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Abstract. There are many advantages to performing a clinical trial when implementing a novel 
radiotherapy technique.   The clinical trials framework enables the safety and efficacy of the 
“experimental arm” to be tested and ensures practical support, rigorous quality control and data 
monitoring for participating centres.  In addition to the clinical and follow-up data collected 
from patients within the trial, it is also possible to collect 3-D dosimetric information from the 
corresponding radiotherapy treatment plans.  Analysing the combination of dosimetric, clinical 
and follow-up data enhances the understanding of the relationship between the dose delivered 
to both the target and normal tissue structures and reported outcomes & toxicity.  Aspects of 
the collection, collation and analysis of data from two UK multicentre Phase III radiotherapy 
trials are presented here.  MRC-RT01 dose-escalation prostate radiotherapy trial 
ISRCTN47772397 was one of the first UK multi-centre radiotherapy trials to collect 3-D 
dosimetric data.  A number of different analysis methodologies were implemented to 
investigate the relationship between the dose distribution to the rectum and specific rectal 
toxicities.  More recently data was collected from the PARSPORT trial (Parotid Sparing IMRT 
vs conventional head and neck radiotherapy) ISRCTN48243537. In addition to the planned 
analysis, dosimetric analysis was employed to investigate an unexpected finding that acute 
fatigue was more prevalent in the IMRT arm of the trial.  It can be challenging to collect 3-D 
dosimetric information from multicentre radiotherapy trials.  However, analysing the 
relationship between dosimetric and toxicity data provides invaluable information which can 
influence the next generation of radiotherapy techniques. 

1. Introduction 
 

Radiotherapy in the 21st century allows a carefully shaped dose-distribution to be accurately directed 
to a tumour with either radical or palliative intent.  However it is impossible to completely avoid 
targeting normal tissue surrounding the tumour.  This is partly to ensure that all potential clonogens 
are included in the irradiated region but largely due to the entrance and exit path of each radiotherapy 
beam.  As the ability to optimise and deliver more complex dose-distributions evolves, it will be 
possible to be much more prescriptive about the amount and distribution of radiation to normal tissue 
structures.  In order to capitalise on this possibility the dose-response of each normal tissue must be 
characterised. 
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The process of characterisation is complex. Analysis requires clinical data including accurate and 
specific toxicity data and complete dosimetric information on specific organs at risk.   Each normal 
tissue is associated with a number of different toxicities and heterogeneity in the treatment population 
will influence the side effects each patient will experience.  Much of the information currently 
available on the response of normal tissues is summarised in the QUANTEC report[1].   Each of the 
organ specific papers is structured to include relevant endpoints, review dose-volume data and 
summarise recommended dose-volume constraints.  The application of mathematical and biological 
models such as Normal Tissue complication Probability (NTCP)[2] are also considered.   
 

2. Data Collection  
 

The MRC-RT01 dose-escalation prostate radiotherapy trial ISRCTN47772397 [3] was one of the first 
UK multi-centre radiotherapy trials to collect 3-D dosimetric data.  The trial randomised 843 men with 
localised prostate cancer between a standard radiotherapy dose of 64 Gy or an escalated dose of 74Gy 
achieved with a 10Gy boost to the prostate only.  Although comprehensive follow-up data was 
available for most patients, it was only possible to combine the toxicity and dosimetric data for 388 
patients.  The deficiency in dosimetric data was partly attributable to difficulties in retrieving the data 
from treatment planning systems with non-proprietary export formats.  These technical issues have 
been largely overcome with the wide-scale implementation of DICOM-RT and development of 
treatment plan analysis software [4,5].  However diligent prospective archiving of data is fundamental 
to the creation of comprehensive data sets.   
 

3. Analyses 
 

Data sets which combine toxicity and dosimetric data are valuable resources in the effort to further the 
understanding of the response of normal tissues.  They can be used to derive dose-volume constraints 
using statistical methods [6,7],derive parameters for NTCP models such as the classic Lyman Kutcher 
Burman model [8,9] or develop novel models [10].   They are also invaluable as independent datasets 
on which to test potential models.  
 

The initial analysis of the RT01 data took the form of an independent validation of dose-volume 
constraints for the rectum already proposed in the literature[11].   Two sets of rectal dose-volume 
constraints were tested; those proposed by Fiorino et al [6] of 40Gy/65%, 50Gy/55%, 60Gy/40%, 
70Gy/25% and 75Gy/5% and those proposed for the CHHiP trial [12] of 30Gy/80%, 40Gy/70% 
50Gy/60% 60Gy/50% 65Gy/30%, 70Gy/15% and 75 Gy/3%.  Each constraint was tested 
independently on 7 different late rectal toxicity endpoints; Rectal Bleeding (RMH), Proctitis (RTOG) 
Subjective Sphincter control, Subjective stool frequency and Management of sphincter control 
(LENT/SOM) and Loose stools and rectal urgency (UCLA PCI).    

 
The effect of retrospectively applying the constraints was tested by calculating Odds ratios defined 

as the odds of reporting a specified late rectal toxicity as a result of the treatment plan failing to meet a 
suggested constraint relative to the odds of reporting the specified late toxicity if the constraint had 
been met.  It was demonstrated that some constraints were more effective for some endpoints than 
others; potentially due to underlying differences in patho-physiology.  However, overall there was a 
clear picture that the more constraints failed (when considering the lowest volume constraint at each 
dose level) the more likely a patient was to experience toxicity.  In addition, it was observed that in the 
group of patients whose treatment had met all of the constraints, approximately a third of patients 
reported toxicity graded as either moderate or severe. 
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4. Deficiencies in Current Methodology 
 

There are several explanations for the failure of dose volume constraints and NTCP models to 
accurately predict toxicity.  Firstly it is important to acknowledge that dose-volume constraints, 
models and model parameters are derived from a dataset which will represent one or more treatment 
types (e.g. fractionation, beam arrangement).  It cannot be presumed that results can be generalised to 
another treatment type.  However there are more fundamental reasons why the incidence of toxicity is 
not fully predicted by current approaches.    
 
4.1 Deficiencies in Toxicity Reporting/Definitions. 

Although standardised scales for toxicity reporting are used there are still challenges in the 
representation of side effects.  Analysis is either performed cross-sectionally (i.e. toxicity reported at 2 
years) or cumulatively using the maximum grade reported over the available follow-up period.  Both 
definitions are sensitive to spurious results and neither fully characterises the experience of the 
patient[13].  An alternative approach is to use an area under the curve approach where the time and 
severity of toxicity are integrated over the follow-up period[7].  Figure 1 represents 2 idealised 
examples of follow-up history.  Using standard definitions both patients would report grade 2 toxicity.  
However it is clear that the overall toxicity profile is quite different.  Dose-volume constraints for the 
rectum were derived using both definitions and were shown to provide complimentary information. 
 
 
 
  
 
 
 
 
 
 
 
 
Figure 1 Illustrative examples of the time course of reported toxicity.  
 
4.2 Treatment plan not representative of the dose received by the normal tissue. 
Treatment plans are calculated using a CT scan taken prior to treatment and therefore the dose 
accumulated by normal tissues is unlikely to be accurate. Changes in patient anatomy over the course 
of radiotherapy treatment are not uncommon.  In addition intra- and inter- fraction motion will 
compound these uncertainties.  In the era of IGRT it is possible to improve the estimate of dose 
received by a specific organ or tissue by recalculating the dose distribution on cone beam CT acquired 
over the course of treatment.  Accumulating this dosimetric information should result in a more 
accurate representation of the dose distribution received[14]. 
 
4.3 Lack of spatial information 

The dose distribution to a normal tissue is usually presented as a dose-volume-histogram (dvh).  The 
dvh allows for comparison of the main features of the dose distribution however if the organ or tissue 
has a heterogeneous dose response then information regarding the location of the dose is also 
important.  An alternative representation of the dose to a tubular structure such as the rectum is a dose 
surface map (figure 2) where the dose distribution to the rectum surface is unfolded and spatial 
integrity is preserved.  Using dose surface maps to analyse the RT01 trial cohort it was possible to 
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demonstrate that loose stools was most correlated with the longitudinal (superior-inferior) extent of 
doses in the range of 20-30 Gy, in contrast rectal bleeding was best characterised by the lateral (left-
right) extent of doses between 40 and 60Gy[15].  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 2.  Example of a dose surface map 
where the dose to the rectal wall has been 
unfolded along the most posterior point of the 
contour. 
 
 
 
 

 
 
4.4 Patient & Genetic factors  

Finally we consider that there are many patient specific factors that contribute to and confound the 
dose response of normal tissues.  These factors may include co-morbidities and concomitant 
treatments.  It is also important to consider inherent genetic differences.  Single Nucleotide 
Polymorphisms (SNPs) are rearrangements of a single pair in a gene.  These variations continue to be 
tested as potential candidates for radiation response although the large number of potential variations 
has so far led to inconclusive results[16]. 

 
 

5. The benefits of Clinical trials for the implementation on new radiotherapy techniques. 
 

In addition to the comprehensive data collected within a clinical trial, there are other advantages to 
using data collected within this structured framework.  The trial protocol ensures that all aspects of the 
radiotherapy are considered and acceptable techniques are defined.  In addition rigorous quality 
assurance programs ensure that patients recruited to the trial are treated according to protocol.  Overall 
this reduces the heterogeneity of data in the cohort available for analysis.   
 

The importance of using clinical trials to implement new technology was highlighted by the results 
of the Phase III PARSPORT trial ISRCTN48243537 [17].  This trial was unique in comparing 
conformal radiotherapy and intensity modulated radiotherapy for head and neck cancer in a fully 
randomised setting.  The use of IMRT allowed for sparing of the contra-lateral parotid gland and trial 
findings confirmed a decrease in Xerostomia in the group of patients who received IMRT.  

 
  An unexpected finding from the trial was that acute fatigue was more prevalent in the IMRT arm 

of the trial.   It was hypothesised that the difference in the incidence of fatigue was related to 
differences in dosimetry to a number of CNS structures [18].   The dose distributions to the structures 
were compared to the incidence of fatigue and it was demonstrated that the maximum and mean dose 
to the posterior fossa, cerebellum and brainstem were correlated with acute fatigue.  Subsequent 
analysis characterised the dose distribution using the dose-volume atlas method proposed by Jackson 
et al [19].  This method allows the dvh to be summarised in combination with a specific toxicity 
endpoint.  Each box in the atlas represents a small region of dose and volume.  The dvh are overlayed 
and the boxes through which the dvh passes are recorded (denominator). Also recorded in each box 
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are the number of patients whose dvh pass through the box AND reported the toxicity under 
investigation (numerator).  An example atlas generated for the cerebellum is shown in figure 3.  
 

100 34/48 28/35 25/32 22/29 15/22 10/15 8/12 6/7 6/7 6/7 2/2 2/2 1/1 1/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
90 1/7 2/3 4/5 7/7 9/9 11/13 8/9 9/12 4/6 1/2 4/5 3/4 4/4 2/2 1/1 1/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 100%
80 0/2 0/2 1/1 1/2 4/5 3/4 6/8 5/7 7/8 9/11 7/10 5/7 1/3 2/3 3/3 1/1 1/1 1/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 80-99%
70 1/2 0/1 0/0 0/0 2/2 4/4 4/5 4/6 5/7 5/6 4/4 6/7 8/9 4/6 3/5 3/4 3/3 0/0 1/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 60-79%
60 3/4 1/4 0/2 0/0 0/0 2/2 3/3 4/4 3/5 3/5 5/7 4/5 3/4 6/7 4/5 3/5 2/4 3/3 2/2 1/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 40-59%
50 2/4 3/9 0/0 0/2 0/1 0/1 1/2 1/1 4/4 3/4 3/4 2/3 4/5 3/4 4/5 4/4 3/4 3/5 1/1 2/2 1/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 20-39%
40 0/0 1/5 0/5 0/1 0/1 0/0 0/0 1/2 0/1 2/3 3/5 5/8 3/6 4/4 4/5 3/5 4/5 3/4 5/8 2/3 3/3 1/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0-19%
30 0/0 3/3 4/10 1/8 0/4 0/4 0/3 0/1 1/1 1/1 1/1 1/1 4/5 3/7 4/7 7/9 5/8 5/9 2/3 4/6 2/3 4/5 1/2 1/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
20 0/0 3/5 3/6 6/11 6/13 3/11 2/10 2/8 1/7 0/4 1/4 2/5 2/5 3/6 4/8 4/8 5/8 7/7 8/11 6/10 7/11 5/7 5/6 4/6 2/3 2/3 2/2 0/0 0/0 0/0 0/0 0/0 0/0
10 0/0 0/0 4/6 4/7 5/10 8/13 9/15 9/19 10/21 11/24 11/25 11/25 11/25 13/27 14/28 14/29 17/33 18/37 21/38 25/41 27/43 29/43 33/47 30/43 30/41 28/38 25/36 20/28 16/23 13/19 7/10 3/3 2/2
0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 1/1 1/1 1/1 1/3 1/4 1/6 2/11 2/12 6/17 9/23 11/26 14/29 21/39 25/44 28/48 34/57 38/64 39/65
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Figure 3.  Dose-volume atlas summarising dvh of the cerebellum and incidence of grade 2 fatigue. 
 
Using an atlas approach allowed the analysis of the relationship between the whole dvh and toxicity 
and has potential for both the derivation of constraints and generation of models.  Use of the atlas 
method is encouraged within the QUANTEC report as it facilitates the combination of data from 
different patient cohorts.  Combining datasets allows for development of generalisable models and 
independent testing.  
 

6. Summary 
 

Clinical trials are vital to validate and introduce new radiotherapy techniques. The framework of 
clinical trials facilitates the development of databases of carefully audited information providing 
valuable information on the response of normal tissues to radiation.  Deficiencies in the 
characterisation of normal tissue response to radiation and confounding factors are acknowledged but 
ongoing research and feedback will improve future characterisation of the response of normal tissues.  
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