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Abstract

This paper presents a new interactive rendering and display tech-
nique for complex scenes with expensive shading, such as global
illumination. Our approach combines sparsely sampled shading
(points) and analytically computed discontinuities (edges) to inter-
actively generate high-quality images. The edge-and-point image is
a new compact representation that combines edges and points such
that fast, table-driven interpolation of pixel shading from nearby
point samples is possible, while respecting discontinuities.

The edge-and-point renderer is extensible, permitting the use of
arbitrary shaders to collect shading samples. Shading discontinu-
ities, such as silhouettes and shadow edges, are found at interactive
rates. Our software implementation supports interactive navigation
and object manipulation in scenes that include expensive lighting
effects (such as global illumination) and geometrically complex ob-
jects. For interactive rendering we show that high-quality images of
these scenes can be rendered at 8–14 frames per second on a desk-
top PC: a speedup of 20–60 over a ray tracer computing a single
sample per pixel.

CR Categories: I.3.7 [Three-Dimensional Graphics and Realism]:
Raytracing; I.3.3 [Picture/Image Generation]: Display algorithms

Keywords: interactive software rendering, sparse sampling and
reconstruction, silhouette and shadow edges

1 Introduction

This paper presents edge-and-point rendering, a new rendering and
display technique that can generate high-quality images of complex
scenes at interactive rates. It targets expensive effects such as global
illumination, where pixel shading is too slow for interactive use. In
this context, sparse sampling of shading is essential for interactive
rendering, and a number of systems have tried to accelerate render-
ing through sparse sampling and reconstruction (see Section 2). In
the absence of shading discontinuities, sparse samples can be ef-
fectively interpolated to produce good images. However, interpola-
tion across discontinuities results in visually objectionable blurring.
This paper shows that analytically computed discontinuities can be
combined with sparse shading samples to produce high-quality im-
ages at interactive rates.

Edge-and-Point Image. Figure 1 illustrates how edge-and-
point rendering works. A novel intermediate display representa-
tion called the edge-and-point image (EPI) supports the new ren-
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Figure 1: Edge-and-point rendering for the dragon with grid (∼
871K polygons). After 3D edges and points are found, they are
projected and combined into the edge-and-point image. The output
image is computed by interpolating point samples, while respecting
discontinuity edges. On the left a 5×5 neighborhood of pixels from
the EPI is depicted. To reconstruct the center pixel, the blue samples
are interpolated, while the unreachable gray samples are ignored.

dering process. Discontinuity edges and point samples are com-
bined and stored with subpixel precision in the pixels of the EPI.
Shading for each pixel is reconstructed by interpolating between
nearby samples while obeying an edge-respecting invariant: in-
terpolation is only performed using samples that are not separated
from the pixel by a discontinuity. This invariant prevents the incor-
rect blurring produced by many sparse sampling and reconstruction
algorithms. The explicit representation of discontinuities also en-
ables anti-aliasing without supersampling. Interactive performance
is achieved because the compact EPI representation permits fast,
simple, table-driven interpolation and anti-aliasing.

The two most important shading discontinuities are typically ge-
ometric discontinuities, such as silhouettes, and shadow disconti-
nuities. Our system analytically finds these discontinuities using
efficient algorithms and data structures. Sparse shading samples
are computed similar to the Render Cache [Walter et al. 1999].
Because edge-and-point rendering decouples shading from image
reconstruction our implementation is flexible and can work with
many different types of shaders, e.g., shaders for ray-traced glossy
reflections and global illumination.
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Using the edge-and-point renderer, the user can navigate and
manipulate objects in complex scenes while obtaining high-quality
rendering feedback at interactive rates (8–14 frames per second on
a desktop machine). The system collects samples for only 1–3% of
the image pixels for any given frame, while reusing samples from
frame to frame when possible.

2 Related Work

Sparse sampling and reconstruction. Several approaches adap-
tively sample and reconstruct smoothly varying shading. [Guo
1998] proposes a progressive technique that samples the image
plane and tries to detect discontinuities. This system samples along
hypothesized discontinuities and interpolates shading using these
samples. The radiance interpolant system [Bala et al. 1999b] sam-
ples radiance in 4D ray space driven by conservative error analy-
sis. Ray space is subdivided around discontinuities and radiance is
interpolated where it varies smoothly. Both these approaches use
sampling to detect discontinuities, thus requiring sampling patterns
and densities that are difficult to maintain in an interactive context.

A progressive previewing technique that uses hardware to de-
tect visibility and hard shadow edges in static scenes is presented
in [Pighin et al. 1997]. A constrained Delaunay triangulation of
sparse samples is used to reconstruct images. While this is an inter-
esting approach, it is likely to be too expensive for the interactive
rendering of complex scenes. Tapestry [Simmons and Séquin 2000]
sparsely samples the scene and meshes samples using a Delaunay
triangulation. Since this mesh is not in image space, it can be used
as the viewpoint changes. Because this system does not try to detect
discontinuities, it blurs edges.

The Render Cache [Walter et al. 1999] reprojects cached point
samples from frame to frame. Interactive performance is achieved
by interpolating available samples, but results tend to be blurry
since no knowledge of edges exists. We have adapted the Render
Cache for the point-based part of our algorithm.

The Shading Cache [Tole et al. 2002] displays scenes with ex-
pensive global illumination by interpolating sparse shading sam-
ples using graphics hardware. Because this technique requires at
least one sample per visible polygon, it is too expensive for the ge-
ometrically complex scenes rendered in this paper.

Interactive ray tracing has become an active area of re-
search [Parker et al. 1999; Wald et al. 2001]. The edge-and-point
renderer is complementary to these approaches. Wald et al. [Wald
et al. 2002] use fast distributed ray tracing and filtering to reduce
image noise in parallel Monte Carlo simulations. A simple heuris-
tic based on pixel depths and normals tries to detect discontinuities
and avoid blurring over them.

Discontinuity meshing. The literature on finding discontinuities is
extensive; visibility and shadow detection research is summarized
in [Durand 1999]. Several approaches have tried to find all visibil-
ity events [Drettakis and Fiume 1994; Duguet and Drettakis 2002;
Durand et al. 1997; Heckbert 1992; Lischinski et al. 1992]. How-
ever, the enumeration of all discontinuities is typically too slow for
interactive use. Discontinuity meshing [Heckbert 1992; Lischin-
ski et al. 1992] tesselates scenes based on radiosity discontinuities.
Because it remeshes geometry around discontinuities, it often cre-
ates very large meshes with tiny mesh elements of poor aspect ra-
tio. Our technique directly projects discontinuities onto the image
plane, avoiding the need to construct a mesh.

Complexity. Recent efforts in 3D scanning have created massive
data sets [Levoy et al. 2000; Rushmeier et al. 1998]. Point-based
approaches [Pfister et al. 2000; Rusinkiewicz and Levoy 2000;
Wand et al. 2001; Zwicker et al. 2001] suggest an alternative repre-
sentation for the interactive display of these very large data sets. Be-
cause they use precomputed sampling, these techniques are mainly
useful for the display of static scenes. None of these approaches
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Figure 2: An overview of the edge-and-point rendering system.

try to support expensive illumination effects such as shadows and
global illumination.

Silhouette clipping [Sander et al. 2000] was proposed for the in-
teractive viewing of complex objects with distinct silhouettes that
would not be effectively represented by point-based approaches.
It introduces cone-based hierarchical techniques to find silhou-
ettes. A further extension uses hardware to anti-alias silhouette
edges [Sander et al. 2001]. However, these systems are aimed at the
interactive viewing of stand-alone objects and do not render scenes
with expensive shading effects. [Johnson and Cohen 2001] extends
the above cone-based data structure for a different application: lo-
cal minimum distance computation. For a simple scene consisting
of two smooth surfaces, a sphere and a torus, they also demonstrate
the ability to compute shadow events, though these events are not
used to compute shadow edges or used by a rendering system.

3 System Overview

Figure 2 shows an overview of our system. The system consists of
two processes: the edge-and-point renderer and an external shader
process. The shader asynchronously finds visible points and com-
putes their color. These 3D point samples are cached and repro-
jected onto the image plane for each frame [Walter et al. 1999].

For each frame, the edge finder rapidly finds silhouettes and
shadow edges for each visible object using hierarchical interval-
based trees (Section 6). The edge rasterizer rasterizes these 3D
edges, representing them to subpixel precision. Additionally, depth
information from the reprojected point samples is used to perform
conservative occlusion culling of the edges.

Both edges and point samples, represented at subpixel precision,
are combined to form the edge-and-point image (Section 4). This
compact representation discretizes positional information, enabling
fast, high-quality interpolation of shading values using table-driven
filtering algorithms (Section 5). These algorithms include reacha-
bility determination, which identifies the samples that are not sepa-
rated by a discontinuity edge; interpolation, which reconstructs the
pixel’s shading using the computed reachability; and anti-aliasing.

Feedback from interpolation is used to decide where new point
samples are needed and these requests are passed to the external
shader. In addition to asynchronously computing shading samples,
the shader also sends information to the edge finder about currently
visible objects and shadows. This flexible architecture decouples
the shader process from the edge-and-point renderer. Thus, almost
any shader can be used to compute samples and visibility.
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4 Edge-and-Point Image

The edge-and-point image (EPI) is the key intermediate display rep-
resentation in the edge-and-point renderer. First, edges and shaded
points are rasterized into the EPI. Each pixel in the EPI now con-
tains its classification, including approximate edge location, if any,
and the closest point, if any, that reprojected onto it. This produces
a compact regular data structure whose size is independent of scene
complexity. This representation allows fast image reconstruction.
This section describes the EPI data structure and how it is com-
puted for each frame.

4.1 Pixel classification

When the 3D edges from the edge finder are projected onto the
image plane, they can vary in length from a fraction of a pixel to
hundreds of pixels. Moreover, a single pixel may contain many
edges or none. This edge information needs to be transformed into
a compact regular format for rapid pixel processing. Therefore, pix-
els in the edge-and-point image are classified as empty, simple, or
complex. Figure 3 shows examples of simple and complex pixels.

Empty ComplexSimple

Figure 3: Examples of pixel classifications.

• Empty: A pixel with no edges is empty.

• Simple: A pixel is simple if the edge(s) through the pixel can
be approximated well by a single edge spanning the pixel.

• Complex: Pixels that are neither empty nor simple are con-
sidered complex.

Most pixels are empty or simple. Our system reconstructs shading
for simple pixels at the same cost as empty pixels as described in
Section 5. Identification of simple pixels also permits anti-aliasing
for higher image quality. Additionally, the ability to identify com-
plex pixels allows us to concentrate more effort where needed.

4.2 Edge representation

For a simple pixel, its edge is approximated by locating its end-
points on the pixel boundary to eighth-of-a-pixel accuracy. The
pixel boundary is subdivided into 32 segments (8 on each side) as
shown in Figure 4 and the approximated edge is represented by 10
bits (5 bits for each end point). The approximated edge is not al-
lowed to have both endpoints on the same side of the pixel; two of
these disallowed combinations are used to encode empty and com-
plex pixels. This subpixel precision is sufficient to permit good
anti-aliasing while compactly encoding edges, thus, allowing fast
edge-related operations using table lookups.

pixel

Figure 4: A single pixel crossed by an edge. Each side is divided
into 8 segments and the interior into 16 regions. An edge divides
the pixel into primary (blue) and secondary (pink) regions. The
cross-hatched regions are classified as edge-ambiguous.

3x3 neighborhood of pixels

boundary intersectionsedges discretized edges
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Figure 5: Edge rasterization for a 3× 3 pixel neighborhood. 3D
edge segments are shown delimited by points on the left. These
edges are rasterized to compute their discretized intersections with
pixel boundaries, shown in purple (middle). Pixels are classified
from the boundary intersections as either empty (white), simple
(green), or complex (cross-hatched pink), shown on the right. For
simple pixels, an approximated edge is reconstructed.

4.3 Point representation

The EPI also compactly records information about shading sam-
ples. Each pixel is divided into 16 interior regions as shown in Fig-
ure 4. For each sample we record which subpixel region it lies in,
requiring 4 bits per sample. Because both edges and points are rep-
resented with limited accuracy, it cannot always be determined on
which side of an edge a point sample lies. Such samples are called
edge-ambiguous and cannot be used for edge-respecting interpo-
lation. For simple pixels, table lookups are used with the edge’s
10-bit encoding and the sample’s 4-bit subpixel position to deter-
mine on which side of the edge the sample lies, or if the sample is
edge-ambiguous.

Point processing. Point processing in the edge-and-point ren-
derer is based on the Render Cache [Walter et al. 1999; Walter et al.
2002]. Point samples are produced by an external shading process
that computes the color and first point of intersection for a view-
ing ray. The Render Cache manages a fixed-sized cache of recent
shading samples, which are stored as colored points in 3D. For each
frame, the cached points are reprojected using the current camera
parameters, filtered to reduce occlusion errors, and interpolated to
fill in small gaps between reprojected samples.

4.4 EPI pixels

Each pixel of the EPI includes at most one discretized edge and one
point sample. Thus, the EPI size depends only on image resolution
and is independent of scene complexity. A pixel in the edge-and-
point image uses 10 bytes of storage: 10 bits for edge encoding, 4
bits for sample subpixel location, 24 bits for sample color, and 36
bits for other Render Cache data.

4.5 Constructing the edge-and-point image

The first step of EPI construction is edge rasterization. Edges are
rasterized by recording their intersections (shown in purple in Fig-
ure 5) with all pixel boundaries. This can be done quickly, because
it is equivalent to recording the edges’ intersections with regularly
spaced parallel horizontal and vertical lines. Each pixel boundary
segment is divided into 8 pieces and its intersections are stored in
an 8-bit mask; since neighboring pixels share intersections, only 16
bits per pixel are needed to store the intersections.

Eliminating occluded edges makes interpolation more effective.
Since points approximate the visible surfaces, depth information
from point reprojection can be used to cull occluded edges. How-
ever, points and edges do not exactly coincide and there are gaps in
the point data, so the depth buffer must be filtered first. We com-
pute a fairly conservative depth buffer by using the maximum depth
value in a 4× 4 neighborhood and adding an additional offset that
depends on the local point density. These filtered depths are used
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Figure 6: Reachability computation and interpolation weights for a
5× 5 neighborhood of pixels. Weights are renormalized after ex-
cluding unreachable pixels.

as a read-only z-buffer during edge rasterization. This occlusion
culling typically removes about half the edges.

Edge reconstruction. After rasterization, pixels are classified and
edges are reconstructed from the boundary intersections, using
these simple rules. If a pixel has zero intersections then it is consid-
ered empty. If a pixel has two intersections on its boundary and they
are not on the same side of the pixel, then it is simple and a single
edge is reconstructed (shown on the right in Figure 5). Otherwise,
the pixel is complex.

5 Reconstruction

In image reconstruction, the EPI is used to compute the color for
each pixel. The first step is to compute a reachability map that de-
termines which samples may be used to interpolate color for each
pixel. Then pixels are interpolated using this map. Finally, a sepa-
rate pass reconstructs complex pixels more accurately.

5.1 Pixel regions

Each simple pixel is divided into two regions by its edge (Figure 4),
termed the primary and secondary regions. To correctly anti-alias a
simple pixel, color must be determined for both regions. For perfor-
mance, color is initially reconstructed only for the primary region.
Color for the secondary region is approximated using the recon-
structed color from a neighboring pixel. If a pixel has a sample, the
region containing the sample is considered primary. Otherwise, the
larger region is primary. For empty and complex pixels, the entire
pixel is considered the primary region.

5.2 Reachability map

When reconstructing radiance for the primary region of a pixel,
only reachable samples are used to interpolate the radiance at that
pixel. A sample in pixel region b is considered reachable from a
pixel region a if there exists a reasonably direct path that does not
cross any edges from a to b. Let us denote the primary region of
pixel x as Px and the secondary as Sx. The reachability between two
pixels a and b is denoted as a ↔ b and can be encoded in 4 bits:
(Pa ↔ Pb, Pa ↔ Sb, Sa ↔ Pb, Sa ↔ Sb), where ↔ denotes reacha-
bility. Reachability is computed as shown in Figure 6. There are
three main operations in reachability computation:

1. Neighbor reachability: The reachability between pixels that
share a boundary (e.g., pixels c and d in Figure 6) can be found us-
ing a lookup table based on the edge encodings for the pixels. Only
4 bits out of each edge’s 10-bit encoding are used in this lookup.
This optimization is possible because two adjacent pixels always
have the same intersection on their shared boundary; therefore, the
subpixel location of the boundary crossing is not needed. The 4 bits
per edge used in the lookup encode if its pixel is empty, simple or
complex, and if simple, which two sides of the pixel the edge inter-
sects. Thus, a 256-entry table indexed by two 4-bit edge encodings
returns the 4-bit reachability mask between the two pixels.

2. Chaining: Reachability between two pixels a and d through

an intermediate pixel b (Figure 6), denoted a
b↔ d, is obtained by

combining a ↔ b with b ↔ d using a lookup table. The lookup
table is indexed by the two 4-bit reachability masks and returns

the 4-bit mask a
b↔ d. Chaining considers potential reachability

paths through both the primary and secondary regions of interme-
diate pixel b.

3. Combining: Reachability between two pixels along multiple

paths (e.g., a
b↔ d∪a

c↔ d) is combined by simply taking a bit-wise
boolean OR of the reachability masks of the paths.

Example. To compute reachability between pixels a and d in
Figure 6, we first find the reachability between neighbors using the
neighbor reachability lookup table: a ↔ b = (1,0,0,0), a ↔ c =
(0,1,0,0), c ↔ d = (1,0,0,1), b ↔ d = (0,1,0,0). Pixels a and b
are both empty and therefore are considered to have only a primary
region. The gray region is primary in pixel d because it contains
a sample. Since pixel c does not have a sample, the larger region
(gray) is considered its primary. The reachability between a and
d can be computed along two paths, through b and c respectively.

Using the chaining lookup table we find: a
b↔ d = (0,1,0,0) and

a
c↔ d = (0,1,0,0). Combining these gives the final reachability

a ↔ d: (0,1,0,0). Note that the primary-to-primary reachability is
0; that is, the gray sample in d is unreachable from a.

Complex pixels are always considered unreachable and reacha-
bility is not propagated through them.

Reachability is first propagated to a pixel’s immediate neighbors
across their shared boundary along the arrows shown in Figure 6
and then from them to their neighbors. At each step, reachability
is propagated using the three operations above, always away from
the center pixel. Together these operations allow reachability to be
quickly computed in the 5×5 neighborhood.

Since the goal is to reconstruct radiance in the primary region
of a pixel, and samples always lie in a pixel’s primary region,
reachability is finally needed only between primary regions. How-
ever, since two primary regions might be reachable via another
pixel’s secondary region, reachability is computed between both
primary and secondary regions. Once it is computed, the primary-
to-primary reachability from a pixel to every other pixel in its 5×5
neighborhood is stored in a 24-bit mask. Since reachability is sym-
metric, a is reachable from d if and only if d is reachable from a,
reachability of pixels on prior scanlines is reused for efficiency.

5.3 Interpolation

Once reachability is computed, the colors for pixels are recon-
structed using constrained interpolation. For each pixel’s primary
region, color is reconstructed using all the reachable samples in its
5×5 neighborhood. The particular filter weights we use are shown
in Figure 6; reconstruction is not sensitive to the choice of weights,
provided the filter is sharply peaked in the center. Any pixel that
is either unreachable or does not contain a sample point is given a
weight of zero and then the weights are renormalized.

Prioritized sampling. Future sampling is prioritized using feed-
back from interpolation. Our sampling strategy is essentially the
same as in the Render Cache, except that edges influence the sam-
pling distribution. As in the Render Cache, the priority for pixels
without points is inversely related to the total interpolation filter
weight before renormalization. More samples are concentrated in
regions where the interpolation filter found low point densities, and
pixels without reachable samples are given the highest priority. The
presence of edges reduces the number of nearby reachable samples,
and therefore increases the sampling near edges.

Anti-aliasing. A separate pass anti-aliases simple pixels using
an area-weighted combination of the colors of its primary and sec-
ondary regions. For efficiency, the shading of the secondary region
is approximated by looking up the color of a neighboring pixel’s
primary region. An edge-indexed table is used to choose the neigh-
bor most likely to contain a good approximation for the secondary
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Figure 7: Chains scene with tesselated torii. The edge image shows simple pixels in purple and complex pixels in green. The images on the
right show reconstruction for the part of the image shown in the red box without (top) and with (bottom) the complex filter.

color and to obtain the relative weights to use. This filter is cheap
and effective.

The EPI representation lets us distinguish between simple and
complex pixels, thus permitting better reachability propagation, in-
terpolation and anti-aliasing for simple pixels.

5.4 Complex pixels

The mechanisms described thus far do not generate enough infor-
mation to accurately shade complex pixels. One simple approach is
to interpolate a color for them while ignoring reachability. At the
very least, this color is consistent with the local region of the image.
It is computed during interpolation by simply considering all neigh-
bors reachable from complex pixels (without affecting reachability
for other pixels).

A better approximation is computed at a slightly higher cost by
rasterizing the edges at a higher resolution. We add horizontal and
vertical boundaries through the center of each pixel and record in-
tersections with them during edge rasterization. Intersections are
still recorded to eighth-of-a-pixel precision along each boundary,
and these additional boundaries are ignored by all the prior recon-
struction steps. However, the new boundaries divide each pixel into
4 subpixels, enabling edge reconstruction in each subpixel.

For each complex pixel, we subdivide its 3× 3 neighborhood
into a 6×6 subpixel neighborhood. Edge reconstruction and reach-
ability are computed for subpixels similarly to the prior stages. For
a complex pixel, typically some of its 4 subpixels will be simple
or empty and can have colors interpolated for them. Any subpixel
region that is still complex or has no reachable samples uses the
complex pixel’s estimated color from the simple interpolation. The
complete pixel is then shaded by combining the colors of the sub-
pixel regions.

This additional filter for complex pixels subtly but noticeably
improves image quality. An example is seen in Figure 7. Even
more accurate reconstruction is possible by supersampling complex
pixels. While this option is less attractive for an interactive system,
it could be useful for progressive rendering.

6 Finding Edges

Edge-and-point rendering can be used with a variety of tech-
niques for discontinuity finding. We have developed fast algorithms
for computing discontinuities arising from silhouette and shadow
edges, including soft shadow edges. For each frame, the silhouettes
of the currently visible objects are computed from the current cam-
era position. This recomputation is needed because silhouettes are
view-dependent. Shadow edges, which are view-independent, are
computed once and reused when possible.

6.1 Silhouettes

A point on a surface is on an object’s silhouette if the normal at that
point is perpendicular to the view vector. In a polygonal scene, an

umbral event

light source

blocker

receiver

penumbral event

eye

silhouette

Figure 8: Sources of silhouette and shadow edges.

edge is on an object’s silhouette if one of the edge’s adjacent faces
is forward-facing while the other face is backward-facing, as shown
on the left in Figure 8. Thus, an edge e is a silhouette edge if the
following test succeeds:

sign(N f0
·V f0

) �= sign(N f1
·V f1

) (1)

Here, f0 and f1 are the two polygons adjacent to the edge e, Nf is
the normal of polygon f , and the view vector Vf is a vector from a
vertex of the face f to the current viewpoint.

6.2 Normal discontinuities

A simple form of geometric discontinuity is an edge that is intended
to be perceived as sharp (e.g., the edges of a box). These edges
cause shading discontinuities. The edge finder reports these edges
if they are forward-facing with respect to the viewpoint. For a given
mesh, the user can specify a cutoff angle that determines which
edges are considered sharp. In our scenes, the cutoff angle is 85◦.

6.3 Shadows

A shadow on a receiving object (the receiver) occurs when a light
is occluded by an intervening object (the occluder or blocker). A
blocker creates shadow events with respect to a light. In polygonal
scenes, these shadow events intersect receivers to create shadow
edges. In polygonal scenes with area lights, two types of shadow
events cause shadow discontinuities [Gigus et al. 1991; Heck-
bert 1992; Lischinski et al. 1992]: vertex–edge events, and edge–
edge–edge (EEE) events. Vertex–edge events are planes (actually,
wedges) defined by a vertex of the light and an edge of the blocker,
or vice-versa. The algorithm described here only finds vertex–edge
events, which are more common than EEE events and result in vi-
sually more important discontinuities.

Umbral and penumbral events are shown in Figure 8 on the right.
They occur when the plane through the vertex v and edge e is tan-
gential to the light and the blocker, and the light and blocker lie on
the same side or opposite side of the plane respectively. For point
lights, the umbral and penumbral events coincide.

The hard shadows caused by the occlusion of a point light source
by a blocker create perceptually important D0 radiance discontinu-
ities. Soft shadows arise from the occlusion of an area light source
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and generate D1 discontinuities [Heckbert 1992]. It is important to
identify soft shadow edges near the point where a blocker contacts
a receiver. At that point, soft shadows show a “hardening” effect in
which the radiance gradient increases [Wanger et al. 1992]. Identi-
fying penumbral and umbral shadow boundaries allows this effect
to be rendered correctly (see Figure 9).

Shadow discontinuities are computed in two steps. First, shadow
events produced by lights and blockers are found. Then, shadow
edges are computed by intersecting the shadow events with re-
ceivers.

6.4 Accelerating silhouette computation

A brute-force identification of silhouette edges and shadow events
can be done using Equation 1 and (for shadow events) Appendix A.
Our implementation further accelerates the computation by using
a tree to store and look up the edges of an object. The leaves of
this tree store edges; the internal nodes of the tree conservatively
represent the normals and positions of all the contained edges. Un-
like the cone-based representations in [Sander et al. 2000; Johnson
and Cohen 2001], normals and positions are represented by interval
vectors, vectors of 3 intervals1.

The edge tree is constructed top-down. At each node of the tree,
the node is subdivided on one of the three axes of the normal vector
so that the combined size of its children on those axes is minimized.
This construction has low preprocessing overhead (about 7 minutes
for our largest scene, the dragon in Figure 13); it appears to be as ef-
fective as the more specialized hierarchical construction in [Sander
et al. 2000] that takes hours to construct.

Tree traversal for silhouette and shadow events

Silhouettes and hard shadow events are found by traversing the tree.
During the traversal, Equation 1 is evaluated at each node reached.
Using interval arithmetic, the dot product of the normal interval
vector and the interval vector for the view vector, V, results in an in-
terval [r0,r1]

2. If [r0,r1] does not contain zero, all edges represented
by the node are either forward- or backward-facing and are there-
fore not silhouette edges. In this case, the sub-tree is pruned from
the search; otherwise, the subtree is recursively explored. When
a leaf node is reached, all its edges are tested using Equation 1 to
determine if they are on the object silhouette.

For point lights, shadow events are essentially silhouette com-
putations from the light’s point of view. Therefore they are found
by the same tree traversal. For area lights, our algorithm finds the
penumbral and umbral VE and EV events using a recursive traversal
of the blocker’s edge tree. Using intervals permits us to uniformly
use the same test (Equation 1) for area lights and point lights at in-
ternal nodes. Leaf node tests for umbral and penumbral events are
described in Appendix A.

Shadow edge computation

Given the VE and EV event wedges, shadow edges are computed by
intersecting these events with the receiver geometry. This process
is accelerated using a bounding volume hierarchy for the receiver
faces. Each shadow event is walked down the receiver’s face tree to
find intersections of the event with the geometry represented by that
node of the tree. The hierarchy is extended to include a conservative
normal interval vector at each internal node. These normal interval

1An interval vector used to represent a range of normals has three inter-

vals each representing the range of the corresponding Cartesian component

of the normals. Operators on interval vectors are defined using the usual

interval arithmetic operations [Moore 1979]; e.g., the dot product of two in-

terval vectors is computed as a component-wise interval multiplication and

an interval addition of the resulting intervals to obtain the final interval.
2The interval vector for V is computed using the position interval vector

of the node.

Figure 9: Umbral and Penumbral edges: umbral edges in red,
penumbral edges in blue. Notice the coincidence of umbral and
penumbral edges where the torus contacts the capsule, resulting in
the correctly rendered “hardening-at-contact” shadow effect.

vectors are used to eliminate entire sub-trees of receiver polygons
that are back-facing with respect to the light.

Non-smooth surfaces

The edge tree has similarities to the cone-based hierarchies
of [Johnson and Cohen 2001; Sander et al. 2000]; we chose the
interval representation for its simplicity. Both [Johnson and Cohen
2001; Sander et al. 2000] note that their cone-based data structures
work less well for meshes produced from scanned data, because
these meshes often contain “sharp” edges whose normals vary sig-
nificantly. Such edges make the data structure less effective at prun-
ing the search space.

To address this problem, we place sharp edges higher in the tree.
During top-down tree construction, an edge is stored at a node if its
normals span more than half of the node’s entire range of normals.
This optimization makes normals represented by the child nodes
more compact. When an internal node is reached while traversing
the tree, all its stored edges are tested. This simple extension to the
data structure substantially improves its performance on complex
meshes: for the David head (Figure 12), performance improves by
a factor of 2.

6.5 Complex Scenes

A few additional features are important for the interactive detection
of silhouettes and shadow edges in complex scenes.
Finding light-blocker-receiver triples. To determine the shadow
edges for a receiver, the lights and blockers that cast shadows on
that receiver must be identified. Exhaustive computation of shadow
events for all potential light-blocker pairs would be too slow. In-
stead, the shading process asynchronously communicates the light-
blocker-receiver triples that it discovers during shading to the edge
finder. All shadow edges associated with a receiver are stored with
the receiver, and reused as long as the light, blocker and receiver do
not move.
Clipping. A nearby receiver may prevent a shadow event from
propagating to more distant receivers. For each shadow event, we
sort the shadow edges it generates and clip them against each other,
retaining only the unoccluded edges. Clipping is simple and effi-
cient because it is performed in one dimension, along the edge of
the VE/EV event.
Moving objects. If a light or blocker are moved, the shadow events
associated with that light-blocker pair are recomputed and the shad-
ows for receivers associated with that pair are also recomputed.
When a receiver moves, its shadows are affected; other receivers
that share a light-blocker pair with that receiver and are farther from
the light might also be affected by the move because they are no
longer occluded by the moved object. To be conservative, all these
shadows are recomputed.
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Figure 10: The left image shows a tea-stand with fine geometry and complex shadows. The middle image shows the edges found; complex
pixels are shaded in green. The images on the right compare a standard 1-sample-per-pixel sampling (top) against our technique (bottom).

Queries into the tree data structure are performed in object co-
ordinates, thus eliminating the need to rebuild these data structures
when an object is moved.

6.6 Discussion

Unlike discontinuity meshing techniques, our goal is to achieve in-
teractive performance. Therefore, we focus on the shadow edges
that are typically the most important perceptually: those cor-
responding to silhouettes, hard shadow events, and umbral and
penumbral VE/EV events. Additionally, computed shadow edges
are directly rendered onto the image plane; we never explicitly
mesh discontinuities.

7 Implementation and Results

In this section we present results from our edge-and-point based
rendering system. All result images are 512× 512. We use three
different shaders: direct illumination with ambient, direct with
glossy reflections, and direct with global illumination. The edge-
and-point renderer runs on a single 2.8 GHz Pentium 4. All the
shaders use ray tracing. The direct illumination shader runs on a
single 2.8 GHz Pentium 4. The glossy reflection shader uses ray
tracing to sample the glossy reflection and runs on four 1.7 GHz
processors. The global illumination shader uses a dynamic variant
of irradiance caching [Ward et al. 1988] modified for interactive
use. The global illumination shading is computed on four 1.7 GHz
processors, and 6 processors asynchronously compute the irradi-
ance samples.

7.1 Scene descriptions

Scene Polygons Edges Shader

Rooms 15,006 23,004 global illumination

Chains 73,728 110,592 direct

Mack 101,306 153,526 global illumination

David 250,014 374,635 glossy reflection

Dragon 872,184 1,305,164 direct

Table 1: Scene statistics and the shaders used for each scene.

Table 1 lists the scenes used to acquire results. The Rooms scene
(Figure 12) shows a textured multi-room scene with six lights. The
Chains scene (Figure 7), with two lights, has tesselated non-convex
objects casting complex shadows on each other. The edge image
shows our ability to correctly find silhouettes and shadows.

The Mackintosh room (Figures 10 and 11), has three lights and
is rendered with the global illumination shader. The David head
from Stanford’s Digital Michelangelo project (Figure 12), has 250k
polygons and is lit by 1 light; the scene is rendered using glossy re-
flections. The Dragon scene (Figure 13) has a grid casting a shadow
pattern on a dragon with 871k polygons (from Georgia Tech’s Large
Geometry Models Archive). All these scenes also demonstrate self-
shadowing of complex objects.

7.2 Performance

Table 2 gives the breakdown of time (in milliseconds) spent on the
important components of the algorithm for a typical frame: from
left to right, edge finding, edge rasterization, point reprojection,
reachability, interpolation, anti-aliasing and complex filtering. The
total time is slightly higher than the sum of all these modules since
it includes all processing.

Silhouette finding is efficient, ranging from 0.5 ms up to 22 ms
for the most complex model, the dragon, which has 1.3M edges.
Edge rasterization is slowest for the David, because it has the most
silhouette and shadow edges (see Table 3). Point reprojection costs
are essentially unchanged from the Render Cache.

Reachability, interpolation, and anti-aliasing have constant cost
per frame, because the compact EPI and their implementation using
fast table lookups makes these stages independent of scene and edge
complexity. Their run time only depends on image resolution. The
cost of the complex filter depends on the number of complex pixels
(see Table 3).

Table 2 presents the frame rate in frames per second; numbers
in parentheses give the slightly improved frame rates achieved with
complex filtering turned off. The system achieves interactive frame
rates of about 8–14 frames per second.

The framerate is essentially independent of the speed of the
shader being used, although the quality of the images does depend
on the number of newly shaded samples per frame. The sampling
sparseness ratio is also reported for the examples given. This is the
ratio between the number of pixels in an image and the number of
new samples acquired per frame. The sparseness ratio is between
40 to 125; thus only 1 to 3% of the point samples are updated each
frame. The ability to tolerate such sparse sampling is crucial for
good interactive image quality when using expensive shaders.

Finally, we compare our results with a ray tracer that samples
every pixel in each frame. Frames for this ray tracer were computed
using our shaders and the same number of processors as used by our
system (i.e., the display processor is also used for shading by this
ray tracer). Compared to this ray tracer we achieve speedups of 20
to 65. We also produce higher quality images with anti-aliasing (see
comparison on the right of Figure 10).
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Figure 11: Mackintosh Room comparing edge-preserving interpolation (left and bottom right) vs. standard interpolation similar to the Render
Cache (middle and top right) from the same samples. For both images, only 20% of the pixels have samples. The images on the right show a
magnified comparison.

Scene Find Rasterize Point Reach Interp Anti Complex Total FPS Sparseness Full Speedup

Edges Edges Proc. Alias Filter (ms) Ratio RT (s)

Rooms 0.5 17 26 11 14 2 17 95 10.5 (13.3) 97 (124) 4.8 51 (64)

Chains 4 13 26 11 14 2 6 88 11.4 (12.3) 52 ( 58) 2.0 23 (25)

Mack 2.5 11 26 11 14 2 6 77 13.0 (14.3) 92 (101) 4.5 58 (64)

David 9 39 27 11 14 2 16 127 7.9 ( 9.7) 65 ( 80) 5.1 40 (50)

Dragon 22 29 26 11 14 2 6 124 8.1 ( 8.8) 40 ( 40) 2.3 19 (20)

Table 2: Performance results. Frame breakdown of different components and total time (in milliseconds), frame rates, and speedup numbers.

EPI complexity. Table 3 presents the detailed number of silhouette
and shadow edges for a typical frame of each scene. The number of
shadow events for a light-blocker pair is proportional to silhouette
edge size. Theoretically, the total number of shadow events is pro-
portional to nlights×nsil , where nsil , the number of silhouette edges,

is usually O(
√

n) in the number of polygons [Sander et al. 2000].

Shadow edges are computed for each light-blocker-receiver
triple, and depend on the receivers associated with each light-
blocker. Thus, a large blocker casting a shadow on a finely tesse-
lated receiver could generate several shadow edges per event. Con-
versely, a finely tesselated blocker could cast only a small number
of shadow edges per event. In theory, each shadow event could
cause O(n) shadow edges. In practice, the number of edges is sub-
stantially smaller than (nlightsn

√
n), as can be seen from our results.

The detailed edge counts give a flavor of the number of edges
interactively computed and manipulated by our system. The David
head has the largest number of edges because of its finely tesselated,
irregular geometry, which results in significant self-shadowing.

Table 3 also gives a detailed breakdown of the pixel classifica-
tions. The fraction of complex pixels is small for all of the scenes.
Most pixels are empty or simple, and can be efficiently and accu-

Scene # Sil # Shadow Pixel Categorization
Edges Edges Empty Simple Complex

Rooms 1,814 7,356 87.0% 8.9% 4.1%

Chains 3,644 14,138 92.0% 6.9% 1.1%

Mack 3,669 27,917 89.1% 9.7% 1.2%

David 39,116 163,338 92.5% 3.5% 4.0%

Dragon 26,269 92,884 92.9% 5.9% 1.2%

Table 3: Number of silhouette and shadow edges and pixel catego-
rization for a typical 512×512 frame in each scene.

rately reconstructed by the edge-and-point renderer.

Edge finding. The preprocessing time to construct the edge trees
ranges from about a second to a maximum of 7 minutes for the
dragon scene (as compared to hours for [Sander et al. 2000]).

Silhouette finding and shadow event computation is fast (see Ta-
ble 2). The edge tree appears to be about as effective in pruning
the search space as the cone-based data structure of [Sander et al.
2000]; therefore detailed results are omitted.

The torus scene (30,000 polygons) in Figure 9 shows soft shadow
edges for an area light. Computing shadow events for area lights is
approximately twice as expensive as a silhouette computation since
both umbral and penumbral events must be computed.

Shadow edge computation time varies substantially depending
on the viewpoint and the light-blocker-receiver triples being pro-
cessed. Therefore, we summarize the total time for shadow compu-
tation over all scenes. When our scenes are loaded, initial shadow
computation takes 0.1 to approximately 2 seconds (for the David
head). As the user moves around or manipulates objects in later
frames, the shadow computation time ranges from 1 to 50 millisec-
onds depending on how many new light-blocker-receiver triples are
found by the shader. When the grid is moved in the Dragon scene,
shadows on the dragon are updated in 50 ms. The average cost
of intersecting a shadow event with the scene to compute shadow
edges ranges from 8–28 µs per event depending on the scene.

7.3 Sparse sampling and anti-aliasing

The Mackintosh scene shows the ability of the renderer to find and
anti-alias fine shadow details. On the right in Figure 10, magnified
images of the tea-stand are shown. On the top is the result produced
by a regular ray tracer using 1 sample per pixel; on the bottom is
the anti-aliased result produced by our system.

Figure 11 compares our image with an image produced using
interpolation that does not respect edges (like the Render Cache).
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Both images use the same samples, and only 20% of the pixels con-
tain samples. We can see that using edge-respecting interpolation
produces a significantly better image, while using the same sam-
ples. Even at this low sampling density we are able to effectively
anti-alias the image.

Our system can reconstruct good images with very sparse sam-
pling densities as can be seen in the video. For example, in the
Mackintosh room, only 1 out of every 100 pixels had a new sample
shaded per frame. By reusing and interpolating sparse samples we
produce high-quality images at interactive frame rates.

7.4 Memory Usage

The per-pixel memory costs for various data structures are as fol-
lows: the EPI uses 10 bytes (Section 4.4), reachability masks re-
quire 3 bytes, and boundary intersections require 2–4 bytes depend-
ing on whether complex filtering is turned on. For 512×512 result
images, these structures use 3.75–4.25 MB of memory. The various
lookup tables use less than 16 KB. Point-based processing requires
the same space as the Render Cache (∼ 9 MB). The edge trees are
linear in the size of the objects.

7.5 Discussion

From Table 2 we see that the cost of the 3 main filters (reachability,
interpolation, and anti-aliasing) is independent of scene complexity
and the number of edges. One of the strengths of the EPI represen-
tation is this decoupling of the cost of reachability and interpolation
from scene complexity.

Edge finding and rasterization are dependent on scene complex-
ity but are typically fast enough. It should be possible to further ac-
celerate these components using programmable graphics hardware.

Scenes with a very large fraction of complex pixels violate the
assumptions made by sparse sampling and reconstruction algo-
rithms. Fundamentally, such scenes must be reconstructed at higher
resolutions for reasonable image quality. While our algorithm will
slow down for these scenes, our image quality should not be worse
than traditional sampling and reconstruction algorithms for these
scenes. We expect our techniques would also be useful in the con-
text of non-interactive progessive viewing for these scenes.

When objects are moved, some shading samples become invalid
and new samples must be acquired. In addition, shadow edges must
be recomputed. In our results, the time required to obtain updated
shading samples is the bottleneck; shadow edges are computed fast
enough. Better techniques for sample invalidation (e.g., [Bala et al.
1999a]) would speed up shading updates for dynamic scenes.

8 Conclusions

This paper introduces a new interactive rendering technique that
combines shading discontinuities (edges) and sparse samples
(points) to generate high-quality, anti-aliased images. Discontinu-
ity edges are found interactively and are projected on the image
plane. Shading is reconstructed from sparse samples using edge-
respecting interpolation. We have demonstrated that our system
renders high-quality anti-aliased images at interactive rates of many
frames per second in scenes including geometrically complex ob-
jects and lighting effects such as shadows and global illumination
with very low sampling ratios (1%–3% of the pixels per frame). The
user can also dynamically move objects within the environment.

We describe a new compact representation of discontinuities and
point samples called the edge-and-point image; this image is used
by efficient interpolation algorithms to reconstruct radiance. The
explicit detection of discontinuities permits the generation of anti-
aliased output images, without supersampling, at interactive rates
of 8–14 fps on a modern desktop computer.
Future Work. A promising avenue of future research is to ac-
celerate our edge-and-point renderer using the new programmable

Figure 12: David head and Rooms scene.

Figure 13: Grid casting shadow on Dragon.

graphics hardware. Our table-driven filters are simple enough for
this to be feasible. Hardware assisted silhouette and shadow edge
detection should also be possible.

Our system identifies two important types of discontinuities;
other discontinuities such as mirror reflections, specular trans-
parency, and textures can be perceptually important for some
scenes. It appears possible to extend interval-based edge finding
for reflection and transparency edges. For some textures it may
also be beneficial to include edges from the texture in the EPI.

To improve the rendering of complex scenes, it would be useful
to identify the perceptually important discontinuities in an image.
For example, in scenes with large numbers of lights, discontinuities
from unimportant lights could be eliminated [Ward 1994].
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A Umbral and Penumbral Events

We extend an efficient algorithm for finding penumbral events [Yoo
et al. 1998] to support meshes, concave surfaces, and umbral events.
Our algorithm efficiently finds all shadow events that participate in
the shadow volume boundary. We follow [Lischinski et al. 1992]
in using the term “VE event” to refer to a vertex–edge event whose
vertex lies on the light; an “EV event” is correspondingly defined
by an edge of the light and a vertex of the blocker.

VE events. To identify VE events involving a particular edge
e of the blocker and a vertex v of the light, the silhouette test of
Equation 1 is first performed to ensure that the normal of the plane
defined by the VE event is included in the normals represented by
the edge. The vertices of the light adjacent to v are tested to deter-
mine whether they all lie on the same side of the plane; if so, an
event has been found. To determine whether the event is umbral or
penumbral, the orientation of the blocker surface is compared to the
position of these adjacent light vertices.

EV events. EV events can be found efficiently by piggyback-
ing onto the discovery of VE events, thus avoiding a separate tree
traversal. Once a VE event connecting vertex v and edge e is found,
the shadow volume boundary is traversed in both directions (along
e) looking for adjacent EV events. This traversal is simplified us-
ing the following observation: for surfaces that appear locally con-
vex from the viewpoint of the vertex v, EV events contribute to the
penumbral shadow volume boundary, but not to the umbral shadow
volume boundary. Conversely, for locally concave surfaces, EV
events contribute to the umbral boundary but not to the penumbral
boundary.

Figure 14 illustrates the algorithm used to find EV events in the
case of a concave umbral event. Here, the shadow volume boundary
is being traversed towards the vertex ve along the blocker surface.
The first step is to determine whether the surface is locally convex
or concave. This is done by finding the angle θ′′ between the v–
e plane and the plane defined by the three vertices: v, ve, and the
blocker vertex v′′ adjacent to ve that minimizes this angle. If the
angle is less than π, the blocker surface is locally concave from the
viewpoint of v.

Given this geometry, there are two possibilities for the next event
along the shadow volume boundary: it is either the EV event shaded
in purple, defined by the vertices v, v′ and ve, or else it is the VE
plane defined by v, v′′, and ve. Which is correct is determined by
computing the angle θ′ between the v–e plane and the possible EV
plane; if this angle is larger than θ′′, the EV event is part of the
shadow volume boundary.

Penumbral EV events are found similarly, except that they are
only found for convex surfaces, and the angles involved are greater
than π.
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