model and mapped to the database using

the same URI scheme as with SBML models. Although

CellML models today are only sparsely annotated, several

projects work toward fully annotated CellML models (33,

52, 53). Our database is updated accordingly.

SED-ML descriptions specify simulation setups for

models. They thereby link models, simulation algorithms

and output definitions (plots). A SED-ML description also

explicitly declares the observed variables. In our design,

the SEDML node serves as the anchor for an experiment.

The Modelreference node links the experiment to all

Model nodes used in the simulation. Figure 2 exemplifies

how a model reference links one SED-ML description to

an SBML and a CellML model. Algorithms used for simu-

lation are described by concepts from the Kinetic

Simulation Algorithm Ontology (KiSAO) (54), which is

one of the bio-ontologies that we import into our database.

A subset of KiSAO terms is depicted in Figure 2.

We incorporate the concepts of frequently used bio-

ontologies to be able to query the information hidden in

the semantic annotations of in model representations and

simulation descriptions. For example, model entities are

mostly annotated with concepts from SBO, GO, ChEBI

Figure 1. Representations of the Tyson 1991 model. The SBGN (top) representation shows the process description for the Tyson 1991 model. The rep-

resentation of the SBML model inside the graph database is shown on the left, the representation of the CellML model is shown on the right. The

document node is colored in yellow, model nodes in blue, annotation nodes in silver and publication nodes in purple. For the SBML representation,

reaction nodes are red, species nodes are dark green and compartment nodes are brown. For the CellML representation, component nodes are light

green and variables are light red. The figure shows only an excerpt of the model representation, for example many nodes and edges are omitted in

favor for readability.
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Figure 2. Linking models, simulation descriptions and ontologies. The linking between different data domains is shown: simulation experiment de-

scriptions and models (dashed line); defined observation variables and model entities (dotted line); annotated model entities and simulation experi-

ment descriptions (dashed-dotted line) and model entities of different representation formats (double dotted-dashed line). The SBO example is

explained in detail in the Implementation section. The references to the simulation algorithm within a simulation experiment description are mapped

to the corresponding entity in KiSAO. All annotations referring to GO are mapped, but not shown in the figure.
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(47); simulation descriptions contain links to simulation al-

gorithms in KiSAO. Most bio-ontologies are available in

the Web Ontology Language (OWL), which is a standard

format for the representation of semantic information on

the web. We parse these ontologies and add all concepts

and relations as nodes and edges, respectively. Cross-

references between concepts of different ontologies are cur-

rently not mapped to the database.

Table 1 summarizes the data types, number and size of

the documents in our database. The integration of further

data resources is possible using import tools. For example,

we offer a generic importer for ontologies encoded in

OWL. However, the links between the incorporated ontol-

ogy concepts, models and model-related data need to be

defined manually. Adding data encoded in SBRML (31) or

NuML (http://code.google.com/p/numl/) would require

additional importers and again a manual post-processing.

Linking model-related data

The main advantage of the previously described concept is

its possibility to define flexible links between the data do-

mains. In concordance with previous considerations (16,

18), we incorporate the following types of links:

a. links between annotations (in SBML, CellML and

SED-ML) and ontology concepts,

b. links between models (in SBML or CellML format) and

SED-ML,

c. links between model entities and SED-ML variables and

d. links between model entities from different model rep-

resentation formats.

Figure 2 depicts all links for the Tyson model.

The database contains the SBML and CellML represen-

tations of this model. Both representations are outlined on

the left-hand side of the figure. The first type of link is be-

tween model entities and ontology concepts (a). Here, we

only consider existing annotations. For each annotation in

a model we add an explicit link to the data entry in the ref-

erenced bio-ontology. For example, based on the SBO an-

notation in the SBML model we build an additional edge

between the node representing that annotation in SBML

and the entry in SBO itself. Each concept (from an ontol-

ogy) is only stored once but can be referred to by multiple

model entities.

Another type of link is that between a model and a

simulation description (b). When importing a SED-ML file

into the database, we resolve the model references. We

then check if those models are contained in our database.

If this is the case, then additional edges are introduced for

each model reference, between one model node and

one SED-ML Model reference node at a time. In the ex-

ample in Figure 2, the original SED-ML file contained two

model references, pointing to the Tyson 1991 model in

SBML and CellML format, respectively. Thus, we add two

edges.

Furthermore, the variables of a DataGenerator in a

SED-ML file may point to a specific entity in the referenced

model. This pointer is used to identify the entity under ob-

servation, or for pre-processing before simulation.

Although we do not store the specific processing of a

model entity, we keep the information if a model entity is

part of a simulation. A third type of link thus relates

DataGenerator nodes with model entities (c) when a

SED-ML file is imported. Also, we flag species that are

altered during SED-ML pre-processing (e.g. if the concen-

tration of a species is changed).

The links (a)–(c) can be inferred from information

encoded in the models. Therefore, we regard them explicit

links. In addition, we determine implicit links between

models of different representation formats (d). As we

showed earlier, two models may link to the same publica-

tion (Pubmed:1831270 in Figure 2). If two models share

a publication, the systems can infer implicit links between

those entities that are equally named. Entities with similar

names (e.g. in terms of Levenshtein Distance or stemming)

also have a high probability of being identical. The confi-

dence can be increased further if the entities’ annotations

match. Figure 2 shows the explicit connection of the enti-

ties C2 in the SBML and C2 in the CellML model. Both

entities are linked because they have the same name, and

they stem from the same reference publication. Please be

aware that linking two models based on the ideas described

above does not necessarily mean these models are equal. It

only means that they are similar. If and when models can

be considered equal is an ongoing discussion that is not

part of this work.

Table 1. Top: Number of files and stored nodes for each data

domain and Bottom: Number of nodes for each stored

ontology

Data domain Documents Nodes

SBML 462 91 488

CellML 841 143 521

SED-ML 38 3352

Ontology Nodes Domain references

KiSAO 261 38

SBO 606 8839

GO 39787 7555

Notes: The domain references state the number of links from a concept of

an Ontology into a data domain. Here, all KiSAO concepts are linked to the

domain of SED-ML whereas all SBO and GO concepts are referred to from

the CellML or SBML domain.
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Discussion

Advantages of implementing a graph-based

concept

The main advantages of a graph-based concept for model

storage are easy integration of heterogeneous resources, ex-

tensibility with further data resources and improved model

search.

Currently, models and model-related data are only

sparsely linked in the, predominantly relational, model repo-

sitories. Relational databases store data in tables and use the

concept of primary and foreign keys, making them a strong

tool for the storage of structured, homogenous data. On the

contrary, they do not perform well on highly connected,

semi-structured and heterogeneous XML data. In a graph

database, the integration of heterogeneous resources is

straight forward. The concept of edges allows arbitrary con-

nections to be defined by the creators of the database at any

time. Particularly helpful for later model comparison are

edges that connect nodes across model representation for-

mats. For example, our database contains two representa-

tions of Tyson’s 1991 cell cycle model, in SBML and in

CellML, respectively. The two models are connected via an

edge between the model nodes. This link now becomes ex-

ploitable, because both model nodes share one publication

node (PubMed:1831270). It is also useful to represent rela-

tions between a model and a simulation setup. Storing this

information in the graph database allows modelers to

quickly retrieve all models associated with a simulation ex-

periment, and ‘vice versa’. For example, our graph database

contains the information that there exists a SED-ML file

which simulates and observes the change in concentration in

CP in both encodings of the Tyson 1991 model (SBML and

CellML) and then compares the simulation outcome

(Figure 2). Finally, our database establishes links from

model annotations into bio-ontologies. For example, the

SBML model in Figure 2 contains the entity Cell which is

annotated with a term from SBO. We can thus easily re-

trieve all models that are annotated with a particular ontol-

ogy term. This is, for example, helpful in the classification

of models as we show in Alm et al. (47).

Our graph database is schema optional. Thus, new data

resources can efficiently be integrated and the database

easily be extended. We plan to integrate links to result data

(in NuML format) and to wet lab descriptions once these

exist in standard format. Data in NuML format could be

linked to model entities, for example, when storing differ-

ent parameterization of a particular model to formally de-

scribe its variants.

As current repositories do not represent the structure of

a model, they cannot answer questions such as ‘Which

model in the database contains the species that modifies

most reactions?’. To identify a species as the modifier of a

reaction, this information must exist in the database.

Figure 1 shows how we keep the information on the model

structure: for each reaction in the model we map all react-

ants, modifier and products. Participants in the reactions

are furthermore linked to the bio-ontologies, to simulation

setups and linked across the SBML and CellML representa-

tions. Building on this structured representation, a query

can now add restrictions on the reaction network, e.g. for-

mulating the following two conditions: (1) the species

should only serve as a modifier in any of the model’s reac-

tions and (2) only the topmost species per model should be

considered. For this specific example, our graph database

retrieves the model ‘Schaber2012—Hog pathway in yeast’

(Originally from BioModels Database, http://www.ebi.ac.

uk/biomodels-main/BIOMD0000000429), because the

species Hog1PPActive occurs in 10 reactions and only

acts as a modifier (Query 1). (The following examples are

based on BioModels Release 25, curated branch. A list of

CellML models used in the following examples is available

as Supplementary Material)

Query 1: Return the model with the most species acting

only as a modifier.

Result 1: The model “Schaber2012 - Hog pathway in

yeast” having the species Hog1PPActive which is act-

ing as a modifier in 10 reactions.

Graph databases offer further exciting applications,

including the structure-based comparison of models.

Combinations of nodes and edges form sub-networks

which can for the first time be compared with each other

using graph matching techniques. Once specific algorithms

to map sub-models and identify suitable interfaces for

automatized model coupling are in place, it will be possible

to integrate them with our ranked retrieval system (10).

The ‘Materials and methods’ section contains further

examples.

Exploiting links to associated virtual experiments

‘Which simulation experiments in the repository investi-

gate the change of concentration in “m-phase inducer

phosphatase”?’ To answer this question, it is not sufficient

MATCH (species:SBML_SPECIES)-[isMod:IS_MODIFIER] - >()

WHERE NOT((species)-[:IS_REACTANT] - >() OR (species)

-[:IS_PRODUCT] - >())

WITH species, count(isMod) AS numOfMod ORDER BY numOfMod

DESC LIMIT 1

MATCH species-[:BELONGS_TO]->model

WHERE (model:SBML_MODEL)

RETURN model.NAME AS Model, species.NAME as

Species, numOfMod
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to query the model only. The retrieval system must also in-

corporate information about, and links to, simulation ex-

periments. Sometimes open repositories supplement

models with SED-ML files, enabling users to reproduce

one or more figures of the reference publication. However,

current model repositories do not explicitly store the link

between model and simulation description. Consequently,

one cannot retrieve relations of that kind. For example,

Novak’s 1997 cell cycle model can be run with at least two

different setups, either reproducing Figure 2a or b of

Novak and Tyson (55). Our implementation keeps the

links between simulation setups and models and thus

knows which experiments are applicable to which models.

Query 2 is an example for the retrieval of all known simu-

lations for a model. The links between SED-ML elements

and KiSAO allow us to define restrictions on the SED-ML

files we want to consider in a search result, e.g. to retrieve

only models that can actually be simulated with a given

simulation algorithm. With our system, the query ‘Which

CellML encoded models can be simulated using a

Livermore Solver?’ can be answered (Query 3). One can

also imagine to restrict results to changes in concentrations

of a certain parameter. Finally, SED-ML descriptions may

be defined as templates for virtual experiments. Virtual ex-

periments are in silico assays of a model’s behavioral reper-

toire, both in declaring what a model should do and

verifying what it actually does (40). Such simulation de-

scriptions are per definition applicable to classes of models,

enabling the clustering of models by type of experiment

that they reproduce correctly.

Query 2: Return all simulations that can be applied to

the model ”Novak1997 - Cell Cycle”

Result 2: The requested model can be run by two simu-

lations, reproducing Figure 2a and 2b by [42]

Query 3: Return only CellML models that can be simu-

lated using a Livermore Solver (KISAO:0000019)

Result 3: The CellML encoded ”Tyson 1991” model

and the corresponding SED-ML file.

Query 4: Return simulation descriptions observing a par-

ticular species that plays the role of a modifier or reaction,

respectively. The observed species should be annotated as

“m-phase inducer phosphatase” using the qualifier is.

Result 4: The result is shown and explained in Figure 3.

Strikingly, it is also possible to derive information from

the graph database by combining the different data sets.

Query 4 shows such a complex example. It combines index

and structure information and spans data sets of ontology,

models and simulation experiments. It retrieves a simulation

experiment description and corresponding models where a

species is marked for observation by the simulation descrip-

tion. Additionally, the observed species must be annotated

with a resource that is related to the phrase ‘m-phase in-

ducer phosphatase’ and the species must play the role of a

modifier. The result is shown in Figure 3. To our knowledge

this is the first time a system can answer queries spanned

over different data sets and combining them with an index

look-up.

Statistics

Our graph database can also provide interesting statistics

about models. For example, we can identify the term

SBO:0000009 (kinetic constant) as the most frequently used

annotation in BioModels Database (Query 5). We can also

compute the number of annotations using SBO:0000009 or

one of its 125 children (Query 6). Finally, the system can de-

rive statistical values. For example, the average number of

annotations per model, as well as the minimum, maximum

and the standard derivation, can be computed for the set of

SBML and CellML models available from BioModels

Database and the CellML Model Repository, respectively

(Query 7).

MATCH (m:SBML_MODEL)-[:REFERENCES_SIMULATION_MODEL]-ref-

[:BELONGS_TO*2]->(sed:DOCUMENT)

WHERE m.NAME¼’Novak1997 - Cell Cycle’

RETURN m.NAME AS Model, m.ID as ModelID,

ref.MODELSOURCE as ModelSource, sed.FILENAME

as SEDMLFile

MATCH (sed:DOCUMENT)<-[:BELONGS_TO*2]-

(sim:SEDML_SIMULATION)-[:SIMULATES]->

(ref:SEDML_MODELREFERENCE)

-[:REFERENCES_SIMULATION_MODEL]->m

WHERE

(sim.SIMKISAO¼’KISAO:0000019’) AND filter(lable in

labels(m) where lable ¼’CELLML_MODEL’)

RETURN m.NAME, sed.FILENAME

START res¼node:annotationIndex(’RESOURCETEXT:(m-

phase inducer phosphatase)’)

MATCH res<-[rel:is]-(a:ANNOTATION)–>(s:SBML_SPECIES)<-

[:OBSERVES]-o-[:BELONGS_TO*]->(doc:DOCUMENT)

WITH doc,res,s,o

MATCH ()<-[:IS_MODIFIER]-s-[:BELONGS_TO]->m

RETURN DISTINCT doc.FILENAME AS SEDML, collect(distinct

m.NAME) AS Model,

collect(distinct res.URI) AS Resource,

collect(distinct s.NAME) AS Species,

collect(distinct o.TARGET) AS Target

MATCH (r:RESOURCE)-[qualifier:BELONGS_TO]->()

WITH r, count(qualifier) AS AnnotationCount

ORDER BY AnnotationCount DESC LIMIT 3

RETURN r.URI as Annotation, AnnotationCount
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Query 5: What are the top-most three annotations used?

Result 5: Top three annotations used are SBO:0000009

(kinetic constant, used 1127 times), SBO:0000252

(polypeptide chain, used 509 times), GO:0043241 (pro-

tein complex disassembly, used 484 times)

Query 6: How many annotations point to the term

SBO:0000009 (kinetic constant) or one of its children?

Result 6: 3373 annotations pointing to SBO:0000009

or one of its children (e. g. half-life, diffusion coefficient

or bimolecular rate constant), 1127 of them point dir-

ectly to SBO:0000009.

Query 7: What is the minimum, maximum and average

number of annotations per model?

Result 7: A model has a maximum of 800, a minimum

of three and an average of 71 annotations.

Comparison with other approaches

RDF-triple-stores and SPARQL

Semantic Systems Biology has been termed the new field of

research that aims to improve formal knowledge

representation of computational models to enhance construc-

tion, comparison, validation, or retrieval (9). Several projects

convert model representations into semantically enriched for-

mats to compare models and to improve the integration with

knowledge in bio-ontologies (56, 57). In general, the idea is

to transform all data into RDF representations, store the

RDF triples into databases and provide SPARQL (http://

www.w3.org/TR/rdf-sparql-query/) endpoints to access the

triples. For example, SBML models in BioModels Database

can be converted into OWL or RDF representations, using

straight forward to more complex transformation methods

(51, 56–58). SPARQL has become the de-facto query lan-

guage for the Semantic Web community and is also used in

the domain of computational biology, e.g. Bio2RDF (http://

bio2rdf.org/) (59) or recently the BioModels Database

SPARQL endpoint (60). Although many formats can be

transformed to RDF, an RDF representation is not available

for all data we included (i.e. SED-ML). An in-depth compari-

son of graph-databases with RDF triple-stores (and associ-

ated query languages) is not in the scope of this article. The

major reason for us to use a graph database was their sup-

port for graph algorithms. Triple-stores and SPARQL are

tailored toward sub-graph retrieval. However, common

graph algorithms such as Dijkstra’s algorithm (shortest

path), directed path traversing, spanning trees or sophisti-

cated graph matching patterns are hardly applicable on RDF

triple-stores (61). We argue that the graph structure and thus

graph algorithms will become more important in the domain

of computational biology. We already used our graph data-

base to extract characteristic features for sets of thematically

similar models (e.g. cell cycle or NF- j B) (47).

Figure 3. Results for Query BM3. The query output at the top of the figure restricts the species role to ‘modifier’. Three SED-ML files match. The first

and second files belong to the same model and both observe the species Cdc25. The third query result is a SED-ML file observing four different spe-

cies. The query output at the bottom of the figure shows the result of a similar query. Here the species must act as ‘reactants’. Only one SED-ML file

is retrieved, namely the third result of the top query. All retrieved species (declared as observed by a SED-ML file) are annotated with a UniProt ID.

The annotation is either P06652, the protein Cdc25 in yeast, or P20483, the protein Stg (Cdc25) in the fruit fly. Simulation files for CellML files are not

retrieved, because CellML files are not yet fully annotated. If the CellML version of the Novak 1997 model had annotations corresponding to ‘m-phase

inducer phosphatase’, the database would have also returned the simulation description for that model.

MATCH (m:SBML_MODEL)<-[:BELONGS_TO*1..2]

-(a:ANNOTATION)<-[:BELONGS_TO]-(r:RESOURCE)

WITH m as Model, count(r) AS NumberOfAnnotation

RETURN max(NumberOfAnnotation), min(NumberOfAnnotation),

avg(NumberOfAnnotation), stdev(NumberOfAnnotation)

MATCH ()-[rel]->(res:RESOURCE)-[:IS_ONTOLOGY_ENTRY]-c-

[:isA*0..]->s

WHERE s.id¼”SBO_0000009”

RETURN count(rel)
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BioModels Database

Recently, the European Bioinformatics Institute in

Hinxton, UK, announced a SPARQL endpoint for

BioModels Database. All SBML-encoded models in

BioModels Database were converted into RDF representa-

tions and added to the EBI RDF Platform (60). For com-

parison of our concept against BioModels Database’s

approach, we translated the query examples from the EBI

web page (http://www.ebi.ac.uk/rdf/services/biomodels/)

into queries against our graph database. The executed

queries and retrieved results are shown in the following

three listings. Additionally, Figure 4 shows a visualization

for Query BM3.

Query BM1: From model BIOMD0000000001, list all

species identifiers and names

Result BM1: 12 species IDs (ALL, I, DL, ILL, D,

DLL, B, BL, A, AL, IL, BL) and names

(ActiveACh2, Intermediate, . . .)

Query BM2: Get element annotations of the model

BIOMD0000000001

Result BM2: 104 annotations for 65 distinct elements,

for example species ALL is annotated with IPR002394,

GO:0005892 and SBO:0000297

Query BM3: All model elements with annotations to

acetylcholine-gated channel complex

Result BM3: From each model (BIOMD0000000001

and BIOMD0000000002) the same 12 species IDs are

returned (ALL, I, DL, ILL, D, DLL, B, BL, A, AL, IL,

Figure 4. Visualization of Query BM3. The centered node (purple) is the requested annotation GO:0005892 (acetylcholine-gated channel complex).

This node is connected to the orange node representing the GO term within the GO. The green nodes represent the species linked to the GO:0005892

annotation, the blue nodes represent the models ‘Edelstein1996—EPSP ACh event’ (BIOMD0000000001) and ‘Edelstein1996—EPSP ACh species’

(BIOMD0000000002). Documents are displayed as yellow nodes. Nodes in gray represent annotation containers as stated in the SBML specification

(4) and do not carry any meaning themselves.

MATCH (m:SBML_MODEL)–>(s:SBML_SPECIES)

WHERE (m.ID¼”BIOMD0000000001”)

RETURN m AS Model, collect(s.ID)

as SpeciesID, collect(s.NAME) as SpeciesName

MATCH (r:RESOURCE)–>()-[:BELONGS_TO]->(element)

–>(m:SBML_MODEL)

WHERE m.ID¼”BIOMD0000000001”

RETURN element.ID AS Element,

LABELS(element) AS ElmentType,

collect(r.URI) AS ElementAnnotation

MATCH (r:RESOURCE)<-[rel]-()–>e-[:BELONGS_TO]

->(m:SBML_MODEL)

WHERE r.URI¼�”.*GO.*0005892”

RETURN m.ID AS ModelID, collect(e.ID) AS ElementIDs,

type(rel) AS Qualifier, r.URI as URI
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BL), all are qualified with isVersionOf. A graphical rep-

resentation is shown in Figure 4.

We could easily apply all queries and reproduce the re-

sults. Specifically, query BM3 asks for models annotated

with the ‘acetylcholine-gated channel complex’. Due to the

missing index support for this RDF store, the user must

first manually look up and transform this annotation term

into a URL, and paste that into the query. Our system, in

the contrary, is able to retrieve this information automatic-

ally by a simple index-based query. A detailed example for

the automatic conversion of an annotation is given in the

aforementioned Query 4 or in Query M6 in the Materials

and methods section.

COMBINE Archive

The types of meta-data considered in this work are also

agreed upon by an effort called the COMBINE archive

(18), which aims at publishing extractable archive files

that then contain all files necessary to reproduce a scien-

tific modeling result in the life sciences.

The COMBINE archive is well suited for the export and

exchange of research results. Our graph database rather

offers a solution for the management of those files. For ex-

ample, the CombineArchive Toolkit (62) may query our

database, collect all necessary information and automatic-

ally create an Open Modeling EXchange format file

(http://co.mbine.org/specifications/omex.version-1).

Conclusion

Open model repositories are frequently queried for compu-

tational models describing particular aspects of biological

systems. However, their storage concepts are restricted and

not all data contained inside the repositories are incorpo-

rated into the search process.

The system described in this article incorporates and

links knowledge that is in principle already available in

public repositories, but not yet utilized. The knowledge is

encoded in meta-data, in particular links to simulation

experiments and semantic annotations with terms from

bio-ontologies. The key to using this knowledge in model

management tasks is its explicit linking and indexing in the

database. We demonstrate how relevant meta-data can be

stored in a graph-database using the example of Neo4J.

We furthermore exemplify how this meta-data can subse-

quently improve model retrieval and thus model reuse.

Our concept is easy to adapt and implement. An inter-

face to test and query the database described in this article is

available (https://sems.uni-rostock.de/projects/masymos/). In

addition, a web API (https://sems.uni-rostock.de/projects/

morre/) designed to search SBML, CellML and SED-ML

files is available for testing. A prototype implementation is

running as a search service on an instance of the Physiome

Model Repository, which is the backend of the CellML

Model Repository (http://staging.physiomeproject.org/).

Materials and methods

Mapping XML-encoded models and model-

related data to the graph database

The entry point for each model import is a document node.

It links to a model node via the directed edge hasModel.

The model node has a model name and relations (i.e.

edges) to nodes that represent model entities. In the case of

SBML these entities include species, compartments or reac-

tions. For example, a model’s species is represented by its

own node. Additionally, an edge from the model node to

the species node is created and named hasSpecies.

Nodes for each reaction and compartment are created and

connected with hasReaction and hasComartment, re-

spectively. Moreover, relations of model elements are

mapped to the graph database, i.e. a species node is con-

nected to a compartment node with isContainedIn. To

ensure an easy traversal upwards, a connection is created

from each node of the stored model that points to the par-

ent of the current node. The corresponding edges are

named belongsTo. Furthermore, it is possible to attach

an annotation to each model entity, describing the particu-

lar entity in more detail. All such annotations are stored to

the database and indexed. The textual descriptions of

terms in ontologies such as GO or ChEBI are retrieved

from the according web pages, indexed and then pro-

cessed. This index is afterwards used for ranked model re-

trieval as described in Henkel et al. (10). Attached to every

node is a so-called label that names the type of node, e.g.

species, compartment or annotation. Labels are indexed

and allow to select all nodes of a specific type.

Implementation

We implemented the graph-based storage according to the

architecture depicted in Figure 5. The Neo4J (http://www.

neo4j.org/) database stores model files, simulation descrip-

tions and model-related information in a graph manner.

The retrieval engine is based on the ranked retrieval

described in Henkel et al. (10). It allows users to access the

data in the database, and retrieve ranked lists of results for

their text queries. Queries are resolved using the Lucene

framework (http://lucene.apache.org/core/), and ranked

based on predefined similarity features. The data import

pushes different data formats, including model code, simu-

lation experiment descriptions and ontologies, into the
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graph database. Afterwards a post-process takes care of

linking the added data of different domains.

Models and Simulation Descriptions are added to the

database using format-dependent importers. Each sup-

ported format has its specification. Consequently, impor-

ters were implemented for SBML [based on jSBML (63)],

for CellML and for SED-ML [based on jlibsedml (19)]. All

importers share a common interface which maps the model

and simulation files onto a graph structure. The import

keeps the models’ semantic information and all content

that is relevant for later model querying, retrieval and

display.

Bio-ontologies available in OWL can also be imported

using the owl-API (http://owlapi.sourceforge.net/) and the

JFact (http://jfact.sourceforge.net/) reasoner. However,

after adding an ontology to the database a post-processing

is required to link model or simulation description

entities to the newly added Ontology concepts. This post-

processing is part of the linking process.

Linking models and simulations is done using the graph

query and data modeling language Cypher (http://www.

neo4j.org/learn/cypher) (21), which is shipped along with

Neo4J. The following query shows the command to link

SBO annotations of models to the corresponding concepts

of the SBO using Cypher.

Query P1: Select, match and link SBO annotations ex-

tracted from models with corresponding concepts from

the SBO.

Result P1: The number of created links.

The MATCH clause selects every node that is labeled

with the term ‘RESOURCE’ and ‘SBOOntology’ into the

variable res and sbo, respectively. The WHERE clause

restricts the selection to only those nodes satisfying the fol-

lowing constraints. In this case, the attribute URI of a re-

source node must contain the string ‘SBO’ and the last

seven digits must correspond to the last seven digits of a

node id out of the selected SBO concepts. This pairs all

SBO annotations used in a stored model with the corres-

ponding entry within the Systems Biology Ontology. For

the selected pairs of nodes, the CREATE clause adds a new

directed edge to the graph connecting both nodes. The

label of the selected edge is IS_ONTOLOGY_ENTRY.

Finally, the RETURN clause counts the number of edges

created by this command and returns it to the user. A simi-

lar procedure applies to other bio-ontologies.

Supported types of queries

The Cypher Query Language provides direct access to the

data in our graph database. Cypher is the declarative lan-

guage to pose queries against graph structures, similarly to

SQL for relational databases. Our system supports stand-

ard queries such as data look-ups, filtering and aggrega-

tion. In addition, more complex queries regarding the

model’s structure can be posed.

Look-up and filtering

Examples for database look-ups and filtering are shown in

Query M1 and Query M2. The MATCH clause uses a

build-in index to retrieve all nodes labeled as CellML

model (Query M1) whereas the WHERE clause restricts

the nodes to the ones matching the given name (Query

M2). The result of the first query is a list of 841 CellML

MATCH (res:RESOURCE), (sbo:SBOOntology)

WHERE (res.URI ¼� ”.*SBO.*”) AND

(RIGHT(res.URI, 7) ¼ RIGHT(sbo.id, 7))

CREATE res-[link:IS_ONTOLOGY_ENTRY]->sbo

RETURN count(link);

Figure 5. Architecture of our graph database. Data from different models, simulation descriptions or ontologies are imported using format-dependent

importers. Each import undergoes a post processing afterwards. The stored graph and index structures are available via two retrieval interfaces:

Cypher and an adaption of Henkel et al. (10). Both are based on RestAPIs. The data itself are stored in a Neo4J graph database.
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models, while the second query returns only the Tyson

1991 model.

Query M1: Database look-up. Return all CellML models

Result M1: List of 841 models

Query M2: Database look-up and filtering. Return

CellML models with the name “tyson_1991”

Result M2: A model node containing the attribute

NAME: “tyson_1991”

Graph matching

Query M3 shows how graph structures can be queried. In

this example, all components from the Tyson 1991 model

are selected. Eight component names are returned, as

denoted in the RETURN clause.

Query M3: Database graph structure query. Select the

aforementioned Tyson model and return all its

components.

Result M3: The components YP, Y, M, pM, CP, C2,

environment and reaction_constants.

Aggregation

In SQL, aggregation functions such as count() or sum()

group values from multiple rows into a single value. Query

M4 shows how to define a query that counts the number

of species for each model in the graph database. The

MATCH clause selects the Tyson 1991 model, all con-

nected components and variables. The RETURN clause

counts and returns the number of variables for this model.

Further examples of aggregation queries are given in

Table 1 in the Results section.

Query M4: Database aggregation query. Count the

number of variables contained by any component of the

aforementioned Tyson model

Result M4: This model has 68 variables.

Statistics

Cypher also supports statistical queries. Query M5, for ex-

ample, returns the minimum, maximum and average num-

ber of variables attached to components in CellML

models. To provide these statistic values, elements (in this

case the CellML components) are selected and bound to an

aggregation value using theWITH clause.

Query M5: Statistics query. Retrieve minimum, max-

imum average and standard derivation of for the num-

ber of variables attached to a component.

Result M5: A minimum of one and a maximum of 431

variables are attached to a component of a CellML

model. On average each component has 9.64 variables

attached with a standard derivation of almost 16.

Index support

Finally, Query M6 uses an index to retrieve nodes matching a

given pattern. The indexed annotations are queried for the

term ‘m-phase inducer phosphatase’ using the START clause.

Query M6: Database index query. Retrieve all annota-

tions containing the phrase “m-phase inducer

phosphatase”

Result M6: A set of seven resources (InterPro IPR000751;

Enzyme Commission number 3.1.3.48; and UniProt:

P30311, P23748, P20483, P06652, P30304)

Database scaling

Büchel et al. (39) describe how to build computational

models from biochemical pathway maps. The path2models

(http://code.google.com/p/path2models/) project resulted

in more than 140.000 SBML models of a total size

of 70 GB. We used this data set to challenge the data-

base’s performance on an average office system (Intel

Core 2 Quad @ 2.66GHz CPU, 8 GB RAM,

Windows7 64 Bit). The database was created in 20 h

and 40min, thus every model required 531ms on

average. Although importing the path2models project,

45.5 million nodes and 492 million relationships were cre-

ated; the database size is approximately 83GB, including

the indices.

MATCH (m:CELLML_MODEL)

RETURN m

MATCH (m:CELLML_MODEL)

WHERE m.NAME¼’tyson_1991’

RETURN m

MATCH (m:CELLML_MODEL)–>(c:CELLMLCOMPONENT)

WHERE m.NAME¼’tyson_1991’

RETURN c.NAME

MATCH (m:CELLML_MODEL)–>(c:CELLMLCOMPONENT)

–>(v:CELLMLVARIABLE)

WHERE m.NAME¼’tyson_1991’

RETURN count(v)

MATCH (m:CELLML_MODEL)–>(c:CELLMLCOMPONENT)

–>(v:CELLMLVARIABLE)

WITH c as component, count(v) as NumOfVar

RETURN min(NumOfVar), max(NumOfVar), avg(NumOfVar),

stdev(NumOfVar)

START res¼node:annotationIndex(’RESOURCETEXT:(m-phase

inducer phosphatase)’)

RETURN res
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