
Combining Constructive and EquationalGeometric Constraint Solving TechniquesR. Joan-Arinyo and A. Soto-RieraUniversitat Polit�ecnica de CatalunyaDepartament de Llenguatges i Sistemes Inform�aticsAv. Diagonal 647, 8a, E{08028 Barcelonae-mail: [robert, tonis]@lsi.upc.esAbstractIn the past few years, there has been a strong trend towards developingparametric, computer aided design systems based on geometric constraintsolving. An efective way to capture the design intent in these systemsis to de�ne relationships between geometric and technological variables.In general, geometric constraint solving including functional relationshipsrequires a general approach and appropiate techniques to achieve the ex-pected functional capabilities.This work reports on a hybrid method which combines two geometricconstraint solving techniques: Constructive and equational. The hybridsolver has the capability of managing functional relationships between di-mension variables and variables representing conditions external to thegeometric problem. The hybrid solver is described as a rewriting systemand is shown to be correct.Keywords: Geometric constraint solving, constructive techniques, equa-tional techniques, rewriting systems, canonical forms.1 IntroductionIn design and manufacturing applications, users of computer aided design sys-tems are interested in de�ning functional relationships between dimension vari-ables, since such relationships express design intent very 
exibly. Some paramet-ric relationships can be implemented by structuring the sketch appropriately, [8].Moreover, simple functional relationships are the content of certain geometrytheorems, such as the theorems of proportionality and many other classical re-sults. Such theorems can be added to the constraint solver to extend its analysis1



capabilities. But in general, geometric constraint solving including functionalrelationships between dimension variables requires a more general approach andrequires appropriate techniques and tools to achieve those functional capabilitiesthat users expect.This work reports on a technique we have developed to combine constructivegeometric constraint solvers with equational solvers in order to complement theadvantages of each technique.For surveys of the literature on geometric constraint solving see, e.g, [2, 8, 10, 12].Brie
y, the problem of integrating functional relationships and geometric con-straints has been attempted by mapping both problems into a common repre-sentational domain. In particular, we can map both problems to a system ofnonlinear equations and then solve the system. The system decomposition canbe based on graph decomposition, [1].Some authors analyze the equations using propagation techniques, [10, 12].Broadly speaking, this mapping approach risks losing domain-speci�c infor-mation associated with the geometric constraint problem. Moreover, the de-composition and analysis techniques do assume that the resulting equations areindependent, and this assumption may be violated on the geometry side whereoverconstrained problems may arise, [5, 16].The approach we propose in this paper combines native constructive geometricconstraint solving techniques with algebraic equation solving without mappingone problem domain to the other. Rather, we propose to combine a constructive,rule-based geometric constraint solver with a solver for functional relationships.Both solvers should remain largely independent of each other and proceed in-crementally in parallel, with progress of each solver being posted to the other asthe problem solution unfolds. This approach improves the work reported in [11]in two ways. First the hybrid solver is organised in a uniform way as a rewritingsystem. As a result, there is no need of an speci�c algorithm to control theinformation 
ow in the solver. Second, in the analysis of the functional rela-tionships we introduce a new concept that we call restriction of a bigraph. Thismakes possible to subsume in just one rule all the rules dealing with equationalanalysis. Furthermore, it permits to extend the solver scope to consider cer-tain class of problems involving geometric elements with more than two degreesof freedom, for instance, circular arcs and circles with unknown radii, withoutextending the repertoire of rules.The contents of the paper is organised as follows. Section 2 provides basic def-initions. Section 3 brie
y describes the constructive solver. In Section 4 �rstwe recall some fundamental concepts about bigraphs in connection with equa-tions systems solving that we will make use of. Then we present our approachto equation analysis, and de�ne the hybrid solver as a rewriting system. Sec-2



tion 5 develops a simple case study to illustrate how our approach works. Thecorrectness is proved in Section 6. Finally, Section 7 summarizes the work.2 Symbolic ConstraintsWe will use the terminology de�ned in [11]. We consider geometric constraintsfrom [5, 16]; that is, distance, angle, parallel, perpendicular, concentric, tangent,and so on. These constraints are extended by allowing symbolic constraints ofdistance and angle, where the \value" of the constraint is a variable symbol alsocalled the tag.A valuated geometric constraint is a distance or angle constraint whose value isa constant.A symbolic geometric constraint is a distance or angle constraint whose value isa variable tag. When the value of the variable can be determined, the constraintis converted into a valuated constraint.A constraint equation is an equation some of whose variables can be tags ofsymbolic constraints. We will refer to those variables involved in constraintequations which are not tags as external variables. In this paper we restrict toalgebraic equations to simplify the theory of when a system of equations has a�nite set of solutions, [20].A geometric constraint problem consists of a �nite set of geometric elementsgk, valuated and symbolic constraints between pairs of geometric elements, aset of variables, and a set F of constraint equations. We assume that if thereis a subset of F which can be solved independently, it has ben resolved in apreprocessing step.3 The Constructive SolverThe constructive solver considered here is a rule-constructive solver describedin [13] and [16]. The solver handles bidimensional geometric con�gurationscomposed from points, segments, and arcs and circles with given radii. Theconstraints that can be de�ned on those objects include distance between twopoints, perpendicular distance between a point and a segment, and angle be-tween two segments. Incidence, perpendicularity, parallelism, tangency andconcentricity constraints can also be de�ned. Internally, these constraints arerepresented in terms of distances and angle constraints, [19]. The solver usesrewrite rules for the discovery of the construction steps and it is a variationalsolver, i.e., the solver processes the constraints without the need of arranging3



them in a prede�ned ordering sequence. Furthermore, the solver can deal withgeometric constraint problems with circular constraints.3.1 Data RepresentationAll the constraints above mentioned can be represented by means of distancebetween two points, distance between a point and a straight segment and anglebetween two straigth segments. The notation used is derived from that reportedby Verroust in [22]. The distance between points constraint is represented bymeans of a CD set, the point-segment distance constraint is represented by aCH set, and the angle between two segments is represented by a CA set. Thesesets are de�ned as follows.A CD set is a set of points with mutually constrained distances. A frame ofreference is attached to each CD set to which the points in the set are referedto. It is worth to note that a sketch is solved when all the points in the sketchbelong to the same CD set. A CH set is a point and a segment constrainedby the perpendicular distance from the point to the segment. A CA set is apair of oriented segments which are mutually constrained in angle. We will refergenerically to the CD, CA and CH sets as constraint sets.3.2 RulesRules are classi�ed depending on the functionality as creation rules, mergingrules or construction rules.Creation rules create CD sets, CA sets and CH sets by interpreting the ge-ometric object de�ned by the user. The sign of the distances and angles arede�ned based on what the user has sketched. When a distance constraint be-tween two points is given, a CD set is created. The position of the points in theassociated frame of reference are (0; 0) and (d; 0). Whenever a point, a segmentand the perpendicular distance from the point to the segment are given, a CHset is created.Only one rule belongs to the merging rules type. The rule allows to compute thetransitive closure of the angle constraint set. When a segment belongs to twodi�erent CA sets, ca1 and ca2, a new CA set, ca3, is created which constrainsin angle two segments, one from ca1 and one from ca2, both segments beingdi�erent from the segment shared by ca1 and ca2.Construction rules merge CD sets, CH sets, and CA sets into larger CD sets.Merging is performed by building triangles and a few quadrilaterals. A completedescription of each rule can be found in [14].4



3.3 Solver ArchitectureThe solver architecture follows a general architecture for constructive geomet-ric constraint solving systems that has been proved to be useful when all theconstraints de�ned by the user are valuated, [5, 11, 16]. This architecture splitsthe solution procedure into two main phases: The analysis phase and the con-struction phase.In the analysis phase, �rst each single constraint de�ned by the user betweentwo geometric elements is translated into a simple graph. Then, the analyzerperformes a sequence of graph merging operations such that each operationcorresponds to a speci�c geometric construction step. The problem is solvableif, at the end of the merging process, a single graph with all the geometricelements has been obtained. The output is a symbolic construction plan. Wecall this phase the analyzer.In the construction phase the actual construction of the geometric elements iscarried out by applying the construction plan determined by the analyzer tothe parameters values assigned by the user. The construction is performed bysolving certain standard sets of algebraic equations. This phase is known as theconstructor.3.4 The Solver as a Rewriting SystemAfter Bruderlin, [6], and Dershowitz, [7], the idea behind solvers based on ge-ometric rewrite rules is to replace some facts in the database by simpler ones.In the constructive solver discussed above, initially, the CD and CH constraintsets represent the sets of point-point and point-segment distance constraints de-rived from the constraint problem while the CA sets are the transitive closureof the angle constraints de�ned by the user. The solver starts by applying theconstructive rules to these initial sets. Then the rules are repeatedly applied tothe resulting constraint sets until either there is only one CD set which containsall the points in the sketch or no rule applies. In the �rst case the resulting CDset is a solution whereas in the second case the geometric constraint problem ei-ther does not de�ne the geometric object consistently or is not solvable with theavailable set of rules. Every time a rule is triggered we will say that a reductionstep has been performed.In rewriting theory, a rule over a set of terms T is an ordered pair < l; r >of terms, which are usually written as l ! r. It is said that l rewrites orreduces to r; [3, 7, 21]. All the construction rules in the constructive solverconsidered can be expressed as rewriting rules where the terms on the left sideare constraint sets and the term on the right side is always a CD set. That is,the construction rules CRl ! CRr, are such that CRl = fCX1;CX2;CX3g,5



where CXi is either a CD set or a CH set or a CA set, and CRr is a CD set.The set of rewriting rules, denoted by !�, can be found in [14].Denoting by Ci the term whose members are the constraint sets after havingapplied the i-th reduction step, the analyzer can be represented by the pair(Ci;!�) which is a reduction system, [3, 7, 21]. Assuming that the geometricconstraint problem does de�ne the geometric object consistently, the correctnessof the analyzer is established in [15]. That is, 1) The analyzer terminates aftera �nite number of reduction steps, and 2) The sequence in which the rules areapplied does not matter for the result.4 The Hybrid SolverThe hybrid solver is built by extending both the data representation and theset of rules available in the constructive solver of Section 3. Data representationis extended to accomodate equational constraints. A new rule is provided todeal with them. Besides that, the set of geometric elements considered in thebasic constructive solver is extended with circular arcs and circles with unknownradii. Following [19], incidence, tangency and concentricity constraints de�nedon these geometric elements are translated into distances and angle symbolicconstraints involving the centers and radii.Before describing the main elements in the hybrid solver we recall a mathemat-ical tool that will play a central role in our approach.4.1 Bigraphs and Systems of EquationsAs a basic technique for reasoning about systems of equations we will use bi-graphs. Here we recall the most relevant aspects of bigraphs. For an in-depthstudy see [18], and for bigraphs in equations systems solving see [20].Let F be the set of equations, X the set of all variables occurring in the equa-tions, and let E be the set of edges de�ned by the pairs (f; x), with f 2 F andx 2 X such that the variable x occurs in the equation f . Then B = (E;F;X)is the bigraph associated with the set of constraint equations.Let B = (E;F;X) be a bipartite graph. The vertex set F is called the entranceand the vertex set X the exit. A Menger-type linking from F to X is de�ned asa set of pairwise vertex-disjoint directed paths from a vertex in F to a vertex inX. The size of a linking is de�ned to be the number of directed paths from F toX contained in the linking. A linking of the maximum size is called a maximumlinking and, if jF j = jXj, a linking of size jF j is called a complete linking. Withthese concepts, the bipartite graph B has a unique decomposition into a set of6
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Figure 1: M-components of a bigraph B = (E;F;X).induced subgraphs, namely, fV0; V1; : : : ; Vr; V1g, with a partial order � de�nedon it, [20]. The decomposition along with the partial order � is called the M-decomposition of B = (E;F;X) with respect (F;X), [20]. Subgraphs Vi are notnecessarily disjoint with respect each other. Each Vi is called an M-irreduciblecomponent or just an M-component, fViji = 1; : : : ; rg is the consistent part,V0 is the minimal inconsistent part, and V1 is the maximal inconsistent part.Figure 1 illustrates these concpets, [20].The M-decomposition of the bigraph B = (E;F;X) associated with the equa-tions F , permits to study the solvability of F . The set of equations F is struc-turally solvable if, and only if, both V0 and V1 are the empty set. An M-component Vi; 1 � i � r, in the consistent part corresponds to a subset of equa-tions in F which is structurally solvable and cannot be decomposed further withthe structural solvability maintained. It has a structure that admits a uniquesolution if the values of all the variables belonging to Vj such that Vj � Vi aredetermined. The subsets of equations corresponding to the inconsistent parts,V0 and V1, if they exist, are not solvable. The problem corresponding to V0 isunderdetermined, i.e., has more unknowns than equations, and that to V1 isoverdetermined, i.e., has fewer unknowns than equations.4.2 Data RepresentationIn the hybrid solver, we need to represent three di�erent types of data: Valuatedgeometric constraints, symbolic geometric constraints, and equations.Valuated geometric constraints are represented in the same way as in the con-structive solver; i.e., by the constraint sets, CD, CA and CH sets.Symbolic geometric constraints are represented by constraint sets CD, CA andCH, where the constraint value is a tag. Symbolic geometric constraints are alsotranslated into an equational representation. The variables in each equation are7



the constraint tag and the coordinates of the points involved in the geometricconstraint, in what follows refered to as geometric variables.Equations are represented by a bigraph de�ned as follows. Let Fg be the setof equations generated by the symbolic geometric constraints, and let Xg bethe set of geometric variables and tags in Fg. Let Fc be the set of constraintequations in the geometric constraint problem and let Xc be the set of variablesoccurring in Fc. Note that tags can occur in both Xc and Xg. Let F = Fc [ Fgand X = Xc [ Xg, and let E be the set of edges de�ned by the pairs (f; x),with f 2 F and x 2 X such that the variable x occurs in the equation f .Then B = (E;F;X) is the bigraph associated with the initial set of equationalrelationships.4.3 Equations AnalysisEquation analysis is performed using the M-decomposition of the bigraph Bassociated with the set of equations F . When applied to systems of equations,a convenient partial order between M-components is de�ned by V1 � Vi; 1 �i � r;� V0, [20].As pointed out in Section 2, we assume that the initial set of equations F doesnot contain a subset of equations which can be solved independently. Therefore,at least, one variable which is a tag in a symbolic geometric constraint, alongwith the corresponding geometric variables, will always occur in every possiblesubsytem of equations.Since geometric variables represent coordinates (degrees of freedom) of geomet-ric elements, they only can be evaluated with respect to a frame of reference.Thus, we seek some CD set C in the constraint problem such that will allow tovaluate some geometric variables with respect to its local frame of reference.We de�ne now the concept on which the algorithm that e�ectively performs theequational analysis is based.Let B be the bigraph associated with a geometric constraint problem and letC be a CD set. We de�ne the bigraph R(B;C) as the subgraph of B resultingfrom valuating with respect the local frame of reference of the CD set C, thosegeometric variables in B generated by symbolic geometric constraints such thatthe geometric elements on which they are de�ned belong to C. The bigraphR(B;C) is called the restriction of bigraph B by the CD set C. Figure 2illustrates this de�nition. Figure 2a shows a simple geometric constraint problemwith two symbolic constraints and one constraint equation. Symbolic constraintsx and y de�ne respectively the distance between points p1 and p3, and betweenpoints p3 and p4. The constraint equation is x � 2y = 1:5v where v is anexternal variable. Figure 2b shows the associated bigraph. Figure 2c shows the8
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Figure 2: Restriction of a bigraph by a CD set C.restriction of the bigraph by the CD set C in the constraint problem.Note that since geometric variables do not occur in constraint equations, con-straint equations do not result a�ected by restrictions. Furthermore, since ineach equation generated by a symbolic constraint there is a tag involved whichis not valuated by any restriction of B, restrictions do not eliminate geometricequations from the bigraph.In these conditions, we try to identify a subset of equations that is solvableby applying the M-decomposition to R(B;C). Speci�cally, the computational9



steps carried out for a given CD set C in the constraint problem are:1. Compute R(B;C), the restriction of B by the CD set C.2. Identify a solvable subsystem S from the M-decomposition of bigraphR(B;C).3. Solve the identi�ed subsystem.4. For each computed variable x that is tag of a symbolic constraint whoseequation is not in S, valuate the corresponding symbolic constraint.5. For each pair of computed variables (px; py) that �x a point p in the localframe of reference of the CD set C, add the point p to the set C.6. Valuate in the bigraph each computed external variable.7. Compute the new bigraph as the subgraph of B induced by the set ofequations F � S.We will refer to this sequence of symbolic computations as a computable step,[11].4.4 Characterization of the Scope ExtensionCharacterizing the solver scope extension amounts to identify those situationswhere the degrees of freedom of the new geometric elements can be cancelled.For the shake of conciseness let us consider just circular arcs and circles withunknown radii as the new geometric elements. Note that they have three degreesof freedom.In our representation, geometric constraints placed on each circular arc andcircle with unknown radius are translated into symbolic constraints which de-pend on the center point and the radius. Hence, cancelling the three degrees offreedom means to determine the center and radius of the geometric element.For analysis purposes, each symbolic constraint is also represented as an equa-tional relationship depending on center points and radii. In the case of circlesand circular arcs with unknown radii, a center point is represented by two vari-ables corresponding to its two components, and the radius by one variable.Since geometric constraints with symbolic values cannot be valuated by con-structive steps, valuating the center point and radius necessarily involves theresolution of a subsystem of equations of the geometric constraint problem.Therefore, the new geometric constraint problems that are solvable are thosesuch that for each circular arc and circle with unknown radius there exists an10
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e1e2e3 e4 enFigure 3: Constraint sets.analysis step where the equational analysis splits de associated bigraph intoan empty minimal inconsistent part plus an M-component that valuates thecoordinates of the center with respect some CD set, and valuates the radius.Figure 3 shows a set of constraints placed between a circle with unknown center oand unknown radius r, and the geometric elements e1; e2; : : : ; en. Assume thatthere is a constructive step that generates a constraint set C which includesonly three symbolic geometric constraints, say e1; e2; e3. Assume that B isthe bigraph associated with the subproblem involving the circle and geometricelements e1; e2; : : : ; en. Morover, let R(B;C) be the restriction of bigraph Bby the CD set C. Then, the M-decomposition of R(B;C) is as illustrated inFigure 4. The consistent part labeled V1 valuates both o and r. Figure 5 showsthe resulting constraint sets.
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Figure 4: M-decomposition of restriction R(B;C).
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oC 0e1 e2e3 e4 en� � �Figure 5: Constraint sets after �xing circle center and radius.4.5 The RulesConsistently with the data representation extension, the set of rules in the hybridsolver is the set of rules available in the constructive solver plus a rule whichperformes the analysis of the equations either in the bigraph B or in somerestriction R(B;C) of B.We call this rule a computational rule, [11], and we denote it by !�. Since theset of rules in the constructive solver is !�, the set of available rules now isf!�;!�g.4.6 The Hybrid Solver as a Rewriting SystemLet C0 be the set of initial constraint sets in the geometric constraint problem,and let B0 be the bigraph associated with the initial set of equations.The hybrid solver starts by applying the rules to the initial data representationT0 = (C0; B0). Then the rules are repeatedly applied to the resulting datarepresentation until either there is only one CD set which contains all the pointsin the geometric constraint problem or no rule applies. From a functional pointof view, no priority is assigned to any rule.Denoting by Ti = (Ci; Bi) the data representation after having applied the i-threduction step, the hybrid analyzer can be represented by (Ti;!�;!�) whichis a reduction system, [3, 7, 21].
12
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Figure 6: A geometric constraint problem.5 Case StudyWe illustrate how the solver works by showing a complete, simple case study.Figure 6 shows the geometric constraint problem to be solved. The set of geo-metric elements contains the points a, b, c and d; the segments (a; b), (a; d) and(b; c); and the circle Q with center o. The valuated constraints are the distancesd(a; b) = d1, d(b; c) = d2 and d(a; d) = d3, and the angle a((a; b); (b; c)) = a1.The circle Q has an unknown radius and the geometric constraints placed onit are: Segments (a; b) and (b; c) will be tangent to the circle, t1 � t(Q; (a; b))and t2 � t(Q; (b; c)), and points d and c will be coincident with the circle,o1 � on(d;Q), o2 � on(c;Q). Tangency and coincidence constraints are trans-lated into distance and angle constraints. Since the radius of the circle is un-known, the constraints are translated into symbolic constraints involving thecenter, o, and radius, r, of the circle Q, as proposed in [19]. Tangency conditionst1 � t(Q; (a; b)) and t2 � t(Q; (b; c)) are translated into symbolic point-segmentperpendicular distance constraints h(o; (b; c)) = r and h(o; (a; b)) = r. Coin-cidences are translated into the symbolic distance constraints d(o; c) = r andd(o; d) = r.Initially, a CD set and a CA set is created for each valuated distance constraintand each valuated angle constraint. The initial set of constraint sets is C0 =fCD1;CD2;CD3;CA1g. It is shown in Figure 7. CD sets are depicted by adashed line enclosing the points contained in it, and a CA is represented by adotted arc between a pair of segments.The occurrence of variables and tags in equations and symbolic constraints isrepresented by a bigraph. The initial bigraph B0 is shown in Figure 8. Note13
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Figure 7: Initial set of constraint sets C0.that a pair of geometric variables has been created for each geometric elementoccurring in a symbolic constraint.The initial state of the solver can be represent by the term T0 = (C0; B0). Theonly rule that applies is a � rule that merges the constraint sets CD1, CD2and CA1 in, say, CD4. See Figure 9. Since � rules do not a�ect the bigraph,the state of the solver, is now represented by the term T1 = (C1; B0) whithC1 = fCD3;CD4g.Now no � rule applies to term T1. But the � rule can be applied becausethe M-decomposition of the restriction of bigraph B0 by constraint set CD4,R(B0;CD4), generates a non empty consistent part. Figure 10 shows the re-striction R(B0;CD4) and the M-components enclosed in dashed lines. The con-sistent component is V1 and the minimal inconsistent component is V0. Sincethe maximal inconsistent part is empty, the consistent part can be solved forthe geometric variables ox, oy, and for the tag r, �xing the center and radius ofcircle Q. Note that the center is �xed with respect the CD set CD4.In general, a computable step has an e�ect on both the set of constraint setsand the bigraph. In this case, since the tag of a symbolic constraint, r, has beenvaluated, a new CD set, CD5, has been created. Moreover, since geometric
ax ay bx by ox oy r cx cy dx dyh(o; (a; b)) = r h(o; (b; c)) = r d(o; c) = r d(o; d) = r

Figure 8: Initial bigraph B0.14
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Figure 9: Set of constraint sets C1 after applying a � rule.variables (ox; oy) �xing the point o with respect the CD set CD4 has beenvaluated, this point o has been included in the set CD4 producing CD 04. Theresulting set of constraint sets, shown in Figure 11, is C2 = fCD3;CD 04;CD5g.The new bigraph B1 is the empty graph because once the solved equations andvaluated tags are deleted from the bigraph B0, results an empty set. The stateof the solver is now represented by the term T2 = (C2; B1).Finally, a � rule that merges CD3, CD 04 and CD5 into CD6 can be applied. Theresult is the term T3 = (C3; B1). SinceC3) is a singleton, CD6, that contains allthe geometric elements, and the bigraph B1 is empty, the geometric constraintproblem has been successfully solved.6 CorrectnessFollowing [11], we show that the algorithm is correct in the following sense. Let� denote a geometric reduction step, and � the evaluation of a computable step.
dx dyh(o; (a; b)) = r h(o; (b; c)) = r d(o; c) = r d(o; d) = rox oy rV1 V0Figure 10: Restriction of B0 by CD4 and M-decomposition (V1; V0).15
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Figure 11: Set of constraint sets C2 after applying the � rule.We will prove the following statement:If there exists a sequence of steps of type � and � that reduces theinitial constraint sets to a single CD set and the bigraph to theempty graph, then the algorithm �nds such a sequence.Note that, a priori, there could be many di�erent sequences, and that some ofthem could result in unsuccessful termination of the algorithm. To argue thatthis cannot happen, we need to introduce some de�nitions.6.1 De�nitionsIn the correctness proof of the algorithm, we will use the terminology of [9], [11],and [15]. We recall this terminology here for the sake of completeness.The geometric constraint graph associated with a geometric constraint problemis a graph G = (C; V ), where V is the set of geometric elements of the problem,and C is the set of geometric constraints. Associated with the graph is the setC = fZjZ � V g of constraint sets. The constraint sets are a set cover of V butnot a disjoint set cover.Intuitively, a constraint problem can be overconstrained in one of three ways:First, discounting the symbolic constraints and the constraint equations, theconstraint graph could be structurally overconstrained. Second, ignoring thegeometric constraints, the system of equations supplied could contain an overde-termined subsystem. Third, the interaction of valuated constraints, symbolicconstraints, and constraint equations introduces additional constraints, by valu-ating symbolic constraints, such that at some time an overconstrained, partiallysolved problem is obtained. De�nitions below only consider the �rst and thethird possibility. Accounting thereafter for the second possibility is easy.16



In [15], a geometric constraint graph is structurally overconstrained if there is avertex-induced subgraph with m vertices and more than 2m� 3 edges, [17]. Inparticular, the constraint graph itself cannot be well-constrained if it has morethan 2n� 3 edges, where n is the number of vertices. In order to be usefull inour context, these de�nitions are generalized as follows, [11].De�nition 6.1 A geometric constraint problem is geometrically overconstrainedif, for some derivable term T, the geometric constraint graph G = (C; V ) asso-ciated with some constraint set in T is structurally overconstrained.De�nition 6.2A geometric constraint problem is geometrically underconstrained if it is notgeometrically overconstrained and for some derivable term T, the geometricconstraint graph G = (C; V ) associated with some constraint set in T is struc-turally underconstrained.De�nition 6.3A geometric constraint problem is geometrically well-constrained if for everyderivable term T, the geometric constraint graph G = (C; V ) associated withevery constraint set in T is structurally well-constrained.In what follows, given a term T = (C; B), we will refer to the constraint graphassociated with the set of constraint sets C as the constraint graph associatedwith T.6.2 Valuating by ComputationWhen valuation by computation is performed using the bigraph, only tags ofsymbolic constraints and external variables are valuated. Consistently, thosesymbolic geometric constraints whose tag result evaluated are updated as valu-ated constraints and added to the geometric constraint graph. The valuation ofexternal variables does not a�ect the constraint sets. However, valuating exter-nal variables will have an e�ect on the bigraph because valuated variables areno longer unknown and, consequently, must be removed from the bigraph.When valuation by computation is peformed with respect to a CD set C bysolving a subset of equations in R(B;C), besides symbolic constraints tags andexternal variables, geometric variables are valuated too. Therefore, those geo-metric elements that result �xed with respect to the CD set C, are included inC.The valuation by computation process is called a �-reduction.17



6.3 Uniform Termination PropertyHere we shown that the reduction system (T0;!�;!�) is terminating; that is,the analyzer terminates after a �nite number of reduction steps.Proposition 6.1The reduction system (T0;!�;!�) is terminating.Proof Assume that the initial term T0 has associated a constraint graph withn nodes, where nv edges correspond to valuated constraints and ns edges cor-respond to symbolic constraints.The � reduction does not add new nodes to the constraint graph. Let ne be thenumber of external variables in the set of equations. Since each � reduction stepreduces the number of variables with uknown value by at least one, the totalnumber of such reductions is bounded by ns+ne. Each � reduction step reducesthe number of constraint sets by 2. Each �-reduction, moreover, adds as manyconstraint sets to the constraint graph as there are symbolic constraints tagssolved by the reduction. Thus, every reduction sequence has length less than(nv + ns + 1)=2 + ns + ne. 26.4 Unique Normal Form PropertyHaving established termination, we begin by showing that if the problem isnot geometrically overconstrained, then �-reductions always commute with �-reductions.Let T0 = (C0; B0) be the initial term. By [15], the rewrite system (C0;!�)is terminating and Church-Rosser if the geometric constraint graph associatedwith C0 is not structurally overconstrained. In particular, two � reductionscommute. Furthermore, if C1 and C2 are terms such that C1 !� C2 and C1has a well-constrained associated geometric constraint graph, then the geometricconstraint graph associated with C2 is also well-constrained.Lemma 6.2If T1 !� T2 and T1 !� T02, then there is T3 such that T2 !� T3 andT02 !� T3.Proof See Figure 12. Let R(B1; C1) be the restriction where the computationlstep � is carried out. The valuation by �-reduction adds a number of constraintsets, the corresponding valuated constraints, to the associated geometric con-straint graph, and a possibly empty set of points to the CD set C1. Conversely,a �-reduction does not change the bigraph or the geometric constraint graph.Assume that the �-reduction only valuates tags and external variables. Using18



T1 T2
T02 T3� �� �

Figure 12: �-reductions and �-reductions commute.the same reductions, we have in general T02 !� T3 and T2 !� T03. Let B1; G1be the bigraph and constraint graph associated with T1. Analogously, B02; G02are associated with T02, and B03; G03 are associated with T03. Clearly, B1; G1 arealso associated with T2, and B02; G02 are also associated with T3. Let S� be thesubset of equations solved in R(B1; C1), and B� be the subgraph of B1 inducedby the set of equations F1 � S�. Furthermore, let G� be the constraint graphassociated with the symbolic constraints whose tags have been valuated in the�-reduction. Then B02 = B03 = B� and G02 = G03 = G1 [G�. That is, states T3and T03 clearly have the same constraint graph and the same bigraph. ThereforeT3 = T03.Finally assume that the �-reduction also valuates geometric variables. If the�-reduction does not make use of the CD set C1, the rational above triviallyapplies. Otherwise just note that the �-reduction does not remove geometricelements in C1, therefore the �-reduction still applies. 2Corollary 6.3Let T1 !� T2 !� T3 and T1 !� T02. Then T02 is overconstrained if, and onlyif, T3 is.Proof The statement is trivial if T1 has a structurally overconstrained con-straint graph. By [15], if the constraint graph of T1 is not structurally overcon-strained, then neither is the constraint graph of T2.Assume that the constraint graph of T02 is structurally overconstrained. Thenthere exists a nonempty set of equations ff1; : : : ; fmg de�ning m > 0 valuatedconstraints which have been added by reduction � to the constraint graph G1of T1. By Lemma 6.2, � and � commute. Hence, ff1; : : : ; fmg de�nes thesame m > 0 valuated constraints in T2, yielding a structurally overconstrainedconstraint graph G3 of T3.Now assume that the graph of T3 is structurally overconstrained. This impliesthat reduction � adds at least one valuated constraint to the constraint graph G219



of T2 to give a structurally overconstrained graph G3. Since � and � commute,the same set of valuated constraints can be added by reduction � to the well-constrained graph G1, resulting in an overconstrained graph G02 associated withT02. 2Lemma 6.4Assume thatT1 is not geometrically overconstrained. IfT1!�1T2 andT1!�2T02,then there is a T3 such that T02!�1T3 and T2!�2T3.Proof Let B1 be the bigraph associated with T1. If both �1 and �2 are ap-plicable to T1, then two di�erent restrictions R(B1; C1) and R(B1; C2) can bede�ned in the bigraph B1. Let S�1 and S�2 be, respectively, the subset ofequations solvable in each restriction.First assume that the sets of variables occurring in S�1 and in S�2 have anempty intersection. Then there are two independent solvable sets of equationseach corresponding to a di�erent restriction. Clearly the reductions commute.For a contradiction now assume that S�1 and S�2 have variables in common.Since tags in geometric equations are coupled with external variables throughconstraint equations, at least one geometric symbolic constraint is shared byS�1 and S�2 . Let us denote it by x. Since S�1 and S�2 are two di�erent systemsof equations, the value computed for x in each system is, in general, di�erent.Therefore the geometric constraint problem would be overconstrained. 2Theorem 6.5For problems that are not geometrically overconstrained, the rewrite system(T0;!�;!�) is terminating and has the Church-Rosser property, that is thesystem generates unique normal forms.Proof Direct consequence of the lemmas above. 27 SummaryWe have presented a hybrid technique for solving geometric constraint problemswith the capabiliy of managing problems involving functional relationships be-tween dimensions and external variables. The method combines constructiveand equational approaches and is especially e�ective for constructive geometricconstraint solvers that use the rewriting rule paradigm.Our technique works on two sets of data, the geometric constraint data, and thesymbolic equation data. Geometric data are represented by a set of constraint20



sets. Symbolic equations are represented by a bigraph. The information 
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