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Abstract 

Research results on the same subject, extracted from scientific papers or clinical trials, are combined to determine a 

consensus. We are primarily concerned with combining p-values from experiments that may be correlated. We have two 

methods, a non-Bayesian method and a Bayesian method. We use a model to combine these results and assume the 

combined results follow a certain distribution, for example, chi-square or normal. The distribution requires independent 

and identically distributed (iid) random variables. When the data are correlated or non-iid, we cannot assume such 

distribution. In order to do so, the combined results from the model need to be adjusted, and the adjustment is done 

“indirectly” through two test statistics. Specifically, one test statistic (𝑇𝑆∗∗ ) is obtained for the non-iid data and the 

other is the test statistic (TS) is obtained for iid data. We use the ratio between the two test statistics to adjust the model 

test statistic (𝑇𝑆∗∗ ) for its non-iid violation. The adjusted 𝑇𝑆∗∗ is named as “effective test statistics” (ETS), which is 

then used for statistical inferences with the assumed distribution. As it is difficult to estimate the correlation, to provide 

a more coherent method for combining p-values, we also introduce a novel Bayesian method for both iid data and 

non-iid data. The examples are used to illustrate the non-Bayesian method and additional examples are given to 

illustrate the Bayesian method.  

Keywords: assumed distribution, Correction ratio, Correlation, Model assumptions, P-values, Effective test statistic, 

Statistical inference 

1. Introduction 

Researchers use a model to combine the results, p-values or Z-scores, from sample surveys or clinical trials for the same 

subject or purpose. We consider these results are iid random variables and assume a certain distribution, for example 

normal, for statistical inference. Such a distribution requires iid-random variables. 

However, these variables are more likely correlated as they are from the similar sample surveys or clinical trials for a 

specific topic or purpose. For example, poll results of presidential election or clinical trial results of one medication 

executed from different locations, or from the repeated trials at a same place (see Example 1). These results are often 

reported as p-values. We do not consider the previous procedures in obtaining p-values, and the k p-values are really the 

random variables. However, we are attacking a problem that is, indeed, very difficult because no aspect of the 

correlation is known, and moreover, there is a single sample of p-values, thereby making it impossible to find Pearson 

correlation. 

The resulting p-values are non-iid random variables (see Example 1 and Appendix B). We present a method to show 

how an assumed distribution, which requires iid-random variables, can be applied to non-iid variables. To do so, non-iid 

variables need to be adjusted indirectly through its test statistics (𝑇𝑆∗∗). This adjustment is done by comparing two test 

statistics, one from the non-iid model and other from the iid model. The test statistic (𝑇𝑆∗∗) comes from a model with 

non-iid data, given null hypothesis, sample size and test level. Similarly, the other test statistic, (TS), comes from an 

assumed distribution with iid-random variables. We define correction factor as the ratio of 𝑇𝑆∗∗ to TS. Finally, we can 

get effective test statistic (ETS) of 𝑇𝑆∗∗ divided by the correction factor and this ETS is used to make statistical 

inference with the assumed distribution.  

We use one of the two methods to combine the non-iid results or 𝑝∗ values, Non-Bayesian or Bayesian. We show two 

methods for non-Bayesian in Section  (3.1) show how to obtain ETS of correlated data (Choi and McHugh,1989), and 

in Section (3.2) show how to obtain ETS for 𝑇𝑆∗∗ of non-iid data, that involve not only correlation but also other 

non-iid-conditions, if any. Then, we use ETS with the assumed distribution. 
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The case of iid random variables to obtain TS 

TS is based on a test statistic. It is the standard test statistic with which two other test statistics, 𝑇𝑆∗  or 𝑇𝑆∗∗ , are 

compared to measure the size of its deviation from TS, where 𝑇𝑆∗ is from a distribution of correlated variables and 

𝑇𝑆∗∗ is from a distribution of non-iid variables. Below, we show how TS is obtained. 

Suppose, p = (𝑝1, … , 𝑝𝑛), 0≤ 𝑝𝑖 ≤1, i=1,…, n, are iid random variables with a known distribution function h(p|𝜃).  
One can make statistical inferences on p. Let the global null hypothesis 𝐻𝑜: 𝜃1= …. = 𝜃𝑛 = 𝜃 against alternative 

hypothesis 𝐻1: 𝜃 𝑖  ≥  𝜃 for some i = 1, …, n. The hypothesis 𝐻0 is reasonable as all the tests are done for a same 

purpose. We assume that h(p|𝜃) is a monotone function, and therefore it is optimal for combining p-values (Birnbaum, 

1954).  

We define test statistic (TS) as 

𝑇𝑆𝛼or 𝑡𝛼 = T(ℎ(𝑝|𝜃),𝛼, 𝑛), 

where the rejection test level 𝛼 is obtained as  

𝛼= 1 – ∫ h(p|𝜃)
𝑡𝛼

−∞
 dp. 

TS does not involve in hypothesis testing and it is based on the assumed distribution function ℎ(𝑝|𝜃) of iid 

p-values for given α and n. For example, h(p|𝜃) is Normal(𝜇, 𝜎2), or 𝑥2𝑛
2  chi-square 2n degrees of freedom. When 

we use ℎ(𝑝|𝜃) as base distribution of TS, we do not need actual p values, but the ℎ(𝑝|𝜃) implies p as iid random 

variables. For example, we only need sample size n and test level 𝛼 to have table value of TS for 𝑥2𝑛
2 , chi-square 2n 

degrees of freedom. The test level 𝛼 is pre-selected by researcher. This TS is used only to compare to study test 

statistic, 𝑇𝑆∗ or 𝑇𝑆∗∗ , to measure its deviation from TS, and they involve in testing a null hypothesis at the same sample 

sized n and test level 𝛼 of TS. 

Above TS, based on ℎ(𝑝|𝜃) of iid-random variables p, is its own ETS. TS is compared to two study test statistics, 𝑇𝑆∗ 

based on correlated data and 𝑇𝑆∗∗ based on non-iid variables. We ignore the pre-procedures to obtain these data, and 

consider these data are the variables of our interest. 

This paper has five more sections. In Section 2, we review pertinent literature. In Section 3, we present the 

non-Bayesian method. In Section 4, we show examples to illustrate the non-Bayesian method.  In Section 5, we 

present Bayesian method to find the posterior mean of the combined p-value and some additional examples are 

presented. Section 6 includes a brief conclusion.  

2. Pertinent Literature    

Yoon et al (2021) used Meta analyses to increase statistical power by combining statistics (e.g., effect sizes, z- scores, or 

p-values) from multiple studies when they share the same null hypothesis under the assumption that all the data in each 

study have an association with a given phenotype. However, specific experimental conditions in each study can result in 

independent statistics that are derived from a null distribution. They showed the power of Meta analysis rapidly 

decreases as they were combined, Fisher’s Method (Fisher, 1932), Weighted Fisher’s method (wFisher), and Ordered 

p-values (ordMeta) increased power. The last two methods (i.e., wFisher and ordMeta), outperformed existing 

Meta-analysis when only a small number of studies n=2 is combined. The weighted Fisher’s method (wFisher) assigned 

non-integer weights to each p-value, that are proportional to sample sizes. The wFisher and ordMeta are more robust 

than the test statistic of the Meta method.  

Vovk and Wang (2020) got the average of k p-values 𝑝1,…,𝑝𝑘 to obtain one combined value without any parametric or 

distribution assumption. They reviewed previous results of arithmetic mean (AM 𝑝̅) by multiplying 2 as 2𝑝̅  and 

geometric mean (GM) replacing 2 by e (=2.718). They extended the recent risk aggregation technique to harmonic 

mean (HM) by multiplying log K for K≥ 2, scaling up by a factor of log k, where k is number of p-values. They also 

explore several other weighted averages of p-values. Note that the inequality of HM≤ GM ≤AM, related to scaling 

factors, which is proved using Jensen’s inequality (Casella and Berger, 2002).  

Vovk and Wang (2020) showed several models to combine 𝑝1,…,𝑝𝑘 into a single p-value. assuming, 𝑝1,…,𝑝𝑘  are 

independent random variables. The simplest way to combine them is the Bonferroni method, 

F( 𝑝1,…,𝑝𝑘) = 𝐾 min (𝑝1,…,𝑝𝑘), 

when F( 𝑝1 ,…, 𝑝𝑘) exceed 1, it can be replaced by 1. Other method, used to smooth out overestimation of 

above-mentioned method, is a general average:  

𝑀∅,𝑘(𝑝1,…,𝑝𝑘) = 𝜑 [
∅(𝑝1}+,…,+∅(𝑝𝐾}

𝐾
], 
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where ∅(0,1) → (−∞, ∞) is a continuous strictly monotonic function and 𝜑[(0,1)]→ (0,1) is its inverse. For example, 

AM corresponds to the identity function ∅(𝑝)= p, GM corresponds to ∅(𝑝)= log p, and HM corresponds to ∅(𝑝)= 1/p. 

They present more extensions of this basic idea.  

Loughin (2004) compared several methods, when only p-values are available, in combining p-values from independent 

tests under combined hypothesis heuristically through simulation. They are minimum value (Tippett, 1931), Chi-square 

combining model (Fisher, 1932), scaled normal (Liptak, 1958), maximum value (Wilkinson, 1951), combinatoric 

uniform (Edington, 1972) and approximately scaled logistic (Rastogi, 1979). 

Fisher’s Model (FM) (1932) is 𝑔(𝒑∗|𝜽) = −2 ∑ log (𝑝𝑖
∗𝑛

𝑖=1 ) = −2 log(𝑝1
∗ … 𝑝𝑛

∗ ) =  𝑙𝑜𝑔
1

{𝑝1
∗…𝑝𝑛

∗ )
2. to combine 𝑝1

∗ … 𝑝𝑛
∗  . 

FM assumes the null hypothesis distribution follows 𝑥2𝑛
2 , chi-square with 2n degrees of freedom for n independent 

random variables. This is not true when 𝑝∗ are correlated. Other problem of FM arises when combining a large number 

of 𝑝∗-values. When n → ∞, FM value→ ∞, i.e., combined value of even non-significant p-values becomes significant 

for a large n (Choi and Nandram, 2021). 

Hess and Iyer (2007) used Fisher’s Score combining p-values to detect differential genes array using Affymetrix 

expression arrays. Others (Tippett,1931, and Wilkinson,1951, George,1977, Stouffer,1949) suggest non-parametric 

methods to combine p-values.  

Most methods, presented above, assumed independent p-values and did not address correlation or non-iid problems for 

statistical inference. Our research addresses a solution for this problem. However, this is a difficult problem because one 

cannot estimate the correlation in a straightforward manner, and this is an innovation in this paper as well. In a recent 

paper, Heard and Rubin-Delanchy (2018) showed how to choose between different methods to combine p-values. They 

also discussed the likelihood ratio for combining p-values and the weighted average of the logarithms of the p-values. 

However, there was no discussion about correlated p-values nor any discussion of the Bayesian approach, presumably 

there is none. 

There is virtually no Bayesian attempt on the specific problem we are considering in this 

paper. Specifically, we are combining a number of p-values, which may be dependent because the experiments are done 

under the same protocol, and similar procedures may be followed at the different experimental sites or laboratories. 

However, there is a sparse literature on the study of Bayesian p-values, not the combination of p-values. See Casella and 

Berger (1987) and the discussions that followed on reconciling Bayesian and frequentist evidence on the one-sided 

testing problem. 

3. Non-Bayesian Method 

Test statistics, 𝑇𝑆∗ for correlated variables and 𝑇𝑆∗∗ from non-iid variables, are compared by the standard rule, TS, for 

iid variables to see the size of their deviations from TS. We introduce these two test statistics, 𝑇𝑆∗ in (3.1) and 𝑇𝑆∗∗ in 

(3.2). We also present the correction factors, 𝐶∗ and 𝐶∗∗ , for 𝑇𝑆∗ and 𝑇𝑆∗∗ and its estimations. We also present Table 1 

to illustrate practical application to clinical data.  

In the introduction, we discussed the base test statistic TS for ℎ(𝑝|𝜃) with iid random variables p = (𝑝1, … , 𝑝𝑛).as a 

standard rule to which 𝑇𝑆∗ or 𝑇𝑆∗∗ are measured.  

In 3.1, the 𝑇𝑆∗ of g(𝑝∗|𝜃) for correlated variables 𝑝∗ = (𝑝1
∗, … , 𝑝𝑛

∗ ) for given sample size and test level is compared 

to the base test statistic TS of ℎ(𝑝|𝜃) to find its difference, which is expressed as ratio, 𝐶∗= 𝑇𝑆∗ /TS. We call 𝐶∗ 

correction factor (CF) as it corrects the impact of correlation on 𝑇𝑆∗.  

In 3.2, TS is now compared to 𝑇𝑆∗∗ for non-iid 𝑝∗∗ = (𝑝1
∗∗, … , 𝑝𝑛∗

∗∗ ), which may carry not only correlation but also all 

other non-iid violations, if any. The difference between these two test statistics expressed as the ratio 𝐶∗∗= 𝑇𝑆∗∗ /TS. 

Here 𝐶∗∗ corrects the impacts not only correlation but all other violations of iid condition. 

In 3.3, we show how to estimate 𝐶∗∗. Three candidates are presented. 

In 3.4, we illustrate TS, 𝑇𝑆∗∗, and 𝐶∗∗ in Table 1, using Fisher’s Model F for 𝑇𝑆∗∗ and chi-square distribution C for 

TS. Table 1 is continuously used in the next Section 4. It shows for Fisher’s Model users how to use the table values of 

𝐶∗∗ for possible violations of correlation or non-iid problem.  

3.1 Correlated Random Variables, Model 1 

Previously we introduced the base test statistic TS = T(ℎ(𝑝|𝜃),𝛼, 𝑛) for a known distribution h(p|𝜃) of iid random 

variables p = (𝑝1 , … , 𝑝𝑛), 0≤ 𝑝𝑖  ≤1, i=1,…, n, for given test level 𝛼 and sample size n.  
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Now we consider. We can obtain the test statistic (𝑇𝑆∗) for the combining model g(𝑝∗|𝜃) of these correlated variables, 

𝑝∗ = (𝑝1
∗, … , 𝑝𝑛

∗ ), 0 ≤ 𝑝𝑖
∗ ≤  1, for a given hypothesis 𝐻𝑂

∗ , test level 𝛼∗,  correlation 𝜌 and sample size n. We can 

assume g(𝑝∗|𝜃) is its pseudo distribution and write  

𝑇𝑆∗ = T(g(𝑝∗|𝜃),  𝐻𝑂
∗ , 𝛼∗, 𝜌, 𝑛). 

Choi and McHugh (1989) discussed how to reduce the 𝑇𝑆∗ for the correlated variables in Chi-square testing. The 

g(𝑝∗|𝜃)  is erroneously assumed to follow h(p|𝜃), chi-square distribution 𝑥2𝑛
2 .  When the test statistic (TS) for 

distribution h(p|𝜃) is compaired to 𝑇𝑆∗ of the actual model g(𝑝∗|𝜃), the test statistic, 𝑇𝑆∗ is largely inflated because 

of the correlation. Hence 𝑇𝑆∗ is reduced, dividing it by the correction factor 𝐶∗= [1 + 𝜌(n-1)] , 𝜌 is the positive 

correlation among 𝑝∗-values, n is the sample size. 

Choi and McHugh (1989) showed how to obtain the effective test statistic (ETS) of test statistic 𝑇𝑆∗ with this 

correction factor, 𝐶∗, 

ETS=
𝑇𝑆∗

𝐶∗ , 

on 1 ≤ 𝐶∗ < ∞. It implies that the correlation of the variables 𝑝∗ = (𝑝1
∗, … , 𝑝𝑛

∗ ), is indirectly adjusted by the 

correction factor 𝐶∗. After such correction, we can now make statistical inference on the effective test statistic ETS 

with assumed distribution h(p|𝜃), for example chi-square distribution.  

We can also achieve the same goal through effective sample size 𝑛𝑒 of n, 𝑛𝑒 = 
𝑛

𝐶
 to obtain ETS (Choi,1980). For 

example, for binomial variables, 𝑥𝑖, i=1,…,n, that are correlated, its normal approximation of test statistic 𝑇𝑆∗ under 

the null hypothesis 𝐻0∶ 𝑝 = 0, is given as N(1,0)= 
𝑛𝑝

√𝑝(1−𝑝)
. We can use the reduced sample size 𝑛𝑒 = 𝑛/𝐶, to obtain 

effective test statistic, ETS =
𝑛𝑒 𝑝

√𝑝(1−𝑝)
. 

3.2 Non-iid Random Variables, Model 2 

In this section, we try to find the differences between the test statistic 𝑇𝑆∗∗  and basic test statistic TS, 

TS=T(ℎ(𝑝|𝜃),𝛼, 𝑛), and 𝑇𝑆∗∗= T( g(𝑝∗∗|𝜃), 𝐻𝑂
∗∗, 𝛼∗∗, 𝜌, 𝑛∗∗). Two types of differences can be considered: One is the 

correlation 𝜌 in the variables 𝑝∗∗ = (𝑝1
∗∗, … , 𝑝𝑛∗∗

∗∗ ), and other includes all other known or unknown differences such 

as ℎ(𝑝|𝜃) ≠ g(𝑝∗∗|𝜃), 𝑝∗∗ ≠ p, null hypothesis 𝐻𝑂
∗∗, 𝛼 ≠ 𝛼∗∗, n ≠ 𝑛∗∗.  

The model 𝑔(𝑝∗∗|𝜃) in 𝑇𝑆∗∗ is used to combine the non-iid variables 𝑝∗∗ = (𝑝1
∗∗, … , 𝑝𝑛∗∗

∗∗ ). The distribution ℎ(𝑝|𝜃) 

in TS is based on iid variables p= (𝑝1, … , 𝑝𝑛). Users of the model 𝑔(𝑝∗∗|𝜃) assume that 𝑔(𝑝∗∗|𝜃) follows the 

distribution ℎ(𝑝|𝜃) as if 𝑝∗∗ = p. It is a wrong assumption if 𝑝∗∗ ≠ p. The aim of this section is to correct the wrong 

assumption indirectly by adjusting the test statistic, 𝑇𝑆∗∗, while TS of assumed distribution h(p|𝜃) remains the same.  

We have shown when TS is compared against 𝑇𝑆∗ for correlated variables 𝑝∗ = (𝑝1
∗, … , 𝑝𝑛

∗ ) in 3.1. Here in 3.2, we 

compare TS to 𝑇𝑆∗∗ for variables 𝑝∗∗ = (𝑝1
∗∗, … , 𝑝𝑛∗∗

∗∗ ), which is not only correlated but also violated non-iid and other 

conditions, if any.  

The total difference between the two test statistics, 𝑇𝑆∗∗ and TS, is defined as the ratio of these two test statistics: 

𝐶∗∗=
𝑇𝑆∗∗

TS
, 0 < 𝐶∗∗  < ∞. 

Note that 𝑇𝑆∗∗ ≥ 𝑇𝑆 (Appendix A) when 1 < 𝐶∗∗   < ∞, and  𝑇𝑆∗∗ < 𝑇𝑆  when 0 < 𝐶∗∗  < 1 . The turning point 

greater than 1 or less than 1 depends on the size of p-values and the number n of the p-values as well as on the different 

changing speed, increasing or decreasing, of the  𝑇𝑆∗∗ and TS (see Table 1). We can ignore 𝑇𝑆∗∗ < 𝑇𝑆 when 0 <   𝐶∗ 

 < 1, since we assume only positive correlation of  𝑝1
∗∗, … , 𝑝𝑛∗

∗∗  or consider only 𝑇𝑆∗∗ ≥ 𝑇𝑆 to correct positive 

correlation and other violation of 𝑇𝑆∗∗.  

To correct the impacts of non-iid and other violations, if any, we adjust 𝑇𝑆∗∗ by 𝐶∗∗as  

𝐸𝑇𝑆∗∗= 
𝑇𝑆∗∗ 

𝐶∗∗ , 0 < 𝐶∗  < ∞ . 
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Note 𝐸𝑇𝑆∗∗ > 𝑇𝑆∗∗  > 𝑇𝑆 on the interval 1 ≤ 𝐶∗∗ < ∞  (Appendix A). The ETS** is the effective test statistic of the 

test statistic (TS**) on the interval,1 < 𝑪∗  < ∞. Here, the non-iid violation of the variables 𝑝1
∗∗, … , 𝑝𝑛∗

∗∗ , is indirectly 

corrected through 𝐶∗∗. 

Lemma   

The difference between the two test statistics, 𝑇𝑆∗∗ and  TS can be expressed as the ratio , 𝐶∗∗=𝑇𝑆∗∗/ TS, 0 < 𝐶∗∗ <
∞,  the correction factor, 𝐶∗∗, indirectly correct the correlation and other iid violations of 𝑇𝑆∗∗. The effective test 

statistic is 𝐸𝑇𝑆∗∗=𝑇𝑆∗∗ /𝐶∗∗, on 1 <  𝐶∗∗ < ∞. Then, the effective test statistic 𝐸𝑇𝑆∗∗ of test statistic, 𝑇𝑆∗∗, is used 

for statistical inference with the originally assumed distribution ℎ(𝑝|𝜃).   

Proof is outlined in Appendix A 

3.3 Estimation of Correction Factor 𝐶∗∗  

The correction factor 𝐶∗∗ indirectly measures all violations including non-iid condition of 𝑝∗∗. In actual situation, it is 

difficult to obtain exact 𝑇𝑆∗∗  and hence 𝐶∗∗ . To estimate 𝐶∗∗ =
𝑇𝑆∗∗

TS
, 1 < 𝐶∗   < ∞ ,  we compare TS = 

T(ℎ(𝑝|𝜃),𝛼, 𝑛) of assumed iid random variables p = (𝑝1, … , 𝑝𝑛) to 𝑇𝑆∗∗= T(g(𝑝∗∗|𝜃),  𝐻𝑂
∗∗, 𝛼∗∗, 𝜌, 𝑛∗∗), of non-iid 

variables 𝑝∗∗ = (𝑝1
∗∗, … , 𝑝𝑛∗

∗∗). While the TS remains the same for given ℎ(𝑝|𝜃), 𝛼, 𝑛, the 𝑇𝑆∗∗  can be estimated by 

how we use (𝑝1
∗∗, … , 𝑝𝑛∗

∗∗ ) in the combing model g(𝑝∗∗|𝜃). Below shows three ways of different use of these variables. 

The three candidates are (1) is to use the minimum value of 𝑝∗∗ = (𝑝1
∗∗, … , 𝑝𝑛∗

∗∗), expressed as 𝐶𝑀𝑖𝑛
∗∗ , (2) uses the 

maximum value of 𝑝∗∗ = (𝑝1
∗∗, … , 𝑝𝑛∗

∗∗), expressed as  𝐶𝑀𝑎𝑥
∗∗ , (3) is the sum of individual values of 𝑇𝑆∗∗, expressed as 

 𝐶𝑀𝑖𝑥
∗∗ , each term of 𝑇𝑆∗∗is divided or individually weighted by all member weights (Example 1). All member weight is 

used because the weight of one member is one: when sample size is one (i.e., n=1), it is independent automatically 

regardless of the size of p-values, i.e., T(ℎ(𝑝|𝜃) , 𝛼, 𝑛 = 1 )= T( g( 𝑝∗∗|𝜃), 𝐻𝑂
∗∗, 𝛼∗∗, 𝜌 = 0, 𝑛∗∗ = 1 ), ℎ(𝑝|𝜃) =

g(𝑝∗∗|𝜃) for given 𝛼 = 𝛼∗∗ = 𝑝 = 𝑝∗∗, ignoring the null hypothesis , 𝐻𝑂
∗∗ .as assumed distribution ℎ(𝑝|𝜃)  is not 

involved in any null hypothesis. This is the only time the assumption is correct, or ℎ(𝑝|𝜃) = g(𝑝∗∗|𝜃) (see First row, 

Table 1, Example 1). 

Three possible correction factors are 𝐶𝑀𝑖𝑛
∗∗ ,  𝐶𝑀𝑎𝑥

∗∗ ,and 𝐶𝑀𝑖𝑥
∗∗  (Appendix C). The choice depends on researcher’s need. 

Thus, three different effective test statistics, 𝐸𝑇𝑆∗∗=𝑇𝑆∗∗ /𝐶∗∗, can be obtained when 𝑇𝑆∗∗ reduced by respective new 

correction factor: 

𝐸𝑇𝑆𝑚𝑖𝑛
∗ =

𝑇𝑆∗∗

𝐶𝑀𝑖𝑛
∗  , 

𝐸𝑇𝑆𝑚𝑎𝑥
∗ =

𝑇𝑆∗∗

𝐶𝑀𝑎𝑥
∗ , 

 𝑎𝑛𝑑                                                                             𝐸𝑇𝑆𝑚𝑖𝑥
∗ =   

𝑻𝑺𝟏
∗∗

𝑪𝑴𝒊𝒙,𝟏
∗ +  … +

𝑻𝑺𝒏
∗∗

𝑪𝑴𝒊𝒙,𝒏
∗ , 

where 𝐸𝑇𝑆𝑚𝑎𝑥
∗∗ ≤  𝐸𝑇𝑆𝑚𝑖𝑥

∗∗ ≤ 𝐸𝑇𝑆𝑚𝑖𝑛
∗∗ , because 𝐶𝑀𝑖𝑛

∗∗ < 𝐶𝑀𝑖𝑥,
∗∗ <𝐶𝑀𝑎𝑥,

∗∗  (see Example 1). We may have the extreme cases 

of 𝐸𝑇𝑆𝑚𝑎𝑥
∗∗  and 𝐸𝑇𝑆𝑚𝑖𝑛

∗∗  when 𝑛∗ -values of  𝑝∗∗ = (𝑝1
∗∗, … , 𝑝𝑛∗

∗∗ ) are widely spread out, and the minimum or 

maximum value of 𝑝∗∗ = (𝑝1
∗∗, … , 𝑝𝑛∗

∗∗) is comparatively very small or large, far away from the mean. In this situation, 

one may avoid the use of the two extreme cases and prefer to use middle value 𝐸𝑇𝑆𝑚𝑖𝑥
∗  for the statistical inference in 

combining the value of 𝑝∗∗ = (𝑝1
∗∗, … , 𝑝𝑛∗

∗∗). Note the weights 𝐶𝑀𝑖𝑥,1
∗∗ , … , 𝐶𝑀𝑖𝑥,𝑛

∗∗  are each term weights for each 𝑇𝑆𝒊
∗∗ 

of all member 𝑝𝑛
∗∗ (see Example 1, n=5 fifth row, for all 5 members, under each column of p-values). 

3.4 Table 1, Numerical Example of Correction Factors 𝐶∗∗ 

The Table 1 below shows the numerical calculation to construct the test statistic TS (C), 𝑇𝑆∗∗(𝐹), correction factors 

𝐶∗∗, using chi-square value (C) for TS and Fisher’s Model (F) for 𝑇𝑆∗∗ and the clinical trial data for 𝑝∗∗ =
(𝑝1

∗∗, … , 𝑝𝑛∗
∗∗ ) (Example 1, Section 4). 

One reason of presenting Table 1 here is to remind the users of Fisher’s Model (FM) to be more careful if the data are 

correlated or non-iid variables. Often we find that, especially in medical journals, many people are still using FM 

without proper consideration of the problem as if data are iid random variables, Table 1 can be used to correct non-iid 

problems of their data when they use FM in combining p-values. Another reason to have Table 1 here is to help 
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understanding the text of next Section 4.  

Table 1 shows the three numbers, FM (F), Chi-square model (C), and correction factor (𝐶∗∗), by the p-vales on the 

columns, i.e., p= 0.01,0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, and the 15 numbers on the rows, i.e., n =1, 2, 3, 4, 5, 6, 7 , 8, 

9,10,11,12,13,14,15, each n-number means the same n p-values.(See Appendix A for the reason why we use the same p 

for n times). Recall that 

𝐹 = 𝑇𝑆∗∗ = T(g(𝑝∗∗|𝜃),  𝐻𝑂
∗∗, 𝛼∗∗, 𝜌, 𝑛∗∗), test statistic for Fisher’s Model g(𝑝∗∗|𝜃), for given 𝑝∗∗, 𝐻𝑂

∗∗, 𝛼∗∗, 𝜌, 𝑛∗∗,   

C = TS = T(ℎ(𝑝|𝜃),𝛼, 𝑛) of assumed base distribution ℎ(𝑝|𝜃) given 𝛼, 𝑛,  

𝐶∗∗= 
𝐹

𝐶
=

𝑇𝑆∗∗

TS
, 1 

0 < 𝐶∗∗ <∞, in the Table 1, is the correction factor expressed as ratio of F 

and C to compare them on the equal bases, (i.e.,  n=n**, and 𝛼=𝛼∗∗ = 𝑝𝑖
∗∗, i = 1, … , 𝑛∗∗), 

except correlation 𝜌 and the forms of models g(.) and h(.), on the interval,1 < 𝐶∗∗ <∞,  

this condition implies that 𝐶∗∗ shows only impacts of correlation and model difference. 

Note that here we use the five same values of p to induce the maximum correlation to F in 𝐶∗∗=
𝐹

𝑐
 , while C remains 

the same, hence giving larger  𝐶∗∗, which, in turn, provides conservative or smaller 𝐸𝑇𝑆∗∗= 
𝐹

 𝐶∗∗. Thus, users of 𝐶∗∗, 

in Table 1 will have conservative effective test statistic, 𝐸𝑇𝑆∗∗, when F is corrected by 𝐶∗∗. 

To illustrate for the calculation of F, C, and 𝐶∗∗in Table 1, we take one cell for n=5, the fifth row and p=0.05 on the 

third column, Fisher’s Model (FM), F = -2log 0.05 0.05 0.05 0.05 0.05)=29.96, using the same values five time for 

n=5 for the reason given above. The basic distribution, Chi-square value (C), C =18.31, for 𝑥2𝑛
2 , 2n=10 degrees of 

freedom at 𝛼=𝛼∗∗ = 𝑝𝑖
∗∗ = 𝑝∗∗ = 0.05, from the table. The result is 𝐶∗∗= 

𝐹

𝐶
= 

29.96

18.31
.=1.64 as shown in the 5

th
 row, 

n=5, and third column p=0.05 in Table 1. Other cells in Table1 follow the same steps to obtain F, C, and 𝐶∗∗. 

Note we set the sample size n=n**=5, test level 𝛼=𝛼∗∗ = 𝑝𝑖
∗∗ = 0.05, to compare C and F on the equal bases except 

the correlation and the forms of two models, g(.) and h(.), i.e., g(.) ≠ h(.). Thus, the 𝐶∗∗ shows the impacts of 

correlation and the wrong assumption of the model F in comparison to C. 

We call C**=
𝐹

𝐶
=

𝑇𝑆∗∗

𝑇𝑆
, 1 < 𝐶∗∗ <∞, correction factor as they are indirectly used to correct or reduce 𝑇𝑆∗∗ for the 

violation of iid conditions and model assumption, for the data 𝑝5
∗∗ = (05,.08, 0,09 0.10, 0.20), (see Appendix B). 

Effective Test Statistic (𝐸𝑇𝑆∗∗=
𝑇𝑆∗∗

𝐶∗∗ ) is finally used for statistical inference. Note 𝐸𝑇𝑆∗∗  > 𝑇𝑆, 1 < 𝐶∗∗  < ∞. 

(Appendix A).  
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Table 1. shows Fisher’s Model F=𝑇𝑆∗∗ and Chi-square Table value C= TS, and Correction Factors C**= F/C by the 

size of the nine p’s, p=0.01, …, 0.9 on the columns, and the 15 numbers n=1,…,15 for the same n p-values on the rows  

n of p 𝛼 =p→ 0.01 0.02 0.05 0.1 0.2 0.3 0.5 0.7 0.9 

n=1 F 9.21 7.82 5.99 4.61 3.22 2.41 1.39 0.71 0.21 

 C 9.21 7.82 5.99 4.61 3.22 2.41 1.39 0.71 0.21 

 C** 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

n=2 F 18.42 15.65 11.98 9.21 6.44 4.82 2.77 1.43 0.42 

 C 13.28 11.67 9.49 7.78 5.99 4.88 3.36 2.19 1.06 

 C** 1.39 1.34 1.26 1.18 1.07 0.99 0.83 0.65 0.40 

n=3 F 27.63 23.47 17.97 13.82 9.66 7.22 4.16 2.14 0.63 

 C 16.81 15.03 12.59 10.64 8.56 7.23 5.35 3.83 2.20 

 C** 1.64 1.56 1.43 1.30 1.13 1.00 0.78 0.56  0.29 

n=4 F 36.84 31.30 23.97 18.42 12.88 9.63 5.55 0.56  0.84 

 C 20.09 18.17 15.51 13.36 11.03 9.52 7.34 5.53  3.49 

 C** 1.83 1.72 1.55 1.38 1.17 1.01 0.76 5.53  0.24 

n=5 F 46.05 39.12 29.96 23.03 16.09 12.04 6.93 3.57 1.05 

 C 23.21 21.16 18.31 15.99 13.44 11.78 9.34 7.27 4.87 

 C** 1.98 1.85 1.64 1.44 1.20 1.02 0.74 0.49 0.22 

n=6 F 55.26 46.94 35.95 27.63 19.31 14.45 8.32 4.28 1.26 

 C 26.22 24.05 21.03 18.55 15.81 14.01 11.34 9.03 6.30 

 C** 2.11 1.95 1.71 1.49 1.22 1.03 0.73 0.47 0.20 

n=7 F 64.47 54.77 41.94 32.24 22.53 16.86 9.70 4.99 1.48 

 C 29.14 26.87 23.68 21.06 18.15 16.22 13.34 10.82 7.79 

 C** 2.21 2.04 1.77 1.53 1.24 1.04 0.73 0.46 0.19 

n=8 F 73.68 62.59 47.93 36.84 25.75 19.26 11.09 5.71 1.69 

 C 32 00 29.63 26.3 23.54 20.47 18.42 15.34 12.62 9.31 

 C** 2.30 2.11 1.82 1.56 1.26 1.05 0.72 0.45 0.18 

n=9 F 82.89 70.42 53.92 41.45 28.97 21.67 12.48 6.42 1.90 

 C 34.81 32.35 28.87 25.99 22.76 20.60 17.34 14.44 10.86 

 C** 2.38 2.18 1.87 1.59 1.27 1.05 0.72 0.44 0.17 

n=10 F 92.10 78.24 59.91 46.05 32.19 24.08 13.86 7.13 2.11 

 C 37.57 35.02 31.41 28.41 25.04 22.77 19.34 16.27 12.44 

 C** 2.45 2.23 1.91 1.62 1.29 1.06 0.72 0.44  0.17 

n=11 F 101.3 86.06 65.91 50.66 35.41 26.49 15.25 0.44  2.32 

 C 40.29 37.66 33.92 30.81 27.3 24.94 21.34 18.1 14.04 

 C** 2.51 2.29 1.94 1.64 1.30 1.06 0.71 0.43 0.17 

n=12 F 110.5 93.89 71.9 55.26 38.63 28.90 16.64 8.56 2.53 

 C 42.98 40.27 36.42 33.20 29.55 27.10 23.34 19.94 15.66 

 C** 2.57 2.33 1.97 1.66 1.31 1.07 0.71 0.43 0.16 

n=13 F 119.7 101.7 77.89 59.87 41.85 31.30 18.02 9.27 2.74 

 C 45.64 42.86 38.89 35.56 31.79 29.25 25.34 21.79 17.29 

 C** 2.62 2.37 2.00 1.68 1.32 1.07 0.71 0.43 0.16 

n=14 F 128.9 109.5 83.88 64.47 45.06 33.71 19.41 9.99 2.95 

 C 48.28 45.42 41.34 37.92 34.03 31.39 27.34 23.65 18.94 

 C** 2.67 2.41 2.03 1.70 1.32 1.07 0.71 0.42 0.16 

n=15 F 138.2 117.4 89.87 69.08 48.28 36.12 20.79 10.7 3.16 

 C 50.89 47.96 43.77 40.26 36.25 33.53 29.34 25.51 20.6 

 C** 2.71 2.45 2.05 1.72 1.33 1.08 0.71 0.42 0.15 

 

Note in Table 1, C** = F/C is increasing from1.39 to 2.71 when n=2 increases to n=15 on the first column of p=0.01. It 

means that F is increasing faster than C as the number n of same p-values is increasing. This trend is reversed in the 

seventh column of p=0.5, C** is decreasing from 0.83 to 0.71 when n=2 increases to n=15. i.e., F decreasing faster than 
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C. 

Similar trend exists on the rows, for the second-row n=2, C** is decreasing from 1.39 to 0.40 when p=0.01 increases to 

p=0.9. The change point C** greater than 1 to less than 1 is p=0.5, it is true for all the 15 rows.  

Note that we ignore when 𝐶∗∗ =
𝑇𝑆∗∗

𝑇𝑆
, 0 < 𝐶∗∗ <1, it happens data are negatively correlated. or 

𝑇𝑆∗∗ < 𝑇𝑆 𝑤hich happens when 𝐶∗∗ does not reduce the impacts of non-iid inflation on 𝑇𝑆∗∗. 

4. Examples  

Two examples are presented. (1) Effective Test Statistics ETS* of the Fisher’s Model (FM) to combine 𝑝∗-values from 

clinical trial data at Minneapolis Veterans Administration (VA) Hospital. (2) Random group method for a large sample 

of n variables (Choi and Nandram, 2021). Using random grouping, we divide a large sample into k manageable random 

groups and obtain one p value from each group. Then the k p-values are combined, using FM. 

4.1 Example 1. Fisher’s Model (Fisher, 1932) to Combine Clinical Trial Results  

All Parkinson patients, visiting the Neurology Department of Minneapolis VA hospital, are the population during the 

study period in 1970 (Choi, 1970). In our example, a sample of 36 patients is randomly selected from all the visitors. 

The 36 patients randomly ordered and took either Symmetrel, a candidate for Parkinson medication, or placebo, for 20 

weeks crossover design, starting by coin toss, one week medication and one week placebo double blindly.  

After each week, they took 5 tests: walking, tremor, stiffness, arm movement, and eye movement, to measure the 

impacts of medication or placebo. These tests are equally weighted assuming no residual effects, and calibrated from 

one to ten, one for no effect and 10 for the best result. The differences of on and off weeks are measured. Each patient 

provides 10 differences during 20 trial weeks and obtain one mean difference for each patient.  

Again, find one mean differences from 36 patients for each of 5 tests, providing one mean difference from each of 5 

tests. Using student-t test for the mean differences under the null hypothesis of no difference, we have 5 p-values from 5 

tests, n=5, combined with Fisher’s Model (FM), assuming they are iid random variables and follow Chi-square 10 

degrees of freedom, 𝑥10
2 . 

We have five 𝑝 values of t-test under the null hypothesis of no mean differences. Once we have p-values, we ignore the 

previous procedures to obtain them and they are the random variables of our interest and may have their own 

distribution. The five p values are 𝑝5
∗ = (05,.08, 0,09 0.10, 0.20). 

Fisher’s model (FM) combines these 5 p-values.  

FM = −2 log (0.05 x 0.08 x 0,09 x 0.10 x 0.2)  

= − 2(log 0.05 + log 0.08 + log 0.09 + log 0.10 + log 0.20)  

=−2(−2.9957 - 2.5257 - 2.4080 - 2.3026 - 1.6094)  

=  23.6828.   

When we compare FM=23.6828 to the assumed Chi-square 10 degrees of freedom at 𝛼 = 0.01 = 23.209, FM is 

significant as 23.6828 > 23.209 at 𝛼 = 0.01 of 𝑥10
2 . 

However, the clinical trial data 𝑝5
∗ = (05,.08, 0,09 0.10, 0.20) are correlated (see Appendix B) or non-iid random 

variables, and thus, we cannot assume FM is distributed as chi-square 10 degrees of freedom. Therefore, FM  = 

23.6828  should be reduced for the violations of iid condition of 𝑝5
∗.   

Most data are correlated in the real world as there is hardly any independent data.  

But statisticians, in general, blindly assume their data are iid random variables. Thus, it is necessary to check out the 

independence and other characteristics of their data beforehand.   

The three candidates, 𝐶𝑀𝑖𝑛
∗∗ ,  𝐶𝑀𝑎𝑥

∗∗ , and ∗  𝐶𝑀𝑖𝑥
∗  of Correction Factor are introduced in 3.3. They are used to reduce FM 

for iid violations. 

(1) Cmin
∗∗ =

𝑭(𝒎𝒊𝒏)

𝑪(𝒎𝒊𝒏)
=

−2 log(0.05 0.05 0.05 0.05 0.05),𝛼=0.05

𝑥10,
2 (𝑝=𝛼=0.05,𝑛=5)

= 1.64, using minimum(𝑝5
∗)=0.05. 

(2) 𝐶𝑚𝑎𝑥
∗∗ =

𝐹(𝑚𝑎𝑥)

𝐶(𝑚𝑎𝑥)
=

−2 log(0.2 0.2 0.2 0.2 0.2),,α=0.2

𝑥10,
2 (𝑝=𝛼=0.2,𝑛=5)

=1.29, using maximum(𝑝5
∗)=0.2. 
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 Since individual weights are 𝐶∗∗=1 for n=1 (see first row, Table 1), we use an alternative weight. 

(3) 𝐶𝑀𝑖𝑥,5
∗∗ =

𝐹𝑖

𝐶𝑖
=1.64, 1.52, 1.46, 1.44. 1.20 (see, 𝐶∗∗ in Table 1, row 5 for n=5 and corresponding columns of p= 0.05, 

0.08, 0,09, 0.10, 0.20.                                                             

𝑇𝑆∗∗ for Fisher’s Model result (F) is adjusted by this correction factor (𝐶∗∗) to obtain the effective test statistics 

(𝐸𝑇𝑆∗∗) as shown below.  

First, we find the minimum value of 𝑝5
∗∗ = (05,.08, 0,09 0.10, 0.20, which is 0.05, and use 0.05 five times to find FM 

(F) as explained the reason why we use the same number 0.05 five times. Then adjust FM by  Cmin
∗∗ =1.64 (Table 1, 

row n=5 and column p=0.05). We have 

FM(min=0.05) =  -2 log(0.05 0.05 0.05 0.05 0.05) = 2(5 x 2.99573) =29.9573, 

ETS**(min=0.05)= 
𝑇𝑆∗(0.05)

 Cmin=0.05
∗∗ =  

29.9573

1.64
= 𝟏𝟖. 𝟐𝟔𝟔𝟕. 

Second, similarly, the maximum value 0.2 is used five times in FM, and FM(max=0.2)  

is adjusted by 𝐶𝑚𝑎𝑥=0.2
∗∗ =1.29 (Table 1, row n=5 and column p=0.2). We have 

FM(max=0.2)= -2 log(0.2 0.2 0.2 0.2 0.2)= 2(5x 1.60944)=16.0944. 

ETS**(max=0.2)=
𝑇𝑆∗(0.2)

𝐶𝑚𝑎𝑥=0.2
∗∗ = 

16.0944

1.29
 = 12.4763. 

Third, we obtain FM(mix) of individual value adjusted by individual combined weights 𝐶𝑖
∗∗ = 

1.4, 1.52, 1.46,1.44,1.20 (Table 1, row 5, n =5 and columns corresponding to 0.05, 0.08, 0.09, 0.1, 0.2). The main 

reason why we use individual combined weights is, when n=1, individual weights 𝐶∗∗=1 regardless of p-vales. One 

sample is always independent so both FM and assumed chi-square distribution remain the same for given test level 

when sample size is one (see Table 1, row 1, 𝐶∗∗=1 for all p=values). We have 

FM(mix) = -2 {log 0.05 + log 0.08 + log 0.09 + log 0.1 +log 0.2}, and each term is divided by the corresponding 

individual combined weight for the given reason. Hence, we have been  

ETS**(mix)= 
−2 {log 0.05}

1.64
 + 

−2 {log 0.08}

1.52
 +

−2 {log 0.09}

1.46
 +

−2 {log 0.1}

1.44
 +

−2 {log 0.2}

1.20
 

=  
2𝑥2.99573

1.64
+

2𝑥2.5257

1.52
+

2𝑥2.408

1.46
+

2𝑥2.3026

1.44
+  

2𝑥1.6094
1.20  

=
5.99146

1.64
  +

5.0514

1.52
  + 

4.816

1.46
 +

4.6052

1.44
 + 

3.2188

1.20
 

=3.4521+3.3233 +3.2986 +3.1981 +2.6823 =15.9544. 

Results show that  

ETS**(max=0.2)= 12.4763  < ETS**(mix) =15.9544  < ETS** (min=0.05)= 𝟏𝟖. 𝟐𝟔𝟔𝟕.  

ETS**(min=0.05)=18.2667 is significant at 𝛼 =0.05 of  𝑥10,
2  (=18.307), but other two, ETS**(max=0.2)= 12.4763 

and  ETS**(mix) =15.9544 are not significant.  

In the beginning of this example, Fisher’s Model gives FM=23.6826, without correction, which is significant at 𝛼 = 

0.01 of 𝑥10
2  (23.209). This FM is very much inflated when compared to above corrected results. Only one 

not-corrected value 29.9537 of FM(min=0.05) is bigger than the not-corrected FT=23.6826.    

When the Maximum, here 0.2 or Minimum, 0.05, of p-values are too far away from the mean or relatively too small 

or too big, one may prefer the mixed value, ETS**(mix)=15.9544, for statistical inference, which is not significant at 

𝛼 = 0.01 of 𝑥10
2  (23.209), even at 𝛼 =0.05 of  𝑥10,

2  (=18.307). 

4.2 Example 2. P-values from Random Groups of a Large Sample 

When the existing methods, for example normal test or student t-test, are used for statistical inference, we encounter the 

large sample problems (Choi and Nandram, 2021). The reason is such test is the function of its variance, which in turn, 

function of sample size. The variance becomes too small when the sample size is large or too large when sample size is 
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too small. We consider the case of too large sample size, and test statistic becomes significant for the sample size over 

certain level (Choi and Nandram, 2021). 

4.2.1 The Large Sample Problem  

We indicate the large sample problem and show a solution using Random Group Method (Choi and Nandram, 2021). A 

concrete example is as follows. Let 𝑥1, 𝑥2, …,𝑥𝑛 be the realization of iid random variables 𝑋1, 𝑋2, …,𝑋𝑛, distributed 

as N(𝜇, 𝜎2), where 𝜎2 is known and inference is required about 𝝁. We test the null hypothesis 𝐻0: 𝜇 = 𝜇0 against 

alternative 𝐻1: 𝜇 < 𝜇0. Let 𝒙𝟎 be observed value of the sample mean, 𝑥̅. Then the p-value of the test is 

P(𝒙 ≤ 𝒙𝟎  | 𝑯𝟎) 

= P(
𝑥 − 𝝁𝟎  

𝛔/√𝒏
≤

𝒙̅𝟎− 𝝁𝟎  

𝛔/√𝒏
| 𝑯𝟎) 

= 𝚽{√𝒏 (𝒙𝟎 −  𝝁𝟎) } 

Here 𝚽(. ) is the cdf of standard normal random variable. Therefore, if n is very large and 𝒙𝟎 ≤  𝝁𝟎, p-value ≈ 𝟎 

which shows large sample problem (Choi and Nandram, 2021). We use the following steps to solve this problem.  

Step one 

We divide a large sample of size n into a number of random groups so that each can be tested by the usual method. 

Let 𝒙𝒏 = 𝑥1, 𝑥2, …. , 𝑥𝑛 be a large sample of size n from N(𝜇, 𝜎2). When n is a large number, we cannot do the 

usual test. We want to divide the sample into h smaller samples of size m, 1< m < n, using Random Group Method. 

The smaller samples enable us to perform a traditional test (e.g., Normal test, t-test) for testing a hypothesis, 𝐻0: 

𝜇 = 𝜇0. Choi and Nandram (2021) showed how to divide the large sample into h smaller samples. Each sample 

provides one test statistic 

𝑡𝑖= T(𝑓(p| 𝜇, 𝜎2), 𝑚𝑖, 𝐻0, 𝛼), 𝑚𝑖 =m,  i= 1,…,h. 

and the h test statistics provide h test scores 𝑝1, … , 𝑝ℎ at the test level 𝛼𝑖 = 𝛼, i=1, …,h. 

Step two 

When h p-values are iid variables, we can use Fisher’s Model is assumed to be chi-square 2h degrees of freedom. We 

assume random groups are independent, we may assume h p-values are also independent, p = 𝑝1, … , 𝑝ℎ  are distributed 

as chi-square distribution, f(p|𝜃). We can make statistical inference with chi-square test result. However, If the p-values 

are correlated, we can use the correction factor in Table 1, to correct such impacts on Fisher’s Model value.  

Numerical example 

A student presented data analysis of three sets of data; each includes 1500 persons’ dental records. All the three t-tests of 

hypothesis 𝐻0: 𝜇 = 𝜇0 were significant due to large sample size. Suggestion was to randomly divide 1.500 into 50 

groups of 30 persons. If out of 50 t-tests, 45 tests (90%) of the 50 tests were significant at p=0.05, then it is also 90% 

significant for the 1500 persons’ data at the same level at p=0.05 (Choi and Nandram, 2021). Similarly, it can be done 

for the remaining two groups.  

5. Bayesian Model for Combining P-values 

The Bayesian paradigm has the advantage of coherence, but the calculation of p-values is incoherent within the 

Bayesian paradigm because the computation of a tail area of a posterior distribution is not coherent. This is why 

Bayesians have hardly worked on this problem; see Casella and Berger (1987) and the discussions that followed. The 

combined p-value is an appropriate posterior mean, 𝜇, say. However, note that 𝜇 is a parameter in the Bayesian 

paradigm, and it is a random variable. 

It is not simple to include a correlation among the p-values since the sample of p-values is small. For the non-Bayesian 

method, we have constructed a correlation based on a distance measure (see Appendix B); otherwise, it is impossible to 

estimate this correlation. Here we will separate the data into groups to get an intra-cluster correlation. 

The problem of combining a number of p-values, from the studies on the same subject, is one of data integration, which 

is currently a hot topic, see, for example, Nandram et al (2021) for model-based methods using both non-Bayesian and 

Bayesian approaches. 

5.1 The Case of Independence 

Suppose that we have the results of p-values 𝑝̂1,…, 𝑝̂𝑛 from n data sets, and these values are independent. We can also 

use an appropriate prior to reflect previous procedures to obtain p-values.  
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Let iid 𝑝̂1,…, 𝑝̂𝑛 ~Beta{𝜇
1−𝑧

𝑧
, (1 − 𝜇)

1−𝑧

𝑧
)}  and E(𝑝̂𝑖) = 𝜇, 0≤ 𝜇, 𝑧 ≤ 1. 

This is a useful reparameterization of the parameters of the Beta distribution in which both (𝜇, 𝑧) lie in (0,1), which 

leads to easy computation. See Nandram (2016) where this reparameterization was first introduced. A priori, we assume 

that 

𝜇, 𝑧~U(0,1), 

essentially a non-informative prior.  

We want to make inference about 𝜇, combined p values. Letting  𝑝̂𝑎 = ∏ 𝑝̂𝑖
𝑛
𝑖=1 , and 𝑝̂𝑏 = ∏ (1 − 𝑝̂𝑖

𝑛
𝑖=1 ), the posterior 

density of  (𝜇, 𝑧) is 

𝜋(𝜇,𝑧|𝑝̂)~ [
Γ(

1−𝑧

𝑧
)

Γμ(
1−𝑧

𝑧
)Γ(1−μ)(

1−𝑧

𝑧
)
]

𝑛

𝑝̂𝑎

𝜇
1−𝑧

𝑧
  −1

𝑝̂𝑏

(1−𝜇)
1−𝑧

𝑧
  −1

, 0≤ 𝜇, 𝑧 ≤ 1. 

For the samples from the posterior density, one can also use the Gibbs sampler (Casella and George,1992) to obtain 𝜇 

and 𝑧 for given p-values; but we use a random sampler that does not need any convergence monitoring.  

The posterior summaries we use are the posterior mean (PM), posterior standard distribution (PSD), posterior 

coefficient of variation (PCV) and 95% highest density interval (HPDI). 

Consider Example 1 on combining the five p-values, .05, .08, ,09, .10, .20. Applying our method based on the Beta 

model to these p-values, we computed the combined p-value, 𝜇 , and the posterior summaries are  PM=.121, 

PSD=.032, PCV=.266, HPDI=(.069, .191). Therefore, the null hypothesis is not significant at the 5% significant level 

and perhaps not even at 10% significant level. 

Table 2 has results of a small simulation study, which is used to provide many different examples. We generated n 

p-values, n=10,…,100, and we compare the combined p-value, the posterior mean of 𝜇; we also look at z. Again, we 

show posterior summaries in Table 2 of the two variables, 𝜇 𝑎𝑛𝑑 𝑍, by sample size on the columns, and posterior mean 

(PM), posterior standard deviations (PSD), coefficient of variations (PCV) and 95% HPDIs of 𝜇 and z on the rows. 

Again, not that 𝜇-values represent the posterior mean of the p-values, which range 0.05529 < 𝜇 < 0.09157. Note that 

the PSDs are decreasing as the sample size n increases. This also gives smaller PCVs and narrower 95% HPDIs e.g., at 

n=2 the 95% HPDI for 𝜇 is (.02945, .16355). 

Table 2. Posterior summaries of 𝜇 𝑎𝑛𝑑 𝑧 including intervals 

Sample size n  PM PSD PCV 95% Lower bound 95% Upper bound 

n=10  𝝁 0.09157 0.03414 0.37282 0.03945 0.16355 

 𝑧 0.09908 0.05641 0.56934 0.02105  0.20441 

n=20  𝝁 0.06136  0.01395 0.22729 0.04007  0.09056 

 𝑧 0.05462  0.02196 0.40201 0.02156  0.09700 

n=30  𝝁 0.05716 0.01028 0.17992 0.04096  0.07916 

 𝑧 0.04721 0.01501 0.31800 0.02101 0.07358 

n=40  𝝁 0.05810 0.00821 0.14122  0.04099 0.07149 

 𝑧 0.03979 0.01092 0.27439 0.02117 0.06064 

n=50  𝝁 0.05596 0.00675 0.12061 0.04206 0.06934 

𝑧  0.03771 0.00901  0.23902 0.02110   0.05349 

n=60  𝝁 0.05545 0.00640 0.11540 0.04149 0.06795 

        𝑧 0.03787 0.00818 0.21608 0.02107 0.05085 

n=70  𝝁 0.05975 0.00616 0.10310 0.05117 0.07057 

   𝑧 0.04001 0.00760  0.19006 0.03101 0.06021 

n=80  𝝁 0.05529 0.00616 0.11149 0.04092  0.06617 

       𝑧 0.04357 0.00808  0.18538 0.03098 0.05878 

n=90  𝝁 0.05751 0.00571 0.09927  0.04879 0.07038 

       𝑧 0.04436 0.00798  0.17976 0.03099 0.05867 

n=100 𝝁 0.05859 0.00573 0.09778 0.05099  0.07015 

 Z 0.04580 0.00778 0.16985 0.03101 0.05922 

We may be able to include all information of first stage as prior replacing 𝜇, 𝑧~U(0,1). This 
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Will be done in a future study. We can use independent Beta distributions with specified parameters, and this will 

depend on the amount of information available. 

To motivate the case, where we include an intra-class correlation, we provide another Bayesian analogue of Fisher’s 

model of combining p-values. Let 𝑝𝑖, i= 1,…,n, denote the n p-values, and let 𝑞𝑖 = log{𝑝𝑖 (1 −  𝑝𝑖)}⁄ , independent, 

then a simple model is 

                                   𝑞𝑖 | 𝜇, 𝜎2 ~ Normal(𝜃, 𝜎2)  

                                   𝜋(𝜃, 𝜎2) ∝ 
1

𝜎2 . 

This is a standard non-informative prior (a version of Jeffrey’s objective prior), but as always leading to proper posterior 

distribution for (𝜃, 𝜎2). 

Here the combined p-value is ∅ = 𝑒𝜃 (1 + 𝑒𝜃⁄ ). The posterior density of 𝜃 is a Student’s t density, and inference 

about ∅ is obtained by sampling the Student’s t density and computing ∅. For the example on the five p-values, for 

inference about ∅, we have posterior summaries, which are PM=0.099, PSD=0.033, PCV=0.334, HPDI=(0.044, 0.162). 

Again, the test is not significant at the 1 % significant level. 

5.2 Including Correlation  

We add an intra-cluster correlation as follows. We find all 𝑙 = n(n-1)/2 distinct pairs of 𝑞𝑖, …,𝑞𝑛, and we form a 

Bayesian one-way random effect model, each cluster having just two values. Let 𝑦𝑖1, 𝑦𝑖2, i= 1,…,𝑙, denote the distinct 

pairs which form the clusters. Then we assume the model,   

𝑦𝑖1, 𝑦𝑖2 | 𝜇𝑖, 𝜎2 𝑖𝑛𝑑̃ 𝑁({𝜇𝑖, (1- 𝜌)𝜎2} 

𝜇𝑖 | 𝜃, 𝜎2, 𝜌  𝑖𝑛𝑑̃ N(𝜃, 𝜌𝜎2),  i= 1,…,𝑙, 

𝜋(𝜃, 𝜎2, 𝜌) ∝ 
1

𝜎2. 

It is important to note that cor(𝑦𝑖1, 𝑦𝑖2 | 𝜗 , 𝜎2, 𝜌) = 𝜌 in (0,1). We have actually used the traditional 

non-informative prior for 𝜋(𝜃, 𝜎2, 𝜌); this prior causes no impropriety issues (see Nandram, Toto and Choi, 2011) for 

proofs. 

Also, note that we are actually assuming a composite likelihood because the pairs are not independent (i.e., each pair 

has one common unit), for example, see Varin, Reid and Firth (2011) for a discussion of composite likelihood. Again, 

the combined p-value is ∅ = 𝑒𝜃 (1 +  𝑒𝜃⁄ ). This is the same as for the case when no correlation is assumed. 

Using Bayes’ Theorem, the joint posterior density is  

                                      𝜋(𝝁, 𝜃, 𝜎2, 𝜌 | q) =  

                    𝜋1(𝝁| 𝜃, 𝜎2, 𝜌 | q) 𝜋2( 𝜃 | 𝜎2, 𝜌 | q) 𝜋3( 𝜎2 | 𝜌 | q) 𝜋3( 𝜎2 | 𝜌 | q) 𝜋4( 𝜌 | q).  

Here,  𝜋1(𝝁| 𝜃, 𝜎2, 𝜌 | q), 𝜋2( 𝜃 | 𝜎2, 𝜌 | q), and  𝜋3( 𝜎2 | 𝜌 | q) , have simple forms, and 𝜋4( 𝜌 | q)  has 

nonstandard form but it can be sampled using a grid method (e.g., Nandram, Toto and Choi, 2011).  It is also true that 

the joint posterior density is proper, provided 𝑙 ≥ 2,  see Nandram, Toto, and Choi (2011). Therefore, it is easy to 

sample the posterior density of 𝜃 and so ∅. To make inference about ∅, we draw 10,000 samples of the posterior 

density of ∅. No monitoring is required because a Markov chain Monte Carlo sampler is not used. 

As summaries of the posterior density of ∅, we have PM=0.078, PSD=0.017, PCV=0.217, and the 95% HPDI= (0.048, 

0.112). Therefore, the combined test is not significant at 5% significant level. Note that when we assume no correlation, 

PM=0.099 a bit larger, and the HPDI= (0.044, 0.162) a bit wider. The posterior summaries of 𝜌 are PM=0.147, 

PSD=0.125, PCV=0.851, 95% HPDI=(0.001, 0.603); so, there is a small correlation.  

As another example, when we increased the number of p-values to 10 (i.e., duplicate the five p-values to get 

05, .08, ,09, .10, .20, 05, .08, ,09, .10, .20); there is an increase in precision but the results remain essentially the same.  

The posterior summaries of 𝜌 are PM= 0.147, PSD= 0.125, PCV= 0.851, 95% HPDI= (0.001, 0.393); so that there is a 

small correlation, not much of a difference 

6. Conclusion 

We have used a model combine test scores on the same topic. Here, we assume a distribution for the data model. We 

compare the two test statistics, one from assumed distribution h(.) of iid-data and other from pseudo-distribution g(.) of 
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non-iid data. We define the differences between them as the ratio of the two. As the actual data may include impacts of 

not only correlation but also other difference of iid and non-iid conditions. We describe how to reduce the test statistics 

of non-iid data to make statistical inferences with the assumed distribution of iid variables.  

We have considered two-stage procedure. The first stage is sampling and pre-processing to obtain the p-values. The 

second stage is the analysis of the first stage results. 

Suppose that h independent samples. 𝑦1, …, 𝑦𝑛𝑖
, i=1,…,h, are randomly taken from the population for an investigation 

on a same subject and suppose the sample follows true distribution f(y|𝜃). Each sample provides one test result from 

significant testing at a critical level 𝛼 under a null hypothesis, providing test statistics. 

𝑡𝑖 = T(𝑓(𝑦𝑖|𝜃), 𝐻0,𝛼, 𝑛𝑖), 𝛼𝑖=𝛼, i=1,…, h, 

These test statistics provide h p*-values,  

𝛼= 1 - ∫ 𝑓(𝑦𝑖|𝜃)
𝑡𝑖

−∞
 d𝑦𝑖 , i = 1,…,h. 

Some assume the two stages are connected and the second stage is a continuation of the first. If the information such as 

sample design, sample, 𝑓(𝑦𝑖|𝜃), 𝐻0, 𝛼, and sample size 𝑛𝑖 are available, we can use this information in the second 

stage to combine the  𝑝𝑖
∗-values to increase efficiency. Yoon et al.(2021) incorporate sample size 𝑛𝑖 to combine 

p*-values. If one wants to include other information in Bayesian modeling, it is possible to use them as prior 

information.  

The validity check of these estimations can be added in the future extension using the variance or coefficient of 

variation, and 95% confidence interval of each estimation through simulation. 

It will be useful to carry out further study of the combination of correlated p-values in the Bayesian paradigm. For one 

thing, it will allow us to incorporate further information that can improve posterior inference.  When available, 

information such as sample size and site covariates can be included in the combination of correlated p-values. 
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Appendix A, outline for the proof of Lemma  

Correlation, Model 1 

Consider the correlated random variables 𝑝∗ = (𝑝1
∗, … , 𝑝𝑛

∗ ). Choi and McHugh (1989) show how to adjust the 𝑇𝑆𝛼
∗  

based on correlated variables in Chi-square testing. Test Statistic (𝑇𝑆𝛼
∗ ) for correlated data 𝑝∗ is largely inflated and 

corrected by the correction factor C= [1 + 𝜌(n-1)] , 𝜌 is the correlation among n 𝑝∗-values. 1 <  𝐶 < ∞. 

𝐸𝑇𝑆𝛼
∗  = 

𝑇𝑆𝛼
∗

𝐶
. 𝐸𝑇𝑆𝛼

∗  can also be obtained by effective sample 𝑛𝑒 of n, 𝑛𝑒 = 
𝑛

𝐶
. (Choi, 1980).  

Non-iid case, correlation and other non-iid violations, Model 2  

Here, we try to find the non-iid problem of 𝑝∗∗ = (𝑝1
∗∗, … , 𝑝𝑛∗

∗∗), indirectly through its test statistics 𝑇𝑆∗∗, which is 

compared to test statistic TS of iid variables. The total difference between the two test statistics, 𝑇𝑆∗∗ and  TS, can be 

expressed as the ratio of these two, 𝐶∗∗ =
𝑇𝑆∗∗

TS
 , is used to get effective test statistics (ETS), which is used for statistical 

inference with ℎ(𝑝|𝜃).  

𝐶∗∗ =
𝑇𝑆∗∗

TS
 = 

T∗(g(𝑝∗∗|𝜃), 𝐻𝑂
∗∗,𝛼∗∗,𝜌,𝑛∗∗),

T(ℎ(𝑝|𝜃),𝛼,𝑛)
.  

The ratio, 𝐶∗∗ =
𝑇𝑆∗∗

TS
, 0 <  𝐶∗∗ < ∞  We consider 𝐶∗∗ only on 1 ≤ 𝐶∗∗ < ∞, for positive correlation or 𝑇𝑆∗∗> TS. 
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We do not consider or ignore 𝑇𝑆∗∗ < TS on 0 <  𝐶∗∗ < 1, for it does not reduce inflated 𝑇𝑆∗∗ for the impacts of 

non-iid violation (see Proof below). It happens also for negative correlation in C= [1 + 𝜌(n-1)]  (see Method 1).  

To prove 𝑇𝑆∗∗> TS, consider two disjoint intervals, (0 <  𝐶∗∗ < ∞ ) ={(0 <  𝐶∗∗ < 1) 𝑈 (1 ≤ 𝐶∗∗ < ∞)}. 

Let the effective test statistic be 𝐸𝑇𝑆∗∗ =  
 𝑇𝑆∗∗

𝐶∗∗ , and correction factor be 𝐶∗∗ =
𝑇𝑆∗∗

TS
. 

It is easy to see that 𝐸𝑇𝑆∗∗ <  𝑇𝑆∗∗ from 𝐸𝑇𝑆∗∗ =  
 𝑇𝑆∗∗

𝐶∗∗ , 𝑇𝑆∗∗ < TS from 𝐶∗∗ =
𝑇𝑆∗∗

TS
 , on the interval (0 <  𝐶∗∗ < 1).  

Similarly, 𝐸𝑇𝑆∗∗ ≥  𝑇𝑆∗∗  and 𝑇𝑆∗∗ > TS, on the other interval (1 ≤ 𝐶∗∗  < ∞). 

The difference between 𝑇𝑆∗∗ and TS,  𝐶∗∗  =
𝑇𝑆∗∗

TS
 =. 

T(g(𝑝∗∗|𝜃), 𝐻𝑂
∗∗,𝛼∗∗,𝜌,𝑛∗∗),

T(ℎ(𝑝|𝜃),𝛼,𝑛)
, 𝐶∗∗  is less than 1 or greater than 1 

depending also on n, p = 𝛼, and the increasing or decreasing speed of 𝑇𝑆∗∗ and TS (see Table 1). 

If all the above conditions of 𝑇𝑆∗∗ and TS are same except 𝜌 of 𝑝𝑖
∗∗𝑠, ignoring 𝐻0

∗, and 𝛼 = 𝛼∗∗=𝑝∗∗, and n = 𝑛∗∗, 

the proof depends only on correlation 𝜌 : 0≤ 𝜌(𝑝𝑖
∗∗, 𝑝𝑖′

∗∗) ≤ 1,  i ≠  𝑖′, for i, 𝑖′ = 1, …, n. Model 1 can be used in this 

case. 

(1)  If 𝜌 = 0, 𝐶∗∗ = 
𝑇𝑆𝛼∗∗

∗∗ .

𝑇𝑆𝛼
.= 

T(g(𝑝∗∗|𝜃),,𝛼∗∗,𝜌,𝑛∗∗)

T(ℎ(𝑝|𝜃),𝛼,𝑛)
 = 1,. It is also true 𝐶∗ = 1 when n=1. The sample size one

 is always independent, 𝜌 = 0 and T(ℎ(𝑝|𝜃), , 𝛼, 𝑛 = 1)= (g(𝑝∗∗|𝜃), , 𝛼∗∗, 𝜌 = 0, 𝑛∗∗ = 1) for g(.) =h(.)

 and 𝛼 = 𝛼∗∗=𝑝∗∗=p. This is the only time that FM for g(.) assumed correctly to be distributed as c

hi-square C for h(.) 

(2)  If 0< 𝜌 ≤ 1 and 2≤ 𝑛, the correction factor C*=1 + 𝜌(𝑛 − 1), 1 < 𝐶∗  < ∞   (Choi and McHugh 19

89) and, if 𝛼 = 𝛼∗∗= p =  𝑝𝑖
∗∗, 𝑖 = 1 … , 𝑛∗∗, 𝑎𝑛𝑑 𝑛∗∗ = 𝑛  , the effective test statistic  𝐸𝑇𝑆𝛼∗∗

∗ = 

𝑇𝑆𝛼∗∗
∗∗

𝐶∗ =  
𝑇𝑆𝛼∗∗

∗∗

1+𝜌(𝑛−1)
, 𝐶∗  reduces the correlation impact of 𝑇𝑆𝛼∗∗

∗∗ .  

For example: If the correlation among the 5 p-values of data 0.05, 0.08, 0.09, 0.10, 0.20, is 𝜌=0.42 (Appendix 

B). The correction factor 𝐶 = 1 + 𝜌(𝑛 − 1)  =  1 +  0.42(5 − 1)  =  2.68 and the Fisher’s Model Test 

Statistic FM=  𝑇𝑆𝛼∗∗
∗∗ =23.68 is reduced as, 𝐸𝑇𝑆𝛼∗∗

∗∗ =  
23.68

2.68
=8.8361, this effective Test Statistic not significant 

at 𝛼 =0.01 of 𝑥10,
2  (=23.209).  

    

  If 𝜌 = 1, for n= 5, C= [1 + 𝜌(𝑛 − 1)] = 1 +  1.0(5 − 1) = 5.00, which is the largest correction value for 

any given n, and it ,in turn, gives the smallest  𝐸𝑇𝑆𝛼∗∗
∗  =  

23.68

5
 = 4,74. 

      (3) We can also use the effective sample size 𝑛𝑒
∗ ,  𝑛𝑒

∗  = 
𝑛∗

𝐶∗ , 1 ≤ 𝐶∗ < ∞ to obtain              𝐸𝑇𝑆∗ (Choi, 

1980) .  

 

(4) The turning point also depends on the increasing or decreasing speed of 𝑇𝑆𝛼∗∗
∗∗  and 𝑇𝑆𝛼 , 𝑇𝑆𝛼∗∗

∗∗  < 𝑇𝑆𝛼  

when 0 < 𝐶∗∗ < 1 and 𝑇𝑆𝛼∗∗
∗∗  > 𝑇𝑆𝛼  when 1 < 𝐶∗∗  < ∞ . We can ignore the case  𝑇𝑆𝛼∗∗

∗∗  < 𝑇𝑆𝛼  𝑜𝑛 0 <

𝐶∗∗ < 1, as it happens for negative correlation of 𝑝∗∗ variables. The change point from less than 1 to more than 

1 also depends on the sample size 𝑛∗∗ and size of 𝑝∗∗, for example, Table 1 shows the  turning point 

is  𝑎𝑡 𝑝∗∗= 0.5 in the column and for all n on the rows,  
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Appendix B, the correlation of one sample 

For one group of data including n variables 𝑝1, … , 𝑝𝑛, currently there is no formula available to calculate 𝜌 between the 

variables. We define 𝜌(𝑝𝑖𝑝𝑗) =
𝟏

|𝒑𝒏−𝒑𝟏|
 

∑ |𝒑𝒊−𝒑𝒋|𝒏
𝒊>𝒋

𝒏(𝒏−𝟏)/𝟐
 for the continuous variables, 𝑝1, … , 𝑝𝑛. 

 For example, 𝑝 = (05,.08, 0,09, 0.10, 0.20), 

 𝜌(𝑝𝑖𝑝𝑗) =
(0.03+ 9.04+ 0.05+ 0.15)+( 0.01+ 0.02+ 0.12)+(0.01+ 0.11)+0.1

|0.2−0.05)/|(5𝑥4)/2
 =

0.27+0.15+0.12+0.1

0.15𝑥 10
=  

0.64

1.5
= 0.4207 

 

Appendix C, the three candidates of correction factor  

TS = T(ℎ(𝑝|𝜃),𝛼, 𝑛) of iid random variables p = (𝑝1 , … , 𝑝𝑛) remain the same for given   test level 𝛼 and sample 

size n, while TS**= T(g(𝑝∗∗|𝜃),  𝐻𝑂
∗∗, 𝛼∗∗, 𝜌, 𝑛∗∗) on the non-iid variables 𝑝∗∗ = (𝑝1

∗∗, … , 𝑝𝑛∗
∗∗)   

(1) 𝐶𝑀𝑖𝑛
∗∗  uses the minimum value of 𝑝∗∗ = (𝑝1

∗∗, … , 𝑝𝑛∗
∗∗) , all n** valuers are the same 𝑝𝑚𝑖𝑛.

∗∗ = 𝑀𝑖𝑛(𝑝∗∗) 

= 𝑝𝑚𝑖𝑛,𝑖
∗∗ , i=1,…, 𝑛∗∗. to obtain the test statistic (TS**). The same minimum values are used to induc

e the maximum correlation and in turn conservative TS**. (see Example 1 and Table 1)  

𝐶𝑀𝑖𝑛
∗∗ =  

𝑇𝑆𝜶∗,𝒎𝒊𝒏
∗∗

𝑇𝑆𝛼

=
 𝑇(𝑔(𝑝𝑚𝑖𝑛,

∗∗ , … , 𝑝𝑚𝑖𝑛,
∗∗ |𝜃),  𝐻𝑂

∗∗, 𝛼∗∗, 𝜌, 𝑛∗∗) 

𝑇(ℎ(𝑝|𝜃), 𝛼, 𝑛) 
. 

(2)  𝐶𝑀𝑎𝑥
∗∗  uses the maximum value of 𝑝∗∗ = (𝑝1

∗∗, … , 𝑝𝑛∗
∗∗) , similarly all n** valuers are  𝑝𝑚𝑎𝑥.

∗∗ = 

𝑀𝑎𝑥(𝑝∗∗) = 𝑝𝑚𝑎𝑥,𝑖
∗∗ , i=1,…, 𝑛∗∗.  

 𝐶𝑀𝑎𝑥
∗∗ =  

𝑇𝑆𝛼,𝑚𝑎𝑥
∗∗

𝑇𝑆𝛼

, =  
𝑇(𝑔(𝑝𝑚𝑎𝑥.

∗∗ , … , 𝑝𝑚𝑎𝑥.
∗∗ |𝜃),  𝐻𝑂

∗∗, 𝛼∗∗, 𝜌, 𝑛∗∗)

𝑇(ℎ(𝑝|𝜃), 𝛼, 𝑛 )
. 

       (3)  𝐶𝑀𝑖𝑥
∗∗ =   𝐶𝑀𝑖𝑥,1

∗∗ +,…, + 𝐶𝑀𝑖𝑥,𝑛∗∗
∗∗ ,  

 where 𝐶𝑀𝑖𝑥,𝑖
∗∗  =  

𝑇𝑆,𝒊
∗∗

𝑇𝑆𝑛
=

(𝑇(𝑔(𝑝𝑖
∗∗|𝜃), 𝐻𝑂

∗ ,𝛼∗∗,𝜌,𝑖))

𝑇𝑖(ℎ(𝑝𝑖|𝜃),𝛼,𝑛∗∗)
. 𝑖 = 1, … , 𝑛∗∗.  
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