
Combining Declarative and Procedural Views in the

Specification and Analysis of Product Families

Maurice H. ter Beek

ISTI–CNR, Pisa, Italy

joint work with

Alberto Lluch Lafuente Marinella Petrocchi

IMT, Lucca, Italy IIT–CNR, Pisa, Italy

FMSPLE 2013

Tokyo, Japan

27 August 2013

M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 1 / 19

Outline

1 Behavioural variability

2 Feature-oriented Language FLAN

3 Running example: a family of coffee machines

4 Declarative versus procedural specification and analysis

5 Automated analyses with Maude

6 Conclusions and future work

M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 2 / 19

Formal methods in SPLE

Aim

Traditionally: focus on modelling/analysing structural constraints

But: software systems often embedded/distributed/safety critical

Important: model/analyse also behaviour (e.g. quality assurance)

Or, in the words of our PC chair

“Behaviour is what we need. Without behaviour, it’s just sticks and
balls. With behaviour, you get cricket.” Dave Clarke, June 2013

Since 2006 several approaches

variants of UML diagrams (Jézéquel et al.)

extensions of Petri nets (Clarke et al.)

models with LTS-like semantics: variants of MTS (Fischbein et al.,

Fantechi et al.), I/O automata (Larsen et al., Lauenroth et al.), CCS

(Gruler et al., Gnesi et al.), FTS (Classen et al.), FSM (Millo et al.)

M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 3 / 19

Formal methods in SPLE

Aim

Traditionally: focus on modelling/analysing structural constraints

But: software systems often embedded/distributed/safety critical

Important: model/analyse also behaviour (e.g. quality assurance)

Or, in the words of our PC chair

“Behaviour is what we need. Without behaviour, it’s just sticks and
balls. With behaviour, you get cricket.” Dave Clarke, June 2013

Since 2006 several approaches

variants of UML diagrams (Jézéquel et al.)

extensions of Petri nets (Clarke et al.)

models with LTS-like semantics: variants of MTS (Fischbein et al.,

Fantechi et al.), I/O automata (Larsen et al., Lauenroth et al.), CCS

(Gruler et al., Gnesi et al.), FTS (Classen et al.), FSM (Millo et al.)

M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 3 / 19

Formal methods in SPLE

Aim

Traditionally: focus on modelling/analysing structural constraints

But: software systems often embedded/distributed/safety critical

Important: model/analyse also behaviour (e.g. quality assurance)

Or, in the words of our PC chair

“Behaviour is what we need. Without behaviour, it’s just sticks and
balls. With behaviour, you get cricket.” Dave Clarke, June 2013

Since 2006 several approaches

variants of UML diagrams (Jézéquel et al.)

extensions of Petri nets (Clarke et al.)

models with LTS-like semantics: variants of MTS (Fischbein et al.,

Fantechi et al.), I/O automata (Larsen et al., Lauenroth et al.), CCS

(Gruler et al., Gnesi et al.), FTS (Classen et al.), FSM (Millo et al.)

M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 3 / 19

FLAN: Feature-oriented Language

Considers both structural and behavioural constraints

Concurrent constraint programming paradigm as applied in calculi

Implemented in Maude (like CL4SPL presented at FMSPLE 2012)

Combines declarative and procedural specification

A store of constraints allows specifying all common structural con-

straints from feature models (incl. cross-tree) in a declarative way

A rich set of process-algebraic operators allows specifying both

the configuration and behaviour of products in a procedural way

Semantics neatly unifies static and dynamic feature selection

Declarative and procedural views closely related

1 process execution is constrained by store to avoid inconsistencies

2 process can query store to resolve configuration/behavioural option

3 process can update store by adding new features

M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 4 / 19

FLAN: Feature-oriented Language

Considers both structural and behavioural constraints

Concurrent constraint programming paradigm as applied in calculi

Implemented in Maude (like CL4SPL presented at FMSPLE 2012)

Combines declarative and procedural specification

A store of constraints allows specifying all common structural con-

straints from feature models (incl. cross-tree) in a declarative way

A rich set of process-algebraic operators allows specifying both

the configuration and behaviour of products in a procedural way

Semantics neatly unifies static and dynamic feature selection

Declarative and procedural views closely related

1 process execution is constrained by store to avoid inconsistencies

2 process can query store to resolve configuration/behavioural option

3 process can update store by adding new features

M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 4 / 19

FLAN: Feature-oriented Language

Considers both structural and behavioural constraints

Concurrent constraint programming paradigm as applied in calculi

Implemented in Maude (like CL4SPL presented at FMSPLE 2012)

Combines declarative and procedural specification

A store of constraints allows specifying all common structural con-

straints from feature models (incl. cross-tree) in a declarative way

A rich set of process-algebraic operators allows specifying both

the configuration and behaviour of products in a procedural way

Semantics neatly unifies static and dynamic feature selection

Declarative and procedural views closely related

1 process execution is constrained by store to avoid inconsistencies

2 process can query store to resolve configuration/behavioural option

3 process can update store by adding new features

M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 4 / 19

FLAN: Syntax

With actions a ∈ A, propositions p ∈ P and features f , g ∈ F

(fragments) F ::= [S ‖ P]
(constraints) S,T ::= K | f ⊲ g | f ⊗ g | S T | ⊤ | ⊥
(processes) P,Q ::= 0 | X | A.P | P + Q | P;Q | P |Q

(actions) A ::= install(f) | ask(K) | a

(propositions) K ::= p | ¬K | K ∨ K

Constraints

Store: consistent(S), inconsistent (⊥) or no constraint at all (⊤)

Universe P of propositions: predicates has(f) and in(context)

Action constraints do(a) → p: guard to allow/forbid executing a

Processes
0 : empty process that can do nothing X : process identifier

A.P : process willing to perform action A and then to behave as P

P+Q : process that can non-deterministically choose to behave as P or as Q

P;Q : process that must progress first as P and then as Q

P |Q : process formed by parallel composition of P and Q, evolving independently

M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 5 / 19

FLAN: Syntax

With actions a ∈ A, propositions p ∈ P and features f , g ∈ F

(fragments) F ::= [S ‖ P]
(constraints) S,T ::= K | f ⊲ g | f ⊗ g | S T | ⊤ | ⊥
(processes) P,Q ::= 0 | X | A.P | P + Q | P;Q | P |Q

(actions) A ::= install(f) | ask(K) | a

(propositions) K ::= p | ¬K | K ∨ K

Constraints

Store: consistent(S), inconsistent (⊥) or no constraint at all (⊤)

Universe P of propositions: predicates has(f) and in(context)

Action constraints do(a) → p: guard to allow/forbid executing a

Processes
0 : empty process that can do nothing X : process identifier

A.P : process willing to perform action A and then to behave as P

P+Q : process that can non-deterministically choose to behave as P or as Q

P;Q : process that must progress first as P and then as Q

P |Q : process formed by parallel composition of P and Q, evolving independently

M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 5 / 19

FLAN: Syntax

With actions a ∈ A, propositions p ∈ P and features f , g ∈ F

(fragments) F ::= [S ‖ P]
(constraints) S,T ::= K | f ⊲ g | f ⊗ g | S T | ⊤ | ⊥
(processes) P,Q ::= 0 | X | A.P | P + Q | P;Q | P |Q

(actions) A ::= install(f) | ask(K) | a

(propositions) K ::= p | ¬K | K ∨ K

Constraints

Store: consistent(S), inconsistent (⊥) or no constraint at all (⊤)

Universe P of propositions: predicates has(f) and in(context)

Action constraints do(a) → p: guard to allow/forbid executing a

Processes
0 : empty process that can do nothing X : process identifier

A.P : process willing to perform action A and then to behave as P

P+Q : process that can non-deterministically choose to behave as P or as Q

P;Q : process that must progress first as P and then as Q

P |Q : process formed by parallel composition of P and Q, evolving independently

M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 5 / 19

FLAN: Semantics in SOS style

→ ⊆ F× F, with F set of all terms generated by F

(INST)
consistent(S has(f))

[S ‖ install(f).P] −→ [S has(f) ‖ P]

(ASK) S ⊢ K
[S ‖ ask(K).P] −→ [S ‖ P]

(ACT)
S = (S′

do(a) → K) S ⊢ K
[S ‖ a.P] −→ [S ‖ P]

(OR)
[S ‖ P] −→ [S′ ‖ P

′]
[S ‖ P + Q] −→ [S′ ‖ P

′]

(SEQ)
[S ‖ P] −→ [S′ ‖ P

′]
[S ‖ P;Q] −→ [S′ ‖ P

′;Q]

(PAR)
[S ‖ P] −→ [S′ ‖ P

′]
[S ‖ P|Q] −→ [S′ ‖ P

′|Q]

modulo structural congruence relation ≡ ⊆ F× F

P + (Q + R) ≡ (P + Q) + R P + 0 ≡ P P + Q ≡ Q + P

P | (Q |R) ≡ (P |Q) |R 0;P ≡ P P |Q ≡ Q |P
P; (Q;R) ≡ (P;Q);R P; 0 ≡ P

P | 0 ≡ P P ≡ P[Q/X] if X
.
= Q

Axioms naturally and efficiently treated by Maude

1 semantics is (efficiently) executable

2 correspond 1-1 to conditional rewrite rules in Maude implementation

3 few rules: semantics and implementation compact and easy to read

M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 6 / 19

FLAN: Semantics in SOS style

→ ⊆ F× F, with F set of all terms generated by F

(INST)
consistent(S has(f))

[S ‖ install(f).P] −→ [S has(f) ‖ P]

(ASK) S ⊢ K
[S ‖ ask(K).P] −→ [S ‖ P]

(ACT)
S = (S′

do(a) → K) S ⊢ K
[S ‖ a.P] −→ [S ‖ P]

(OR)
[S ‖ P] −→ [S′ ‖ P

′]
[S ‖ P + Q] −→ [S′ ‖ P

′]

(SEQ)
[S ‖ P] −→ [S′ ‖ P

′]
[S ‖ P;Q] −→ [S′ ‖ P

′;Q]

(PAR)
[S ‖ P] −→ [S′ ‖ P

′]
[S ‖ P|Q] −→ [S′ ‖ P

′|Q]

modulo structural congruence relation ≡ ⊆ F× F

P + (Q + R) ≡ (P + Q) + R P + 0 ≡ P P + Q ≡ Q + P

P | (Q |R) ≡ (P |Q) |R 0;P ≡ P P |Q ≡ Q |P
P; (Q;R) ≡ (P;Q);R P; 0 ≡ P

P | 0 ≡ P P ≡ P[Q/X] if X
.
= Q

Axioms naturally and efficiently treated by Maude

1 semantics is (efficiently) executable

2 correspond 1-1 to conditional rewrite rules in Maude implementation

3 few rules: semantics and implementation compact and easy to read

M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 6 / 19

FLAN: Semantics in SOS style

→ ⊆ F× F, with F set of all terms generated by F

(INST)
consistent(S has(f))

[S ‖ install(f).P] −→ [S has(f) ‖ P]

(ASK) S ⊢ K
[S ‖ ask(K).P] −→ [S ‖ P]

(ACT)
S = (S′

do(a) → K) S ⊢ K
[S ‖ a.P] −→ [S ‖ P]

(OR)
[S ‖ P] −→ [S′ ‖ P

′]
[S ‖ P + Q] −→ [S′ ‖ P

′]

(SEQ)
[S ‖ P] −→ [S′ ‖ P

′]
[S ‖ P;Q] −→ [S′ ‖ P

′;Q]

(PAR)
[S ‖ P] −→ [S′ ‖ P

′]
[S ‖ P|Q] −→ [S′ ‖ P

′|Q]

modulo structural congruence relation ≡ ⊆ F× F

P + (Q + R) ≡ (P + Q) + R P + 0 ≡ P P + Q ≡ Q + P

P | (Q |R) ≡ (P |Q) |R 0;P ≡ P P |Q ≡ Q |P
P; (Q;R) ≡ (P;Q);R P; 0 ≡ P

P | 0 ≡ P P ≡ P[Q/X] if X
.
= Q

Axioms naturally and efficiently treated by Maude

1 semantics is (efficiently) executable

2 correspond 1-1 to conditional rewrite rules in Maude implementation

3 few rules: semantics and implementation compact and easy to read

M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 6 / 19

Running example: family of coffee machines

Structural constraints

Behavioural constraints

Initially a coin must be inserted, after which the user must choose

whether s/he wants sugar, after which s/he may select a beverage

A ringtone must be rung after serving cappuccino, otherwise it may

The coffee machine returns idle after the beverage has been taken

M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 7 / 19

Running example: family of coffee machines

Structural constraints

Behavioural constraints

Initially a coin must be inserted, after which the user must choose

whether s/he wants sugar, after which s/he may select a beverage

A ringtone must be rung after serving cappuccino, otherwise it may

The coffee machine returns idle after the beverage has been taken

M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 7 / 19

A specification

F
.
= [S ‖ D;R]

S
.
= S1 S2

S1
.
= has(euro) ∨ has(dollar)

in(Europe) → has(euro) in(Canada) → has(dollar)

has(coffee) ∨ has(cappuccino) ∨ has(tea) has(tea) → in(Europe)

dollar ⊗ euro cappuccino ⊲ coffee

do(euro) → has(euro) do(dollar) → has(dollar) do(tea) → has(tea)

do(coffee) → has(coffee) do(cappuccino) → has(cappuccino)

do(sugar) → has(sugar) do(ringtone) → has(ringtone)

S2
.
= in(Europe)

has(euro) has(dollar)

D
.
= install(sugar).0 | install(coffee).0 | install(tea).0 | install(cappuccino).0

R
.
= (ask(in(Europe)).euro.0 + ask(in(Canada)).dollar .0); (P2 + P3)

P2
.
= sugar .P3

P3
.
= coffee.P4 + tea.P4 + cappuccino.P5

P4
.
= P5 + R

P5
.
= install(ringtone).ringtone.R

M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 8 / 19

Declarative and procedural feature configuration

Select feature f in an explicit and declarative way

Include the proposition has(f) in the initial store

For features that are surely mandatory for all the family’s products

Select feature f in an implicit and declarative way

Derive f as a consequence of other constraints

For features that apparently seem not to be mandatory, but that

are indeed enforced by the constraints (e.g. in a store with both

constraints g ⊲ f and has(g), the presence of f can be inferred)

Install feature f dynamically in a procedural way

Install f during the execution of a process

Allows designer to delay feature configuration decisions to runtime

This is a key aspect of our concurrent constraint approach

M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 9 / 19

Declarative and procedural feature configuration

Select feature f in an explicit and declarative way

Include the proposition has(f) in the initial store

For features that are surely mandatory for all the family’s products

Select feature f in an implicit and declarative way

Derive f as a consequence of other constraints

For features that apparently seem not to be mandatory, but that

are indeed enforced by the constraints (e.g. in a store with both

constraints g ⊲ f and has(g), the presence of f can be inferred)

Install feature f dynamically in a procedural way

Install f during the execution of a process

Allows designer to delay feature configuration decisions to runtime

This is a key aspect of our concurrent constraint approach

M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 9 / 19

Declarative and procedural feature configuration

Select feature f in an explicit and declarative way

Include the proposition has(f) in the initial store

For features that are surely mandatory for all the family’s products

Select feature f in an implicit and declarative way

Derive f as a consequence of other constraints

For features that apparently seem not to be mandatory, but that

are indeed enforced by the constraints (e.g. in a store with both

constraints g ⊲ f and has(g), the presence of f can be inferred)

Install feature f dynamically in a procedural way

Install f during the execution of a process

Allows designer to delay feature configuration decisions to runtime

This is a key aspect of our concurrent constraint approach

M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 9 / 19

Checking the (in)consistency of the initial constraints

Returns ∅ if consistent, else subset of inconsistent constraints

reduce in ANALYSIS-KRIPKE : inconsistency(S) .

...

result neConstraints: has(dollar) has(euro)

dollar * euro

Specification needs to be corrected

Delegate installation of euro and dollar to configuration process D by

invoking install(euro).0 and install(dollar).0

Returns true if consistent, else false

reduce in ANALYSIS-KRIPKE : consistent(S) .

...

result Bool: true

M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 10 / 19

Checking the (in)consistency of the initial constraints

Returns ∅ if consistent, else subset of inconsistent constraints

reduce in ANALYSIS-KRIPKE : inconsistency(S) .

...

result neConstraints: has(dollar) has(euro)

dollar * euro

Specification needs to be corrected

Delegate installation of euro and dollar to configuration process D by

invoking install(euro).0 and install(dollar).0

Returns true if consistent, else false

reduce in ANALYSIS-KRIPKE : consistent(S) .

...

result Bool: true

M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 10 / 19

Checking the (in)consistency of the initial constraints

Returns ∅ if consistent, else subset of inconsistent constraints

reduce in ANALYSIS-KRIPKE : inconsistency(S) .

...

result neConstraints: has(dollar) has(euro)

dollar * euro

Specification needs to be corrected

Delegate installation of euro and dollar to configuration process D by

invoking install(euro).0 and install(dollar).0

Returns true if consistent, else false

reduce in ANALYSIS-KRIPKE : consistent(S) .

...

result Bool: true

M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 10 / 19

Revised specification

F
.
= [S ‖ D;R]

S
.
= S1 S2

S1
.
= has(euro) ∨ has(dollar)

in(Europe) → has(euro) in(Canada) → has(dollar)

has(coffee) ∨ has(cappuccino) ∨ has(tea) has(tea) → in(Europe)

dollar ⊗ euro cappuccino ⊲ coffee

do(euro) → has(euro) do(dollar) → has(dollar) do(tea) → has(tea)

do(coffee) → has(coffee) do(cappuccino) → has(cappuccino)

do(sugar) → has(sugar) do(ringtone) → has(ringtone)

S2
.
= in(Europe)

✘
✘
✘
✘✘

has(euro)
✘
✘
✘
✘
✘

has(dollar)

D
.
= install(sugar).0 | install(coffee).0 | install(tea).0 | install(cappuccino).0

| install(euro).0 | install(dollar).0

R
.
= (ask(in(Europe)).euro.0 + ask(in(Canada)).dollar .0); (P2 + P3)

P2
.
= sugar .P3

P3
.
= coffee.P4 + tea.P4 + cappuccino.P5

P4
.
= P5 + R

P5
.
= install(ringtone).ringtone.R

M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 11 / 19

Executing the configuration process

Applies rewrite rules until a fix point is reached

rewrite in ANALYSIS-KRIPKE : ! [S | D] .

...

result KFragment: ! [has(dollar) has(coffee)

has(tea) has(cappuccino) has(sugar) ... | 0]

M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 12 / 19

Checking the consistency of all configurations

FLAN’s semantics preserves consistency

Still we can use Maude’s model checker to check consistency of all

reachable configurations by specifying the property � isConsistent

(i.e. consistency is an invariant)

State predicate returns the result of consistent(S)

reduce in ANALYSIS-KRIPKE : modelCheck((! [S | D]) ,

[] isConsistent) .

...

result Bool: true

M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 13 / 19

Checking the consistency of all configurations

FLAN’s semantics preserves consistency

Still we can use Maude’s model checker to check consistency of all

reachable configurations by specifying the property � isConsistent

(i.e. consistency is an invariant)

State predicate returns the result of consistent(S)

reduce in ANALYSIS-KRIPKE : modelCheck((! [S | D]) ,

[] isConsistent) .

...

result Bool: true

M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 13 / 19

Checking behavioural properties

Check that runtime behaviour does not introduce inconsistencies

reduce in ANALYSIS-KRIPKE : modelCheck((! [S | D ; R]) ,

[] isConsistent) .

...

result Bool: true

Check “a ringtone must be rung after serving a cappuccino” ...

reduce in ANALYSIS-LTS : modelCheck((! (do(’machine)

[S’ | D’ ; R])) , [] (cappuccino -> <> ringtone)) .

...

result Bool: true

... is preserved if we replace procedural by declarative information

The conditional statement used to accept dollar or euro is redundant:

A simpler run-time process replaces it with a non-deterministic choice

that will be consistently solved at runtime since the store contains the

action constraints do(euro) → has(euro) and do(dollar) → has(dollar)
which will forbid the use of actions euro or dollar if the corresponding

feature has not been installed
M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 14 / 19

Checking behavioural properties

Check that runtime behaviour does not introduce inconsistencies

reduce in ANALYSIS-KRIPKE : modelCheck((! [S | D ; R]) ,

[] isConsistent) .

...

result Bool: true

Check “a ringtone must be rung after serving a cappuccino” ...

reduce in ANALYSIS-LTS : modelCheck((! (do(’machine)

[S’ | D’ ; R])) , [] (cappuccino -> <> ringtone)) .

...

result Bool: true

... is preserved if we replace procedural by declarative information

The conditional statement used to accept dollar or euro is redundant:

A simpler run-time process replaces it with a non-deterministic choice

that will be consistently solved at runtime since the store contains the

action constraints do(euro) → has(euro) and do(dollar) → has(dollar)
which will forbid the use of actions euro or dollar if the corresponding

feature has not been installed
M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 14 / 19

Checking behavioural properties

Check that runtime behaviour does not introduce inconsistencies

reduce in ANALYSIS-KRIPKE : modelCheck((! [S | D ; R]) ,

[] isConsistent) .

...

result Bool: true

Check “a ringtone must be rung after serving a cappuccino” ...

reduce in ANALYSIS-LTS : modelCheck((! (do(’machine)

[S’ | D’ ; R])) , [] (cappuccino -> <> ringtone)) .

...

result Bool: true

... is preserved if we replace procedural by declarative information

The conditional statement used to accept dollar or euro is redundant:

A simpler run-time process replaces it with a non-deterministic choice

that will be consistently solved at runtime since the store contains the

action constraints do(euro) → has(euro) and do(dollar) → has(dollar)
which will forbid the use of actions euro or dollar if the corresponding

feature has not been installed
M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 14 / 19

Final specification

F
.
= [S ‖ D;R]

S
.
= S1 S2

S1
.
= has(euro) ∨ has(dollar)

in(Europe) → has(euro) in(Canada) → has(dollar)

has(coffee) ∨ has(cappuccino) ∨ has(tea) has(tea) → in(Europe)

dollar ⊗ euro cappuccino ⊲ coffee

do(euro) → has(euro) do(dollar) → has(dollar) do(tea) → has(tea)

do(coffee) → has(coffee) do(cappuccino) → has(cappuccino)

do(sugar) → has(sugar) do(ringtone) → has(ringtone)

S2
.
= in(Europe)

D
.
= install(sugar).0 | install(coffee).0 | install(tea).0 | install(cappuccino).0

| install(euro).0 | install(dollar).0

R
.
= (

✭
✭
✭
✭
✭
✭
✭

ask(in(Europe)).euro.0 +
✭
✭
✭
✭
✭
✭
✭✭

ask(in(Canada)).dollar .0); (P2 + P3)

P2
.
= sugar .P3

P3
.
= coffee.P4 + tea.P4 + cappuccino.P5

P4
.
= P5 + R

P5
.
= install(ringtone).ringtone.R

M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 15 / 19

FLAN’s position in the

PLA cube (Apel et al.)

Family-based analysis: check properties of entire product family

In general checks like [S ‖P] |= φ: does [S ‖P] satisfy LTL property φ?

A positive result means the whole family specified by [S ‖P] satisfies φ

A negative result—instead—witnesses that at least one of its products

has at least one behaviour that does not satisfy φ

Ongoing work on further interesting analyses

Aim: identify subclasses of configurations satisfying specific properties

M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 16 / 19

FLAN’s position in the

PLA cube (Apel et al.)

Family-based analysis: check properties of entire product family

In general checks like [S ‖P] |= φ: does [S ‖P] satisfy LTL property φ?

A positive result means the whole family specified by [S ‖P] satisfies φ

A negative result—instead—witnesses that at least one of its products

has at least one behaviour that does not satisfy φ

Ongoing work on further interesting analyses

Aim: identify subclasses of configurations satisfying specific properties

M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 16 / 19

FLAN’s position in the

PLA cube (Apel et al.)

Family-based analysis: check properties of entire product family

In general checks like [S ‖P] |= φ: does [S ‖P] satisfy LTL property φ?

A positive result means the whole family specified by [S ‖P] satisfies φ

A negative result—instead—witnesses that at least one of its products

has at least one behaviour that does not satisfy φ

Ongoing work on further interesting analyses

Aim: identify subclasses of configurations satisfying specific properties

M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 16 / 19

Conclusions

Feature-oriented Language FLAN

Proof of concept for specifying and analysing both declarative and

procedural aspects of product families

Its semantics neatly unifies static and dynamic feature selection

Not the language, but useful features to adopt in other languages

Concurrent constraint programming: flexible mechanism for both

declarative and procedural aspects (e.g. delay design decisions

until runtime, free runtime specifications from feature constraints,

thus resulting in light-weight and understandable specifications)

Implementation in Maude: exploit Maude’s rich analysis toolset

For now SAT solver, reachability analyser and LTL model checker

e.g. statistical model checker PVESTA to evaluate the performance

of product families in stochastic and quantitative variants of FLAN

M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 17 / 19

Conclusions

Feature-oriented Language FLAN

Proof of concept for specifying and analysing both declarative and

procedural aspects of product families

Its semantics neatly unifies static and dynamic feature selection

Not the language, but useful features to adopt in other languages

Concurrent constraint programming: flexible mechanism for both

declarative and procedural aspects (e.g. delay design decisions

until runtime, free runtime specifications from feature constraints,

thus resulting in light-weight and understandable specifications)

Implementation in Maude: exploit Maude’s rich analysis toolset

For now SAT solver, reachability analyser and LTL model checker

e.g. statistical model checker PVESTA to evaluate the performance

of product families in stochastic and quantitative variants of FLAN

M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 17 / 19

Conclusions

Feature-oriented Language FLAN

Proof of concept for specifying and analysing both declarative and

procedural aspects of product families

Its semantics neatly unifies static and dynamic feature selection

Not the language, but useful features to adopt in other languages

Concurrent constraint programming: flexible mechanism for both

declarative and procedural aspects (e.g. delay design decisions

until runtime, free runtime specifications from feature constraints,

thus resulting in light-weight and understandable specifications)

Implementation in Maude: exploit Maude’s rich analysis toolset

For now SAT solver, reachability analyser and LTL model checker

e.g. statistical model checker PVESTA to evaluate the performance

of product families in stochastic and quantitative variants of FLAN

M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 17 / 19

Future work

We envisage several potentially interesting extensions of FLAN:

1 Adopt further primitives and mechanisms from the concurrent

constraint programming tradition

e.g. the concurrent constraint π-calculus of Buscemi & Montanari

provides synchronisation mechanisms typical of mobile calculi

(i.e. name passing), a check operation to prevent inconsistencies,

a retract operation to remove constraints from the store and a

general framework for soft constraints (i.e. not only boolean)

2 Provide an FTS and an MTS semantics of FLAN so that:

1 FLAN becomes a high-level language for those semantic models

2 We can exploit the specialised analysis tools developed for them

M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 18 / 19

Future work

We envisage several potentially interesting extensions of FLAN:

1 Adopt further primitives and mechanisms from the concurrent

constraint programming tradition

e.g. the concurrent constraint π-calculus of Buscemi & Montanari

provides synchronisation mechanisms typical of mobile calculi

(i.e. name passing), a check operation to prevent inconsistencies,

a retract operation to remove constraints from the store and a

general framework for soft constraints (i.e. not only boolean)

2 Provide an FTS and an MTS semantics of FLAN so that:

1 FLAN becomes a high-level language for those semantic models

2 We can exploit the specialised analysis tools developed for them

M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 18 / 19

Future work

We envisage several potentially interesting extensions of FLAN:

1 Adopt further primitives and mechanisms from the concurrent

constraint programming tradition

e.g. the concurrent constraint π-calculus of Buscemi & Montanari

provides synchronisation mechanisms typical of mobile calculi

(i.e. name passing), a check operation to prevent inconsistencies,

a retract operation to remove constraints from the store and a

general framework for soft constraints (i.e. not only boolean)

2 Provide an FTS and an MTS semantics of FLAN so that:

1 FLAN becomes a high-level language for those semantic models

2 We can exploit the specialised analysis tools developed for them

M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 18 / 19

Publicity: start working for SPLC 2014 in Florence

http://www.splc2014.net/

Organised by our FMT lab of ISTI–CNR, Pisa

M.H. ter Beek et al. (ISTI/IIT–CNR / IMT, Italy)Combining Declarative and Procedural Views in Product Families 19 / 19

	Behavioural variability
	Feature-oriented Language FLan
	Running example: a family of coffee machines
	Declarative versus procedural specification and analysis
	Automated analyses with Maude
	Conclusions and future work

