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Combining Economic Forecasts 

Robert T. Clemen 
College of Business Administration, University of Oregon, Eugene, OR 97403 

Robert L. Winkler 
Fuqua School of Business, Duke University, Durham, NC 27706 

A method for combining forecasts may or may not account for dependence and differing precision 
among forecasts. In this article we test a variety of such methods in the context of combining 
forecasts of GNP from four major econometric models. The methods include one in which 
forecasting errors are jointly normally distributed and several variants of this model as well as 
some simpler procedures and a Bayesian approach with a prior distribution based on exchange- 
ability of forecasters. The results indicate that a simple average, the normal model with an 
independence assumption, and the Bayesian model perform better than the other approaches 
that are studied here. 

KEY WORDS: Bayesian combination of forecasts; Average of forecasts; Weighted average of 
forecasts; Exchangeable forecasters; Econometric models; Forecast evaluation. 

1. INTRODUCTION 

Decision makers who have to make an assessment about 
some uncertain future event often seek information in the 
form of forecasts concerning the event. For example, many 
individual economists and various econometric models pro- 
duce forecasts of GNP and other economic variables. When 
the forecasts diverge, the decision maker who wants a single 
forecast faces the thorny problem of combining the forecasts. 
In this article we focus on the combination of GNP forecasts 
from four major econometric models. 

A simple procedure for combining forecasts is to take an 
arithmetic average of the forecasts. This procedure serves 
as a useful benchmark and has been shown to perform better 
than some schemes that are more complicated (Makridakis 
and Winkler 1983). 

A model in which forecasting errors are jointly normally 
distributed takes into account dependence and differing pre- 
cision among forecasts (Newbold and Granger 1974; Wink- 
ler 1981; Winkler and Makridakis 1983). We take this model 
as our point of departure from the simple average, and we 
consider several variants on the model as well as a Bayesian 
approach with a prior distribution based on exchangeability. 
The results indicate that the simple average, the normal 
model with an independence assumption, and the Bayesian 
model perform better than the other approaches that are 
studied here. 

Methods for combining forecasts are discussed in Section 
2, and the empirical analysis involving GNP forecasts is 
presented in Section 3. Section 4 summarizes the article and 
discusses some implications of our results. 

2. METHODS FOR COMBINING FORECASTS 

Let x represent the variable being forecast, and suppose 
we have k forecasts X-, x2 .. ., k of x. Then the simple 

average yields a forecast y, of the form 
k 

y = ^ ik. 
i=l 

(1) 

No information about the precision of the forecasts or about 
dependence among the forecasts is needed to generate a 
simple average. The fact that each forecast receives the same 
weight 1/k, however, does imply that the forecasts are being 
treated as if they were exchangeable. 

An alternative to an ad hoc method such as a simple 
average is an approach that models the precision of the 
forecasting methods as well as their statistical interaction. 
This is in the spirit of a Bayesian approach to modeling 
information from experts or other sources (e.g., Morris 1977). 
One such model (Newbold and Granger 1974; Winkler 1981) 
treats the vector of forecast errors e = (i - x, x2 - x, . . . 
Xk - x)' as normally distributed with zero mean vector and 
positive definite covariance matrix X, where a prime denotes 
transposition. The motivation for the normal model is that 
there are many sources of error in forecasting and that as a 
result the "normal theory of errors" seems applicable. In 
addition, the normal distribution provides a natural model 
for positive dependence among experts as a result of shared 
information (Winkler 1981; Clemen 1984). 

The combined forecast generated by the normal model is 

Y2 = U'l-.XZ/u'Y 'u, (2) 

where u = (1, 1, . . ., )', 1 = (X, X2 . .. , k)', and 
X is an estimate of E. The combined forecast Y2 is a weighted 
average of the individual forecasts xi, with the vector of 
weights 

W = (WI, . . . , Wk) = U' -'/U'.-lU (3) 

depending on E. Thus, the estimate l, which can be deter- 
mined from past data on estimation errors, prior information, 
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or some combination thereof, plays an important role in the 
determination of the combined forecast. 

A common choice for X is a sample covariance matrix 
that can be justified from the standpoint of obtaining a var- 
iance-minimizing combination of forecasts (Halperin 1961) 
or from a Bayesian approach using a diffuse prior distribution 
(Geisser 1965). A potential problem in using the sample 
covariance matrix to estimate E is that the estimate can be 
quite unstable unless large data sets are available for esti- 
mation. This problem is particularly pronounced when the 
pairwise correlations are high, as often seems to be the case 
with economic forecasts (e.g., see Section 3 of this article 
or Figlewski and Urich 1983). 

We take the normal model with the sample covariance 
matrix as our point of departure. The weights assigned to 
the forecasts and thus the forecasts themselves can be mod- 
ified by changing the estimate i or some other aspect of the 
procedure. We consider several alternative schemes, includ- 
ing some suggested by Newbold and Granger (1974), some 
considered by Granger and Ramanathan (1984), and some 
proposed here and not previously studied. 

The simplest modification, if it might be called that, is 
to vary n, the number of data points used in the estimation 
of E and therefore in the determination of the weights. Using 
more data points should lead to better, more stable estimates 
and weights, provided that the process generating vectors of 
forecast errors is stationary. In the presence of nonstation- 
arity, however, a smaller n might be preferable because 
"older" observations may have been generated by a process 
with different parameter values. 

Another way to deal with potential nonstationarity is to 
weight recent experience more heavily. For example, if the 
last n data points are used to estimate X, then we let 

(<), = flB'eitet,/E f (4) 
t=l t=l 

where f, - 1 is a smoothing parameter, eit and ej, are the 
errors for forecasts i and j for observation t, and observation 
n is the most recent observation. Here each successively 
"older" observation receives less weight, and X can adapt 
more quickly over time if the process is nonstationary. The 
case of , = 1 corresponds to our basic normal model with 
equal weight given to all observations. 

As noted above, estimates of I are often quite unstable 
when the correlations among forecast errors are high. The 
weights wi and hence the combined forecast are extremely 
sensitive to small changes in the correlations, which may be 
poorly estimated because of a relatively small sample or 
nonstationarity. One way to avoid this instability is to treat 
the forecast errors as independent. To avoid complications 
caused by dependence, we can assume that X is diagonal 
and set all off-diagonal elements of to zero. This approach 
assigns weights to forecasts only on the basis of precision 
and ignores correlations. 

If the correlations among forecast errors are not ignored, 
forecasts may be assigned negative weights in some cases, 
and the combined forecast may lie outside the range of the 

k forecasts. This might be considered unreasonable by some 
decision makers, and it can be avoided by constraining the 
combined forecast to fall between the lowest and highest 
forecasts, inclusive. A combined forecast lower (higher) than 
the lowest (highest) forecast can be modified by setting it 
equal to the lowest (highest) forecast. This approach rep- 
resents a compromise of sorts in the sense that it does not 
totally ignore dependence, but it does keep the effect of 
dependence from being too extreme. Essentially, it uses the 
basic normal model but monitors the "reasonableness" of 
the combined forecasts by imposing a convexity constraint 
(forcing the combined forecast to lie in the convex set gen- 
erated by the k forecasts). 

Estimating the weights in the normal model can be thought 
of as estimating regression coefficients that must sum to 
one. One obvious generalization is to relax the assumption 
that the weights must sum to one. For example, we can use 
an unconstrained application of ordinary least squares (OLS) 
to a regression model without an intercept term. If the fore- 
casts are perfectly calibrated in the sense that the forecast 
errors have a zero mean vector, as assumed in the normal 
model, then the regression surface must pass through the 
origin. To allow for the possibility that this assumption is 
not appropriate, we can use OLS on a regression model with 
an intercept term. Estimation via OLS without an intercept 
term provides more flexibility than the basic normal model, 
and OLS with an intercept term yields even more flexibility. 

A more extreme approach to the combination of forecasts 
is to assign all of the weight to a single forecast. For example, 
we might feel that good performance is likely to continue, 
which suggests that all of the weight should be given to the 
econometric model with the smallest error on the previous 
forecast. Or, taking a contrary view, we might give all of 
the weight to the model with the largest error on the previous 
forecast, hoping that the poor performance will motivate 
adjustments to improve the next forecast. When ties occur, 
the weight can be divided equally among those tied for best 
or worst. 

Modifications such as constraining the combined forecasts 
to be within the range of the individual forecasts, totally 
ignoring correlations, applying OLS with or without an in- 
tercept term, and using the model that was best or worst on 
the previous forecast are ad hoc in nature, of course. A more 
formal approach can be developed in a Bayesian context, 
using prior information about E as well as past data. Suppose 
that the prior information concerning X can be represented 
by an inverted Wishart density with covariance matrix -0 
and a degrees of freedom, where a > k - 1. Furthermore, 
the past data consist of n vectors of forecast errors e, .. . 
en, where ei = (eil, eil, . . ., eik)'. Then the posterior dis- 
tribution for E is inverted Wishart with covariance matrix 

S* = [(al-' + nl-')/(a + n)]-' 

and degrees of freedom 

C* = a + n, 

(5) 

(6) 

where I is the sample covariance matrix (LaValle 1970). 
Having revised the distribution for l, we now return to 
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the combination of forecasts. Suppose that x and l are in- 

dependent a priori, with an improper diffuse density for x 
and an inverted Wishart density for I having covariance 
matrix E* and a* degrees of freedom. Then the posterior 
mean for x, after the vector of forecasts x is seen, is 

Y3 = u'*-'Xl/u'I/*-U (7) 

(Winkler 1981). Thus, the forecast from this Bayesian model 
is of the same form as (2) with E* used in place of E. 

The values chosen for a and S0 have implications for the 
combined forecast of the Bayesian model. It may be rea- 
sonable to specify a priori that we believe that forecasts 
within a given class (e.g., generated by econometric models 
or generated judgmentally by economists) are exchangeable. 
The prior estimate -0 of E would thus be an intraclass cor- 
relation matrix with a2i = a2 and ij = a2p for all i ?= j. 
The effect in the application of (5) would be to generate a 
covariance matrix E* for which any differences among fore- 
casters in variances or pairwise covariances are reduced. 
The degree of the shift depends on a, which can be thought 
of as an equivalent prior sample size. As we place more 
weight on the prior information by increasing a, the weights 
wi become more nearly equal. In the limit, the prior infor- 
mation completely dominates the sample information, and 
the combined forecast is a simple average of the individual 
forecasts. As noted earlier, combining forecasts by means 
of a simple average implies a (usually tacit) assumption that 
the forecasters are exchangeable. In a different context, 
Lindley and Smith (1972) show that ridge regression is for- 
mally equivalent to a Bayesian model with a prior belief of 
exchangeability and note that such a belief might not be 
reasonable in many situations. Our Bayesian model is anal- 
ogous to ridge regression, but exchangeability may often be 
a natural prior assumption in the setting of combining fore- 
casts. 

3. THE COMBINATION OF GNP FORECASTS 
FROM FOUR MAJOR ECONOMETRIC MODELS 

Wharton Econometrics (Wharton), Chase Econometrics 
(Chase), Data Resources, Inc. (DRI), and the Bureau of 
Economic Analysis (BEA) make quarterly forecasts of many 
economic variables. We used their level forecasts of real 
and nominal GNP (1970-1982) (obtained directly from 
Wharton and BEA and from the Statistical Bulletin published 
by the Conference Board for Chase and DRI) to construct 

growth rate forecasts (in percentage terms), and we calcu- 
lated the deviations from actual growth as determined from 
GNP reported in Business Conditions Digest. For both var- 
iables, forecasts with four different horizons (1, 2, 3, and 
4 quarters) were analyzed. For example, the one-quarter 
nominal GNP forecast predicts the percentage change (an- 
nual rate) of nominal GNP over the next quarter, whereas 
the four-quarter forecast predicts the percentage change for 
the three-month period four quarters in the future. 

BEA makes only one set of forecasts per quarter, usually 
early in the quarter, based in part on the first report of GNP 
for the previous quarter. On the other hand, Wharton, Chase, 
and DRI update their forecasts each month. We attempted 
to assemble forecasts from them that were comparable to 
BEA's in timing and data used in making the forecast. 

The data covered the 1971-1982 period. The number of 
observations available for each of the two variables was 45 
for four-quarter forecasts and 46 for the remaining forecasts. 
Each observation consisted of four forecasts and the actual 
value. 

For the basic normal model, we used an adaptive method 
to calculate the sample covariance matrix E. For any given 
forecasting situation, E was based on the preceding n ob- 
servations and the weights assigned to the individual fore- 
casts therefore changed in accordance with this moving win- 
dow. We tried values of 5, 10, 15, and 20 for n. Unless 
otherwise stated, the reported results for the normal model 
and its variants are based on the case of n = 20. In the 
model with recent experience weighted more heavily, we 
considered /- = 1(.1)2. For the Bayesian model with the 
prior distribution of E based on exchangeability, we used a 
pooled estimate of a2, chose p = .7, and tried several values 
of a. Finally, the Bayesian model was also tried with in- 
dependence imposed on both the prior estimate S0 and the 
sample estimate S. 

The calibration of the forecasts from the four econometric 
models is of interest because the normal model (as well as 
its variants) assumes that the forecasts are calibrated in the 
sense that they have expected errors of zero. The average 
errors presented in Table 1 reveal a slight tendency to over- 
forecast real GNP for the longer time horizons. Of the 32 
average errors (2 variables, 4 horizons, 4 econometric models), 
however, only four were larger than 1% in absolute value, 
and not one was significantly different from zero at the .05 
level (although t = 2.01 for DRI for four-quarter forecasts 

Table 1. Average Errors for Individual Forecasts 

Variable Horizon Wharton Chase DRI BEA 

Nominal GNP 1 -.03 (-.05) -1.05 (-1.87) -.80 (-1.40) -.63 (-1.21) 
2 .08 (.11) -.70 (-.91) -.36 (-.55) .02 (.03) 
3 .03 (.04) -.26 (-.29) .02 (.03) -.03 (-.04) 
4 -.20 (-.22) -.15 (-.16) .44 (.52) .00 (.00) 

Real GNP 1 .04 (.09) -.77 (-1.65) -.29 (-.53) .10 (.22) 
2 .86 (1.51) -.02 (-.03) .44 (.75) .66 (1.18) 
3 .98 (1.60) .57 (.83) .90 (1.40) .97 (1.46) 
4 1.16 (1.70) .97 (1.29) 1.39 (2.01) 1.22 (1.68) 

NOTE: t statistics are in parentheses. 
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Table 2. Autocorrelations of Forecast Errors for Individual Forecasts 

Variable Horizon Lag Wharton Chase DRI BEA 

Nominal GNP 1 1 -.11 -.09 -.32* -.17 
2 .08 .22 .10 -.26 
3 -.19 -.14 -.18 .06 

2 1 .05 .18 .10 .01 
2 .08 .22 .12 .15 
3 -.01 .05 -.04 -.04 

3 1 .13 .27 .30* .25 
2 .14 .19 .17 .05 
3 -.06 .08 .00 -.04 

4 1 .10 .26 .27 .14 
2 .01 .17 .11 .11 
3 -.17 .06 -.06 -.02 

Real GNP 1 1 -.19 -.03 -.16 -.11 
2 .06 .20 .01 -.16 
3 -.20 -.07 -.10 .05 

2 1 -.15 .06 .07 -.07 
2 -.05 .11 .06 .00 
3 .00 .05 .06 .00 

3 1 -.01 .26 .23 .18 
2 -.04 .03 .01 .01 
3 -.09 .03 -.03 -.11 

4 1 .14 .22 .22 .12 
2 -.12 .05 -.06 -.04 
3 -.21 -.01 -.17 -.16 

*Significant at the .05 level. 

of real GNP was barely nonsignificant). In addition, after 
completing the analysis described below, we calibrated the 
forecasts by adjusting for their average error and then re- 
peated the analysis with the calibrated forecasts. The com- 
bined forecasts based on the calibrated forecasts performed 
slightly worse than those based on the raw forecasts. Thus, 
it appears that these four econometric models do a relatively 
good job in terms of calibration, which is what we would 
expect of premier econometric models. 

The normal model also assumes that all forecasters have 
errors that are free of autocorrelation. From the autocorre- 
lations given in Table 2 and visual inspections of residual 
patterns, this appears to be a reasonable assumption. Most 
of the autocorrelations were very close to zero. There was 
a slight tendency toward positive (but small) first-order au- 
tocorrelations for three- and four-quarter-ahead forecasts and 
negative (but even smaller) first-order autocorrelations for 
one-quarter-ahead forecasts. 

Table 3. MAD and MSE for Individual Forecasts and Combined Forecasts 

Simple Normal Independence Convexity OLS, No 
Variable Horizon Wharton Chase DRI BEA Average Model Model Constraint Intercept OLS Best Worst 

MAD 

Nominal GNP 1 3.68 3.77 3.84 3.75 3.55 4.23 3.57 3.98 4.38 4.51 3.95 3.58 
2 4.48 5.24 4.30 4.64 4.56 4.65 4.54 4.65 4.67 4.95 4.35 4.90 
3 5.27 6.30 5.28 5.10 5.32 5.32 5.26 4.98 5.20 5.30 5.20 5.74 
4 5.65 5.79 5.32 5.46 5.45 6.56 5.57 6.19 6.41 5.57 5.38 5.18 

Real GNP 1 2.86 2.95 3.12 2.91 2.88 3.14 2.85 3.03 3.26 3.52 3.35 2.88 
2 3.45 3.89 3.52 3.62 3.54 3.66 3.54 3.71 3.34 3.38 3.36 3.58 
3 3.59 4.17 3.60 3.70 3.59 4.13 3.58 3.79 3.86 3.87 3.67 4.03 
4 3.53 3.96 3.63 4.06 3.59 4.19 3.63 3.86 4.38 4.41 3.98 3.64 

MSE 
Nominal GNP 1 18.94 21.57 19.63 20.41 18.17 25.28 18.37 22.07 27.03 30.65 21.24 19.48 

2 29.79 42.26 29.06 34.78 31.94 34.64 31.77 34.87 35.84 42.54 30.49 38.73 
3 44.56 55.83 40.44 40.82 43.76 42.19 43.10 40.48 41.90 42.63 40.92 48.82 
4 63.89 53.55 44.67 45.48 47.91 76.54 50.94 69.57 55.51 45.04 49.86 44.75 

Real GNP 1 11.63 12.53 14.29 12.36 11.25 13.74 11.15 13.08 14.97 18.73 16.38 12.17 
2 17.92 21.98 17.12 18.88 17.77 19.59 17.78 19.64 18.30 21.38 17.06 18.85 
3 22.01 25.99 20.09 24.50 21.85 27.09 21.88 24.94 25.06 26.54 23.98 25.50 
4 23.59 26.43 20.94 25.82 22.30 30.99 23.36 25.48 27.85 28.63 22.68 22.72 
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Results for the individual econometric models and many 
of the combining methods are summarized in Table 3. Mean 
absolute deviations (MAD's) and mean square errors (MSE's) 
are given for the eight variable/horizon combinations. In all 
cases where fitting was involved, the evaluation was based 

entirely on forecasts not used in the fitting process. To in- 
clude the fitting data would give the more complex methods 
an unfair advantage. Facilitating comparisons further, we 
calculated all values of MAD and MSE for exactly the same 
set of forecast occasions. That is, when some occasions were 
used to fit a particular combining method, these occasions 
were excluded in the evaluation of all methods. 

The intent of this article is to study combined forecasts 
rather than individual forecasts. We note, however, that 
Wharton and DRI tended to have lower values of MAD and 
MSE than the other two models and that Chase had the worst 
overall performance of the four. The four econometric models 
demonstrated greater accuracy when forecasting real GNP 
than when forecasting nominal GNP, with the discrepancy 
increasing for the longer horizons. As anticipated, the fore- 
cast accuracy generally decreased as the lead time increased. 

The simple average performed quite well in this study, as 
can be seen from Table 3. If the "best" individual model 
could be identified on each forecast occasion, it would out- 

perform the simple average. Since such identification may 
not always be feasible, the simple average provides an al- 
ternative that yields good performance and is very robust 
(Makridakis and Winkler 1983). The values of MAD and 
MSE for the simple average were roughly comparable on 
an overall basis to those for the better individual models. 

In contrast to the simple average, our basic normal model 
fared poorly. For every other variable/horizon combination 
except three-quarter-ahead forecasts of nominal GNP, the 
normal model had a higher MAD and a higher MSE than 
the simple average, and the difference was often substantial. 
It is instructive to explore the reasons for this poor perform- 
ance. In our data set, the pairwise correlations of forecast 
errors were very high. In all, we can estimate 48 correlations 
(6 pairwise combinations and 8 variable/horizon combina- 
tions). These correlations, which are given in Table 4, were 
uniformly high, ranging from .82 to .96. The high corre- 

lations and differences among error variances resulted in the 
normal model placing negative weights on some of the fore- 
casts. The weights and the combined forecasts are highly 
sensitive to small changes in the estimated correlations, as 
in multicollinearity problems in general. To illustrate this 
notion, some extreme cases with n = 5 are shown in Table 
5. In Case 4, for example, the forecasts ranged from 3.258 
to 8.456 and the actual value was 6.804, but the weights 
ranged from -2.364 to 3.355 and the combined forecast 
from the normal model was -9.012. 

The poor performance of the basic normal model is not 

surprising. The potentially serious multicollinearity problem 
and previous empirical results (e.g., Winkler and Makridakis 
1983) led us to expect difficulties. The next question is the 
extent to which the variations on the normal model discussed 
in Section 2 improved matters. The convexity constraint that 
forces the combined forecast to lie within the range of the 
individual forecasts resulted in some improvement in per- 
formance in terms of either MAD or MSE, as can be seen 
from Table 3. Over the eight variable/horizon combinations, 
the average reduction in MAD from the MAD for the normal 
model was 4.5%, and the average reduction in MSE was 
6.9%. The simple average, however, yielded average re- 
ductions of 9.2% in MAD and 17.6% in MSE. 

Imposing an independence assumption by setting the off- 
diagonal elements of E equal to zero yielded very good 
results. The values of MAD and MSE shown in Table 3 for 
the independence model are comparable to those for the 

simple average. The independence model provided average 
reductions of 9.2% in MAD and 17.4% in MSE when com- 
pared with the basic normal model. The good performance 
of this approach is consistent with previous studies (e.g., 
Newbold and Granger 1974 and Winkler and Makridakis 
1983). 

Using (4) to place more weight on recent observations did 
not lead to large improvements over the basic normal model. 
Some values of MAD and MSE decreased, while others 
increased; to conserve space, we will not present detailed 
results. Slight improvements occurred for f near 1 (e.g., 
a 2.2% reduction in MAD when /f = 1.1). Larger values 
of f reduced the performance drastically (e.g., a 23.4% 

Table 4. Pairwise Correlations of Forecast Errors From Different Econometric Models 

Nominal GNP Real GNP 

Horizon Wharton Chase DRI Wharton Chase DRI 

1 Chase .90 .90 
DRI .91 .88 .86 .84 
BEA .83 .82 .82 .90 .85 .82 

2 Chase .88 .90 
DRI .90 .92 .93 .93 
BEA .87 .89 .93 .90 .90 .91 

3 Chase .92 .90 
DRI .95 .96 .92 .95 
BEA .94 .94 .96 .94 .93 .93 

4 Chase .88 .91 
DRI .88 .95 .92 .93 
BEA .87 .94 .94 .92 .93 .90 
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Table 5. Examples of Cases With Negative Weights and Extreme Forecasts 

Forecasts (Weights) 
Normal Model Actual 

Case Wharton Chase DRI BEA Combined Forecast Value 

1 11.470 8.860 8.171 12.422 16.375 7.725 
(-.591) (1.431) (-1.997) (2.157) 

2 12.488 8.908 8.954 12.278 -5.193 13.116 
(-1.616) (5.980) (- .909) (- 2.455) 

3 7.648 5.753 6.164 -1.108 18.381 3.026 
(-3.002) (-.451) (6.720) (-2.267) 

4 8.456 7.395 3.258 7.564 -9.012 6.804 
(-2.364) (.116) (3.355) (-.107) 

increase in MAD when fl = 1.8). It may be that the pro- 
cess was relatively stable. Moreover, higher values of / re- 
sulted in less weight being attached to "older" observations, 
thereby reducing the effective sample size and exacerbating 
the multicollinearity problem. Imposing the convexity con- 
straint on the forecasts generated using (4) eliminated the 
drastic reductions in performance with large f, but did not 
lead to large improvements over the basic normal model. 
Finally, using (4) and also imposing an independence as- 
sumption had very little effect as compared with using the 
independence assumption without (4). On balance, placing 
more weight on recent observations did not prove helpful in 
this study. 

For tne above results, 2 and the resulting forecasts were 
based on the preceding n = 20 observations in any fore- 
casting situation. We also tested all of the combined fore- 
casting approaches with n = 5, 10, and 15. The results for 
the smaller values of n were similar to those for placing 
more weight on recent observations. With an independence 
assumption, changing n appeared to have very little effect. 
Without independence, reducing n led to some reductions 

and some increases in values of MAD and MSE. Any im- 
provements were relatively minor, however. The results do 
not justify reducing n below the initial value of 20. 

Relaxing the constraint that the weights sum to one and 
adding an intercept term yielded the results shown in the 
columns headed "OLS, No Intercept" and "OLS" in Table 
3. Neither approach performed very well. The most general 
model, with unconstrained weights and an intercept term, 
was roughly comparable to the basic normal model. The 
model without the intercept term was slightly, but only slightly, 
better. Neither of the OLS approaches came close, on an 
overall basis, to the simple average or the normal model 
with the independence assumption. This evidence runs counter 
to the claim of Granger and Ramanathan (1984) that "the 
common practice of obtaining a weighted average of alter- 
native forecasts should . . . be abandoned in favour of an 
unrestricted linear combination including a constant term" 
(p. 201). 

The last two columns in Table 3 correspond to the use of 
the forecast from the econometric models with the best and 
worst forecasts, respectively, on the previous forecasting 

Table 6. MAD and MSE for the Bayesian Model, With and Without Independence Assumption 

a 

20 
Variable Horizon 4 10 20 50 100 (with independence) 

MAD 
Nominal GNP 1 3.92 3.77 3.68 3.60 3.57 3.56 

2 4.43 4.45 4.48 4.52 4.54 4.55 
3 4.78 4.95 5.07 5.19 5.25 5.29 
4 6.04 5.83 5.69 5.60 5.56 5.53 

Real GNP 1 2.93 2.84 2.84 2.85 2.86 2.87 
2 3.58 3.56 3.55 3.54 3.54 3.54 
3 3.62 3.55 3.54 3.56 3.58 3.59 
4 3.69 3.62 3.63 3.63 3.63 3.63 

MSE 
Nominal GNP 1 21.62 20.07 19.24 18.62 18.40 18.27 

2 31.79 31.39 31.39 31.58 31.72 31.83 
3 38.66 40.11 41.33 42.55 43.10 43.44 
4 60.61 55.98 53.57 51.64 50.78 50.22 

Real GNP 1 12.12 11.57 11.34 11.23 11.22 11.22 
2 18.46 18.12 17.96 17.84 17.80 17.77 
3 22.86 22.16 21.92 21.84 21.83 21.85 
4 25.82 24.53 23.99 23.64 23.48 23.26 
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occasion. These relatively simple approaches did reasonably 
well. "Best" improved on the basic normal model by an 
average of 6.4% in MAD and 12.2% in MSE. Somewhat 
surprisingly, "Worst" did almost as well, with average gains 
of 6.1% in MAD and 10.6% in MSE. Neither of these 
schemes performed quite as well as the simple average or 
the normal model with the independence assumption, but 
they were better than the normal model with the convexity 
constraint and much better than the OLS schemes. 

The final approach used was the Bayesian model with a 
priori exchangeability, which generated combined forecasts 
from (7). This model was run for several values of a (the 
equivalent prior sample size) with and without the inde- 
pendence assumption. Some results are shown in Table 6. 
The values of MAD and MSE were somewhat but not highly 
sensitive to the choice of a for the nonindependent case, 
with any slight edge going to the higher values of a. With 
the independence assumption, the results were extremely 
insensitive to the choice of a, and only the case of a = 20 
is shown in Table 6. Note that in contrast to the results in 
Table 3, there was not much difference between the inde- 
pendent and nonindependent cases. The prior information 
appeared to have a strong stabilizing effect that produced 
great improvements in the nonindependent case. In general, 
the Bayesian model performed much better than the basic 
normal model and some of its variants. Overall, the Bayesian 
model was roughly comparable to the simple average and 
the normal model with the independence assumption. 

4. SUMMARY AND DISCUSSION 

In this article we have compared the performance of sev- 
eral methods for combining GNP forecasts from four major 
econometric models. These methods range from a simple 
average through a normal model with several ad hoc variants 
to a Bayesian model. In an overall comparison of the meth- 
ods, three approaches performed better than the others. These 
three were the simple average, the normal model with an 
independence assumption, and the Bayesian model (with or 
without the independence assumption). The basic normal 
model performed poorly, and adjustments such as varying 
the number of data points used in the estimation process, 
weighting recent observations more heavily, and imposing 
a convexity constraint on the combined forecasts had rela- 
tively minor, if any, impact on the performance. 

The three "successful" techniques in this study share 
some common characteristics. The simple average, of course, 
forces the weights assigned to the forecasts to be equal. The 
Bayesian model, with its a priori exchangeability assump- 
tion, takes the weights that would be used without the prior 
information and "shrinks" them toward equality. The larger 
a is, the more the weights move toward equality. The in- 
dependence assumption does not lead to equal weights per 
se, but as long as the k forecast error variances are relatively 
similar, as was the case here, the weights will be reasonably 
close to each other. All three of these approaches avoid the 

and some of its variants. As a result, all three approaches 
are quite robust. 

Our results concerning the performance of the different 
combination schemes are similar to results obtained by Mak- 
ridakis and Winkler (1983) and Winkler and Makridakis 
(1983). Of particular interest is the fact that we have con- 
sidered forecasts from econometric models rather than from 
time-series extrapolation methods. The relatively strong per- 
formance of the simple average for combining forecasts of 
GNP should be of comfort to decision makers who regularly 
combine individual econometric forecasts by simple aver- 
aging. Without sufficient data to estimate variances precisely 
(or in the event of nonstationarity), the assumption that fore- 
casters are perfectly exchangeable (same variance, same cor- 
relations) would appear to be a reasonable assumption as 
long as the forecasters are all in the same "league." Under 
this exchangeability, the appropriate combining rule is the 
simple average. 

The Bayesian model presented here also utilizes an ex- 
changeability assumption for the prior distribution but then 
combines this prior distribution with sample information. To 
the extent that the sample information suggests that the fore- 
casters should not be viewed as exchangeable, the weights 
based on the posterior distribution may move away from the 
prior starting point of equal weights. The decision maker 
can control how quickly the sample information can change 
matters by the choice of a, the equivalent prior sample size. 
As a -> oo, the Bayesian combined forecast approaches a 
simple average. Of course, the prior distribution need not 
rest on an exchangeability assumption, but in many fore- 
casting situations the forecasters will be viewed as similar 
enough to make such an assumption reasonable. Another 
option might be to assume exchangeability only within sub- 
sets of the forecasters, particularly when the forecasters are 
of different "types" (e.g., a subset of forecasts from econ- 
ometric models, a subset of judgmental forecasts, or a subset 
of forecasts from extrapolation methods). In any event, the 
Bayesian model provides a formal procedure for including 
prior information, and the simple average is one possible 
outcome of this procedure. 

In contrast to the simple average and the Bayesian model, 
which have a solid rationale when exchangeability of fore- 
casters seems reasonable (either exclusively or suitably mod- 
ified by sample information), the normal model with the 
independence assumption is more difficult to justify. The 
forecast errors for the four econometric models considered 
here are clearly not independent, nor did we expect them to 
be independent. The degree of dependence is very high. The 
independence assumption just happens to be an ad hoc as- 
sumption that works well in this case (and probably in many 
other cases also). Independence forces the weights to lie in 
the unit interval, and barring very large differences in fore- 
cast accuracy among the forecasters, the weights will be 
quite close. Thus, although exchangeability appears to be 
more reasonable than independence in the economic fore- 
casting situation, the two assumptions tend to lead to similar 

extreme weights that can occur with the basic normal model 
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combined forecasts. 
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The results presented here for methods of combining fore- 
casts are consistent with the message given in Makridakis 
et al. (1984) for extrapolation methods: simpler methods 
perform well in comparison to more complex methods. A 

promising research topic concerns the robustness of these 
results on combining forecasts in situations where perform- 
ance differs more substantially and consistently among in- 
dividual forecasters and a simple average therefore seems 
less appealing. Greater differences in individual performance 
would lead to greater differences in the weights with an 

independence assumption and with the Bayesian model. The 
individual differences might enable the scheme of using the 
best forecaster from the previous forecast to perform well. 
Moreover, if the differences are relatively consistent, the 
normal model variants such as the OLS approaches might 
do better, although the presence of high dependence will 
always create difficulties for these methods. 

ACKNOWLEDGMENTS 

This research was supported in part by National Science 
Foundation Grants IST8018578 and PRA8413106 and by 
Indiana University. We are grateful to George Jaszi and 
Donald Straszheim for providing the forecasts from the BEA 
and Wharton models, respectively, and to the referees for 

helpful suggestions. 

[Received July 1984. Revised May 1985. ] 

REFERENCES 

Clemen, R. T. (1984), "Modeling Dependent Information: A Bayesian 
Approach," unpublished Ph.D. dissertation, Indiana University. 

Figlewski, S., and Urich, T. (1983), "Optimal Aggregation of Money 
Supply Forecasts: Accuracy, Profitability and Market Efficiency," Jour- 
nal of Finance, 28, 695-710. 

Geisser, S. (1965), "A Bayes Approach for Combining Correlated Esti- 
mates," Journal of the American Statistical Association, 60, 602-607. 

Granger, C. W. J., and Ramanathan, R. (1984), "Improved Methods of 

Combining Forecasts," Journal of Forecasting, 3, 197-204. 

Halperin, M. (1961), "Almost Linearly Optimum Combination of Unbiased 
Estimates," Journal of the American Statistical Association, 56, 36-43. 

LaValle, I. H. (1970), An Introduction to Probability, Decision, and In- 
ference, New York: Holt, Rinehart and Winston. 

Lindley, D. V., and Smith, A. F M. (1972), "Bayes Estimates for the 
Linear Model," Journal of the Royal Statistical Society, Ser. B, 34, 1- 
41. 

Makridakis, S., Andersen, A., Carbone, R., Fildes, R., Hibon, M., 
Lewandowski, R., Newton, J., Parzen, E., and Winkler, R. (1984), The 

Forecasting Accuracy of Major Time Series Methods, Chichester, Eng- 
land: John Wiley. 

Makridakis, S., and Winkler, R. L. (1983), "Averages of Forecasts: Some 

Empirical Results," Management Science, 29, 987-996. 
Morris, P. A. (1977), "Combining Expert Judgments: A Bayesian Ap- 

proach," Management Science, 23, 679-693. 
Newbold, P., and Granger, C. W. J. (1974), "Experience With Forecasting 

Univariate Time Series and the Combination of Forecasts," Journal of 
the Royal Statistical Society, Ser. A, 137, 131-164. 

Winkler, R. L (1981), "Combining Probability Distributions From De- 

pendent Information Sources," Management Science, 27, 479-488. 
Winkler, R. L., and Makridakis, S. (1983), "The Combination of Fore- 

casts," Journal of the Royal Statistical Society, Ser. A, 146, 150-157. 

This content downloaded from 152.3.102.242 on Tue, 22 Oct 2013 13:52:41 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	p. 39
	p. 40
	p. 41
	p. 42
	p. 43
	p. 44
	p. 45
	p. 46

