Institute of Architecture of Application Systems

Combining Different Multi-Tenancy
Patterns in Service-Oriented Applications

Ralph Mietzner, Tobias Unger, Robert Titze, Frank Leymann
Institute of Architecture of Application Systems
University of Stuttgart
UniversitatsstraBe 38, 70569 Stuttgart, Germany
http://www.iaas.uni-stuttgart.de

in: Proceedings of the 13th IEEE Enterprise Distributed Object Conference (EDOC 2009).
See also BIBTEX entry below.

BIBTRX:

@inproceedings {INPROC-2009-50,
author = {Ralph Mietzner and Tobias Unger and Robert Titze and Frank Leymann},
title = {{Combining Different Multi-Tenancy Patterns in Service-Oriented Applications}},
booktitle = {Proceedings of the 13th IEEE Enterprise Distributed Object Conference (EDOC 2009)},
editor = {IEEE Computer Society},
publisher = {IEEE},
pages = {131--140},
month = {0Oktober},
year = {2009},
isbn = {978-0-7695-3785-6},
doi = {10.1109/EDOC.2009.13},
keywords = {multi-tenancy; SaaS; services; SOA; composite applications},
language = {Englisch},
cr-category = {D.2.11 Software Engineering Software Architectures,
H.4.1 Office Automation},
ee = {http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5277698%},
department = {Universit{\"a}t Stuttgart, Institut f{\"u}r Architektur von Anwendungssystemen},
url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2009-50&engl=0}

(© 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works
must be obtained from the IEEE.

s Universitat Stuttgart
e Germany

Combining Different Multi-Tenancy Patterns in Service-Oriented Applications

Ralph Mietzner, Tobias Unger, Robert Titze, Frank Leymann
Institute of Architecture of Application Systems
University of Stuttgart
Universitaetsstr. 38, 70569 Stuttgart, Germany
firstname.lastname @iaas.uni-stuttgart.de

Abstract—Software as a service (SaaS) providers exploit
economies of scale by offering the same instance of an applica-
tion to multiple customers typically in a single-instance multi-
tenant architecture model. Therefore the applications must be
scalable, multi-tenant aware and configurable. In this paper we
show how the services in a service-oriented SaaS application
can be deployed using different multi-tenancy patterns. We
describe how the chosen patterns influence the customizability,
multi-tenant awareness and scalability of the application. Using
the patterns we describe how individual services in a multi-
tenant aware application can be not multi-tenant aware while
maintaining the overall multi-tenant awareness of the applica-
tion. We show based on a real-world example how the patterns
can be used in practice and show how existing applications
already use these patterns.

Keywords-multi-tenancy; SaaS; services; SOA; composite
applications

I. INTRODUCTION

One benefit of service oriented architectures (SOA) is the
facilitation of the construction of new applications as they can
be recursively assembled out of existing services. Considering
the principles of SOA, in addition, reuse of existing services is
simplified. Reusing existing services prevents the tedious and
error prone repetition of the construction of functionality that
has been done multiple times before. Web service technology
as one technology stack to implement a SOA allows defining
reusable components as so-called “Web services”. These
services can be implemented in any programming language
that supports the Web service stack. For this purpose Web
services provide a uniform description and access scheme
in heterogeneous infrastructures, which allows accessing a
Web Service independently from its concrete location.

Location transparency and reuse foster new delivery
models for software ranging from infrastructure as a service
(TaaS) over platform as a service (PaaS) to software as a
service (SaaS). Companies move away from solely running
their applications in their own data centers (on premise)
but more and more applications are outsourced to third
party providers. Based on Web service technology services
are consumed or offered to other companies, either free
of charge or for a pre-defined amount of money. Using
service oriented architectures and for example Web service
technology individual services that make up an application
can be run in different delivery models. For example one

service in an application could be a service run in a SaaS
model as a third party, while another service is run on an
infrastructure provided in an IaaS delivery model by another
provider. A third service of the can be run on-premise.

Today, Web services are provided by several Web applica-
tions such as E-Bay or Salesforce and partially are offered
via search engines such as Seekda'. Other services come with
standard products such as SAP or are developed from scratch
in an enterprise as part of a home-grown system. While
building new composite applications (applications composed
out of a set of services), application vendors can decide either
to develop their own services or to reuse existing services
provided by different providers.

Considering the different types of services mentioned
above, we can distinguish them in two main aspects: The first
aspect is the aspect of outsourcing: Is the service under my
control or is it run by someone else? The second aspect is the
multi-tenancy aspect. Is the service shared between multiple
customers (tenants) or is it run solely to be used by me? How
do these aspects influence the creation of new applications,
how can services run at third party providers be integrated
into new applications? In which delivery model can a new
application be offered given the services it orchestrates? In the
remainder of the paper we will investigate these questions.
We begin by an investigation of existing service delivery
models and related work in Section II. By means of a case
study from the automotive sector we motivate the need for
modeling support for the different types of services and their
composition in Section III. Having done so we introduce
and describe three basic multi-tenancy patterns for services
in Section IV and introduce a taxonomy of multi-tenancy
patterns. In Section V we investigate how services of different
delivery patterns can be combined. We describe how concepts
and patterns known from enterprise application integration
(EAI) can be adapted and used to integrate services with
different multi-tenancy patterns into new applications. We
show how we have applied the patterns in other projects in
Section VII and finish with an outlook and a description of
future work.

Uhttp://www.seekda.com

II. BACKGROUND AND RELATED WORK

Currently, many IT-vendors propose SOA as basic architec-
tural style for building application infrastructures and many
reference architectures based on the vendors’ specific SOA
products are published [22]. As a consequence of the adoption
of Web service technology more and more services such as
the GlobalWeather Service by WebservicesX? or the ZipCode
Service by Strikelron® become available in public. These
services can be reused in new applications without any prior
configuration or subscription. For example the GlobalWeather
service exposes a WSDL that describes its interface and no
other information is needed to include it in new applications.
Other hosted services such as E-Bay and Salesforce expose
Web services that allow third party applications to integrate
with their Web applications. Salesforce, for instance, allows
customers to connect to the Salesforce application via two
different WSDL interfaces. The first WSDL interface (the so-
called “enterprise WSDL”) is specific for one customer and
contains all customizations that the customer has made. The
second WSDL interface (the so-called “partner WSDL”) is a
generic interface that is metadata driven and abstracts from
the concrete customizations of one particular customer. It is
therefore suited to be used by multi-tenant aware applications
that themselves have different tenants mapping to different
tenants in the Salesforce application.

Regarding the development and deployment of multi-tenant
aware applications, several related work exists. In [7] a
framework for multi-tenant aware SaaS applications including
data isolation, performance isolation or configuration is
described. In [18] an infrastructure is presented that allows the
integration of SaaS applications with other applications. Other
work on application architectures (such as the one introduced
in [4] describe how multi-tenancy can be achieved across
different layers of the application, particularly regarding the
database layer.

Many of these infrastructures have in common that the
runtime infrastructure is centralized and shared by many
applications. Moreover, these infrastructure are providing
infrastructure services which can be reused by any application
(e.g. security services) [7], [14]. However, they require
the whole application to be multi-tenant aware while our
approach allows parts of the application to be multi-tenant
aware and parts not, depending on the services the application
is composed of. Our approach can integrate services that are
deployed on one of these platforms. Other platforms exist
that allow the composition and automated deployment of
Web service based applications such as [2], [11], [17]. Our
work differs from these approaches as we explicitly take
multi-tenancy into account and focus more on the modeling
than on the deployment, at least in this paper.

In [4] four SaaS maturity levels are introduced, relating

Zhttp://www.webservicesx.net
3http://www.strikeiron.com/

to how the SaaS application is delivered to many customers.
In level 1 an application is specifically run for one customer
at an SaaS provider. This level corresponds to the traditional
ASP [19] model. Starting from level 2 the SaaS application
is customizable via configuration but still in level 2 one
instance of the application serves only one customer. At level
3 a single instance of the SaaS application serves multiple
tenants. Separate configuration data is used to configure the
application to the need of each separate customer. In order to
achieve level 4, the SaaS application is developed as a single
instance multi-tenant application and several instances are run
in a load-balanced server farm. At level 4 load is balanced via
a tenant-load-balancer that spreads the load over the various
servers the application runs on. We show how these levels
can be realized for individual services in a service-oriented
application. We furthermore describe patterns on how to
solve several multi-tenancy problems e.g. how to make a
service aware about which tenant invoked it.

Pattern languages have been first introduced in architecture
[1] to describe recurring problems and nuggets of advice
on how to solve these problems. Several books on patterns
exist in computer science [6],[5],[9] that describe advice
on how to solve recurring problems in several domains of
software engineering. In this paper we use the notion of a
pattern language to describe the multi-tenancy patterns for
services that we first outlined in [13]. We also introduce
mechanisms on how to integrate services deployed in one of
the multi-tenancy patterns. These mechanisms are based on
enterprise application patterns introduced in [9]. Inspired by
[9] each multi-tenancy pattern below is given (i) a title, (ii)
an icon, (iii) a context that describes the problem that can be
solved using the advice described in the pattern, (iv) a short
question that summarizes the problem the pattern solves, (v)
a description of the forces that make the problem a problem,
(vi) the result when the solution is applied, and optionally
(vii) relations to other patterns, (viii) examples on how to
implement the pattern and examples for services using this
pattern.

III. RUNNING EXAMPLE

In this section we describe a real-world composite SOA
application that serves as an example for the patterns and
algorithms introduced in this paper.

The eCommerce Concept (eCCo) [20] application is an
automotive point-of-sales application developed together with
the automotive industry. The application deals with the sale
of new and used vehicles at a dealer. It is able to create an
offer for a customer, and calculate the prices according to
the vehicle configuration. In case of new vehicles the car
can then directly be ordered, whereas used vehicles can be
picked from a pool of available vehicles.

The application is hosted in a central data center and
can be used by various dealers of a manufacturer. As big
car manufacturers typically have dealers in various markets

across the world, the application needs to take the different
requirements of these markets into account. Therefore the
individual distributors in different markets can customize the
application to the needs of the specific market. For example
they might offer additional financing options, set tax rates
or modify the application to add additional signature steps.
To cater for that variability, the application is built using a
service oriented architecture where services are realized as
Web services that run on an IBM WebSphere application
server. These Web services are orchestrated using BPEL.
BPEL processes are run on an IBM WebSphere Process
Server. To adapt the application for different markets, the
dealer organization of that market can modify configuration
values (such as the tax rate in that market). We therefore
regard each dealer organization for a market as a tenant of
the eCCo application. In case more elaborate modifications
are needed, services can be exchanged for market specific
services, or external services (for example banking services)
can be integrated into the application. Customizability of
the application also affect the process and GUI layer. For
example the Spanish market requires an additional signature
step over the German market, that must be configured.

IV. SERVICE TENANCY PATTERNS

In this section we introduce three basic patterns related
on how services are shared between different tenants. A
tenant for a service can be a sole user or a whole company
consisting of a set of users. In case of our running example
each dealer organization for a different market is a tenant
of the application. In case of Salesforce, each company that
has an account (with possibly hundreds of users) is regarded
as a tenant. All following patterns apply to services that are
part of an application or that are so-called external services.
External services, or outsourced services are not part of the
application package but and are not under direct control of
the application. These external services are provided by a
third party provider, which can reside inside or outside the
own company.

A. Taxonomy

In order to build multi-tenant aware applications out of
services, multi-tenancy support is required in the whole life-
cycle of a service. In this paper we focus on two steps
of the life-cycle: development, and deployment. During
development of a service, built-in support for multi-tenancy
can be archived by introducing configuration options for
tenants. While deployment, services instances can be created
and distributed over the infrastructure according to the multi-
tenancy requirements of the application.

As a prerequisite for defining multi-tenancy patterns we
ordered the different life-cycle aspects using a taxonomy.
Figure 1 shows the taxonomy of services regarding their
multi-tenancy patterns. Regarding the observations made in
the introduction and the related work, services can either

Single Instance

Arbitrary Instance J

Multiple Instance
Single Instance

Arbitrary Instance |

Figure 1: Taxonomy of Patterns

Configurable

Non-configurable

be configurable or non-configurable as shown in Figure 1.
Configurable services offer the possibility to customize a
service according to the tenant’s needs. E.g. the user interface
service of the eCCo application can be configured with the
national language of the dealer or the invoice service may
be configured to consider local tax rates.

Services can be further classified according to the relation
between a service instance and a tenant. The straightforward
possibility may be to reuse a single service instance for each
tenant. Accordingly, only for configurable services a new
configuration has to be deployed. In this case only a single
instance of each service of an application would run that
is used by each tenant. However, a vanilla single instance
approach can not solve all requirements. In the eCCo example
e.g. the car configuration services can be reused by all tenants.
In contrast, the service managing the customer data is obliged
to be separated for each dealer in order to be compliant with
local data privacy rules. This can be achieved by deploying
a dedicated instance of the customer data service per tenant.
Furthermore, even for the car configuration service it can
make sense to deploy several instances. In the case that
the existing instance of the service is overloaded it may be
easier to deploy a new service instance instead of adapting
the existing instance in order to handle the additional load.

As a consequence, services can be classified in three
instance types: single instance, arbitrary instance, and
multiple instance. In case a service is non-configurable and
the same instance of the service can be used by multiple
tenants we call the service a single instance service. In case
a service is non-configurable and for each tenant a separate
instance of the service is deployed we call the service a
multiple instances service. In case a service is configurable
and one single instance of the service serves all tenants
we call this service a single configurable instance service.
There is also the possibility to deploy a service following
the multiple configurable instances service, in case a service
is configurable but nevertheless a new instance is needed for
each tenant.

The arbitrary instances service pattern is a mix of the
single and multiple instances service and is therefore not
regarded explicitly below. Arbitrary instances means that
some tenants share a single instance of the service, but others
do not. This might be due to quality of service requirements or

regulatory requirements that prevents a subset of the tenants
to share a service with other tenants.

B. Service Patterns Assumptions and Properties

Service tenancy patterns describe how multi-tenancy and
per-tenant configuration and customization can be achieved
using services in SOA-based applications. The following
patterns apply to both atomic and composite services. In
case we talk about an instance of a service we mean an
instance of the application implementing the service. This
means that the code for a service is only deployed once
and can be used for several tenants. We assume that one
instance of a service can also be a virtual instance, i.e. that
several instances exist, but are virtualized by an ESB, or
load balancer [3]).

In order to support visual modeling using multi-tenancy

patterns we created an icon for each pattern defined below.

Figure 2 shows all pattern icons.

In the following pattern descriptions we describe the
properties of the patterns with regard to (i) the degree of
customizability, (ii) the isolation of data, (iii) the ease of
deployment and update , (iv) the difficulty of development
(i.e. do developers need to take special care for multi-tenancy)
and (v) the scalability with regarding to tenants (i.e., the
ability to distribute the load of several tenants on one service
instance). Table I shows a summary of the properties. We
assign a (+) in the respective category if the pattern is best
suited to fulfill the goal in the category. An (+/-) is given if
the goal is partially solved and a (-) is given if the goal of
the category is not solved. The abbreviations used for the
patterns are the following: single instance (single), single
configurable instance (single conf.) and multiple instances
(multiple). How the individual marks are given is explained

single | single conf. multiple
customizability - +- T
isolation - +/- +
update + +/- +/-
development + - +
scalability + +/- R

Table I: Summary of service tenancy patterns

in the pattern descriptions below.

C. Single Instance Service

Context: A service is the same for all tenants that trigger its
invocation. If the application is updated, the service should
be updated only once for all tenants.

How can I implement a service that has the same behavior
for all tenants?

Forces: A service should have the same behavior for all
tenants. It is not necessary that the service “knows” which
tenant triggered its invocation, thus the service can run in a
standard non tenant aware environment. The service should

be updatable at once for all tenants which prevents deploying
the same service under different endpoints for each tenant.
The service and underlying middleware should be deployed
only once for all tenants to allow the sharing of load from
different tenants to maximize the resource utilization of the
underlying middleware and hardware.

Solution: Use a single instance service (cf. Figure 2a) that
is deployed once for all tenants. The service can be deployed
and updated for all tenants at once, thus making installation
and update of the service easy.

Result: A service following the single instance service
pattern is deployed once for all tenants. Therefore the
service shows the same behavior for all tenants and is not
customizable on a per-tenant basis. As the single instance
service does not distinguish between different tenants all data
used in the service is shared between all tenants. Modification
of the service for all tenants is made easy by using this pattern
As long as only the service implementation is modified, i.e.,
to resolve errors or to change an underlying database, the
new service can be modified and rolled out once and can
be used by all tenants. In case a modification of the service
interface is necessary, all tenants that call the service must
be updated. The single instance service does not require
any special consideration regarding multi-tenancy, therefore
existing services that have not originally been developed
for multi-tenant aware applications can be easily reused and
developers do not need to take any special precautions. The
single instance service scales well as it can be deployed
several times and the load of several tenants can be balanced
among these service deployments.

Next: The single instance service has the same behavior for
all tenants. In case tenant specific behavior is needed the
single configurable service pattern (cf. section IV-D) can
be used. It allows a single service to behave differently for
different tenants based on configuration data. Additionally,
the multiple (configurable) services pattern (cf. section IV-E)
is another alternative. In this pattern tenant specific behavior
is realized by deploying a different service for each tenant.
The single instance service pattern can be called under a
tenant context, i.e., a tenant invoking the service is identified
by a unique identifier (e.g. included in the SOAP header).
The service middleware can then exploit the tenant context to
do non-functional processing such as authorization or billing.
However, invocation under tenant context is not needed by
this pattern, as a single instance service cannot distinguish
different tenants.

Examples: A Web service that realizes a basic non tenant-
specific functionality of an application, such as the transfor-
mation of units from metric to imperial, can be realized using
the single instance service pattern. The single service pattern
is predestined to be an external service that is reused from
other applications or third party vendors. An example for such
a service is the GlobalWeather service from WebservicesX.

(> Service

(a) Single instance

(b) Single configurable instance

NA< > Service

(c) Multiple instances

Figure 2: Service icons

In our running example the “basic car details” service is
realized as a single instance service. This service returns the
details (such as basic specifications) for a given type of car
from a central database.

D. Single Configurable Instance Service

Context: A service should have tenant-specific behavior. It
should be easy to add new tenants to the service. Additionally
updating of the non-tenant specific parts should be as easy
as updating a service following the single service pattern
(cf. section IV-C). Furthermore the service should scale well
with the number of tenants, because load of different tenants
can be balanced among the instances of the service.

How can a service with tenant specific behavior be
deployed only once for all tenants?

Forces: In case a service is deployed following the single
instance service pattern (cf. section IV-C) it has the same
behavior for all tenants that use it. A service should behave
differently for different tenants. New tenants must be added
without recompiling and redeploying the service.
Solution: Use configuration data to provide tenant specific
behavior for single instance services. In [4], [7] the term
of configuration data is used to describe data that is used
by an SaaS application to provide tenant specific behavior.
Tenants can easily be added by adding new tenant-specific
configuration data so that no redeployment of the service is
needed when a new tenant is deployed.
Result: A single configurable instance (cf. Figure 2b) service
uses configuration data to provide tenant-specific behavior.
Configuration data can either be deployed locally for the
service (i.e. in configuration files in the deployment directory
for the service) or can be deployed in a central configu-
ration database [4], [7]. In order to know which tenant’s
configuration must be used, the single configurable instance
service must be invoked using the invocation under tenant
context. The service implementation must then associate the
tenant context with the right configuration data. Additionally
the service implementation must ensure that a tenant cannot
access data of another tenant, i.e. via data-isolation techniques
in the database [4]. Since the service must be invoked under
a tenant context it is possible to monitor which tenant has
used the service and perform tenant-specific billing.

As all tenants use the same instance of the service the non-
tenant specific parts can be updated at once for all tenants
which yields to the same results as with the single instance

pattern. However, updating parts that allow tenant-specific
configuration is harder as it requires the redeployment of
the configuration data for each tenant. The development
of single configurable instance services needs to take multi-
tenancy into account from the beginning as both isolation and
configuration requirements demand that the service explicitly
knows about the concept of a tenant. In terms of scalability
the single configurable instance service behaves similar to the
single instance service. However, in case several instances
are spread over different machines and are served by a load-
balancer, the configuration data for each tenant must also be
made available to all these instances.

Next: Tenant specific behavior for a service can also be
achieved by employing the multiple instances service pattern
(cf. section IV-E). However, an advantage of the single
configurable instance service pattern is that the service
can be updated in one central location. Using the multiple
instances service pattern updating a service is harder since
it involves updating all services separately. Furthermore the
single configurable instance service pattern is multi-tenant
aware as a service using this pattern can be used by different
tenants. This is especially important since the load for the
service can be balanced between multiple tenants. In case
a service is deployed using the multiple instances pattern
the underlying infrastructure must always be provisioned for
peak load of the one tenant using a certain instance of the
service.

Orchestration and process engines (such as WS-BPEL
engines) often do not support the configuration of process
instances on a per-tenant basis (i.e, a differently configured
process instance is carried out based on which tenant started
the process instance). In addition to ensuring isolation of the
runtime on a per-tenant basis a multi-tenant aware workflow
engine must ensure that audit data for a tenant cannot be
accessed by another tenant. Until such engines become
commonly available, services realized as business processes
(for example specified in WS-BPEL) should be deployed
using the multiple instances pattern (Section IV-E), so that a
different process model is deployed for each tenant.
Examples: A Web service following the single configurable
instance service pattern could for example be implemented
in Java using JAX-WS [8] as follows: JAX-WS (and other
Web service stacks) allow using the concept of handlers to
process a SOAP [21] message before it is handled over to
the respective service. Handlers can for example read SOAP
headers (such as a SOAP header containing a tenant context)

and perform processing based on these handlers. A tenant
handler can then retrieve tenant specific metadata for example
from a database or a properties file and put it in the message
context. The message context is then passed to the service
implementation. The service implementation can then read
the tenant specific configuration data (such as tenant-specific
database tables or tenant-specific business rules) from the
message context. New tenants are deployed by deploying
new configuration data and associating it with the tenant
id. However, the customizability of services developed with
programming languages such as Java or C# is limited to the
possibilities given by the language (such as properties files
or dynamic class loading in the extreme case). In case more
complex customizations are needed the multiple instances
service pattern can be used. A real life example for such a
service is the Web service exposed by Salesforce. This Web
service behaves differently depending on the configuration
data for each individual tenant.

In our running example the ‘“calculate vehicle price”
service is a single configurable instance service. Each market
can specify it’s own tax numbers as well as specific rules
on how to compute the vehicle price (including different
financing options). These are stored in a configuration
database. The service is implemented only once and accesses
this configuration database to retrieve the appropriate values.
Additionally the GUI of the application is configurable
via configuration metadata to include the different vehicle
financing options of different markets.

E. Multiple Instances Service

Context: An application requires tenant-specific behavior
for a service. The service implementation is very specific for
each tenant or the underlying middleware does not support
multi-tenancy.

How can I realize tenant-specific behavior when the service
logic is very specific for each tenant?

Forces: Sometimes it is not feasible to use the single
configurable instance service pattern to achieve tenant specific
behavior. Reasons for that might be that the service logic
is completely different for different tenants and cannot be
derived only by configuration. Another reason is that the
service handles privacy critical data and the service must be
kept in a secure zone that is only accessible by one tenant.
Additionally, the underlying middleware (such as a BPEL
engine) is not able to handle multiple tenants for one instance
of the service. Other quality of services that are specific for
one tenant may mandate the use of the multiple instances
pattern too. For instance one tenant needs reliable messaging
while others do not but need better response-times, therefore
several instances of one service can exist (maybe on different
middleware) with different qualities of service.

Solution: Use the multiple instances service (cf. Figure 2c)
pattern to achieve tenant-specific behavior. Each tenant, or

groups of tenants use their own service that realizes the
specific behavior they need.

Result: Several services are deployed that perform the same
basic task in the SaaS application but with tenant specific
behavior. The services itself can be realized as normal non
tenant aware services in case one service is deployed per
tenant. As each tenant is served by its own instance, data-
isolation is not an issue as long as proper authorization is in
place (i.e. each instance can only be accessed by the correct
tenant). However, the multiple services pattern corrupts the
notion of a single instance multi-tenancy architecture. This
is the case, because a service instance does not serve all
tenants but only a subset of them or only one in the extreme
case.

While updating non-tenant-specific parts of a service
deployed using the single configurable instance service is easy
since only one service instance needs to be updated, updating
services following the multiple services pattern is harder.
Updating such services requires to perform updates on each
service implementation separately. In order to partially over-
come this limitation templates can be used. Templates define
basic parts of a service and variability points [10],[13],[12]
similar to those in product line engineering that can be
modified separately for each tenant. Updating all services is
then quite similar to the single configurable instance service
pattern. It involves updating the basic template and then using
the template and the tenant specific configuration data to
re-generate the multiple services. We introduce the multiple
configurable instances pattern to denote that a multiple
instances service is derived by configuration from a template.

The development of multiple instance services is easier
than that of single configurable instance services as each
service instance only serves one tenant. Therefore multi-
tenancy does not need to be taken into account explicitly
during development and non-multi tenant-aware services can
be reused by simply installing them separately for each
tenant.

A major drawback of the multiple instances service is
that the load on a service cannot be balanced between
several tenants, instead, each instance of a service deployed
using the multiple instances pattern must be provisioned
for peak load of the respective tenant. Another drawback
of the multiple instances pattern is that the deployment
of new tenants becomes harder as a new service must be
deployed for each tenant instead of only configuration data.
In case the application is spread over several environments,
the service must be deployed on every environment to ensure
that load can be balanced over all environments using a load
balancer. The third problem relates to the evolution of the
SaaS application.

Next: In cases where services must be completely different
for each tenant or cannot be shared for regulatory or technical
reasons, the multiple instances service pattern can be used
instead of the single configurable instances pattern (cf. section

IV-D) to achieve tenant-specific behavior.

In our running example the “sign offer” Web service is
realized as a multiple instances service. Unlike in other
countries, customers from Spain have to sign an offer for
a vehicle as a notice of intent. To realize this variable part,
a special service (along with the corresponding GUI) is
deployed in multiple instances mode specifically for the
“Spain” tenant. All other tenants use a shared service that
does not contain the extra signature step.

V. COMBINATION OF SERVICE TENANCY PATTERNS

In Section IV-B we described the basic multi-tenancy
patterns in which services can be deployed. When building
composite applications out of these services the patterns are

important to determine how the services need to be invoked.

In the left part of Figure 3 a BPEL process P that is deployed
in multiple-instances mode needs to invoke a Web service

S1 that is deployed in single configurable instance mode.

The service S1 needs to be invoked under a so-called tenant
context (indicated by the box on the invocation arrow) which
contains information about which tenant invoked it.

A) Multiple instances | B) Single configurable
= single configurable instance | instance - multiple instances

|
P S2
(7§ =
|
' 7e |
| S3
|
|

(e
S1
%)
Figure 3: Combination of different patterns

Therefore each instance of P must send the tenant context
(TC) when invoking the service S1. On the right part of
the figure the scenario is reversed. A service deployed in
single configurable instance mode (service S2) invokes a

service deployed in multiple instances mode (service S3).

S2 includes a tenant context in the invocation message. A
component is now needed that reads the tenant context and
distributes the message to the right instance of service S3.

A. Service Invocation

Integrating different services with different interfaces is a
classical enterprise application integration (EAI) problem
[9], [15]. In the EAI community, EAI patterns [9] are
a well-known toolbox that offers hints on how to solve
integration problems. In this paper we do not describe how
to integrate services that have different interfaces or data
formats, but how to integrate services that are deployed
following different multi-tenancy patterns. As motivated in
Figure 3 different mechanisms are needed to do so. We
introduce these mechanisms in detail below. The mechanisms
below can again be seen as patterns, but due to the limited

space in this paper we refrain from presenting them in a
formal pattern format as the service tenancy patterns above.

B. Invocation under Tenant Context

Tenant context is a mechanism to submit information about
a tenant in the invocation message of a service.

The tenant context can simply be a tenant identifier or
complex authentication information. The tenant context can
be made explicit (for example in a SOAP header) or can
be contained implicitly in the payload of the message (for
example through a vendor id). However, it is important that
the invoking and the receiving service have agreed on a
format for the tenant context that both recognize. We call
a message to a service that contains a tenant context, an
invocation under tenant context (cf. Figure 4).

—Lwc >

Figure 4: Invocation under Tenant Context

C. Basic Invocation

We call a normal invocation of a service (e.g. via a SOAP
message) basic invocation to distinguish this invocation from
the invocation under tenant context (cf. Figure 5).

—

Figure 5: Basic Invocation

D. Tenant Context-Based Router

A tenant context-based router (cf. Figure 6) is derived
from the content-based router introduced in [9].

el

Figure 6: Tenant context based router icon

The tenant context-based router routes an invocation
message that contains a tenant context to a concrete endpoint
depending on the tenant whose context is in the message.
E.g. in Figure 3 B a tenant context-based router could be
used to route the invocation message to the right instance of
service S3.

E. Tenant Context Appender

A tenant context appender appends a tenant context to
an invocation message. Situations where this is necessary is
for example the situation depicted in figure 3 A) where a
multiple instances component sends out a basic invocation
message that needs to be augmented with a tenant context.
The tenant context is important so that the receiving service
can distinguish which tenant has sent the invocation message.
In some cases the tenant context can be already included in

the application In some cases, however, the tenant context
needs to be appended outside of the application, e.g. when
the application cannot be modified. In these case the tenant
context appender can be used.

G !
]

» %k
> >

Figure 7: Tenant context appender icon

FE. Tenant Context Wrapper

A special case of the tenant context appender is the fenant
context wrapper (cf. Figure 8). The tenant context wrapper
completely encapsulates the tenant context handling from
a service. For example a tenant context wrapper can be
used in conjunction with a BPEL process that is deployed
using the single instance service pattern. The tenant context
wrapper extracts the tenant context from the invocation of a
BPEL process instance and adds it to all invocations that are
triggered by that instance. This allows the BPEL process to
call services deployed using the single configurable instance
pattern without changing the process model. Figure 8 shows
such a tenant context wrapper for a single service.

>
Service
«Te

Figure 8: Tenant context wrapper icon

VI. SUPPORTING THE MODELING OF COMPOSITE
APPLICATIONS USING MULTI-TENANCY PATTERNS

In this section we describe the different combinations of
patterns that are possible and how they can be integrated
using the patterns and mechanisms described above. We first
begin by listing all possible combinations and then derive an
algorithm that automatically inserts the correct mechanisms to

support a modeler in the modeling of composite applications.

As a result a modeler can then purely focus on wiring the
functional services, while additional components such as
tenant context-based routers or tenant context appenders are
inserted automatically upon deployment of the application.

A. Possible Combinations

Table II shows how the two basic invocation patterns basic
service invocation (b) and service invocation under tenant
context (tc) can be used to permit arbitrary combinations
of service tenancy patterns in an application. Furthermore
the table shows how tenant context appenders (ap) and
tenant context routers (r) can be used to combine different
service tenancy patterns. For example line 3 column 4
reads (tc+r) which means that a client deployed using the
single configurable instance pattern can invoke a service

deployed using the multiple instances pattern by performing
an invocation under tenant context (tc) that is then distributed
to the service by a tenant context based router (r). A star (¥)
annotated to an invocation denotes that in case the invoked
service recursively invokes a service that requires invocation
under tenant context, the basic invocation might not be
enough and an invocation under tenant context in conjunction
with a tenant context wrapper must be used.

In order to determine whether basic invocation can be
used or if invocation under tenant context is needed a
so-called service invocation graph can be computed. The
service invocation graph contains all services as nodes and
all invocations as directed edges. Two types of edges exist,
edges of type b (requiring basic invocation) and edges of
type fc requiring invocation under tenant context. Again an
edge pointing from one node to another denotes that the
source node issues the first invocation of the target node
(service). However the conversation between the two can
be of any arbitrary complex message exchange pattern. The
service invocation graph can then be traversed bottom-up to
determine whether a service invocation needs to be under
tenant context because the target service is deployed using
the multiple instances or single configurable instances pattern
or any combination involving these two patterns. Note that
the outgoing edge of a fenant context appender as well as all
incoming edges of a tenant context based router and single
configurable instance services must be of type zc.

client/service single single conf. multiple
single b/b+ap* b+ap b+ap+r
single conf. b/tc* tc te+r
multiple b/tc*/ te/b+ap b/tc*/
b+ap* b+ap*

Table II: Combination of different patterns

B. Modeling Support

An application developer, however does not want to model
the specific invocations as well as routers and appenders
needed to invoke a service under tenant context. As these are
not relevant for the application from a functional viewpoint,
the application developer should be freed from the burden
of needing to specify them explicitly.

Given the different combinations of patterns in Table II
corresponding tooling can automatically insert the necessary
tenant context appenders and routers. These are then used
to insert a tenant context into an invocation message or to
route messages depending on their tenant context.

The application developer can therefore simply wire
components with different patterns. Upon deployment the
deployment infrastructure then rewrites the application in
a way that it inserts the necessary routers and appenders.
Therefore the deployment infrastructure traverses the invo-
cation graph bottom up. As described in Section VI-A this
traversal allows determining which invocation must be under

tenant context and which not, (cf. Table II). The algorithm
can then insert new appenders and routers where needed
(and where the developer has not originally added them).

C. Customizable Process

Our automotive point-of-sales application introduced in
Section III basically consists of a set of BPEL business
processes that orchestrate a set of Web services. The left

part of Figure 9 shows the general schema of the application.

Each tenant is served by the same instance of the business
process that retrieves configuration data (such as tax rates or
financing options) from a configuration database for each
tenant. Figure 9 shows two scenarios. In the left scenario

@) @) (0]
T New tenant C
A B A B C
GUI E GUlI i New configuration
data

I7¢ | _TC
P o Tenant context based
router R
THE®
| ,— —
-Eg e iTc
_ P’
I TC
1

_TC | 018:8 Multiple instances
business process
S
- —) p
\ 4
[1c1

' TC — | Tenant context
e Q appender A
J

S1

New configuration
data

Figure 9: Customization of Processes

the business process customization is done via the single
configurable instance pattern. However, tenant C in the
second part of Figure 9 needs advanced customization
of the business process and therefore opts to deploy the
process model in the multiple instances pattern. In our
use-case this is for example necessary for the Spanish
distribution organization that needs additional confirmation
steps that other countries do not need. This has impact on
the whole application. For example between the GUI and
the business process a tenant context based router R needs

to be inserted that routes the message to the right endpoint.

This is either the process P using the single configurable
instances pattern, or the process P’ using the multiple
instances pattern. Service S1 is deployed using the single
configurable instances pattern and therefore must be invoked
under a tenant context. This tenant context must be inserted

into the invocation message of the multiple instance process
P’ by the tenant context appender A.

VII. VALIDATION AND IMPLEMENTATION

As described in Section III we applied the patterns in a
real-world case study in the automotive sector. There we
showed how the different patterns can be applied to an
enterprise application that is offered as a SaaS application
by one branch of the company to other departments of the
same company. In the EaaS project (EAI as a Service) [16]
users can model and combine executable EAI patterns into
an integration solution in a graphical tool. These patterns
are then annotated with multi-tenancy patterns (depending
on user requirements). Upon deployment the patterns are
then transformed into executable BPEL and Web service
code [15], [16]. The algorithm as described in VI-A is
then applied and corresponding routers and appenders are
inserted (depending on the multi-tenancy patterns of the
individual patterns). Afterwards a deployment process is run
that deploys the BPEL processes and necessary services so
that the integration solution can be run. Additionally we
implemented a sample application based on Web services
that are orchestrated by a BPEL process to further validate
our approach. Users can choose between predefined BPEL
processes and can set some configuration properties for
them that are retrieved from a configuration Web service.
In addition users can upload their own process definition
(with the same interface as the predefined processes) that
is then deployed using the multiple instances pattern. We
are currently extending this sample application into an on-
demand process platform named DecidR, where users can
create and use their own business processes that orchestrate
a set of pre-defined services such as a human task service
or e-mail services. Documentation and first prototypes can
be found at the project Website*.

VIII. CONCLUSIONS AND OUTLOOK

In this paper we introduced and evaluated a set of patterns
that can be used to design, develop and deploy process-aware
service-oriented SaaS applications. We describe how multi-
tenancy of the whole application can be achieved, while
individual services exploit maximum customizability. We de-
scribe patterns how individual services of an SaaS application
can be deployed with different degrees of customizability and
how these different patterns can be combined. SaaS customers
benefit from our approach as they can completely customize
certain parts of an SaaS application while reusing other parts
of the SaaS application. SaaS providers benefit from the
approach as they can extend their user base to customers that
can not be satisfied with the customizability of pure multi-
tenant applications by relieving the multi-tenancy paradigm

“http://code.google.com/p/decidr/

for parts of the application. In future work we will describe
a multi-tenant aware infrastructure for services and processes

and

how tenant deployment scripts can be generated using

the patterns.

ACKNOWLEDGMENT

This work is partially funded by the ALLOW project .
ALLOW (http://www.allow-project.eu/) is part
of the EU 7" Framework Programme (contract no. FP7-
213339).

(1]

(2]

13

—

[4

—

(3]

(6]

(71

(8]

(9]

(10]

(11]

(12]

[13]

REFERENCES

C. Alexander. The Timeless Way of Building. Oxford University
Press, 1979.

R. Anzbock, S. Dustdar, and H. Gall. Software configuration,
distribution, and deployment of web-services. In Proc. SEKE
2002.

D. Chappell. Enterprise Service Bus. O’Reilly Media, Inc.,
Ist edition, June 2004.

F. Chong and G. Carraro. Building Distributed Applica-
tions Architecture Strategies for Catching the Long Tail.
MSDN architecture center, http://msdn2.microsoft.com/en-
us/library/aa479069.aspx, 2006.

M. Fowler. Patterns of Enterprise Application Architecture.
Addison-Wesley Professional, Nov. 2002.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design pat-
terns: elements of reusable object-oriented software. Addison-
Wesley Professional Computing Series, 1995.

C. J. Guo, W. Sun, Y. Huang, Z. H. Wang, and B. Gao. A
framework for native multi-tenancy application development
and management. CEC/EEE 2007, 2007.

M. D. Hansen. SOA Using Java(TM) Web Services. Prentice
Hall PTR, May 2007.

G. Hohpe and B. Woolf. Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions.
Addison-Wesley Professional, Oct. 2003.

M. Jaring and J. Bosch. Architecting product diversification
- formalizing variability dependencies in software product
family engineering. In QSIC ’04, 2004.

Z. Maamar, Q. Z. Sheng, and B. Benatallah. On composite
web services provisioning in an environment of fixed and
mobile computing resources. J. Information Tech. and Mgmt,
Special Issue on Workflow and e-Business, Kluwer, 5, 2004.

R. Mietzner and F. Leymann. Generation of BPEL Cus-
tomization Processes for SaaS Applications from Variability
Descriptors. In SCC 2008, 2008.

R. Mietzner, F. Leymann, and M. Papazoglou. Defining
Composite Configurable SaaS Application Packages Using
SCA, Variability Descriptors and Multi-Tenancy Patterns. In
ICIW, 2008.

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

J. Sathyan and K. Shenoy. Realizing unified service experience
with SaaS on SOA. In COMSWARE 2008., 2008.

T. Scheibler and F. Leymann. A Framework for Executable
Enterprise Application Integration Patterns. In /-ESA, 2008.

T. Scheibler, R. Mietzner, and F. Leymann. EAI as a Service
- Combining the Power of Executable EAI Patterns and SaaS.
In EDOC 2008, 2008.

Q. Z. Sheng, B. Benatallah, Z. Maamar, M. Dumas, and
A. H. H. Ngu. Enabling personalized composition and adaptive
provisioning of web services. In In Proc. CAiSE 2004.

W. Sun, K. Zhang, S. Chen, X. Zhang, and H. Liang. Software
as a Service: An Integration Perspective. Service-Oriented
Computing ICSOC 2007, 2007.

L. Tao. Shifting paradigms with the application service
provider model. Computer, 34(10):32-39, 2001.

R. Titze. Web Service Deployment Strategien (in
German). Diploma thesis, University of Stuttgart,
2009. http://www.informatik.uni-stuttgart.de/cgi-

bin/NCSTRL/NCSTRL_view.pl?7id=DIP-2852.

Weerawarana, S. et al. Web Services Platform Architecture:
SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-
Reliable Messaging and More. Prentice Hall PTR Upper
Saddle River, NJ, USA, 2005.

M. Zirn. Application upgrades and service oriented architec-
ture. Technical report, Oracle, 2008.

All hyperlinks in this document last checked on March 5th 2009

