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Cryptographic frameworks depend on key sharing for ensuring security of data. While the keys in cryptographic frameworks must
be correctly reproducible and not unequivocally connected to the identity of a user, in biometric frameworks this is di�erent. Joining
cryptography techniqueswith biometrics can solve these issues.Wepresent a biometric authenticationmethod based on the discrete
logarithm problem and Bose-Chaudhuri-Hocquenghem (BCH) codes, perform its security analysis, and demonstrate its security
characteristics. We evaluate a biometric cryptosystem using our own dataset of electroencephalography (EEG) data collected from
42 subjects. �e experimental results show that the described biometric user authentication system is e�ective, achieving an Equal
Error Rate (ERR) of 0.024.

1. Introduction

Brain computer interface (BCI) is a highly growing 
eld of
research with application in healthcare systems (from fall
prevention to neuronal rehabilitation) to educational, self-
regulation, production, marketing, and security as well as
games and entertainment. BCI aims to provide a channel of
communication that does not depend on the usual use of
peripheral nerves and muscles [1]. While the main intended
target application for BCI research is the development of
motor function independent prosthetic devices for impaired
patients, other applications of BCI, such as those for learning
[2], gaming [3, 4], or entertainment [5], raise the need for
ensuring the security and privacy of subjects using BCI sys-
tems. BCI systems are based onmeasurement of brain activity
on the surface (in case of noninvasive BCI) or inside (in case
of invasive BCI) of the human skull using electrodes. �e
results of the measurement represent the sum of electrical
impulses emitted by a large number of brain’s neurons. Non-
invasive EEG signal is recorded by attaching the electrodes
to the head of a subject according to a given map such as
the 10–20 international system for the placement of EEG
electrodes.

Recently, BCI applications for biometrics have attracted
increased attention from the researchers. Biometrics provides
means for identifying people based on their physiological
characteristics [6]. Recently, there has been tremendous
growth in research on cryptography and biometric frame-
works because of incredible need for data security in
numerous applications, such as e-commerce, e-health, e-
government, e-voting, blockchain, law enforcement, digital
forensics, and homeland security. �e goal is to verify the
identity of a subject using some characteristic of a subject.
In cryptographic frameworks, users use their passwords
or secret keys to protect their con
dential data. However,
the use of passwords for identi
cation has some well-
known drawbacks: textual passwords can be spied over
or cracked, and secret keys are too long and di�cult to
memorize and can be stolen if stored somewhere. �e down-
side of cryptography is that veri
cation strategies are not
unequivocally connected to the person identity. Unlike cryp-
tography based authentication methods, biometrics using
behavioural and physiological characteristics such as iris,

ngerprints, electroencephalography (EEG) data, face, palm,
voice, and gait, is convenient and cannot be forgotten or
lost.
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�e EEG-based subject identi
cation is relatively new.
�e advantages of using EEG for biometrics are its low expos-
ability (cannot be casually obtained or stolen by external
observers) and resistance to forced extraction because under-
stress brain activity changes [7]. �ey also can be used by
disabled patients or users missing some physical trait. E�orts
to develop biometric methods and systems based on the
EEG have targeted the development of subject condition
monitoring tools, for example, for detection of sleep apnea
[8], schizophrenia [9], or epilepsy [10]; the creation of BCI
systems to assist disabled people [11]; and marketing [12].
Analysts predict that the global EEG and electrocardiography
(ECG) biometrics market is to expand at a compound
annual growth rate of 12.37% during the period 2016–2020
[13].

�e suitability of using EEG for privacy and security
applications can be attributed to morphological, anatomical,
and functional plasticity (behaviour-related lasting changes
in functional connections) traits [14], which contribute to dis-
criminability between subjects [15]. Several studies (mainly
from the 
elds of human physiology and genetics) have
con
rmed that the spectral characteristics of the EEG alpha
waves (in the 8–12Hz range, which re�ect relaxation and
disengagement) and the beta waves (in the 12–30Hz range,
related to action and concentration) of EEG show the
strongest heritability relationship [16].

�e di�culties related to using EEG data are its instability
over time (the EEG permanence problem [17]). It is still
di�cult to achieve high accuracy of EEG-based biometric
systems, which motivate researchers to explore new EEG
data analysismethods.However, the research community still
lacks knowledge on speci
c discriminant features of EEG
suable for biometry [18]. Up to now, the EEGpower spectrum
features were used to achieve relatively good classi
cation
performance [18]. Several methods, which focus on the con-
cepts and methods adopted from the network science, such
as functional connectivity [19] and network organization
[20], have been proposed. Fuzzy commitment (FC) scheme
[21] can be used as a theoretical background for combining
cryptography and biometrics. In the FC scheme, a secret
key is linked to the reference biometric template, and the
di�erence vector is calculated in such way that the secret key
may be restored using the di�erence vector and the query
biometric template. Another approach is a fuzzy vault (FV)
based on polynomial reconstruction [22]. �e FC and FV
schemes have been applied to biometrics before [23, 24].

Here we propose a secure EEG-based cryptographic au-
thentication scheme based on the commitment scheme
adopted from [25], provide a theoretical analysis of the secu-
rity characteristics of the proposed scheme, apply the scheme
to biometric systems to construct a biometric cryptosystem
using EEG signals, and evaluate it using our own dataset
recorded from 42 subjects. �e rest of the paper is orga-
nized as follows. In Section 2 we present the state-of-the-art
overview of related work in EEG biometrics. We describe the
proposed method in Section 3. We state theorems regarding
the security characteristics of the cryptographic system in
Section 4. We describe the application of the method on
EEGdataset in Section 5.We present the experimental results

and their evaluation in Section 6. Finally, the conclusions are
given in Section 7.

2. State of the Art

Cognitive biometrics [26] uses brain signals as the source
of information for user identi
cation (authentication). User
authentication is a process that ensures and con
rms a user’s
identity in security systems. Using EEG signals for user
authentication can be e�ective with varying degrees of accu-
racy. For example, Fladby [27] used power spectral features of
alpha, beta low, beta high, and theta bands from just one EEG
channel of 12 subjects performing eight di�erent tasks (from
simple relaxation to counting and reading) and a custom
feature based distance metric for subject discrimination,
achieving an EER of 21.42%. Palaniappan [28] used gamma
band of visually evoked potential (VEP) signals and the
neural network (NN) classi
er to identify 20 individuals with
an average accuracy of 99.06%.

Liang et al. [29] extracted the AR features from 8 EEG
channels and used Support VectorMachine (SVM) to achieve
an accuracy of 45.52% to 54.96% for subject separation task
and an accuracy of 48.41% to 56.07% for subject identi
ca-
tion task. Marcel and Millán [30] implemented a Gaussian
mixture model (GMM) with maximum a posteriori (MAP)
estimation for 9 subjects, achieving a half total error rate
(HTER) of 6.6%.

Hema et al. [31] adopted feed forward NN for EEG using
Power Spectral Density (PSD) features from EEG beta waves
and reached an average accuracy of 94.4 to 97.5% on 6
subjects. He et al. [32] used a naı̈ve Bayes (NB) classi
er with
autoregressive (AR) features and achieved a HTER of 6.7%
for 4 subjects.

Mu and Hu [33] used the back-propagation NN on data
derived from 6 channels of 3 subjects and achieved an 80.7%
to 86.7% accuracy. Brigham and Kumar [34] used linear
SVM classi
er with the AR features and achieved accuracy
of 98.96% on 122 subjects tested. Hu [35] used the NN on
seven EEG signal features and obtained an 80% to 100% true
acceptance rate (TAR) and a 0 to 30% false acceptance rate
(FAR), while using data received from only 3 subjects.

Zúquete et al. [36] demonstrated the stability of EEG
biometrics using visual stimulus to measure visual evoked
potentials (VEP) and a combination of one-class classi
ers
(OCCs), including �-Nearest Neighbor (kNN) and Support
Vector Data Description (SVDD). Ashby et al. [37] used
linear SVM with AR and spectral characteristics of EEG
signals from 14 EEG channels and achieved 2.4% to 5.1%
false rejection rate (FRR) and 0.7% to 1.1% FAR for 5-
subject authentication. Shedeed [38] used the NN on features
obtained by fast Fourier transform (FFT) and wavelet packet
decomposition (WPD) from 4 channels, achieving a 66%
to 93% correct classi
cation rate (CCR) using data from 3
subjects.

Chuang et al. [39] recorded single-channel EEG signals
when a subject performs a custom task (e.g., singing or mov-
ing 
nger). �e authentication system analyses the similarity
between such brain data and training data to authenticate
subjects, reaching about 99% accuracy. Yeom et al. [40]
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used Gaussian kernel SVM on the signal di�erence and time
derivative features from 18 EEG channels and managed to
achieve the accuracy around 86% on 10 subjects.

Dan et al. [41] used the polynomial kernel SVM based
on the AR model parameters calculated on the EEG signal,
recorded a single EEG channel, and obtained an accuracy of
65% to 75% on 13 subjects.

Delpozo-Banos et al. [18] used the functional connectivity
patterns to represent e�ective features for improving EEG-
based biometric systems and classi
cation using Convolu-
tional Neural Network (CNN) and achieved 97.5% accuracy
in eyes-closed (EC) and 96.26% in eyes-open (EO) resting
state conditions states when fusing PSD information from the
parietooccipital (centroparietal in EO) parts of the brain of 10
subjects.

Abo-Zahhad et al. [42] achieved more than 99% authen-
tication accuracy by using single-channel EEG signals from
10 and 15 subjects. Koike-Akino et al. [43] achieved 72%
accuracy for 25-subject identi
cation fromEEGusing a single
800ms epoch and partial least-squares (PLS) dimensionality
reduction method applied before quadratic discriminant
analysis (QDA) classi
cation.

Crobe et al. [44] obtained good results in the EEG gamma
(EER = 0.131 and AUC = 0.943 in EO condition; EER = 0.130
andAUC=0.933 in EC condition) and high beta (EER= 0.172
and AUC = 0.905 in EO condition; EER = 0.173 and AUC =
0.906 in EC condition) frequency bands.

Several studies presented the fusion of EEG with other
modalities to get a multimodal biometric system such as in
[45, 46]. Also see a survey of security and privacy challenges
in BCI applications in [47]. EEG-based authentication was
also considered as a part of smart driving systems to verify
the driver’s identity on demand [48]. However, using EEG
brainwaves for authentication might result in risks for the
privacy of users. For example, authors in [49] propose an
authentication system that veri
es an individual EEG signal
when a subject performs a custom task. �ey also design an
attack model by impersonating the thoughts of subjects to
test the robustness of the authentication system.An adversary
also can attack the authentication system via synthetic EEG
signals, which are generated using a model based on the
historical EEG data from a subject [50].

3. Description of EEG Biometry Method

First, we provide de
nitions required for understating of the
biometric authentication method as given in [25].

De�nition 1 (discrete logarithm). Let � be a 
nite cyclic
group of order �. Let � be a generator of � and let ℎ ∈ �.
�e discrete logarithm of ℎ to the base �, log�ℎ, is the unique
integer �, 0 ≤ � ≤ � − 1, such that ℎ = ��.
De�nition 2 (discrete logarithm problem (DLP)). Given a
prime number 
, a generator of � of �∗� , and an element

ℎ ∈ �∗� , 
nd the integer � such that ℎ = �� (mod
).
De�nition 3 (block code). A block code �(�, �) over an

alphabet ∗ of � symbols is a set of �� �-vectors called

codewords. Associated with the code is an encoder {0, 1}� →
� which maps a message �, a �-tuple, to its associated
codeword.

De�nition 4 (decoding function). Let �(�, �) be a block code
set with � = {0, 1}. A decoding function �� : {0, 1}� → � ∪
� maps a message �	, a �-tuple, to correct codeword �, if �	
and � are su�ciently close according to appropriate metric.
Otherwise, it maps it to invalid codeword �.
De�nition 5 (hamming distance). Given code set �(�, �), the
Hamming distance between twowords �
 and �� from the code
set � is given by

�(�
, ��) = 1
�
�∑
�=1

�������
 − ��� ����� . (1)

De�nition 6 (error correction threshold). Error correction
threshold � of the error-correcting code �(�, �) is the largest
number of errors that can be corrected in the corrupted
codeword.

De�nition 7 (statistical distance). Let �1 and �2 be two
random variables over the same space Ψ, and let �1 and �2
be their discrete probability distribution functions (PDFs).
�en, the statistical distance between �1 and �2 is as follows:

�(�1, �2) = ∑
�∈Ψ

����Pr (�1 = !) − Pr (�2 = !)���� . (2)

De�nition 8 (Bose-Chaudhuri-Hocquenghem (BCH) codes).
Let " be a primitive element of Galois 
eld GF(#�). For
any positive integer $, let %
(&) be the minimal polynomial
of "
 over GF(#�). �e generator polynomial of the BCH
code is de
ned as the least common multiple �(&) =
lcm(%1(&), . . . , %�−1(&)).

�e method, proposed by [25] and adopted here for
EEG biometry, consists of three procedures: (1) Setup, which
outputs a public key, (2)Commit, which takes as input and the
message and outputs commitment to be sent and the opening
value to be used formessage veri
cation, and (3)Open, which
outputs true if veri
cation succeeds or false otherwise. �ree
actors participate: the sender Alice, the receiver Bob, and the
trusted third party Trent, who generated system parameters
and publishes it to Alice and Bob parties.

Let � be the space of messages to commit to. �e 
rst
stage is Setup stage (see Algorithm 1), where Trent generates
and sends the keys to Alice and Bob. �e second stage is
Commit stage, where Alice sends Bob its commitment for
a private message % ∈ � and secretly holds an opening
value. �e third stage is Open stage, where Alice sends Bob
the original message % ∈ � along with the opening value,
so that Bob can verify that the message committed in the 
rst
stage was indeed % ∈ �.

De�nition 9 (commitment function). First we de
ne the
commitment function ' : ({0, 1}� × {0, 1}�) → ({0, 1}� ×
{0, 1}�), de
ned as '(�, &) = (*, +); here * = '�(%, &) =
��ℎ� (mod
) and + = & − � is the di�erence vector.
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Input: Security parameter �.
(1) Generate randomly two prime numbers 
 and # of length �, such that 
 = 1 (mod #)
(2) Choose randomly 1 ≤ - ≤ 
 − 1
(3) Compute � = -(�−�)/2 ̸= 1 (mod
)
(4) Choose randomly 1 ≤ 2 ≤ # − 1
(5) Compute ℎ = �� ̸= 1 (mod
)
Output: Parameters 
, #, �, ℎ

Algorithm 1: Initialization.

De�nition 10 (commitment protocol). Commitment proto-
col 3 is a scheme (for a message space �) de
ned by a triple
(Setup,Commit,Open) such that

(a) (
, #, �, ℎ) ← Setup(⋅) generates the public commit-
ment key,

(b) for any % ∈ �,(*, +) ← Commit(�,�,�,ℎ)(%) is the
commitment/opening pair for %,

(c) Open(�,�,�,ℎ)(*, +) → % ∈ �∪{�}, where � is returned
if (*, +) is not a valid commitment to any message.

To set the system parameters, Trent executes the following
procedure.

Setup Procedure
(1) Trent generates two prime numbers 
 and # such that


 = 1 (mod #).
(2) Trent 
nds a random generator � ∈ �� \ {1}, where

� ∈ �� is a subgroup of the order # in 6∗�.
(3) Trent computes an element ℎ = �� ∈ 6∗� \ {1}, where

- ∈ 6� that is randomly chosen (ℎ is a generator element of
��).

(4) Trent sends the system parameters (
, #, �, ℎ) to Alice
and Bob.

Commit Procedure. To commit to a message % ∈ �� ⊆ 6�
in the message space�� ⊂ {0, 1}�, Alice encodes the message
into a codeword � = �(%) ∈ � ⊆ {0, 1}�, chooses a random
witness & ∈ �� ⊆ 6� in the witness space �� ⊂ {0, 1}�, and
then computes the commitment '(�, &) = (��ℎ�, & − �) =
(*, +). �e commitment is sent to Bob.

Open Procedure. To open the commitment (*, +),Alice reveals
the witness &	, which is in proximity to the original & using
some metric distance (e.g., Hamming distance �(&, &	) ≤
�). Using the di�erence vector + the witness &	 restores
the codeword �(�	) = �(&	 − +) = �((&	 − &) + �) and
then translates &		 = + + �(�	). �en Bob computes the

commitment *	 = '�(�(�	), &		) and veri
es *	 ?= *. In case
of failure, the commitment will not open using &	. Otherwise,
the commitment is successfully opened and therefore the

secret message is % = %	 = �−1(�(�	)).

4. Security Properties and Analysis of
the Proposed Scheme

Let 3 = (Setup,Commit,Open) be a commitment scheme,
and its security properties are (i) correctness, i.e., for every
message the commitment generated is valid, (ii) hiding,
where any attacker cannot learn information from the com-
mitment c about the message m with any advantage (perfect)
or with a negligible advantage, and (iii) binding, where
the message % is uniquely bound to � (perfect) or 
nding
another message with the same commitment has negligible
probability of success. In further analysis, we assume that
both the codeword � and the witness & are drawn randomly
from the 
nite set {0, 1}�.
De�nition 11 (correctness). A commitment protocol 3
de
ned by the quadruplet (
, #, �, ℎ) is correct if, for all
messages % ∈ �, Open(�,�,�,ℎ)(Commit(�,�,�,ℎ)(%)) = %.

�e hiding property of the biometrical scheme describes
the resilience of the system against adversarial attempts
performed by impostor FakeBob to crack codeword � or the
witness &. We allege that impostor FakeBob knows ' and can
access the commitment (*, +).

�e binding property represents the resistance of the
system against adversarial attempts by an impostor'-�;<>2∗
to guess a codeword �	 with�(&, &	) ≤ �, such that'�(�, &) =
'�(�	, &	) = *, for some &, &	 ∈ �.

For hiding and binding, we have two di�erent adversaries
[51]:

(i) the unhider U, which plays the hiding game and
has two abstract procedures, one to choose a pair of
messages and another to guess which of the two
messages corresponds to a given commitment;

(ii) the binder B, which plays the binding game and has
only a procedure to output two di�erent pairs (mes-
sage, opening value) that bind to the same commit-
ment.

A commitment protocol satis
es the hiding security property
if no adversary exists such that the probability of winning the
hiding game is (signi
cantly) better than a blind guess [51]. If
this is true, the committer is guaranteed that no information
can be inferred by the commitment itself.
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Figure 1: EEG-based user identi
cation/authentication framework.

De�nition 12 (hiding). Let 3 = (Setup,Commit,Open) be
a commitment protocol. �en we can de
ne the hiding

properties for adversary U as Pr(��� (�) = 1) = 1/2.
Hiding Game. �e hiding game ��� runs as follows:

(1)�e adversaryU is given the output of Setup procedure
and asked to choose two messages.

(2) �e game randomly selects one of them and calls
Commit procedure to compute its commitment.

(3)�e adversaryU is asked to guess which one of the two
messages the commitment corresponds to.

(4) �e game outputs 1 if the guess of the adversary U is
correct.

A commitment protocol satis
es the binding security
property if no adversary exists such that the probability of
winning the binding game is higher thannegligible [51]. If this
is true, the receiver is guaranteed that the value committed
cannot be changed.

De�nition 13 (binding). Let 3 = (Setup,Commit,Open) be
a commitment protocol. �en one can de
ne the binding

properties for each adversary B as Pr(���(�) = 1) = 0.
Binding Game. �e binding game ��� runs as follows:

(1)�e adversary B is given the output of Setup procedure
and asked to bind two messages to the same commitment
value.

(2) �e game outputs 1 if the two messages di�er and the
commitment is valid for both themessages, that is, if both can
be veri
ed by calling the Open procedure.

5. Application of the Method in
EEG-Based Biometric System

Here we present the biometric cryptosystem using the EEG
signals. Its implementation consists of the system initializa-
tion stage, the enrolment stage, and the authentication stage
as represented in Figure 1.

At the start of enrolment (see Algorithm 3), the user EEG
biometrics is acquired, and feature extraction is performed
using the EEG encoding algorithm, which outputs a 400-
bit EEG code. We use the EEG features derived from the
covariance matrix of EEG data from di�erent EEG channels
in the 10–20 international system. �e covariance matrix is
calculated from A channels in matrix as follows:

cov (�) = 1
A
�∑
�=1

(�
,� − �
) (��,� − ��) , (3)

where�
 holds the mean of all observations in the respective
EEG channels.

Next, we compute �-scores of the values in the covariance
matrix as follows:

�
,� = cov
,� − (1/A)∑�
=1 cov
,�
√∑�
=1 (cov
,� − (1/A)∑�
=1 cov
,�)2/ (A − 1)

; (4)

here cov
,� is an element of the covariance matrix.
And perform normalization of �-score values of the

covariance matrix into the range [0, 1] as follows:
6norm = 6 − min (6)

max (6) − min (6) . (5)

Finally, we perform the binarization of data using threshold-
ing as follows:

6bit ($, E) = {
{{

0, [�
,� < 0.5]
1, [�
,� ≥ 0.5] ; (6)

here [⋅] is the Iverson bracket operator.
�e result is a matrix that contains binary codeword of

400 bit length (obtained from 20× 20 covariancematrix).�e
procedure is summarized in Algorithm 2.

At the same time, a random cryptographic key N ∈ {0, 1}�
is prepared using a BCH(. . . , �) error correction encoded

function {0, 1}� → �. �e result is a codeword � ∈
BCH(. . . , �), which is combined with reference EEG code
(both have 400 bits of length).

Authentication phase is described in Algorithm 4. �e
input EEG biometric <EEG is acquired from a person, result-
ing in a test EEG code &test. �e test EEG code &test with
“exclusiveOR” denoted as⊕ extracts the codeword P� = (&test⊕&ref ) ⊕ �. Once it is extracted, the error correction decoded
function of BCH(. . . , �) is used to compute�(P�) = �(&test⊗+).
Function�(P�) is used to compute &	

test
= + ⊗ �(P�) = &ref (� ⊕

�(P�)). Nonvalid user will receive a codeword �(P�), such that
�(�(P�), �) > �. �en *	 = '�(�(P�), &	

test
) is computed and

matched against the stored *. If *	 = *, then the sample &test

is accepted and the key N is released. Otherwise, the identity
of a person is rejected.

�e biometric scheme is summarized in Figure 2.

6. Experimental Results and Discussion

�e implementation of the proposed scheme was made in
MATLAB 8.6.0.267246 (R2015b) on an Intel (R) Core (TM)
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Input: EEG channel signal values
(1) Calculate covariance matrix of EEG channels.
(2) Calculate �-scores of covariance matrix values.
(3) Normalize �-scores.
(4) Binarize �-scores into EEG code using zero value as threshold.

Output: EEG code &
ref

Algorithm 2: Encoding.

Input: EEG biometric <EEG and cryptographic key N.
(1) Extract EEG code &ref from the EEG biometric data <EEG.
(2) Prepare the cryptographic key N using BCH codes and obtain the codeword �.
(3) Compute the di�erence vector + = &ref ⊕ �.
(4) Compute the commitment * = '�(�, &ref ).
Output: (*, +)

Algorithm 3: Enrolment.

Input: EEG biometric <EEG and fuzzy commitment (*, +).
(1) Extract EEG code &test from EEG biometric <EEG.
(2) Compute the codeword �(P�) = �(&test ⊗ +)
(3) Compute &	

test
= + ⊗ �(P�)

(4) Compute *	 = '�(�(P�), &	
test

)
(5) Check *	 ?= *
Output: �e user is authenticated or rejected.

Algorithm 4: Authentication.

Figure 2: Summary of the proposed EEG biometric scheme.

i5-4590 CPU (x64), running at 3.30GHz with 12GB of RAM
in Windows 10 Enterprise ver. 1709. For the performance
evaluation, we have used a dataset that consists of 65 EEG
samples from 42 di�erent subjects, where each sample con-
sisted of 1000 signal values. �e number of subjects satis
es
the condition of Lazar et al. [52], who stated that studies
using data collected from 20 or more participants are more
convincing than those performed with a lesser number of
participants. �e EEG data we use in this study was collected
from 42 healthy adults. During data collection, the subjects
were instructed to lie still on a table and breathe normally.�e
data was collected using a medical-grade EEG device from

Figure 3: Electrode locations for collection of EEG data.

the electrodes attached to subjects following the international
10–20 standard, which are depicted as circles in Figure 3.�e

sampling rate was 256 s−1.
To perform code matching, we computed the Hamming

distance between two EEG codewords  and < as follows:

� = 1
�
�∑

=1

(code ( 
) ⊕ code (<
)) ; (7)

here code( 
) and code(<
) are the $th bit in EEG codes of
persons  and <, respectively.
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Figure 4: Probability density functions Hamming distances be-
tween the same person and the di�erent persons.

�e intrapersonHamming distances have been computed
using EEG samples from the same subjects, while the inter-
person Hamming distances were computed using samples
from di�erent subjects. We carried out 65 comparisons for
the same subjects and 118,335 comparisons between di�erent
subjects. �e result of the probability distribution function
(pdf) of the intraperson and interperson Hamming distances
is shown in Figure 4. One can see that up to 87 bits of error
(intersection of both graphs) are tolerated.

We use the following scenarios as suggested by Gui et al.
[53].

Scenario 1. �e aim is to identify correctly each of the 42
subjects participating in the study. �e training and testing
datasets include data from all 42 subjects and the classi
ca-
tion outcome belongs to one of 42 classes.

Scenario 2. �e aim is to identify one subject versus all
other 41 subjects. �ere are only two classes: positive (target
subject) and negative (all other subjects).�e training dataset
was combined using the data from all subjects and the
performing resampling so that both classes are balanced.

Evaluation. Following the suggestion of Jorgensen and Yu
[54], we use FalseAccept Rate (FAR), False Reject Rate (FRR),
and Equal Error Rate (EER) as key e�ectivenessmetrics of the
biometric system. FAR and FRR describe whether the system
correctly identi
es the subject. ERR speci
es the error rate
where the values of FAR and FRR become equal. �e metrics
are calculated as follows:

FRR = |FR|
|AA| ,

FAR = |FA|
|IA| ;

(8)

here |FR| is the number of false rejections, that is, falsely
rejecting a veri
cation attempt of a valid subject, |AA| is the
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Figure 5: Subject-wise correct classi
cation rate.

number of authorized attempts, |FA| is the number of false
acceptances, i.e., falsely accepting the claim of an impostor
as a valid user, and |IA| is the number of attempts by an
impostor.

�e performance is evaluated using the correct classi
ca-
tion rate (CCR) as follows:

CCR = |�|
|S| ; (9)

here |�| is the number of correct classi
cation decisions and
|S| is the number of trials.

EER is de
ned as a unique point where FRR is equal to
FAR. A lower EER indicates a more accurate system.

EER = FAR (S∗) = FRR (S∗) ; (10)

here S∗ = argmin(|FAR(S) − FRR(S)|)
�is ensures that the threshold found will satisfy the

equality condition between FRR and FAR as closely as
possible.

We have implemented both Scenarios 1 and 2 testing, as
subjected by Gui et al. [53]. In Scenario 1, CCR for each of the
subjects is presented in Figure 5.

Note that while the overall accuracy is quite good (mean
accuracy 0.895), for some of the subjects, it was quite low (e.g.,
only 0.446 for subject 15). �is result may have been caused
by the infamous BCI illiteracy e�ect [55]. Nevertheless,
when inspecting the cumulative distribution plot of accuracy
distribution (see Figure 6), we can see that 50% of subjects
have accuracy higher than 0.93, while only 10% of subjects
have accuracy lower than 73%.

As accuracy data is not normally distributed, the Fisher
6-transformation was applied to calculate population mean
and standard deviation, yielding the mean accuracy of 0.892
with standard deviation of 0.135.

�e subject-wise confusionmatrix is presented in Figures
7 and 8. As the number of subjects is too high for meaningful
visualization, the confusion matrix was sorted according to
its diagonal value (correct hits), and the values for only 10
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cation results in
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cation results in Scenario 2.
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Figure 10: FAR and FRR of the proposed EEG biometric system.

worst performing subjects (Figure 7) and 10 best performing
subjects (Figure 8) are shown.

For Scenario 2, the confusion matrix is presented in
Figure 9. We can see that True Positive Rate (TPR) is 0.9974.
We have evaluated the confusion matrix statistically using
the McNemar test. Critical value at 95% signi
cance level is
3.8415. McNemar chi-square with Yates correction is 0.001,
while 
 = 0.966. �erefore, the results are signi
cant at alpha
= 0.05 level.

�e values for FAR, FRR, and ERR are represented in
Figure 10.

�e Area Under Curve (AUC) is calculated as the area
under the Receiver Operating Characteristic (ROC) [56]
curve and represents discrimination, that is, the ability of the
classi
er to discriminate between a positive example and a
negative example.

We have achieved the following results, which are sum-
marized in Table 1.
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Table 1: Summary of classi
cation results.

TAR FRR ERR AUC TPR

0.8952 0.026 0.024 0.9271 0.9974

Table 2: Comparison of the proposed method with the Fladby’s
method [27].

EER (proposed
method + our
dataset)

EER (Fladby method
+ Fladby dataset)

EER (Fladby method
+ our dataset)

0.024 0.2142

0.3059 (mean, all
channels)

0.2945 (Fp1)

0.2283 (best, P4)

Comparison. In Table 2 and Figure 11, we compare our results
with those of Fladby [27]. Note that Fladby used a simple EEG
reading device (Neurosky�inkGear) with only one channel
of EEG data (Fp1), which may be a�ected by eye artefacts.
Sampling frequency was only 128Hz, and 20 seconds of
signal samples for each of eight di�erent tasks was used for
authentication, which is unpractical for many applications.
Nevertheless, the method of Fladby [27], which employs
widely used power spectral features of EEG bands, can be
considered as a baseline, against which our method could
be compared. We have thoroughly replicated the conditions
of the experiment by Fladby on our dataset, using the same
number of samples (2560) for each snippet of subject EGG
data and a feature based distance metric to discriminate
between genuine and fraudulent authentication results, and
calculated the EER value. Note that our method uses all 20
EEG channels of the 10–20 international system, while Fladby
used only one EEG channel. Nevertheless, we have replicated
the calculations of the Fladby’s method on each EEG channel
tomake a fair comparison.�e results are presented inTable 2
as well as in Figure 11. Fladby’s method achieved mean ERR
of 0.3059, while the Fp1 channel originally used by Fladby
achieved an ERR of 0.2945, and best ERR was achieved using
the P4 channel (0.2283). Note that we could not apply our
method on Fladby’s data, because it is not available.

Based on the presented comparison, we can claim that
the proposed method achieved better results for subject
authentication than the Fladby [27] method.

7. Conclusion

�is paper presents a secure cryptographic authentication
scheme for EEG-based biometrics based on the fuzzy com-
mitment scheme and the error-correcting Bose-Chaudhuri-
Hocquenghem (BCH) codes. �e EEG features are derived
from the covariance matrix of EEG data from di�erent EEG
channels in the 10–20 international system. �e biometric
systemwas evaluated using the EEGdataset obtained from42
subjects. �e experimental results show that the system can
generate up to 400 bits of cryptographic key from the EEG
codes, while tolerating up to 87 bits of error.�e performance
of the biometric cryptosystem is an Equal Error Rate (EER)
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Figure 11: Comparison of EER of our method and Fladby’s method
[27] for each EEG channel.

of 0.024, True Positive Rate (TPR) of 0.9974, and Area Under
Curve (AUC) of 0.927.
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