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Abstract

In this paper we investigate the techniques used in medical research to combine results from independent empirical studies of a particular
phenomenon: meta-analysis and vote-counting.

We use an example to illustrate the benefits and limitations of each technique and to indicate the criteria that should be used to guide your
choice of technique. Meta-analysis is appropriate for homogeneous studies when raw data or quantitative summary information, e.g.
correlation coefficient, are available. It can also be used for heterogeneous studies where the cause of the heterogeneity is due to well-
understood partitions in the subject population. In other circumstances, meta-analysis is usually invalid. Although intuitively appealing, vote-
counting has a number of serious limitations and should usually be avoided.

We suggest that combining study results is unlikely to solve all the problems encountered in empirical software engineering studies, but
some of the infrastructure and controls used by medical researchers to improve the quality of their empirical studies would be useful in the
field of software engineering.q 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

In most scientific disciplines, experiments and empirical
studies are a standard means of furthering scientific under-
standing. Formal experiments are used to test scientific
hypotheses in the knowledge that the results of an experi-
ment will generalize to the population from which the
experimental subjects/objects are drawn.

We usually assume that the same ideas apply to empirical
studies in software engineering. We attempt to use empirical
studies to investigate the efficacy of our software engineer-
ing methods and/or the impact of various project/personnel
factors on project productivity or product quality. However,
we often find the different empirical studies of the same
phenomenon report different and sometime contradictory
results. There are a number of reasons why this might
occur. One reason is that empirical studies in disciplines
such as software engineering, that are strongly influenced
by individual differences among human subjects, do not
usually have ‘key experiments’ allowing us to refute our
hypothesis in the way physics or chemistry does. Another
reason is that we usually struggle to find experimental
subjects for our empirical studies. This means that we

might not have sufficient data points to detect a phenomenon
even if it really existed.

Another problem concerns the extent to which our
empirical studies contribute to our understanding of, and
ability to control, software engineering phenomena.
Although we can apply standard scientific techniques such
as formally designed experiments or statistical data analysis
techniques, it is not clear that our results have the same
generality as empirical results in other disciplines. The
problem arises from the difficulty of defining the population
of software engineering subject and objects to which any
results can properly be said to generalize.

For example, if we perform a formal experiment intended
to evaluate different testing techniques in a university
setting, we will use some standard (but relatively small
programs) seeded with defined defects, and we will use
student volunteers to act as experimental subjects. In such
circumstances, if we find that one testing technique is super-
ior to another what do our results really mean?

If all we can say is that with the specific group of student
subjects, and the specific programs and the specific set of
defects, one testing method has performed better than
another, our experiment has not told us very much.
However, if we want to make some general statement
about the superiority of a particular testing method, we
must be confident that our students are a random sample
from the population of software developers, our
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experimental programs are a random sample from the popu-
lation of software programs, and our defects are a random
sample from the population of software defects. It seems
clear from descriptions of experiments in software engineer-
ing that our notions of the populations of programmers,
programs and defects are very sketchy and that our selection
of subjects is seldom random (although experimenters are
usually careful to allocate subjects randomly to treatments).

For other forms of empirical study, the problems of
generalization are even worse. If we collect data about
projects in a particular company our results can only be
applied to that company. Datasets composed of projects
from a variety of different companies do not solve the
problem, unless the basis on which the dataset is derived
is statistically valid. It must be recognized that data
provided by a self-selected group of companies on a simi-
larly self-selected set of projects violates the basic principle
of randomness that is necessary for generalization to be
possible, and fails to define any population to which results
could be generalized.

If it is not possible to generalize the results of a single
empirical study, is there any point in undertaking empirical
studies in software engineering? In our view, empirical
studies are still valuable for evaluating the efficacy of soft-
ware engineering methods, but we need to consider the
‘weight of evidence’ rather than rely on single experiments.
By weight of evidence, we mean the extent to which empiri-
cal results are consistent across a variety of different studies.
This issue is also important in medical studies. We believe
that there are enough similarities between the problems
faced in medical research and the problems faced in empiri-
cal software engineering research to warrant an investiga-
tion of the techniques the medical area use for combining
evidence and their possible applicability to software
engineering.

In a medical investigation, whether it is an experiment, a
trial, a case-study or an observational study, researchers are
trying to detect an effect, e.g. whether a particular treatment
has an effect on reducing the severity of a disease, whether a
particular characteristic or environmental factor increases
the chances of getting disease, etc. We also wish to detect
effects in software engineering, e.g. whether the use of a
particular design method or tool will increase development
productivity more than an alternative or what factors will
affect product quality. As well as confirming the existence
of an effect we often wish to know its magnitude. This is
called theeffect size. The effect size can be measured in two
ways — by a standardized difference (if the study has
comparisons) or by a measure of association (i.e. correlation
coefficient). An effect size is an indicator of the average
magnitude of an effect.

Three methods of combining results from individual
studies are commonly used in medical research: combining
the test statistic values, categorizing the outcome of tests of
hypothesis (vote-counting) and estimating treatment effects
across studies (meta-analysis). The results of an individual

study are often given in the form of ‘p’ values that give the
probability of obtaining a significant difference between
treatments if the true treatments were really the same.
Combining test statistic values is based on combining the
results of the ‘p’ values from different studies, i.e. combin-
ing the test statistic values [13]. However, there is an inter-
pretation problem with such tests. Rejection of the
combined hypothesis only means that the null hypothesis
cannot be accepted, not that the alternative hypothesis is
true in every study. This means that if you are interested
in whether there is a difference in productivity between two
design methods, this type of test may give the result that (for
a particular significance level) we can reject the combined
null hypothesis that there is no productivity difference
shown in the studies. This does not imply that there is a
common productivity difference in the population as a
whole, we can only conclude that there is a productivity
difference between the two design methods in at least one
study. Therefore, the test does provide any information
about whether the effect is consistent across different
studies. Because of this difficulty we concentrate, in this
paper, on investigating meta-analysis and vote-counting.
We describe each technique and consider whether it
would be useful in the context of empirical software engi-
neering studies. The choice of which technique to use is
determined by the amount of information available to you
but we will highlight in this paper some other factors that
influence the applicability of the techniques. We illustrate
the use of each technique on an software cost estimation
example. In the example we use we have access to the
raw data, but often this is not available. We discuss some
of the problems that might occur if you have only the results
of the individual studies not the raw data.

Recently there have been some attempts to use meta-
analysis [14] and informal vote-counting [3], in software
engineering studies. Before software engineering research-
ers adopt these techniques, we believe that it is important to
be aware of their risks and limitations. Thus, we use our
example to explain the potential problems of the techniques.

2. Meta-analysis

Meta-analysis is a technique for pooling data from differ-
ent studies [12,13,21]. It is mainly used in Clinical Trials
(i.e. controlled experiments) but there has been some use in
epidemiology and observational studies [6,9,15,22–24,26].
In order to use a meta-analysis technique, you must have a
quantitative measure of effect size for each individual study.

The aim of meta-analysis is to provide a quantitative and
objective procedure for combining the information from
different studies. With a subjective review of previous
studies, a reviewer can influence and bias the review and
different reviewers can come to different conclusions. The
use of meta-analysis is intended both to resolve the uncer-
tainty when the results of studies disagree, and to increase
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the confidence in the results obtained from individual
studies. The outcome of a meta-analysis is an average effect
size with an indication of how variable that effect size is
between studies. This section discusses the use of meta-
analysis techniques and its potential problems.

Meta-analysis involves three main steps:

1. Decide which studies to include in the meta-analysis.
2. Estimate an effect size for each individual study.
3. Combine the effect sizes from the individual studies to

estimate and test the combined effect.

2.1. Study selection

Which study you chose to include in the meta-analysis is
crucial since it will influence the rest of the analysis and the
results. Study selection has two, sometime conflicting,
objectives: to include only appropriate, valid studies and
to include as many studies as possible. The creation of an
objective ‘‘inclusion criteria’’ helps the selection process.
Inclusion criteria are usually based on the type of empirical
study, the test hypothesis, the choice of effect measures, and
the available explanatory variables.

2.1.1. The type of empirical study
It is important to base any meta-analysis on individual

studies of the same type, for example, all case studies, all
cohort studies or all formal experiments. The greater the
degree of similarity between the studies the more confidence
you can have in the results of a meta-analysis.

It should be noted that a meta-analysis using case-control
studies assumes that the controls from the different studies
are comparable. Even with an individual study there is a
problem in software engineering about choosing an appro-
priate control, [18]. Therefore it is difficult to assemble a set
of studies where all the controls are comparable and, if they
are not comparable, a meta-analysis is compromised.

2.1.2. The test hypothesis
In medicine an example hypothesis might be ‘‘Is the

death rate from breast cancer with a new treatment lower
than that of an existing treatment?’’ This means that all the
studies included in the meta-analysis must have a measure
of the death rate (or raw data from which it can be
calculated).

In software engineering, an example hypothesis is ‘‘Does
the use of a new tool improve the productivity of a devel-
opment (without any detrimental effect on the quality)
compared to the use of an existing tool?’’ You must decide
which productivity and quality measures are appropriate
and assure that all studies have used the same measure of
productivity and the same measure of quality.

2.1.3. Common explanatory variables
Two known explanatory variables that influence breast

cancer are age and gender. Therefore we may decide to

include only studies that have information about age and
gender included.

Project factors could be used to control a meta-analysis in
the same way age and gender are used in the breast cancer
example. For example, we might consider characteristics
like application type, development method or implementa-
tion language. Whether the existence of information about
these factors should be used as an inclusion criterion
depends on whether software engineers can agree that
they have an influence on productivity or quality of the
development process or product.

2.1.4. Common measures
Although a meta-analysis should include as many studies

as possible, it must only include studies that have compar-
able measures. The choice of which measure to use for a
particular software attribute depends on which is most
appropriate in a particular environment and may differ
substantially between organizations. This will limit the
number of studies that can be included in any meta-analysis.

2.1.5. Study selection problems
Selection of studies can be compromised by publication

bias. Publication bias results from the preference of journal
editors to publish results that demonstrate significant differ-
ences between the treatments and reject manuscripts that
report insignificant results [13,20]. If publication bias has
occurred, a combination of the published individual study
results in a meta-analysis will result in an over-estimation of
the size of effect and an inflated probability that the differ-
ence is significant.

Publication bias can be checked for during the meta-
analysis in a variety of ways:

• Calculate number of studies required to refute the
conclusions of the meta-analysis [13]. If the number of
studies is small compared with this value, selective
sampling may have influenced the results. In this situa-
tion, the meta-analysis results are likely to be biased and
cannot be generalized.

• Produce a Funnel plot. Observed effect sizes are plotted
against the sample size. The points should scatter around
an underlying ‘true’ value, producing a funnel pattern.
Gaps indicate potential publication bias [27,28].

• Begg’s quantitative method. This uses the sample size of
study and an estimate of the size of the source popula-
tion, [27]. The problem with this method is that it needs
information about specific incident rates and proportion
of population who would enroll in the trial. Such values
are difficult to obtain.

Medical researches have access to a large database
(MEDLINE). This database is a major reference for identi-
fying existing studies on a specific phenomenon. Access to
this type of facility reduces the chance of publication bias. In
the absence of such a facility, good access to relevant work
is limited to personal knowledge and literature searches.
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The decision as to whether to include a particular study in
a meta-analysis should include an investigation of whether
the study is of a high enough quality to provide confidence
in its results. Medical researchers attempt to provide a
consistent view of quality, between experiments, by deriv-
ing quality criteria for empirical studies. Some researchers
have suggested going a step further and using quality
criteria as a means of weighting individual study results in
meta-analysis. Although using quality criteria as weighting
factor is controversial, deriving quality criteria for software
engineering studies might be beneficial since such criteria
provide background information that is useful when under-
taking any assessment of previous research.

2.2. Size effect estimation for individual studies

You need to obtain a standardized indicator of effect size
for each study before you can pool the information from
individual studies into one meta-analysis. This effect size
indicator needs to be independent of the particular unit or
scales used in any individual study to obtain measures that
are comparable across the different studies.

The choice of an indicator for effect size depends on the
type of studies included in your meta-analysis. If the indi-
vidual studies involve direct comparison between experi-
mental conditions then it is likely that your effect size
indicator will involve taking the difference between the
mean values for each condition. The difference must be
standardized to remove scale differences, i.e. divided by
the combined standard deviation. If your studies do not
involve a comparison, e.g. survey data, then your effect
size is likely to be an association or correlation.

Size effects depend on standard, consistent measures. In
epidemiology studies and clinical trials, meta-analyses use a
defined measure of risk as their standardized measure of
effect size. Unfortunately, software studies do not have a
standard, easily interpreted measure of treatment effect that
is recognized and agreed by all researchers.

Furthermore, extra information is required for software
engineering studies in comparison with medical studies.
This is because the same principal measures can be
collected using many different definitions, and the actual
definitions are needed to ensure that the measures are
comparable across the studies. If the measures are incompa-
tible (or are suspected to be) then the studies should not be
combined and a meta-analysis is inappropriate.

What is often missing in both medical and software engi-
neering research is access to the raw data used in the indi-
vidual studies. This would greatly improve the validity of
any results from a meta-analysis because it would allow the
raw, unadjusted data to be used to construct individual effect
sizes, instead of relying on summary information that may
include unidentified adjustments. In software engineering,
the Journal of Empirical Software Engineering, [2], is
starting to address this problem. This journal maintains a

repository of studies materials and raw data from the papers
it publishes.

2.3. Combining effect sizes/estimating statistics and
hypothesis testing

There are various different methods of combining the
individual study effect sizes. Regardless of what you use
for an effect size measure, the pooled effect size should be
weighted. If the studies have different sample sizes then the
estimates from larger studies are likely to be more reliable
tan the smaller studies. In addition, studies with small
variances are likely to be more precise. Thus, the effect
size from the different studies is usually weighted either
with respect to the study’s sample size or its variance.

The decision of which method of combination is the most
suitable depends on various factors, for example, the effect
size measure used for individual studies, available compu-
tational facilities and precision required for estimate of the
pooled effect size. However, these are minor considerations
compared to the main issue of whether you can assume that
the individual studies are homogeneous or not. This issue
influences both the method of meta-analysis and interpreta-
tion of results.

Studies are assumed to be homogeneous, if all the studies
are measuring the same underlying phenomenon and the
effect size estimates only differ due to sample variability.
In meta-analysis this is called aFixed Effect. A fixed effect
can be assumed when you are estimating one true effect for
the population and the studies are representative samples of
the general population of the investigation. For example, if
you are investigating the effect of a new anti-inflammatory
drug on rheumatoid arthritis in the general population of
arthritis suffers, you can assume the studies are homoge-
neous if experimental subjects are drawn at random from
patients attending general practice surgeries. The studies
would not be considered a random sample if subjects were
taken from a specialist clinic.

A meta-analysis estimates the true or population effect
size by calculating an average value of the individual
study effect sizes (which are themselves averages). If the
studies are not representative of the population then the
meta-analysis may give a misleading result. For example,
if your studies mainly included very extreme cases of joint
inflammation from rheumatology units, the meta-analysis
estimate of the general population effect of arthritis suffers
will be biased towards the effect of the drug on severe
inflammation. How much this bias influences the meta-
analysis results depends on whether the drug has the same
effect on all inflammations regardless of severity. However,
this information will not be available from your meta-analy-
sis if you have only samples taken from severe cases.

The assumption that the studies are all representative
samples of the overall true effect and only differ due to
sampling error is not always valid. In this situation the
studies are said to be heterogeneous.
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There are tests available to detect whether the studies are
heterogeneous. In the case when the effect size is a correla-
tion coefficient, there are two tests for homogeneity of
correlations; theQ test (that is based on Fisher’sz transfor-
mation of the correlation coefficient) and the Likelihood
Ratio Test (that uses the maximum likelihood estimate of
p). These tests check whether the amount of variation
between the study effect size estimates is more than would
be expected if the studies come from a single population.

If you detect that the studies are heterogeneous it is
important to identify the cause of the heterogeneity. There
are two main reasons for the presence of heterogeneity:
incomparable measures and the existence of sub-popula-
tions. If the measures are incomparable (for example, differ-
ent definitions have been used to derive the measure), then
the effect sizes should not be combined. Heterogeneity can
also occur when the overall population would naturally be
partitioned into different sub-populations. We will use a
simple example to show the effect of analysing studies
that have sub-populations.

Suppose you are interested in the incidence rate of breast
cancer and have sampled from two crowds — a football
match and Harrod’s Sale day. It is likely that the football
crowd would be pre-dominantly male whereas the Harrod’s
crowd would be pre-dominantly female. The different
studies would give different results because gender has a
major influence on the incidence of breast cancer.

However, suppose your were not able to recognize gender
(e.g. you were an alien) then you would not be able to tell
why the study results were different. If you combined the
studies in a meta-analysis you would obtain an estimate for
the population as a whole. The use of a Fixed Effect model
would underestimate the variance because there is signifi-
cant difference between the means of the two sub-popula-
tions. In this situation a Random Effects model may be
useful to estimate the average population incidence rate
for breast cancer. A Random Effects model allows for varia-
bility due to an unknown factor influencing in the effect
sizes for different studies and produces a larger estimate
of the population variance than the Fixed Effect model. It
incorporates estimates for both the sampling error and the
variability in the sub-populations.

There is a danger in applying meta-analysis to heteroge-
neous studies because it is difficult to tell if the studies used
in the meta-analysis are representative of the population. In
the above example if the proportion of independent studies
was approximately 50% male-dominated studies and 50%
female-dominated studies, the overall estimate of the inci-
dence of breast cancer would be a valid estimate because the
distribution of the studies is equivalent to the distribution of
gender in the population. However, if you had more pre-
dominantly female studies than male-dominated studies, the
average, based on all the studies, would not provide a valid
estimate of the breast cancer in the population as a whole. If
you cannot recognize gender you would not know that the
type of study would cause a bias in a meta-analysis.

If you could recognize gender, you would be able to
partition the studies into sub-populations of male and female
and so reduce the heterogeneity. A meta-analysis using the
sub-populations would estimate the effect size for the
female incidence of breast cancer and the effect size for
the male incidence of breast cancer separately. This leads
to a rather more meaningful assessment of breast cancer
incident rates than those related to the entire population.

A basic problem is that if you detect heterogeneity you
may not know what is causing it. There are many circum-
stances the effect size does not appear to be constant across
all the studies but the reason for the difference cannot be
explained by one (or several) known indicators. This is often
the case in software engineering. For example, many
researchers have suggested that different types of applica-
tions or use of different languages have an influence on
productivity, but there is no agreed set of language and
application categories that are used in all productivity
studies.

Medical researchers have set up Cochran groups, [7]
where they agree on a standard experimental protocol for
investigating a particular phenomenon. In particular, they
agree on a standard dimensionless value for reporting
results. The aim of the group is to accumulate a set of
homogeneous studies that can be used in a meta-analysis.
When a researcher completes an empirical study, the results
are reported to the relevant Cochran group. The study report
often includes the raw data (definitions identified within the
group) as well as the results. Cochran groups are responsible
for performing a meta-analysis on all of the studies reported
to them and updating the meta-analysis as and when new
empirical results are reported.

2.4. Example of a meta-analysis

In medicine, meta-analysis is considered more appropri-
ate for combining the results of replicated experiments than
for combining the results of observation studies. However,
the examples of meta-analysis is software engineering have
been related to combining the results of observational
studies, so we have selected an example of the same type.

In order to investigate the practical use of meta-analysis
techniques, we investigated the relationship between project
effort and product size found in a number of different soft-
ware engineering studies. The datasets were all collected as
observational studies, not as formal experiments. It should
be noted that the results of this meta-analysis are inherently
biased because the studies were chosen from readily avail-
able datasets, not by a thorough review of the literature.

The first step in any meta-analysis is to identify which
studies to include in the analysis using some defined inclu-
sion criteria. The criteria we used were very simple since the
datasets were collected for a variety of reasons and were not
collected with respect to any particular experimental design.
The criteria for the inclusion of studies were:

• Studies which included both effort and size information.

L.M. Pickard et al. / Information and Software Technology 40 (1998) 811–821 815



This criterion was used in order to ensure comparability
with respect to study scope.

• Studies with project-based information. This criterion
was used in order to ensure that the studies used a
common object of study.

• Studies with effort collected in months and size collected
in lines of code. This criterion was used in order to ensure
that the studies used comparable measures.

Several problems were identified because of the nature of
the datasets chosen:

• large variation between the different companies, in type
of development process and type of software produced;

• lack of any information about the measurement error;
• little information about the actual measurement defini-

tions used to collect the raw data;
• apart from the effort and size information, little

consistency between the studies about other explanatory
variables;

• lack of normality in the data — most of the meta-
analysis assume data is distributed normally. In order
to normalize the data, values were transformed using a
natural logarithmic transformation.

The purpose of the meta-analysis was to investigate the
relationship between effort and size, measured in lines of
code. The effect size measure used was the Pearson correla-
tion coefficient. The mean difference was not applicable
because it was an investigation of an association not an
investigation of comparative treatments.

Table 1 shows the estimated correlations (i.e.r̂ values) for
the individual studies. The results are also shown in Fig. 1
that includes one extra point (i.e. point 9). This point shows
the meta-analysis results.

Fig. 1 and Table 1 provide information about how similar
the different individual studies are. However, there are two
issues that need to be addressed if you are using meta-
analysis:

• Whether or not the results of a study should be removed
from the analysis if it is different. If the meta-analysis is
intended to show a general result, a study with an atypi-
cal result may greatly influence the meta-analysis
because it is so different.

• An individual company can exhibit a relationship
between effort and size but not when using lines of
code as the size measure but using some other measure
of size, e.g. number of modules. This is a particular
problem in software engineering studies which are
attempting to combine information from different
companies. There is no universal appropriate size
measure, it depends on many different factors including
type of development and type of final product. It is mean-
ingless to use an inappropriate measure for a company
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Table 1
Summary ofr̂ values for individual studies

Studya Sample size (ni) r̂ 95% confidence interval for̂r
Lower Upper

1 33 0.8870 0.7817 0.9431
2 19 0.9612 0.8998 0.9852
3 17 0.6405 0.2310 0.8572
4 15 0.7227 0.3342 0.9013
5 63 0.8605 0.7788 0.9135
6 15 0.7980 0.4833 0.9301
7 33 0.6677 0.4209 0.8225
8 15 0.9327 0.8051 0.9778

a The sources for the studies are given in Appendix A.

Fig. 1. Estimated correlation coefficient with associated 95% confidence intervals.



just because other companies have used it, but if a
company’s information is to be included in the meta-
analysis it must use the same measure.

Point 9 on Fig. 1 represents the estimate of the combined
effect size (i.e. the mean of the individualr̂ values), with
associated 95% confidence intervals, using the fixed effect
model. The fixed effects model assume the studies are
homogeneous, i.e. assumes that there is a common under-
lying correlationr, and each individual study delivers an
independent estimate ofr. The confidence intervals are
based on thestandard error of the combinedestimate.
However, in software engineering it is often important
to know what is likely to happen in an individual
study. Individual study results are more variable than
the average effect over different studies. Astandard
deviation is required to obtain a prediction interval for
individual studies.

We used a fixed effect model in the first stage of the meta-
analysis, although it unlikely that a fixed model would be
appropriate due to variation between the studies. If a fixed
effect model is appropriate, it is easier to interpret the
results. The combined̂r value for the meta-analysis indi-
cated a strong correlation of 0.83 between effort and size
(measured in lines of code) with a 95% confidence interval
of 0.78 # r # 0.87. However, in a specific study the
estimate ofr could vary from 0.4 to 0.98. TheQ test
suggested the presence of heterogeneity between the indi-
vidual studies indicating the need for a random effects
model (Q was 21.98 compared to a critical value of 14.07,
the 95% point of thex2distribution with 7 degrees of
freedom).

Villar recommends a sensitivity analysis to check the
robustness of the meta-analysis results with respect to the
choice of statistical methods used to combine the studies
and the inclusion of lower quality studies [28]. This is
because the reliability or trustworthiness of the meta-analy-
sis depends on the rigour of the application of the technique.
If there is any doubt about whether to include a study, espe-
cially on the grounds of quality, the way forward is to

include the study and check its impact on the meta-analysis
results using a sensitivity analysis.

A sensitivity analysis of our example meta-analysis
showed that no single individual study had a major impact
on the estimate ofr, but studies 2 and 7 had a major influ-
ence on the heterogeneity between the studies. When these
studies were removed, theQ test indicated that the rest of
the studies were homogeneous, i.e. were estimating the
same underlyingr value, (Q was 8.52, which is less then
the critical value of 11.07). There is no real justification for
removing individual studies from a meta-analysis just
because they contribute significantly to heterogeneity.
However, if studies that behave differently have some
common characteristic, e.g. included different types of
project to the projects in the other studies, this may indicate
the existence of a sub-population.

One of the problems of combining empirical dataset
results in many situations is the lack of information about
the study and the raw data it was based on. This may affect
the results of any analysis. For example, study 7 data is
composed of data from three different environments.
Combining the data together provides an average relation-
ship but reduces the amount of information in the meta-
analysis. It may also provide a misleading result if three
different environmental conditions and languages exhibit
different relationships between effort and size. Table 2
shows study 7 divided into three individual studies. Studies
7b and 7c show correlations that are significantly different
from zero, but study 7a shows a non-significant correlation.

For this set of studies there is very little change in the
results when the meta-analysis is performed using study 7 as
three individual studies. There is still a strong correlation
(0.85 compared to 0.83) between effort and size, with a 95%
confidence interval of 0:80 # r # 0:88 for the mean corre-
lation. TheQ test still suggested the presence of heteroge-
neity between the individual studies (Q was 20.56 compared
to a critical value of 16.92, the 95 percent point of the
x2distribution with 9 degrees of freedom).

A sensitivity analysis indicated that the removal of study
2 resulted in theQ test indicating that the remaining studies
were homogeneous (Q was 12.48 compared to a critical
value of 15.51, the 95 percent point of thex2distribution
with 8 degrees of freedom). TheQ test still suggested the
presence of heterogeneity between individual studies when
any other individual study was removed, even the only non-
significant study, 7a (Q was 16.77 compared to a critical
value of 15.51). The inclusion of a non-significant study has
suggested that the very high correlation of study 2 is unli-
kely to be an estimate of the same parameter value ofr.

Study 5 could also be sub-divided. However, in this case
the breakdown is by mode of development, [4], instead of
environment or organization and, therefore, would intro-
duce another level of detail that is unknown for the other
studies.

If your studies are heterogeneous, it is necessary to use a
random effects model. Using a random effects model on the
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Table 2
Summary ofr̂ values for individual studies

Studya Sample size r̂ 95% confidence interval for̂r
(ni) Lower Upper

1 33 0.8870 0.7817 0.9431
2 19 0.9612 0.8998 0.9852
3 17 0.6405 0.2310 0.8572
4 15 0.7227 0.3342 0.9013
5 63 0.8605 0.7788 0.9135
6 15 0.7980 0.4833 0.9301
7a 10 0.4855 2 0.2075 0.8541
7b 12 0.7097 0.2292 0.9121
7c 11 0.8181 0.4284 0.9504
8 15 0.9327 0.8051 0.9778

a The sources for the studies are given in Appendix A.



full set of 8 studies, the results were very similar to using the
fixed effect model except that the mean correlation was
slightly less (0.81 compared to 0.83). For the random effects
model, the variance of the estimated meanr values was
0.0147 and the estimate of the sample variance was
0.0112. This gave an estimate of the variance of the mean
population correlation due to unknown causes of 0.0035,
which corresponds to a standard error of 0.06. The results
are not presented in terms of a confidence interval, because
the presence of heterogeneity implies that the individual
effects in the different studies are dependent on the indivi-
duals study conditions and not representative samples of the
general study population.

The example has shown the vulnerability to heterogeneity
of meta-analysis of observational studies. To reduce hetero-
geneity, medical statisticians make use of:

1. Objective selection criteria for inclusion of studies in the
meta-analysis.

2. Sensitivity analysis of meta-analysis results to assess the
sensitivity of the results, both to the individual studies
and to the method of analysis.

3. Standard size effect metrics (such as odds ratios) that
reduce problems of comparable measures.

4. Well-established explanatory variables that partition the
population into homogeneous sub-sets.

If we use meta-analysis for combining software engineer-
ing observational studies, only the first two techniques are
currently possible. Furthermore, because we do not have a
standard, context-independent definition of software
measures, we have an additional possible source of hetero-
geneity: use of incomparable measures.

One approach to study selection, being suggested in the
medical community, is the use of good quality criteria to
assess the validity of each study before it is included in a
meta-analysis. In addition, we should make sure that we
have a well-defined process for planning and performing
meta-analyses. For example, [9] give a good standards and
criteria list, suggested by [25], for undertaking a meta-
analysis:

• Study design:

1. The study design should be prepared before the study
begins.

2. The methods used to find relevant studies should be
stated.

3. A criteria for inclusion/exclusion of studies should be
defined.

4. Summary information on characteristics of study
subjects should be provided.

• Combinability:

1. Criteria for inclusion/exclusion should be defined in
advance.

2. The criteria should be reviewed if any studies exhibit
very atypical effect sizes.

• Potential biases:

1. Any potential sources of bias should be identified. For
example:

Are selection criteria valid?
Are you able to extract of information from the indi-
vidual studies (especially if the studies are not
controlled experiments or trials).

• Statistical analysis:

1. If a meta-analysis results are not significant the power
of the test should be checked.

2. Any possible sub-populations should be identified and
separate meta-analysis should be performed within
the categories.

• Sensitivity analysis:

1. The studies should be analysed in two or more ways if
possible.

2. The quality of individual studies should be deter-
mined and an assessment of quality should be incor-
porated into final results.

3. The studies should be checked for publication bias.

• Application of results:

1. The conclusion should be established – whether the
combined results provide a definitive, effective final
answer, or a tentative one such that further individual
studies are required.

[25] also recommend identification of any support for the
results of the meta-analysis e.g. plausibility or indirect
evidence from other studies.

3. Vote-counting methods

Vote-counting is a conceptually simple method. It uses
the outcome of tests of hypothesis reported in different indi-
vidual studies, e.g. whether a correlation was found to be
significantly different from zero (either positively or nega-
tively) or not significantly different from zero. Since the
technique does not depend on the actual effect size values,
it does not require all the stringent assumptions of the meta-
analysis technique, e.g. comparable measures. Vote-count-
ing is based on the assumption that there is one common
underlying phenomenon e.g. a single underlying correlation
coefficient. However, if only the significance levels of tests
are known this assumption cannot be tested.

Vote-counting involves categorizing the different
outcomes of the hypothesis tests into three groups:

• significant positive effect
• significant negative effect
• non-significant effect

Each study is classed as either a success or a failure. The
classification depends on yourhypothesis. For example, an
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investigator, looking at whether the use of a new design tool
will improve productivity, will allocate a success rating to
any study that has a significant positive effect and a failure
rating too all others.X is the number of successes in a set of
k studies and is equal to the sum of theXi whereXi takes the
value 1 if study is a success and 0 if a failure. The proportion
of successes is equal toX/k. We reject the hypothesis that
there is no effect ifX/k is greater than a predetermined cutoff
value (CV).

There are two rather different ways of deciding on the
cutoff on value: a formal statistical method and an ad-hoc
method.

The statistical method of determining CV is based on the
following argument:

1. The probability of rejecting the hypothesis of no effect in
each individual study, when there really is no effect, is
just the significance level of the individual test (e.g.
0.05).

2. If you have a set of k independent studies each using the
0.05 significance leveland there was no true effect, 5%
of the studies might have found a significant effect by
chance.

3. Therefore if significantly more than 5% of the studies
showed a significant effect, we can reject the hypothesis
that there is no underlying effect.

For a particular value ofk, we can work out the appro-
priate value of CV using the binomial distribution:

Prob{proportion of successes. CV} � Prob
X
k

. CV
� �

�
Xk

i��CV*k�1 1

k

i

 !
pi�1 2 p�k2i

where [CV*k] is the greatest integer less than or equal to
CV*k and ‘p’ is the Binomial parameter which is set to 0.05
(i.e. the probability of obtaining a significant effect when
there is no real effect). Fork� 9, the value of CV*k # l, i.e.
we reject the null hypothesis if two or more studies demon-
strated a significant positive effect. Thus, in our example,
where all of the 8 studies showed a significant positive
correlation we would reject the hypothesis of no effect.

In principle, if more than about 15% of studies show a
significant effect, the vote-counting technique will usually
reject the hypothesis that there is no underlying effect. Some
researchers believe that a 15% level is too low a value to
represent a true consensus and prefer to set an ad-hoc cutoff
level themselves. For example, [19] suggest pre-setting
CV to 0.33 when there are three outcomes (and to 0.5
when there are two). This means that you reject the
hypothesis that there is no effect if more than a third
of the studies are a success. In this case, you can use
the binomial distribution to determine the significance
level of the test

In our example, we have two outcomes: a positive corre-
lation is considered a success and any other outcome is
considered a failure. If we present CV to be 4, we need 5
or more successes in order to reject the hypothesis that there
is no underlying effect. Using the binomial distribution we
can identify the significance level of this test as follows:

P�x . 4ur � 0� �
X8
5

8

i

 !
�0:05�i�0:95�82i � :000015:

Thus you are much less likely to reject the null hypothesis
(i.e.r� 0) when it is true using Light’s approach than if you
use the cutoff value based on the statistical method.
However, you are also more likely to accept the null hypoth-
esis when false.

Formally, we say that the power of the test based on
Light’s method is less than the power of the test based on
the formal statistical method. Informally, this can be appre-
ciated by considering what happens if the true effect is
difficult to detect (e.g. insufficient data points). In this
case, a relatively high proportion of studies would not detect
the true effect, so a meta-analysis using a cutoff point based
on 50% of the individual studies being a success might
incorrectly accept the null hypothesis. A meta-analysis
using a cut-off value closer to 15% would be more likely
to reject the null hypothesis. We confirm this more rigor-
ously1 in the following section.

The power of a test under the alternative hypothesis is the
probability of rejecting the null hypothesis given that the
alternative is true. The power is related to the number of
data points in a study and the true value of the effect. For
example Table 3 shows the power of the test of the null
hypothesis for each individual study given several different
values ofr.

If there were a true underlying correlation (e.g.r � 0.6)
and all our studies were based on the same number of data
points (e.g. 33 data points), in the long term, we would
expect 98.6% of studies to report a positive result. In fact,
we have studies of different sizes, so we can use the average
power of the individual studies i.e. 89%. Thus, we can use
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Table 3
Power of test of the null hypothesis if the alternative hypothesis is true

Study Sample size Value ofr for alternative hypothesis
0.4 0.5 0.6 0.7

1 33 0.7639 0.9218 0.9862 0.9992
2 19 0.5410 0.7345 0.8887 0.9727
3 17 0.4981 0.6873 0.8526 0.9565
4 15 0.4520 0.6329 0.8059 0.9312
5 63 0.9520 0.9958 0.9999 , 1
6 15 0.4520 0.6329 0.8059 0.9312
7 33 0.7639 0.9218 0.9862 0.9992
8 15 0.4520 0.6329 0.8059 0.9312

1 If you accept the informal argument, or do not want to consider statis-
tical issues in greater depth, we recommend that you skip the next few
paragraphs.



the Binomial distribution to assess the power of the two
vote-counting methods given that the true value ofr � 0.6:

Power of formal statistical method� P�x . 1ur � 0:6�

�
X8
2

8

i

 !
�0:11�i�0:89�82i � 0:9999:

Power of Light’s method� P�x . 4ur � 0:6�

�
X8
5

�0:11�i�0:89�82i � 0:99:

Furthermore, if the actual value ofr is smaller, the power
of Light’s method becomes much worse. For example, ifr�
0.4, and we assume the power of each individual is reduced
to 0.61, the power of the test based on Light’s method is
0.62 whereas the power of the test based on the statistical
approach is still 0.99.

4. Conclusions

Empirical studies of phenomena in software engineering
often report different results. It would, therefore, be useful to
combine the results of independent studies to obtain a
common assessment of the nature of the phenomenon of
interest. In this paper, we have considered two methods of
combining the results of independent studies that have been
proposed for use in the field of medicine: meta-analysis and
vote-counting. Empirical studies in medicine have some
similarities with empirical studies in software engineering,
in particular results in both areas are both strongly influ-
enced by individual differences between human subjects.
Thus, an investigation of techniques for combining results
used in medical statistics would seem to be relevant to soft-
ware engineering. In addition, some researchers in software
engineering are starting to use these techniques, albeit
sometimes rather informally. In this paper we have
attempted to explain how to apply these techniques with
the help of a software engineering example.

Our example has identified a number of problems apply-
ing the techniques to observational software engineering
studies. Some problems are inherent in the techniques,
others are inherent in the application of the techniques to
software engineering.

Vote-counting has a number of inherent problems which
indicate that it should not be used as a method of combining
empirical study results. In particular, it allows us to test only
very weak hypotheses (in the example, we could only test
whether the underlying correlation was 0 or not) and, coun-
ter-intuitively, a large number of independent studies does
not provide us with any more confidence in our results than
a smaller number, (in the example, once 2 or 3 studies have
caused us to reject the null hypothesis further positive
studies have little impact on our hypothesis test). In addi-
tion, vote-counting has a stringent requirement that the

phenomenon under investigation is a single common
phenomenon. If the effect is context dependent vote-count-
ing is invalid. The only cases in which vote-counting might
be appropriate are when either a software engineering
phenomenon has been assessed using different measures
in different studies, or the information reported from the
studies is very limited (for example, significance levels
are quoted but the values of the test statistics and the raw
data are not). In both cases, meta-analysis cannot be
performed and vote-counting is the only method available
for combining results.

Meta-analysis allows us to assess common effect size,
estimated from the effect sizes of each individual study.
We are able both to test the hypothesis that the effect size
is non-zero and to provide an estimate of the common effect
size. Thus, meta-analysis leads to much stronger statistical
inferences than can be made from the vote-counting.
However, meta-analysis results are less trustworthy and
more difficult to interpret if the individual studies exhibit
heterogeneity. Since heterogeneity is usually found when
different studies give different results (i.e. we have contra-
dictory results), it appears that meta-analysis is of least use
under the conditions when we would most like to use it.
Furthermore, meta-analysis will not overcome basic defi-
ciencies in the contributing studies. If the individual studies
are of poor quality or are biased, any meta-analysis will be
invalid. Thus, meta-analysis cannot help to overcome
problems that result from individual studies being unable
to draw subjects and objects at random from well-defined
populations.

In our view, the lessons to be learnt from meta-analysis in
medical research are not so much the statistical techniques
but the infrastructure medical researchers have put in place
to support meta-analysis. In particular, software engineering
would benefit from:

• bodies that co-ordinate meta-analysis studies similar to
Cochran groups that maintain records of replicated
studies and update estimates of size effects as and
when the results of new studies are reported to them;

• a database facility such as MEDLINE which maintains
records of all experiments reported on phenomenon of
interest;

• agreed quality standards for software engineering studies
such as those reported by [25] (see Section 2);

• defined procedures for certain experiments that ensure
that independent replications of an experiment can be
combined.

Initiatives such as the Journal of Empirical Software
Engineering which maintains a repository of studied mate-
rials and raw data of the papers it publishes are a useful
starting point in this direction (see http://kapis.
www.wkap.nl/kapis/CGI-BIN/WORLD/journalhome.htm).

New statistical models (e.g. Multi-level Statistical
Models [11] and Bayesian Hierarchical Models [8] have
been developed that may help us to model the variations

L.M. Pickard et al. / Information and Software Technology 40 (1998) 811–821820



between the studies. The use of these types of models could
be beneficial in combining information from different
empirical studies. However, they require detailed statistical
knowledge. Software packages that perform multi-level
models are becoming more readily available (e.g. Mln and
BUGS) that will encourage their use but they must be used
with caution; the use of a package is not a substitute for
detailed knowledge of the technique. Also, the structure of
the data must known in order to model the hierarchies and
cross-classifications properly.

The incorporation of Bayesian statistics into the hierarch-
ical model theoretically allows the incorporation of exper-
tise into the model. However, the derivation of the required
prior probabilities, and the resultant posterior, is too compli-
cated for routine use. New methods have recently been
developed to help (e.g. MCMC methods, [10] but are not
readily available at present.

Even with new complex models being developed, it is
unlikely that we will make much substantive progress
until we address the issue of ensuring individual studies
are properly conducted. There appear to be two critical
issues:

1. We need proper definitions of software engineering
populations and agreed methods of sampling those popu-
lations.

2. We need to agree a set of standard measures which are
recorded for all empirical studies that will eventually
allow us to define appropriate sub-populations (i.e. we
need to define explanatory variables for use in software
engineering studies analogous to gender and age in medi-
cal studies).

These concerns suggest that we need more research into
the theory of empirical studies in software engineering as
well as more empirical studies.
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Appendix A. Data sources

Study 1: Belady–Lehman [5]
Study 2: Bailey–Basili [1]
Study 3: Yourdon [5]
Study 4: Wingfield [5]
Study 5: Boehm [4]
Study 6: Kemerer [16]
Study 7: Kitchenham–Taylor [17]
Study 8: Data made available to Mermaid project (Esprit)
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