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The goal of this work is to study the properties of living cells and
cell membranes by using atomic force microscopy. During atomic
force microscopy (AFM) measurement, there is a strong mechanical
coupling between the AFM tip and the cell. The purpose of this
paper is to present a model of the overall mechanical response of
the cell that allows us to separate out the mechanical response of
the cell from the local surface interactions we wish to quantify.
These local interactions include recognition (or binding) events
between molecules bound to an AFM tip (e.g., an antibody) and
molecules or receptors on the cell surface (e.g., the respective
antigen). The computational model differs from traditional Hert-
zian contact models by explicitly taking into account the mechanics
of the biomembrane and cytoskeleton. The model also accounts for
the mechanical response of the living cell during arbitrary defor-
mation. The indentation of a bovine sperm cell is used to test the
validity of this model, and further experiments are proposed to
fully parameterize the model.

The surface of the living cell is a highly complex heteroge-
neous structure containing a variety of lipid, protein, and

carbohydrate components. The organization of the cell’s exterior
‘‘sensing elements’’ and other specialized regions of the mem-
brane is tailored to reflect the function of the cell and serves vital
roles in cell–cell interactions, cell signaling, and cell–surface
interactions. The changes that occur in these important chem-
ical�mechanical phenotypes during the development of cancer
and other diseases may be understood in much more detail,
thereby allowing the relationships between specific phenotypes
to cell and tissue normo- and pathophysiology, prognosis, and
therapy to be discerned (1). Recent studies have shown that the
components that comprise the membrane are segregated into
domains that are dynamic and change in response to external and
internal stimuli (2–5). This segregation appears to be controlled
by a variety of factors, including the composition of the lipids,
interactions with the cytoskeleton or extracellular matrix, and
physical or structural barriers to diffusion (6–9). Although these
barriers usually limit the random movement of receptors used in
signaling and recognition and maintain them in a particular
environment, proteins and carbohydrates are often relocalized
and recruited into a particular region of the cell surface to
facilitate cell function. In some cases, such as the sperm cell,
dramatic changes in the composition of the membrane and the
location and distribution of its proteins (receptors) occur
throughout its development. In other cases, more subtle changes
often occur later in the life of the cell and lead to cancer or other
diseases, such as multiple sclerosis.

Atomic force microscopy (AFM) has developed rapidly during
the past decade, providing nanometer-scale resolution in the
imaging of biological materials ranging in size from single

molecules to intact cells. Although the best data have been
obtained from studies of macromolecules (proteins, nucleic
acids, and their complexes), AFM images of mouse and bull
sperm have been obtained that rival the resolution of electron
microscopy (EM) (10, 11). Unlike EM, however, AFM imaging
can be performed in fluid on living cells.

More recent developments in AFM now allow the detection of
molecular recognition events between single molecules using
ligands attached to AFM tips for the recognition of receptors
bound on rigid surfaces (12–25). By monitoring the cantilever
def lection during approach–retraction cycles (i.e., force–
volume�force–distance curves) at a constant (lateral) position
on the sample, unbinding forces (i.e., the maximum force at the
moment of receptor–ligand detachment) have been determined
for various ligand–receptor pairs, including biotin–avidin (13, 14,
21), DNA bases (15), antibody–antigen (16–22), and cell-
recognition proteins (23). This development has made it possible
to use a single receptor molecule bound to the tip of an AFM
cantilever to map the locations of ligands bound on solid surfaces
(26). The goal of our project is to enable this ‘‘recognition
mapping’’ method to be used in the study of the surfaces of living
cells.

Moving recognition microscopy onto living cell surfaces poses
some particular challenges related to the fact that there is a
mechanical coupling between the measuring system and the
object to be observed. Difficulties arise because of the softness
of the cell components, the size of the cell, and the need to work
in an aqueous environment. Another view might attribute the
difficulties to the size of cells. The net result of each of these
challenges is that a rather large deformation of the cell may be
necessary to measure its mechanical properties, even at a single
receptor site.

An immediate technical challenge then is to separate the
interesting local characteristics of the receptor site from the
gross deformation of the cell as a whole, requiring at the very
least an understanding of how cellular anatomy translates into
mechanical response. Here we approach this challenge by de-
veloping a computational model of the cell and design a set of
experiments to parameterize the model. The framework for the
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model is borrowed from solid mechanics, which has been
developed to describe a broad range of materials, including
rubbers and other soft materials.

The modeling techniques we describe here are not based on
a Hertzian analysis of the deformation, as has been common
practice in AFM literature (27). It has been recognized that the
material constants extracted through Hertzian analysis are, in
fact, not characteristic constants of the system but rather depend
on the way the measurement is made. The problem is that the
techniques of AFM and nanoindentation have been developed
for relatively hard materials such as metals, semiconductors, and
ceramics. These systems typically offer a flat surface for analysis,
and they allow only a small indentation before they yield
plastically or fracture, which is the kind of system described well
by the theory of elastic indentation developed by Hertz (28). The
Hertz theory makes a few basic assumptions:

Y The material under study comprises a large system with a flat
surface (a half-space).

Y The material returns to its original shape when the load is
released (elasticity).

Y The material is linear: doubling the stress doubles the strain
(Hooke’s Law).

Y There is no preferred direction or point in the bulk material
(isotropy and homogeneity).

In addition, Hertz’s original theory did not allow for adhesion
of the indenter to the material, but the theory has been extended
by Johnson, Kendall, and Roberts to account for the possibility
that the surfaces would stick together (29).

It is clear that the assumptions of the Hertzian theory are not
applicable to living cells. The deformation of a cell during a
typical experiment is a considerable fraction of the size of a cell,
so the half-space assumption is incorrect (finite size is impor-
tant); the deformation may depend on the rate at which the force
is applied (viscoelasticity may be important); large deformations
lead to a nonlinear response (hyperelasticity); and the structure
within the cell can lead to some regions being harder than others
(inhomogeneity and perhaps anisotropy). Here we focus on the
problems of finite domain and nonlinear elasticity.

We have selected the bovine sperm cell for these studies. This
cell was selected for several features, including the discreteness
of the cell and the reproducible well-defined shape. We are
primarily interested in the anterior of the cell, and the tail’s effect
may be safely neglected. The interior of the cell is composed
primarily of chromatin (protein-coated DNA) and water and, for
the purposes of this discussion, it is modeled as a homogeneous
incompressible medium. The chromatin is understood to play an
important role in determining the cell shape, but its elastic
properties are not expected to influence small-to-moderate
deformations of the dorsal region of the cell.

Experiment. Previously frozen bovine sperm cells were plated
onto 0.170-mm-thick coverslip glass (CSG) that was pretreated
with a coating of 1% poly-L-lysine. The CSG was then trans-
ferred to the bottom of a Petri dish containing Tris–saline buffer
(TSB) (150 mM NaCl�10 mM Tris, pH 7.2), and freshly sus-
pended cells were added to the perimeter of the Petri dish such
that the cells were not introduced directly above the CSG. The
cells were incubated in the Petri dish for approximately 15 min
or until adequate adsorption of living cells to the CSG had
occurred (as monitored with a light microscope). The CSG was
then carefully removed from the Petri dish such that a dome of
TSB fluid was retained over the adsorbed cells and the backside
of the CSG wicked completely dry with a tissue. The CSG was
then mounted to the AFM stub by using a small piece of
double-sided sticky tape and loaded into the AFM.

The model DNP AFM probe from Digital Instruments (Santa

Barbara, CA) was chosen for these measurements. It had been
selected because the large radius of curvature of its probe tip and
the ultra-low spring constant of its cantilever allowed us to
interrogate the living cells to suit our objectives without damage
to the cells. Before measurements, the size and shape of AFM
probe were characterized by using a titanium reference sample
from Digital Instruments�Veeco and the TGG01 silicon grating
from MikroMasch (Tallinn, Estonia). This probe’s cantilever is
made of silicon nitride, is triangular, 200 microns in length, and
has a spring constant of 0.06 N�m. Cantilever sensitivity (i.e.,
cantilever deflection signal vs. voltage applied to move the
z-piezo) was first determined by using an extremely hard refer-
ence sample made of sapphire. The probe was then used to make
force measurements (under TSB) in three predetermined sub-
regions of the bovine sperm cell. The force curves were taken by
using a total z-scan size of 600–800 nm with a penetration depth
into the cell of about 350 nm. The z-scan rate used was
approximately 10 Hz. After the force curve analysis, the probe
was again characterized by using the titanium reference.

Fig. 1 shows the topography of a bovine sperm cell analyzed by
contact mode AFM under TSB. Several regions of the cell are
distinguishable, including the acrosome, midpiece, postacrosomal
segments, and flagellum. The three segments are distinguished by
the amplitude of the local height variations, with the acrosomal
region having variations on the order of 100 nm, the midpiece
exhibiting 5-nm variations, and the postacrosomal region 15-nm
variations in local height. In addition, a fairly clearly defined 30-nm
depression running across the short axis of the cell body identifies
the boundary between the midpiece and postacrosomal segments.
These amplitude variations are consistent with the numbers of
membrane layers present in each region. The total cell thickness at
each of the three regions as measured by AFM under TSB is as
follows: acrosomal region, 797 nm; midpiece, 689 nm; postacroso-
mal region, 610 nm. The 100-nm height variations seen in the
acrosomal region are because of the presence of the inner and outer
acrosomal membranes that encapsulate the anterior end of the cell.
The 5-nm height variations measured for the midpiece are because
of a flat belt-like structure corresponding to the equatorial segment.
The postacrosomal region’s 15-nm height variations are because of
a delicate highly porous layer corresponding to the perinuclear
material. The pores are approximately 80 nm in diameter.

Fig. 2 shows force–distance [F(d)] curves for each of the three
regions: acrosomal, midpiece, and postacrosomal segments,
which are evident in the topographic image. The F(d) curves

Fig. 1. AFM measurement of topography of the bovine sperm cell.

6494 � www.pnas.org�cgi�doi�10.1073�pnas.082520599 McElfresh et al.



show three regimes: (i) essentially f lat on initial approach toward
the cell surface (i.e., from �625 to �260 nm), (ii) a shallow
nearly linear slope for over 100 nm once the tip is engaged with
the cell, and (iii) the slope increases nonlinearly for the final
approach of the tip as the cell is further compressed. These three
behaviors correspond, respectively, to (i) the tip moving through
the fluid with nominal resistance, (ii) a stiffness of about 0.03
N�m, and then (iii) a continually increasing stiffness. Hysteresis
is exhibited; however, because the approach and retraction
curves show changes at the same d values, we conclude that the
hysteresis is probably associated with irreversible displacements
of the media between membrane layers.

Modeling. The goal of the modeling described here is to obtain a
mathematical relation between the deformation of the cell and the
applied forces. This relation will predict the deformation under a
given force or alternatively allow the determination of the applied
forces once the deformation (shape) is known. The modeling has
two stages: first we model the mechanical properties of a mem-
brane, and then we model the AFM experiment. The membrane is
modeled as a nonlinear elastic medium, whereas the AFM exper-
iment is considered to be a point–load problem (a force applied at
just one point) on a sector of a sphere.

We assume the response observed in our AFM experiments on
living cells is elastic, which means that the cell will return to its
original shape once the applied force is removed. There is some
evidence of a viscoelastic response under certain conditions that
will not be addressed here (27).

Because of the small thickness of the membrane with respect to
the size of the cell, a direct two-dimensional continuum model is
used to model the combination of membrane and associated
cytoskeleton. The third dimension, the thickness of the membrane,
is essentially atomistic in nature and is regarded as negligible from
the point of view of continuum deformations. Each phospholipid
bilayer is �5 nm thick, and the composite membrane is roughly 30
nm thick, varying somewhat from site to site on the cell, which is
very small in comparison with the cell length of 10,000 nm.

Similarly, the tip of the AFM cantilever used in our experiments is
approximately 50 nm in radius, which is comparable to the thickness
of the membrane and negligible compared with the cell dimensions,
justifying the use of a point–load treatment in our model. We return
to this point below, showing that the model is internally consistent,
because the estimated curvature of the membrane is larger than the
radius of the tip, so the point load is a reasonable first approxima-
tion. In this model, we neglect the multilayer nature of the
membrane.

Modeling the Membrane. The characteristic quantity of our model
of the nonlinear elastic fluid membrane is the strain energy�unit
mass, w, of the membrane, i.e., the energy required to deform the
membrane. Once the strain energy is determined, the stress func-
tion can be easily obtained with the methods of elasticity by taking
the derivatives of the strain energy with respect to strain and
curvature. When the membrane is treated as a two-dimensional
(closed) nonlinearly elastic fluid continuum, w must be a scalar
function of two quantities, J and H, which characterize the local
stretching and bending of the membrane, respectively (30). More
precisely, J characterizes the local change in area, and H is the mean
curvature. There have been widespread attempts to use classical
Kirchhoff linear plate bending theory for solids to model biomem-
branes and surfactant systems. (see refs. 30–33 and refs. therein).
The invariant H used there was the invariant of a tensor charac-
terizing the change in curvature, say k, which is not appropriate for
describing fluidity, for reasons discussed in ref. 30. Nevertheless,
when the plate model is used to describe small deformations, k
approximates well the curvature tensor used to describe fluids
(whose invariant is H) and therefore to this order of approximation,
the two theories would yield the same result for small deformations.
But the deformation of soft tissue, especially the deformation of a
cell membrane in an AFM experiment, would certainly yield very
large deformations, for which a form of w appropriate for fluids
(that depends on J and H) is used.

The dependence of w on the two quantities mentioned above

Fig. 2. Force vs. distance curves for the acrosome.
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is considered in general, in an additive way, through two
coefficients T and A, respectively,

w � TJ � AH2 [1]

where T is the stretching modulus and A is the bending modulus.
The invariant H appears squared in the expression for w to
ensure the physical requirement that the membrane’s local
response is the same for upward as well as downward bending.
The bending moduli are materials constants specific to this cell
for the membrane. A more detailed discussion of this energy
function will be given elsewhere (E.B., R.E.R., M.M., J.B., and
R.B., unpublished work; ref. 34). Here we just mention that A can
be related to the moments necessary to deform a plane mem-
brane into a cylindrical surface.

Modeling the AFM Experiment. To model the AFM experiment,
initially the cell is considered to be a sector of a sphere that is
subjected to a point force F, at the pole. The actual shape that the
cell takes on under an applied force is given as a solution to a set
of partial differential equations (the Euler–Lagrange equations)
that are derived on the basis of energy minimization considerations.
The axisymmetry in the problem reduces these partial differential
equations to ordinary differential equations with eight associated
boundary conditions, which can be solved numerically. Considering
half the cell as a sector of a sphere is particularly appropriate to the
bovine sperm cell, which has a definite shape.

The media outside of the membrane (the liquid droplet
surrounding it and the cytoplasm) are assumed to be incom-
pressible, acting on the membrane through a net pressure. This
assumption seems to be reasonable because more than 50% of
the volume inside the cell is water. By enforcing this constraint,
the net pressure through the membrane appears in the equations
as a Lagrange multiplier to be calculated after the equations are
solved, from the condition of preserved volume. Therefore, it is
not necessary to directly measure the pressure. The input
parameter to this model is the applied force, and what is sought
is the deformation (the profile of the deformed cell), that is, the
coordinates of each point of the membrane as functions of the
arc length along the meridian of the sphere.

The dependence of w on J can be avoided if we use the
assumption that the local area of the membrane is preserved.
This constraint yields one relation between the variables in
question. In that case, T can be calculated after the fact, as
another Lagrange multiplier. Alternatively, we can leave it in the
strain energy and actually test the assumption that the area is
preserved (see ref. 35). Therefore, change in the strain energy,
�w, is due only to change in H2.

For a given value of the parameter A, the shape of the cell can
be computed by minimizing the strain energy. The optimal value
of A gives the closest agreement between the computed and
measured shape of the cell. What is required from experiment
is information about the deformed surface of the cell. The
parameterized strain energy is then used to compute the me-
chanical properties of the membrane. Further details of this
model will be presented elsewhere (E.B., R.E.R., M.M., J.B. and
R.B., unpublished work; ref. 34).

Although we currently have no direct measurement of the
deformed cell shape, we can estimate the curvature within the
context of our model assuming the membrane behaves like a
liquid crystal (3). Within this assumption, A � 10�12 erg (1 erg �
0.1 �J). From our preliminary force-displacement preliminary
plot in Fig. 2, we see that the maximum force F � 6.6 � 10�9 N
corresponds to the displacement d � 60 � 10�9 m. The total
work done by external forces is (0.5)Fd � 4 � 10�16 Nm, which
is balanced by the work stored in the membrane, i.e.,

Fd � 2�total surface �wda � 2�total surface A��H2� da, [2]

where da is the area element. The integral can be estimated by
using an average value of �H2, say �h2, where h2 � �total surface
H2 da. With these numerical values, and using a membrane
thickness, t � 10�8 m, the quantity t2 � (hfinal

2 � hinitial
2 ) is of the

order of 10�3, demonstrating that the length scales in the
problem are well within the range of applicability of our two-
dimensional continuum model. Further, these estimates give an
average radius of curvature of 10�6 m for the deformed mem-
brane. The quantity h2 is approximately equal to 4�R2, where R
is the average radius of curvature. The radius of curvature at the
pole, where the force is applied, gives most of the contribution
to this average value. Using Eq. 2 and the experimental force-
displacement curve, we estimate the maximum radius of curva-
ture of the membrane to be 10�6 m. This value is two orders of
magnitude greater than the radius of the tip (10�8 m) and the
thickness of the membrane (10�8 m), justifying the approxima-
tion of modeling the AFM–cell interaction as a point load.

Discussion
We have selected a particular strategy for moving recognition
microscopy onto a living cell surface. To separate the local
characteristics of the receptor sites, which we plan to study with
recognition microscopy, from the gross deformation of the cell
as a whole, we have developed a computational model to help us
understand how cellular anatomy translates into mechanical
response. This approach is because mechanical response asso-
ciated with the softness of the ‘‘materials’’ comprising the cell
will be convoluted with the mechanical response associated with
the recognition events that we want to study.

In the present work, we have measured both a highly detailed
topology of the bovine sperm cell and force vs. distance curves. In
combination with the computational model, only the net force was
used here. By using this net force with a published value of the
parameter A, the model was used to derive a prediction for the
deformation of the membrane. We are presently developing an
experimental method that will allow the direct measurement of the
cell deformation under a point load. With a quantitative knowledge
of the point load force and the cell deformation profile the strain
energy�unit mass, w, of the membrane can be parameterized. With
w parameterized, we then know the mechanical response of the cell
membrane under any combination of forces.

The combination of model plus experiment envisioned here
might be refined in a number of ways to accommodate observed
phenomena that have been neglected in this first phase. For
example, it is known that there is a force generated in response
to the dragging of entities through, or across, the cell membrane.
To accommodate this in the theory, one may add terms that
depend on the time derivative of the surface metric to the
membrane part of the stress and on the derivative of the
curvature to the bending part. The coefficients associated with
these additional terms are the viscosity associated with strain
rate and with flexure rate, respectively. The resulting constitutive
equations may then be used in the existing equations of motion
for the surface to predict the coupling between deformation and
deformation rate generated by nonequilibrium processes asso-
ciated with cell response. This evolution of the theoretical model
can be tested then with suitable experiments that will emphasize
its new features.
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