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Abstract

In the past few years, there has been a strong trend towards developing
parametric, computer aided design systems based on geometric constraint
solving. An efective way to capture the design intent in these systems
is to define relationships between geometric and technological variables.
In general, geometric constraint solving including functional relationships
requires a general approach and appropiate techniques to achieve the ex-
pected functional capabilities.

This work reports on a hybrid method which combines two geometric
constraint solving techniques: Constructive and equational. The hybrid
solver has the capability of managing functional relationships between di-
mension variables and variables representing conditions external to the
geometric problem. The hybrid solver is described as a rewriting system
and is shown to be correct.

Keywords: Geometric constraint solving, constructive techniques, equa-
tional techniques, rewriting systems, canonical forms.

1 Introduction

In design and manufacturing applications, users of computer aided design sys-
tems are interested in defining functional relationships between dimension vari-
ables, since such relationships express design intent very flexibly. Some paramet-
ric relationships can be implemented by structuring the sketch appropriately, [8].
Moreover, simple functional relationships are the content of certain geometry
theorems, such as the theorems of proportionality and many other classical re-
sults. Such theorems can be added to the constraint solver to extend its analysis



capabilities. But in general, geometric constraint solving including functional
relationships between dimension variables requires a more general approach and
requires appropriate techniques and tools to achieve those functional capabilities
that users expect.

This work reports on a technique we have developed to combine constructive
geometric constraint solvers with equational solvers in order to complement the
advantages of each technique.

For surveys of the literature on geometric constraint solving see, e.g, [2, 8, 10, 12].
Briefly, the problem of integrating functional relationships and geometric con-
straints has been attempted by mapping both problems into a common repre-
sentational domain. In particular, we can map both problems to a system of
nonlinear equations and then solve the system. The system decomposition can
be based on graph decomposition, [1].

Some authors analyze the equations using propagation techniques, [10, 12].
Broadly speaking, this mapping approach risks losing domain-specific infor-
mation associated with the geometric constraint problem. Moreover, the de-
composition and analysis techniques do assume that the resulting equations are
independent, and this assumption may be violated on the geometry side where
overconstrained problems may arise, [5, 16].

The approach we propose in this paper combines native constructive geometric
constraint solving techniques with algebraic equation solving without mapping
one problem domain to the other. Rather, we propose to combine a constructive,
rule-based geometric constraint solver with a solver for functional relationships.
Both solvers should remain largely independent of each other and proceed in-
crementally in parallel, with progress of each solver being posted to the other as
the problem solution unfolds. This approach improves the work reported in [11]
in two ways. First the hybrid solver is organised in a uniform way as a rewriting
system. As a result, there is no need of an specific algorithm to control the
information flow in the solver. Second, in the analysis of the functional rela-
tionships we introduce a new concept that we call restriction of a bigraph. This
makes possible to subsume in just one rule all the rules dealing with equational
analysis. Furthermore, it permits to extend the solver scope to consider cer-
tain class of problems involving geometric elements with more than two degrees
of freedom, for instance, circular arcs and circles with unknown radii, without
extending the repertoire of rules.

The contents of the paper is organised as follows. Section 2 provides basic def-
initions. Section 3 briefly describes the constructive solver. In Section 4 first
we recall some fundamental concepts about bigraphs in connection with equa-
tions systems solving that we will make use of. Then we present our approach
to equation analysis, and define the hybrid solver as a rewriting system. Sec-



tion 5 develops a simple case study to illustrate how our approach works. The
correctness is proved in Section 6. Finally, Section 7 summarizes the work.

2 Symbolic Constraints

We will use the terminology defined in [11]. We consider geometric constraints
from [5, 16]; that is, distance, angle, parallel, perpendicular, concentric, tangent,
and so on. These constraints are extended by allowing symbolic constraints of
distance and angle, where the “value” of the constraint is a variable symbol also
called the tag.

A waluated geometric constraint is a distance or angle constraint whose value is
a constant.

A symbolic geometric constraint is a distance or angle constraint whose value is
a variable tag. When the value of the variable can be determined, the constraint
is converted into a valuated constraint.

A constraint equation is an equation some of whose variables can be tags of
symbolic constraints. We will refer to those variables involved in constraint
equations which are not tags as external variables. In this paper we restrict to
algebraic equations to simplify the theory of when a system of equations has a
finite set of solutions, [20].

A geometric constraint problem consists of a finite set of geometric elements
gk, valuated and symbolic constraints between pairs of geometric elements, a
set of variables, and a set F' of constraint equations. We assume that if there
is a subset of F' which can be solved independently, it has ben resolved in a
preprocessing step.

3 The Constructive Solver

The constructive solver considered here is a rule-constructive solver described
in [13] and [16]. The solver handles bidimensional geometric configurations
composed from points, segments, and arcs and circles with given radii. The
constraints that can be defined on those objects include distance between two
points, perpendicular distance between a point and a segment, and angle be-
tween two segments. Incidence, perpendicularity, parallelism, tangency and
concentricity constraints can also be defined. Internally, these constraints are
represented in terms of distances and angle constraints, [19]. The solver uses
rewrite rules for the discovery of the construction steps and it is a variational
solver, i.e., the solver processes the constraints without the need of arranging



them in a predefined ordering sequence. Furthermore, the solver can deal with
geometric constraint problems with circular constraints.

3.1 Data Representation

All the constraints above mentioned can be represented by means of distance
between two points, distance between a point and a straight segment and angle
between two straigth segments. The notation used is derived from that reported
by Verroust in [22]. The distance between points constraint is represented by
means of a CD set, the point-segment distance constraint is represented by a
CH set, and the angle between two segments is represented by a CA set. These
sets are defined as follows.

A CD set is a set of points with mutually constrained distances. A frame of
reference is attached to each CD set to which the points in the set are refered
to. It is worth to note that a sketch is solved when all the points in the sketch
belong to the same CD set. A CH set is a point and a segment constrained
by the perpendicular distance from the point to the segment. A CA set is a
pair of oriented segments which are mutually constrained in angle. We will refer
generically to the CD, CA and CH sets as constraint sets.

3.2 Rules

Rules are classified depending on the functionality as creation rules, merging
rules or construction rules.

Creation rules create CD sets, CA sets and CH sets by interpreting the ge-
ometric object defined by the user. The sign of the distances and angles are
defined based on what the user has sketched. When a distance constraint be-
tween two points is given, a CD set is created. The position of the points in the
associated frame of reference are (0,0) and (d,0). Whenever a point, a segment
and the perpendicular distance from the point to the segment are given, a CH
set is created.

Only one rule belongs to the merging rules type. The rule allows to compute the
transitive closure of the angle constraint set. When a segment belongs to two
different CA sets, ca; and cas, a new CA set, cag, is created which constrains
in angle two segments, one from ca; and one from cay, both segments being
different from the segment shared by ca; and cas.

Construction rules merge CD sets, CH sets, and CA sets into larger CD sets.
Merging is performed by building triangles and a few quadrilaterals. A complete
description of each rule can be found in [14].



3.3 Solver Architecture

The solver architecture follows a general architecture for constructive geomet-
ric constraint solving systems that has been proved to be useful when all the
constraints defined by the user are valuated, [5, 11, 16]. This architecture splits
the solution procedure into two main phases: The analysis phase and the con-
struction phase.

In the analysis phase, first each single constraint defined by the user between
two geometric elements is translated into a simple graph. Then, the analyzer
performes a sequence of graph merging operations such that each operation
corresponds to a specific geometric construction step. The problem is solvable
if, at the end of the merging process, a single graph with all the geometric
elements has been obtained. The output is a symbolic construction plan. We
call this phase the analyzer.

In the construction phase the actual construction of the geometric elements is
carried out by applying the construction plan determined by the analyzer to
the parameters values assigned by the user. The construction is performed by
solving certain standard sets of algebraic equations. This phase is known as the
constructor.

3.4 The Solver as a Rewriting System

After Bruderlin, [6], and Dershowitz, [7], the idea behind solvers based on ge-
ometric rewrite rules is to replace some facts in the database by simpler ones.
In the constructive solver discussed above, initially, the CD and CH constraint
sets represent the sets of point-point and point-segment distance constraints de-
rived from the constraint problem while the CA sets are the transitive closure
of the angle constraints defined by the user. The solver starts by applying the
constructive rules to these initial sets. Then the rules are repeatedly applied to
the resulting constraint sets until either there is only one CD set which contains
all the points in the sketch or no rule applies. In the first case the resulting CD
set is a solution whereas in the second case the geometric constraint problem ei-
ther does not define the geometric object consistently or is not solvable with the
available set of rules. Every time a rule is triggered we will say that a reduction
step has been performed.

In rewriting theory, a rule over a set of terms T is an ordered pair < [,r >
of terms, which are usually written as [ — r. It is said that [ rewrites or
reduces to r; [3, 7, 21]. All the construction rules in the constructive solver
considered can be expressed as rewriting rules where the terms on the left side
are constraint sets and the term on the right side is always a CD set. That is,
the construction rules CR; — CR,, are such that CR; = {CX;, CX,, CX3},



where CX is either a CD set or a CH set or a CA set, and CR, is a CD set.
The set of rewriting rules, denoted by —,, can be found in [14].

Denoting by C; the term whose members are the constraint sets after having
applied the i-th reduction step, the analyzer can be represented by the pair
(Ci, —p) which is a reduction system, [3, 7, 21]. Assuming that the geometric
constraint problem does define the geometric object consistently, the correctness
of the analyzer is established in [15]. That is, 1) The analyzer terminates after
a finite number of reduction steps, and 2) The sequence in which the rules are
applied does not matter for the result.

4 The Hybrid Solver

The hybrid solver is built by extending both the data representation and the
set of rules available in the constructive solver of Section 3. Data representation
is extended to accomodate equational constraints. A new rule is provided to
deal with them. Besides that, the set of geometric elements considered in the
basic constructive solver is extended with circular arcs and circles with unknown
radii. Following [19], incidence, tangency and concentricity constraints defined
on these geometric elements are translated into distances and angle symbolic
constraints involving the centers and radii.

Before describing the main elements in the hybrid solver we recall a mathemat-
ical tool that will play a central role in our approach.

4.1 Bigraphs and Systems of Equations

As a basic technique for reasoning about systems of equations we will use bi-
graphs. Here we recall the most relevant aspects of bigraphs. For an in-depth
study see [18], and for bigraphs in equations systems solving see [20].

Let F be the set of equations, X the set of all variables occurring in the equa-
tions, and let E be the set of edges defined by the pairs (f,x), with f € F and
z € X such that the variable z occurs in the equation f. Then B = (E, F, X)
is the bigraph associated with the set of constraint equations.

Let B = (E, F, X) be a bipartite graph. The vertex set F' is called the entrance
and the vertex set X the exit. A Menger-type linking from F' to X is defined as
a set of pairwise vertex-disjoint directed paths from a vertex in F' to a vertex in
X. The size of a linking is defined to be the number of directed paths from F' to
X contained in the linking. A linking of the maximum size is called a mazimum
linking and, if |F'| = | X/, a linking of size |F| is called a complete linking. With
these concepts, the bipartite graph B has a unique decomposition into a set of



Figure 1: M-components of a bigraph B = (F, F, X).

induced subgraphs, namely, {Vy, Vi,...,V,, Vo}, with a partial order < defined
on it, [20]. The decomposition along with the partial order < is called the M-
decomposition of B = (E, F, X) with respect (F, X), [20]. Subgraphs V; are not
necessarily disjoint with respect each other. Each Vj is called an M-irreducible
component or just an M-component, {V;|i = 1,...,r} is the consistent part,
Vo is the minimal inconsistent part, and V, is the maximal inconsistent part.
Figure 1 illustrates these concpets, [20].

The M-decomposition of the bigraph B = (FE, F, X) associated with the equa-
tions F', permits to study the solvability of F'. The set of equations F' is struc-
turally solvable if, and only if, both V; and V4 are the empty set. An M-
component V;,1 <14 < r, in the consistent part corresponds to a subset of equa-
tions in F which is structurally solvable and cannot be decomposed further with
the structural solvability maintained. It has a structure that admits a unique
solution if the values of all the variables belonging to V; such that V; < V; are
determined. The subsets of equations corresponding to the inconsistent parts,
Vo and Vi, if they exist, are not solvable. The problem corresponding to Vj is
underdetermined, i.e., has more unknowns than equations, and that to V, is
overdetermined, i.e., has fewer unknowns than equations.

4.2 Data Representation

In the hybrid solver, we need to represent three different types of data: Valuated
geometric constraints, symbolic geometric constraints, and equations.

Valuated geometric constraints are represented in the same way as in the con-
structive solver; i.e., by the constraint sets, CD, CA and CH sets.

Symbolic geometric constraints are represented by constraint sets CD, CA and
CH, where the constraint value is a tag. Symbolic geometric constraints are also
translated into an equational representation. The variables in each equation are



the constraint tag and the coordinates of the points involved in the geometric
constraint, in what follows refered to as geometric variables.

Equations are represented by a bigraph defined as follows. Let F; be the set
of equations generated by the symbolic geometric constraints, and let X, be
the set of geometric variables and tags in Fy. Let F. be the set of constraint
equations in the geometric constraint problem and let X. be the set of variables
occurring in Fi.. Note that tags can occur in both X, and X,. Let F' = F, U F|,
and X = X, U X, and let E be the set of edges defined by the pairs (f,z),
with f € F and € X such that the variable z occurs in the equation f.
Then B = (E, F, X) is the bigraph associated with the initial set of equational
relationships.

4.3 Equations Analysis

Equation analysis is performed using the M-decomposition of the bigraph B
associated with the set of equations F'. When applied to systems of equations,
a convenient partial order between M-components is defined by Vo < V;, 1 <
i <r,<Vp, [20].

As pointed out in Section 2, we assume that the initial set of equations F' does
not contain a subset of equations which can be solved independently. Therefore,
at least, one variable which is a tag in a symbolic geometric constraint, along
with the corresponding geometric variables, will always occur in every possible
subsytem of equations.

Since geometric variables represent coordinates (degrees of freedom) of geomet-
ric elements, they only can be evaluated with respect to a frame of reference.
Thus, we seek some CD set C' in the constraint problem such that will allow to
valuate some geometric variables with respect to its local frame of reference.

We define now the concept on which the algorithm that effectively performs the
equational analysis is based.

Let B be the bigraph associated with a geometric constraint problem and let
C be a CD set. We define the bigraph R(B, C) as the subgraph of B resulting
from valuating with respect the local frame of reference of the CD set C, those
geometric variables in B generated by symbolic geometric constraints such that
the geometric elements on which they are defined belong to C. The bigraph
R(B,C) is called the restriction of bigraph B by the CD set C. Figure 2
illustrates this definition. Figure 2a shows a simple geometric constraint problem
with two symbolic constraints and one constraint equation. Symbolic constraints
z and y define respectively the distance between points p; and p3, and between
points p3 and ps. The constraint equation is x — 2y = 1.5v where v is an
external variable. Figure 2b shows the associated bigraph. Figure 2c shows the
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Figure 2: Restriction of a bigraph by a CD set C.

restriction of the bigraph by the CD set C in the constraint problem.

Note that since geometric variables do not occur in constraint equations, con-
straint equations do not result affected by restrictions. Furthermore, since in
each equation generated by a symbolic constraint there is a tag involved which
is not valuated by any restriction of B, restrictions do not eliminate geometric
equations from the bigraph.

In these conditions, we try to identify a subset of equations that is solvable
by applying the M-decomposition to R(B, (). Specifically, the computational



steps carried out for a given CD set C in the constraint problem are:

1. Compute R(B,C), the restriction of B by the CD set C.

2. Identify a solvable subsystem S from the M-decomposition of bigraph
R(B,C).

3. Solve the identified subsystem.

4. For each computed variable z that is tag of a symbolic constraint whose
equation is not in .S, valuate the corresponding symbolic constraint.

5. For each pair of computed variables (p,,p,) that fix a point p in the local
frame of reference of the CD set C', add the point p to the set C.

6. Valuate in the bigraph each computed external variable.

7. Compute the new bigraph as the subgraph of B induced by the set of
equations F' — S.

We will refer to this sequence of symbolic computations as a computable step,
[11].

4.4 Characterization of the Scope Extension

Characterizing the solver scope extension amounts to identify those situations
where the degrees of freedom of the new geometric elements can be cancelled.
For the shake of conciseness let us consider just circular arcs and circles with
unknown radii as the new geometric elements. Note that they have three degrees
of freedom.

In our representation, geometric constraints placed on each circular arc and
circle with unknown radius are translated into symbolic constraints which de-
pend on the center point and the radius. Hence, cancelling the three degrees of
freedom means to determine the center and radius of the geometric element.

For analysis purposes, each symbolic constraint is also represented as an equa-
tional relationship depending on center points and radii. In the case of circles
and circular arcs with unknown radii, a center point is represented by two vari-
ables corresponding to its two components, and the radius by one variable.

Since geometric constraints with symbolic values cannot be valuated by con-
structive steps, valuating the center point and radius necessarily involves the
resolution of a subsystem of equations of the geometric constraint problem.
Therefore, the new geometric constraint problems that are solvable are those
such that for each circular arc and circle with unknown radius there exists an

10
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Figure 3: Constraint sets.

analysis step where the equational analysis splits de associated bigraph into
an empty minimal inconsistent part plus an M-component that valuates the
coordinates of the center with respect some CD set, and valuates the radius.

Figure 3 shows a set of constraints placed between a circle with unknown center o
and unknown radius r, and the geometric elements ey, es, ..., e,. Assume that
there is a constructive step that generates a constraint set C' which includes
only three symbolic geometric constraints, say ej,es,es. Assume that B is
the bigraph associated with the subproblem involving the circle and geometric
elements e, es,...,e,. Morover, let R(B,C) be the restriction of bigraph B
by the CD set C'. Then, the M-decomposition of R(B,C) is as illustrated in
Figure 4. The consistent part labeled V; valuates both o and r. Figure 5 shows
the resulting constraint sets.

Figure 4: M-decomposition of restriction R(B, ().
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Figure 5: Constraint sets after fixing circle center and radius.

4.5 The Rules

Consistently with the data representation extension, the set of rules in the hybrid
solver is the set of rules available in the constructive solver plus a rule which
performes the analysis of the equations either in the bigraph B or in some
restriction R(B,C) of B.

We call this rule a computational rule, [11], and we denote it by —,. Since the
set of rules in the constructive solver is —,, the set of available rules now is

{=p, =k}

4.6 The Hybrid Solver as a Rewriting System

Let Cy be the set of initial constraint sets in the geometric constraint problem,
and let By be the bigraph associated with the initial set of equations.

The hybrid solver starts by applying the rules to the initial data representation
Ty = (Cop, By). Then the rules are repeatedly applied to the resulting data
representation until either there is only one CD set which contains all the points
in the geometric constraint problem or no rule applies. From a functional point
of view, no priority is assigned to any rule.

Denoting by T; = (C;, B;) the data representation after having applied the i-th
reduction step, the hybrid analyzer can be represented by (T;, —,, =) which
is a reduction system, [3, 7, 21].

12



Figure 6: A geometric constraint problem.

5 Case Study

We illustrate how the solver works by showing a complete, simple case study.
Figure 6 shows the geometric constraint problem to be solved. The set of geo-
metric elements contains the points a, b, ¢ and d; the segments (a,b), (a,d) and
(b, ¢); and the circle @) with center o. The valuated constraints are the distances
d(a,b) = dy, d(b,c) = do and d(a,d) = d3, and the angle a((a,b), (b,c)) = a;.
The circle () has an unknown radius and the geometric constraints placed on
it are: Segments (a,b) and (b, c) will be tangent to the circle, t; = t(Q, (a,b))
and to = t(Q, (b,¢)), and points d and ¢ will be coincident with the circle,
o1 = on(d, Q), oa = on(c, Q). Tangency and coincidence constraints are trans-
lated into distance and angle constraints. Since the radius of the circle is un-
known, the constraints are translated into symbolic constraints involving the
center, o, and radius, r, of the circle @), as proposed in [19]. Tangency conditions
t1 =t(Q, (a,b)) and t9 = t(Q, (b, ¢)) are translated into symbolic point-segment
perpendicular distance constraints h(o, (b,¢)) = r and h(o, (a,b)) = r. Coin-
cidences are translated into the symbolic distance constraints d(o,c¢) = r and
d(o,d) = r.

Initially, a CD set and a CA set is created for each valuated distance constraint
and each valuated angle constraint. The initial set of constraint sets is Cy =
{CD:, CD4, CD3, CA1}. Tt is shown in Figure 7. CD sets are depicted by a

dashed line enclosing the points contained in it, and a CA is represented by a
dotted arc between a pair of segments.

The occurrence of variables and tags in equations and symbolic constraints is
represented by a bigraph. The initial bigraph By is shown in Figure 8. Note
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Figure 7: Initial set of constraint sets Cy.

that a pair of geometric variables has been created for each geometric element
occurring in a symbolic constraint.

The initial state of the solver can be represent by the term Ty = (Cyg, By). The
only rule that applies is a p rule that merges the constraint sets CDi, CDs
and CA; in, say, CD4. See Figure 9. Since p rules do not affect the bigraph,
the state of the solver, is now represented by the term T; = (C;, By) whith
C, ={CD3, CD,}.

Now no p rule applies to term T;. But the x rule can be applied because
the M-decomposition of the restriction of bigraph By by constraint set CDy,
R(By, CDy4), generates a non empty consistent part. Figure 10 shows the re-
striction R(By, CD4) and the M-components enclosed in dashed lines. The con-
sistent component is V; and the minimal inconsistent component is V{. Since
the maximal inconsistent part is empty, the consistent part can be solved for
the geometric variables o, oy, and for the tag r, fixing the center and radius of
circle Q). Note that the center is fixed with respect the CD set CDy.

In general, a computable step has an effect on both the set of constraint sets
and the bigraph. In this case, since the tag of a symbolic constraint, r, has been
valuated, a new CD set, (D5, has been created. Moreover, since geometric

Figure 8: Initial bigraph Bj.
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Figure 9: Set of constraint sets C; after applying a p rule.

variables (o4, 0,) fixing the point o with respect the CD set CD4 has been
valuated, this point o has been included in the set CD4 producing CD!. The
resulting set of constraint sets, shown in Figure 11, is Cy = {CD3, CD!;, CD3}.
The new bigraph B; is the empty graph because once the solved equations and
valuated tags are deleted from the bigraph By, results an empty set. The state
of the solver is now represented by the term Ty = (Cs, By).

Finally, a p rule that merges CD3, CD!, and CDj into CDg can be applied. The
result is the term T3 = (Cgs, By). Since Cj) is a singleton, CDg, that contains all
the geometric elements, and the bigraph B; is empty, the geometric constraint
problem has been successfully solved.

6 Correctness

Following [11], we show that the algorithm is correct in the following sense. Let
p denote a geometric reduction step, and x the evaluation of a computable step.

r ~ / \
,’ h(o, (a,b)) =7 h(o, (b,c)) =7 d(o,¢) =r ' 1 d(o,d) =71

|
I : |
[ |
| | |
| I I
\ I I
'V 0y 0y r o dy dy

Vi Vo

Figure 10: Restriction of By by CD4 and M-decomposition (Vi, Vp).
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Figure 11: Set of constraint sets Co after applying the s rule.

We will prove the following statement:

If there exists a sequence of steps of type p and s that reduces the
initial constraint sets to a single CD set and the bigraph to the
empty graph, then the algorithm finds such a sequence.

Note that, a priori, there could be many different sequences, and that some of
them could result in unsuccessful termination of the algorithm. To argue that
this cannot happen, we need to introduce some definitions.

6.1 Definitions

In the correctness proof of the algorithm, we will use the terminology of [9], [11],
and [15]. We recall this terminology here for the sake of completeness.

The geometric constraint graph associated with a geometric constraint problem
is a graph G = (C, V'), where V is the set of geometric elements of the problem,
and C is the set of geometric constraints. Associated with the graph is the set
C = {Z|Z C V} of constraint sets. The constraint sets are a set cover of V but
not a disjoint set cover.

Intuitively, a constraint problem can be overconstrained in one of three ways:
First, discounting the symbolic constraints and the constraint equations, the
constraint graph could be structurally overconstrained. Second, ignoring the
geometric constraints, the system of equations supplied could contain an overde-
termined subsystem. Third, the interaction of valuated constraints, symbolic
constraints, and constraint equations introduces additional constraints, by valu-
ating symbolic constraints, such that at some time an overconstrained, partially
solved problem is obtained. Definitions below only consider the first and the
third possibility. Accounting thereafter for the second possibility is easy.
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In [15], a geometric constraint graph is structurally overconstrained if there is a
vertex-induced subgraph with m vertices and more than 2m — 3 edges, [17]. In
particular, the constraint graph itself cannot be well-constrained if it has more
than 2n — 3 edges, where n is the number of vertices. In order to be usefull in
our context, these definitions are generalized as follows, [11].

Definition 6.1 A geometric constraint problem is geometrically overconstrained
if, for some derivable term T, the geometric constraint graph G = (C, V') asso-
ciated with some constraint set in T is structurally overconstrained.

Definition 6.2

A geometric constraint problem is geometrically underconstrained if it is not
geometrically overconstrained and for some derivable term T, the geometric
constraint graph G = (C, V) associated with some constraint set in T is struc-
turally underconstrained.

Definition 6.3

A geometric constraint problem is geometrically well-constrained if for every
derivable term T, the geometric constraint graph G = (C, V) associated with
every constraint set in T is structurally well-constrained.

In what follows, given a term T = (C, B), we will refer to the constraint graph
associated with the set of constraint sets C as the constraint graph associated
with T.

6.2 Valuating by Computation

When valuation by computation is performed using the bigraph, only tags of
symbolic constraints and external variables are valuated. Consistently, those
symbolic geometric constraints whose tag result evaluated are updated as valu-
ated constraints and added to the geometric constraint graph. The valuation of
external variables does not affect the constraint sets. However, valuating exter-
nal variables will have an effect on the bigraph because valuated variables are
no longer unknown and, consequently, must be removed from the bigraph.

When valuation by computation is peformed with respect to a CD set C' by
solving a subset of equations in R(B, C'), besides symbolic constraints tags and
external variables, geometric variables are valuated too. Therefore, those geo-
metric elements that result fixed with respect to the CD set C, are included in

C.

The valuation by computation process is called a k-reduction.

17



6.3 Uniform Termination Property

Here we shown that the reduction system (Tg, —,, —) is terminating; that is,
the analyzer terminates after a finite number of reduction steps.

Proposition 6.1
The reduction system (T, —,, =) is terminating.

Proof Assume that the initial term T has associated a constraint graph with
n nodes, where n, edges correspond to valuated constraints and ns edges cor-
respond to symbolic constraints.

The x reduction does not add new nodes to the constraint graph. Let n, be the
number of external variables in the set of equations. Since each k reduction step
reduces the number of variables with uknown value by at least one, the total
number of such reductions is bounded by ns+n.. Each p reduction step reduces
the number of constraint sets by 2. Each k-reduction, moreover, adds as many
constraint sets to the constraint graph as there are symbolic constraints tags
solved by the reduction. Thus, every reduction sequence has length less than
(ny +ns+1)/2+ng+ne. O

6.4 Unique Normal Form Property

Having established termination, we begin by showing that if the problem is
not geometrically overconstrained, then p-reductions always commute with x-
reductions.

Let Ty = (Co, Bg) be the initial term. By [15], the rewrite system (Cg, —,)
is terminating and Church-Rosser if the geometric constraint graph associated
with Cj is not structurally overconstrained. In particular, two p reductions
commute. Furthermore, if C; and Cj are terms such that C; —, Cy and C;
has a well-constrained associated geometric constraint graph, then the geometric
constraint graph associated with Cs is also well-constrained.

Lemma 6.2
If Ty =, T2 and Ty —, T5, then there is T3 such that T2 —, T3 and
T’2 —p Ts.

Proof See Figure 12. Let R(Bp,C1) be the restriction where the computationl
step  is carried out. The valuation by k-reduction adds a number of constraint
sets, the corresponding valuated constraints, to the associated geometric con-
straint graph, and a possibly empty set of points to the CD set C;. Conversely,
a p-reduction does not change the bigraph or the geometric constraint graph.

Assume that the s-reduction only valuates tags and external variables. Using
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Figure 12: p-reductions and k-reductions commute.

the same reductions, we have in general T% —p T3 and Ty — T4. Let By, Gy
be the bigraph and constraint graph associated with T;. Analogously, B), G
are associated with T, and B, G% are associated with T%. Clearly, By, Gy are
also associated with Ty, and B, G5 are also associated with T3. Let Sy be the
subset of equations solved in R(Bj, C1), and By be the subgraph of B; induced
by the set of equations F; — Si. Furthermore, let G, be the constraint graph
associated with the symbolic constraints whose tags have been valuated in the
k-reduction. Then B = B} = B, and G, = G = G; U G. That is, states Tj
and TY% clearly have the same constraint graph and the same bigraph. Therefore
T3 = T%.

Finally assume that the s-reduction also valuates geometric variables. If the
p-reduction does not make use of the CD set (', the rational above trivially
applies. Otherwise just note that the x-reduction does not remove geometric
elements in C7, therefore the p-reduction still applies. O

Corollary 6.3
Let Ty =, T2 =, T3 and Ty —, T5. Then T} is overconstrained if, and only
if, T3 is.

Proof The statement is trivial if Ty has a structurally overconstrained con-
straint graph. By [15], if the constraint graph of Ty is not structurally overcon-
strained, then neither is the constraint graph of Ta.

Assume that the constraint graph of T4 is structurally overconstrained. Then
there exists a nonempty set of equations {fi,..., f,} defining m > 0 valuated
constraints which have been added by reduction s to the constraint graph G,
of T;. By Lemma 6.2, p and x commute. Hence, {fi,...,fn} defines the
same m > () valuated constraints in To, yielding a structurally overconstrained
constraint graph G3 of T3.

Now assume that the graph of Tj is structurally overconstrained. This implies
that reduction x adds at least one valuated constraint to the constraint graph G4
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of Ty to give a structurally overconstrained graph G3. Since p and xk commute,
the same set of valuated constraints can be added by reduction s to the well-
constrained graph G, resulting in an overconstrained graph G associated with
T,. O

Lemma 6.4
Assume that Ty is not geometrically overconstrained. If T1— T2 and T1—,,T5,
then there is a Tg such that To— T3 and T2—42Ts.

Proof Let By be the bigraph associated with Ty. If both x; and ko are ap-
plicable to T4, then two different restrictions R(B;,C7) and R(Bi,C3) can be
defined in the bigraph B;. Let S, and Sk, be, respectively, the subset of
equations solvable in each restriction.

First assume that the sets of variables occurring in S., and in Sy, have an
empty intersection. Then there are two independent solvable sets of equations
each corresponding to a different restriction. Clearly the reductions commute.

For a contradiction now assume that Sy, and Sy, have variables in common.
Since tags in geometric equations are coupled with external variables through
constraint equations, at least one geometric symbolic constraint is shared by
Sk, and Sy,. Let us denote it by z. Since Sy, and Sy, are two different systems
of equations, the value computed for z in each system is, in general, different.
Therefore the geometric constraint problem would be overconstrained. O

Theorem 6.5

For problems that are not geometrically overconstrained, the rewrite system
(To,—,, =) is terminating and has the Church-Rosser property, that is the
system generates unique normal forms.

Proof Direct consequence of the lemmas above. O

7 Summary

We have presented a hybrid technique for solving geometric constraint problems
with the capabiliy of managing problems involving functional relationships be-
tween dimensions and external variables. The method combines constructive
and equational approaches and is especially effective for constructive geometric
constraint solvers that use the rewriting rule paradigm.

Our technique works on two sets of data, the geometric constraint data, and the
symbolic equation data. Geometric data are represented by a set of constraint
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sets. Symbolic equations are represented by a bigraph. The information flow be-
tween these two structures is managed by a new rewriting rule: the x-reduction
rule. This rule valuates symbolic constraints and external variables by solving a
subset of constraint equations from the bigraph and adds the resulting valuated
constraints to the set of constraint sets.

It has been shown that when the constraint problem is not overconstrained, the
method is correct. That is, if there is a sequence of rewriting steps that reduces
the constraint graph to a single CD set and the bigraph to the empty graph,
then the method finds such a sequence. Since the rules can be applied in any
order, strategies to conveniently optimize the analysis process can be devised.
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