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Abstract -The goal of this paper is to investigate different ways of
combining signals that have been decoded-and-forwarded by a bunch
of relays. We more deeply look at the case where the relays are in bad
reception conditions and the cooperation powers are sufficiently high.
In this situation using a conventional MRC severely degrades the re-
ceiver performance especially when the number of relays increases.
On the other hand the MMSE- and ML-based combiners can almost
always extract from their partners some performance improvements.
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I. I NTRODUCTION

The relay channel was introduced by [1]. In its most basic
form it consists of one transmitter, one relay node and one re-
ceiver. The main issue is to know what the relay does to maxi-
mize the receiver performance (in terms of data rate and/or er-
ror probability). In this respect two important concepts have
been introduced in the seminal information-theoretic work
[2] by Cover and El Gamal : Decode-and-foward (DF) and
estimate-and-forward (EF). In [3] the authors studied linear
relaying schemes, also from the channel capacity point of
view. The corresponding scheme is commonly referred to as
amplify-and-forward (AF). There have been numerous works
on the comparison between these three relaying strategies (AF,
DF, EF) both in terms of achievable rates and bit error rates.

In this paper we assume a given choice for the relaying
scheme : only decode-and-forward is considered. The channel
under investigation is quite similar to that studied in [4], which
is called a Gaussian relay network. In this paper the destination
receives one direct signal from the source and several decoded-
and-forwarded versions of the transmitted signal. Also these
signals are assumed to be orthogonal. In this context we want
to know how to combine the received signals and evaluate the
maximum performance improvement that be extracted from
relaying in any situation, especially when the relays have re-
ceive signal-to-noise ratios (SNR) comparable to (or less than)
the signal-to-noise ratio at the receiver. While the information-
theoretic version of DF [2] suggests that nothing can be gained
from cooperation when the link between the transmitter and
the relay is “worse” than that between the transmitter and the
receiver, we will see that bit error rate (BER) analyses can lead
to a different conclusion especially when the number of relays
increases.

Usually the relay is assumed to be “between” the transmit-
ter and the receiver so that it has a much better receive SNR.
In order to make certain cooperation coding schemes work this
assumption is even necessary [5]. Under this assumption, com-

bining the direct and DF-based cooperation signals by using
the well-known maximum ratio combining (MRC) is a good
choice. It is quasi-optimal in terms of equivalent SNR and the-
refore in terms of BER. But, as our analysis will show, it is
much less efficient when the relay has a “low” SNR. In order
to improve the combining strategy we will assume that the re-
ceiver is informed with the decoding reliability at the relay. To
the authors’ knowledge the closest work (to the present paper)
using this approach is [6] where the authors designed energy-
efficient transmission protocols for the fading relay channel.
Our goal is then to see to what performance improvements
this a priori knowledge can lead to. For this purpose we will
first present our signal model (section II.) and provide different
combining schemes that exploit this a priori knowledge (sec-
tion III.). In section IV. we will assess the performance of the
proposed schemes compared to the conventional MRC solu-
tion. Conclusions and suggested extensions are given in sec-
tion V..

II. SIGNAL MODEL

The channel studied in this paper is illustrated in Fig. 1. At
the source the information message (information bits)W is
encoded and modulated into the transmitted signalX ∈ X
with E[|X2|] ≤ P0. Most of the results in this paper hold
for any type of constellations forX but for simplicity we
will sometimes assumeX to represent a BPSK modulation i.e.
X = {−√P0, +

√
P0}. All the links defining the overall chan-

nel are assumed to be AWGN channels : For alli′ ∈ {1, ..., N}
and i ∈ {0, ..., N}, h′i and hi are constant complex sca-
lars known to the relays and receiver respectively (for insu-
ring coherent decoding) ;∀i′ ∈ {1, ..., N}, Z ′i ∼ N (0, N ′

i),
∀i ∈ {0, ..., N}, Zi ∼ N (0, Ni). The signals forwarded by the
relays are denoted byXi for all i ∈ {1, ..., N} and are subject
to power constraints :∀i ∈ {1, ..., N}, E[|Xi|2] ≤ Pi. The
received signals merely write as :

∀i ∈ {0, ..., N}, Yi = hiXi + Zi. (1)

These signals are assumed to be othogonal, which can be im-
plemented by using time or frequency division. As the res-
source allocation issue is not addressed in this paper we did
not introduce in our notations any time sharing or bandwidth
fraction parameter. In the paper we will also make use of
the following quantities :∀i′ ∈ {1, ..., N}, ρ′i = P0/N

′
i and

∀i ∈ {0, ..., N}, ρi = Pi/Ni.



FIG. 1 – Channel under investigation

III. S IGNAL COMBINING SCHEMES

The main point is therefore how to combine the received
signals in order to minimize the bit error rate for the recei-
ver under consideration. To this end we will assume perfect
knowledge of the different useful channels and SNRs at each
receiver and discuss this assumption further.

Optimality of combining will be defined with respect to
three criteria : the SNR at the output of a linear combiner, the
MMSE at the output of a linear combiner and the ML criterion
as a non-linear detector. One of the reasons why we considered
both solutions is that we want to take advantage of cooperation
as much as possible namely even if the relay-receiver is in “ba-
d” reception conditions. For instance, it is generally thought
that using DF when SNR at the relay is close or less than that
of the destination is useless. We will see it is not always the
case.

A. Maximum ratio combiner

As each relay “i” is assumed to decode-and-forward what
it receives the cooperation signalXi corresponds to demodu-
lating, decoding, re-encoding and re-modulating the informa-
tion bits sent by the transmitter. Usually the receive relay SNR
ρ′i|h′i|2 is assumed to be high enough so that the decoding er-
rors can be neglected (see e.g. [5]), which amounts to assuming

Xi ' αiX in the signal model, withαi =
√

Pi

P0
. By using the

corresponding approximated signal model the weight vector
maximizing the SNR at the output of the MRC is known to
be :

w(conv)
mrc = βR−1

zz h∗ (2)

where β is an arbitrary (positive) scaling factor,
Rzz = E[ZZH ], Z = [Z0, Z1, ..., ZN ]T and
h = [h0, α1h1, ..., αNhN ]T .

Now we want to evaluate the impact of this approximation
i.e. the performance loss induced by using the conventional
MRC weights in presence of decoding errors at the relay. For
making interpretations easier we study the case where only one
relay is available (N = 1) and a BPSK modulation is used at

the transmitter and the relay. Assuming the noises to be decor-
related the optimal weights can be expressed as :

{
w

(conv)
0 = h∗0

N0

w
(conv)
1 = α1h∗1

N1

(3)

with α1 ,
√

P1
P0

. Although the conventional MRC weights are

calculated from the approximated signal model we have to use
the exact signal model in order to evaluate the equivalent SNR
at the MRC output. We haveY0 = h0X+Z0, Y1 = h1X1+Z1

with X1 = α1(X + δX). For a BPSK modulationδX is a
white random variable such thatPr[δX = 0|X] = 1 − p1,
Pr[δX = +2

√
P0|X = −√P0] = Pr[δX = −2

√
P0|X =

+
√

P0] = p1/2 wherep1 is the residual bit error rate (after
re-encoding) at the relay. Putting the demodulation noise due
to the relay in the noise part the equivalent noise writesZ ′1 =
Z1 + α1h1δX. The equivalent SNR at the output of the MRC
using conventional weigths is then given by :

SNR(conv)
eq = ρ0|h0|2 ×

(
1 + N0|h1|2

N1|h0|2 α2
1

)2

1 + N0|h1|2
N1|h0|2 α2

1 + 4P0N0|h1|4p1
N2

1 |h0|2 α4
1

.

(4)
It turns out that this SNR does not always increase with the
cooperation powerP1 for a fixed transmit powerP0 or with P0

for a fixedP1. This phenomenon arises whenp1 ≥ 1
8ρ0|h0|2 .

This effect becomes more and more acute as the cooperation
power increases :

lim
P1→∞

SNR(conv)
eq =

1
4p1

, (5)

which means that the equivalent SNR becomes bounded in the
cooperation and transmit powers. This is due do the fact that
the effect of decoding errors at the relay are ignored and then
nothing is done at the receiver to compensate for possible error
amplification by the cooperation channel.

As a first step to improve the MRC performance we assume
from now on that the receiver knowsp1. The purpose for ha-
ving an enhanced combiner is to improve the receiver perfor-
mance in ”bad” receiver conditions for the relay. Otherwise
there can be a non-negligible performance loss by not using
the unreliably decoded signals especially when the number of
relaying nodes increases. By calculating the optimum weights
from the original signal model we get :

{
w

(new)
0 = h∗0

N0

w
(new)
1 = α1h∗1

N1+4P1|h1|2p1

(6)

and the corresponding equivalent SNR is

SNR(new)
eq = ρ0|h0|2 +

ρ1|h1|2
1 + 4p1ρ1|h1|2 . (7)

Now we have

lim
P1→∞

SNR(new)
eq = ρ0|h0|2 +

1
4p1

. (8)



This time, in the high cooperation regime, the equivalent SNR
is not bounded in the transmit power. But if we would look
at the BER performance, there would still be a problem : the
raw BER is not a monotonously decreasing function of the
equivalent SNR. Because of the decoding errors the relay is
in fact equivalent to an additional channel. Indeed the recei-
ved signal can always be rewritten asY0 = h0X + Z1, Y1 =
h1ε1α1X + Z1 whereε1 ∈ C. The equivalent channelε1 va-
ries from symbol to symbol. As the instantaneous value ofε1
is unknown from the receiver, the equivalent channelε1 can-
not be ”equalized”. As as consequence increasing the SNR at
the output of the conventional MRC does not imply decrea-
sing the corresponding raw bit error rate. Now that we have
clearly identified that we have to deal with an ”equalization”
problem it is clear that maximizing the SNR at the MRC ou-
put is not always optimal in terms of BER and therefore other
performance criteria have to be used. This is the purpose of the
following sections.

B. MMSE combiner

Without addtional a priori knowledge the most efficient
combining scheme is the maximum likelihood (ML) detector
which maximizesp(y0, ..., yN |x). Before presenting the cor-
responding detector we will present the linear MMSE (mini-
mim mean square error) detector which minimizesE[|X −
wT Y |2], Y , [Y0, ..., YN ]T because the corresponding so-
lution is easy to find in any context (arbitrary modulation, ar-
bitrary decoder structure, etc.) and also to compare its perfor-
mance to the ML detector. Also in certain contexts evaluating
the minimum mean square error can be used, for example,
to select the ”best” relaying protocol. The optimum MMSE
weights can be shown to be :

wmmse = R−1
yy µ (9)

with ∀(i, j) ∈ {0, ..., N}2,

Ryy(i, j) =

∣∣∣∣∣∣

α2
i |hi|2E

[|εi|2|X|2
]
+ Ni if i = j

αiαjh
∗
i hjE

[
ε∗i εj |X|2

]
if i 6= j

and∀i ∈ {0, ..., N}, µi = αih
∗
i E

[
ε∗i |X|2

]
. Note that we used

the notationαi = Pi/P0. The above different terms can be
easily expressed in general. For example, whenN = 1 and a
M-PSK is used, we have :E

[|εi|2|X|2
]

= E
[|εi|2P0

]
= P0,

E
[
ε∗i εj |X|2

]
= E [ε∗i εjP0] = E [ε∗i ]E [εj ]P0 (the decoding

errors at the different relays are assumed to be independent).
So the key quantity is the expectionE[εi]. For the reader in-
formation the general expression of this quantity is provided
in the Appendix for a general M-PSK modulation. Here we
consider for simplicity the BPSK case (M = 2). Assuming
N = 1,M = 2 the MMSE weights (eq. (9)) become :

w0 =
[1 + 4p1(1− p1)ρ1|h1|2]ρ0h

∗
0

1 + |h1|2ρ1 + |h0|2ρ0 + 4|h1|2|h0|2ρ1ρ0p1(1− p1)

w1 =
(1− 2p1)ρ1

√
P0
N1

h∗1
1 + |h1|2ρ1 + |h0|2ρ0 + 4|h1|2|h0|2ρ1ρ0p1(1− p1)

.

These weights have at least two desirable properties :
– When the information from the relay-receiver is no better

than a coin toss (p1 = 1/2), the relayed decisions are
useless :w1 = 0.

– When the relay always makes errors (p1 = 1) we would
expect the optimal weights to be the same as the classical
MMSE but withw1 negated :w1 = − ρ1h∗1

1+|h1|2ρ1+|h0|2ρ0
.

We will see in the simulation part that using the MMSE com-
biner instead of the MRC brings some performance improve-
ments. But, once again, it could be shown that the raw BER
is not always a monotonously decreasing function of the mini-
mum mean square error. In fact there exists a weight pair pro-
viding a better BER performance but it cannot be explicited in
general. In the special case under consideration (N = 1,M =
2) it can be found numerically by minimizing the raw BER ex-
pression. Note that the corresponding combining scheme has
been used by [7] for the cooperative multiple access channel
under the nameλ−MRC. By minimimizing the raw BER with
respect to(w1, w2) one obtains the optimum linear combiner.
The obtained performance is generally close to that achieved
by the ML (we will not provide the corresponding simulations
here but this assertion has been verified). The main issue is that
one is not always able to explicit the raw BER as a function of
(w1, w2) whereas the likelikood calculation is more systema-
tic. Additionally, when some a priori knowledge is available
(say when a soft input soft output stage follows the combiner),
the ML metric can be used to calculate an a posteriori proba-
bility (APP).

C. ML combiner

As in [6], we will always assume in this section a BPSK
modulation andhi ∈ R in order to provide a simple expression
for the log-likelihood ratio (LLR). But the number of relays
can be arbitrarily chosen. The LLR at the receiver is defined
by :

λ (y0, ..., yN ) = ln

{
p

(
y0, ..., yN |X = +

√
P0

)

p
(
y0, ..., yN |X = −√P0

)
}

. (10)

Under the assumption that the decoding noises at the relays are
independent the LLR can be shown to be :

λ (y0, ..., yN )
2

=
y0

√
|h0|2P0

N0
+

N∑

i=1

fpi

(
yi

√
|hi|2Pi

Ni

)

(11)
where

fpi (t) =
1
2

ln
[
(1− pi) e2t + pi

(1− pi) + pie2t

]
. (12)

We see that the functionfpi(t) serves as a limiter which mini-
mizes the contribution from the relays when it is unreliable. At
least four special case are worth being considered to interpret
the behavior of the ML detector :



– Whenpi = 0, fpi
(t) = t : the ML coincides with the

conventional MRC.
– Whenpi = 1/2, fpi(t) = 0 : when the information from

the relay ”i” is no better than a coin toss, the correspon-
ding cooperation signal is ignored.

– Whenpi = 1, fpi
(t) = −t : when the relay ”i” always

makes errors the ML reverses the signum of the coopera-
tive signal.

– When the contribution of the relay is very large, for

example whenPi is very large,fpi

(
yi

√
|hi|2Pi

Ni

)
'

1
2 ln

(
1−pi

pi

)
sign(yi) : for large cooperation powers it be-

comes optimal to make a decision onyi before combi-
ning.

IV. SIMULATION RESULTS

First we assume thath0 = ... = hN = 1. All the simula-
tions have been performed for the three cases :N = 0, N = 1
andN = 4. We only considered the uncoded case but the per-
formance analysis can be extended to the coded case, at least
for hard input decoders. For the first three figures (Fig. 2, Fig.
3, Fig. 4) the transmit power is fixed. They represent the raw
BER at the receiver as a function of the cooperation powers.
The cooperation powers are assumed to be the same for all the
relays :ρ1 = ... = ρN = ρcoop with [ρcoop]dB ∈ [−20, 40].
Figure 2 corresponds to the case where the relays are ”good” :
[ρ′i]dB = [ρ0]dB + 8. Figure 3 corresponds to the case of ”me-
dium” quality relays :[ρ′i]dB = [ρ0]dB . Figure 4 corresponds
to the case of ”bad” relays :[ρ′i]dB = [ρ0]dB − 8.

As expected there is almost no difference between the
conventional MRC, MMSE combiner and the ML combiner
performance when the relays have better reception conditions
than the receiver. The BER difference is almost zero forN = 1
but becomes more significant as the number of relays grows.
For ”medium” quality relays however the MRC does not pro-
vide any performance improvement at the receiver in the high
cooperation regime ([ρcoop]dB > 10 in the figure 3) whe-
reas the ML combiner allows for a significant decrease of the
BER (5.10−3 instead of2.10−2 for N = 1 and 10−4 ins-
tead of2.10−3 for N = 4). For the case of ”bad” relays in
the high cooperation regime the receiver performance using a
MRC is dominated by the performance of the relays i.e. there
is a significant performance degradation with respect to case
where the receiver is alone (no relays). But the ML combiner
provides a certain improvement over the no cooperation case
(BER ' 10−4 instead ofBER ' 9.10−4).

In order to have a more complete picture of the comparison
between the different combining scheme we now fix the coope-

ration powersP1 = ... = PN = Pcoop with
[

Pcoop

P0

]
dB

= 30

and look at the BER variations versusPi/N0 by varyingN0.
Note that we consider the high cooperation regime : Such a
regime can appear when the link budgets corresponding to the
cooperation channels are much better than that corresponding

to the downlink channels, which is in fact a very common sce-
nario in a cellular networks (e.g. when several users are in the
same room or building). Figures 5, 6, 7 represent the BER as a
function ofP/N0 for the same scenarios as considered before
(”good” relays, ”medium” relays, ”bad” relays). The most in-
formative situations are that of figures 6, 7. For the case of
”medium” quality relays : With respect to the conventional
MRC the ML combiner provides a typical gain of 2 dB on
the SNR. For the ”bad” relays the MRC severely degrades the
BER performance with respect to non-cooperating case (no re-
lay) while the ML still offers a positive gain on the SNR. To
sum up we see that by using the ML the receiver performance
never degrades whatever the reception conditions at the relays.
As for the MMSE performance it is always better than that
of the conventional MRC but does not perform as well as the
ML especially when the number of relays is low. Otherwise
the MMSE is also a good candidate for combining unreliable
decoded-and-forwarded signals.

V. CONCLUSIONS

We have seen that combining decoded-and-forwarded si-
gnals is beneficial even if the relays have reception conditions
worse than than that of the receiver. The corresponding impro-
vement cannot be extracted from the relays by a conventional
MRC at the receiver. More efficient combining schemes have
to be used such as the MMSE combiner and especially the ML
combiner. Using the ML allows us to obtain a better BER per-
formance whatever the receive conditions at the relays. We also
mentioned that the present performance analysis can be readily
extended to the coded case at least for hard input channel de-
coders. For soft input decoders (e.g. turbo-decoders) the ML
combiner has to extended to an APP-based combiner. As for
the MMSE it is generally less efficient but has the advantage
that it is simple to find for any kind of decoders (hard or doft
inputs) and any modulation scheme.
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APPENDIX

Here we show how to calculate the expectation of the multiplicative term
modelling the relay decision in the M-PSK modulation case. For sake of clarity
we will omit the relay index ”i” :εi → ε, pi → p. We need to find for each

symbolk ∈ {1, ..., ej(M−1) 2π
M } a serieck(0), ..., ck(M − 1) such that :

E[ε] =
1

M

M−1∑

k=0

M−1∑

m=0

ejm 2π
M pck(m)(1− p)log2(M)−ck(m).

The series depend on the mapping of the information (possibly encoded) bits
into the transmitted symbols. In fact the series are identical forM = 2 and
M = 4 but differ for higher modulation order. The following table provides
E[ε] for different values ofM when a Gray mapping is used. The expressions
are exact forM ∈ {2, 4} and are approximated at the first order (inp) for
M ∈ {8, 16, 32, 64}.

M E[ε]
2 1− 2p
4 1− 2p

8 1−
(
3−

√
2

2

)
p ' 1− 2.29p

16 1− [
4− 3

2 cos
(

π
8

)− 1
2 cos

(
3π
8

)]
p

' 1− 2.42p

32 1− [
5− 7

4 cos
(

π
16

)− 3
4 cos

(
3π
16

)
− 1

4 cos
(

5π
16

)− 1
4 cos

(
7π
16

)]
p

' 1− 2.47p

64 1− [
6− 15

8 cos
(

π
32

)− 7
8 cos

(
3π
32

)
− 3

8 cos
(

5π
32

)− 3
8 cos

(
7π
32

)− 1
8 cos

(
9π
32

)
− 1

8 cos
(

11π
32

)− 1
8 cos

(
13π
32

)− 1
8 cos

(
15π
32

)]
' 1− 2.49p
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