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Combining Evidence From Residual Phase and
MFCC Features for Speaker Recognition

K. Sri Rama Murty and B. Yegnanarayana, Senior Member, IEEE

Abstract—The objective of this letter is to demonstrate the
complementary nature of speaker-specific information present in
the residual phase in comparison with the information present
in the conventional mel-frequency cepstral coefficients (MFCCs).
The residual phase is derived from speech signal by linear predic-
tion analysis. Speaker recognition studies are conducted on the
NIST-2003 database using the proposed residual phase and the
existing MFCC features. The speaker recognition system based
on the residual phase gives an equal error rate (EER) of 22%,
and the system using the MFCC features gives an EER of 14%.
By combining the evidence from both the residual phase and the
MFCC features, an EER of 10.5% is obtained, indicating that
speaker-specific excitation information is present in the residual
phase. This information is useful since it is complementary to that
of MFCCs.

Index Terms—Autoassociative neural network, glottal closure
instant, linear prediction (LP) residual, residual phase, speaker
verification.

I. INTRODUCTION

THE OBJECTIVE of automatic speaker recognition is
to recognize a person from a spoken utterance [1]. A

speaker recognition system can be operated in either identi-
fication mode or verification mode. In speaker identification,
the goal is to identify the speaker of an utterance from a given
population, whereas speaker verification involves validating
the identity claim of a person. Speaker recognition systems can
be classified into text-dependent systems and text-independent
systems. Text-dependent systems require the recitation of a
predetermined text, whereas text-independent systems accept
speech utterances of unrestricted text. This letter deals with
text-independent speaker verification.

Speech is a composite signal that mainly carries informa-
tion about the message to be conveyed, speaker characteris-
tics, and the language. Speaker characteristics in the speech
signal can be attributed to the dimensions of the vocal tract
system, characteristics of excitation, and the learning habits of
the speakers. The speaker-specific vocal tract information is
mainly represented by spectral features like mel-frequency cep-
stral coefficients (MFCCs) and linear prediction (LP) cepstral
coefficients [2]. Efforts are being made to exploit the usefulness
of features extracted from excitation source characteristics and
suprasegmental characteristics for speaker recognition [3]–[6].
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The goal of the search for new features is to improve the perfor-
mance of the existing speaker recognition systems, which are
based mainly on the characteristics of the vocal tract system.
One of the desirable properties of the new features is that they
should provide speaker-specific information complementary to
the spectrum-based features like MFCC. Then by combining
the evidence from the new features with the evidence from the
existing features, the performance of the speaker recognition
system can be improved.

In this letter, we demonstrate that the residual phase signal
contains speaker-specific information that is complementary to
the MFCC features. The residual phase is defined as the co-
sine of the phase function of the analytic signal derived from
the LP residual of a speech signal. The speaker-specific infor-
mation from the residual phase is captured using an autoassocia-
tive neural network (AANN) model. The speaker-specific infor-
mation from the MFCC features is also captured using AANN
models [7]. The evidence from both the models is used to vali-
date the claim.

The letter is organized as follows. In Section II, a brief
overview of spectral features and the need for complementary
features is presented. Computation of the residual phase feature
is described in Section III. Speaker recognition studies based on
spectral features (MFCCs), excitation source features (residual
phase), and combining evidence from both the systems are
discussed in Section IV.

II. SPECTRAL FEATURES FOR SPEAKER RECOGNITION

Most of the present-day systems use the characteristics of
vocal tract system for speaker recognition. This information is
extracted using short time spectrum analysis of segments of
20–30 ms (3–5 pitch periods) of speech signal. Cepstral coeffi-
cients are derived from the short time spectrum of speech signal.
The cepstrum is the inverse Fourier transform of log-magnitude
spectrum of speech signal. Since speech production is usually
modeled as a convolution of the impulse response of the vocal
tract filter with an excitation source, the cepstrum effectively
deconvolves these two parts, resulting in a low-time component
corresponding to the vocal tract system and a high-time com-
ponent corresponding to the excitation source [8]. In speaker
recognition systems based on spectral features, the initial 15–20
cepstral coefficients are used for a speech signal sampled at a
frequency of 8 kHz. The high-time component of the cepstrum
is mostly ignored, which means that the cepstral features usu-
ally ignore the information present in the excitation source.

MFCCs are widely used spectral features for speaker recog-
nition. Computation of the MFCCs differs from the basic
procedure described earlier, where the log-magnitude spectrum
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is replaced with the logarithm of the mel-scale warped spec-
trum, prior to the inverse Fourier transform operation. Hence,
the MFCCs represent only the gross characteristics of the vocal
tract system. In this letter, we show that the characteristics of
the time-varying excitation component of the speech signal are
also useful for automatic speaker recognition. We also show
that the speaker-specific information present in the excitation
source complements the information present in the features
representing the vocal tract system.

III. COMPUTATION OF RESIDUAL PHASE

THROUGH LP ANALYSIS

In LP analysis, the sample is estimated as a linear
weighted sum of the past samples. The predicted sample
is given by

(1)

where is the order of prediction, and ,
is the set of linear prediction coefficients (LPCs). The LPCs
are obtained by minimizing the mean-squared error between the
predicted sample value and the actual sample value over the
analysis frame. The error between the actual value and the
predicted value is given by

(2)

This error is called the LP residual of the speech signal.
The LP residual contains mostly information about the excita-
tion source. Values of LP residuals are large around the instants
of glottal closure for voiced speech. Due to large fluctuations in
amplitude, it is difficult to derive information from short seg-
ments of LP residual. Hence, we propose to use the phase of the
analytic signal derived from the LP residual [9]. The analytic
signal corresponding to is given by [10]

(3)

where is the Hilbert transform of and is given by

IFT (4)

where

(5)

Here is the Fourier transform of , and IFT denotes the
inverse Fourier transform. The magnitude of the analytic signal

[Hilbert envelope ] is given by

(6)

and the cosine of the phase of the analytic signal is given
by

Re
(7)

Fig. 1. (a) Speech signal. (b) LP residual. (c) Hilbert transform of residual.
(d) Hilbert envelope of residual. (e) Residual phase.

A segment of voiced speech, its LP residual, the Hilbert
transform of the LP residual, the Hilbert envelope, and residual
phase are shown in Fig. 1. It is difficult to see
any feature from the plot of the residual phase. However,
since during LP analysis, only the second-order relations are
removed, the higher order relations among the samples of the
speech signal are retained in the samples of the residual phase.
Since speech production mechanism is not a Gaussian process,
it is reasonable to expect that the speaker-specific information
is present in the higher order relations among the samples of the
residual phase. In this letter, residual phase is used to charac-
terize the speaker-specific information in the excitation source.
Note that in the residual phase, the amplitude information of
the LP residual samples is not preserved. In the LP residual, the
region around the glottal closure (GC) instant within each pitch
period corresponds to high signal-to-noise ratio (SNR) region
due to impulse-like excitation. These regions are known to
contain speaker-specific information [6]. We also assume that
the phase information around the GC instants in the residual
contains better speaker-specific information compared to other
regions [11]. The knowledge of the GC instants is used for se-
lecting the residual phase segments for extracting the relations
among the samples. The difference between the LP residual
and the residual phase information is that the strength of the
excitation around the GC instant present in the LP residual
is eliminated in the residual phase information. Thus, in the
residual phase, speaker-specific information is expected to be
present only in the sequence of the samples.

IV. SPEAKER VERIFICATION STUDIES

A. Database for the Study

The speaker verification experiments presented in this letter
are conducted using the NIST-2003 speaker recognition corpus
of male speakers [12]. There are 149 male speakers, and the
duration of training data for each speaker is about 2 min. There
are 1343 test utterances, each having a duration of 15–45 s.
Each test utterance has 11 claimants, where the genuine speaker
may or may not be present. All speech signals were sampled
at 8 kHz.
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Fig. 2. Structure of the AANN model.

B. Speaker Verification Using Residual Phase

LP residual is obtained from the speech signal using a
tenth-order LP analysis. The residual phase feature is computed
from the LP residual using the method described in Section III.
Voiced regions are identified using a method based on autocor-
relation analysis of the Hilbert envelope of the LP residual. The
GC instants are also detected using the Hilbert envelope [9].
The residual phase values around the GC instants in the voiced
segments are used to extract the speaker-specific information.
The ability of AANNs to capture the nonlinear relations is
exploited for developing speaker-specific models.

AANN is a feedforward neural network model that performs
identity mapping [13]. After training, the AANN model should
be able to reproduce the input vector at the output with min-
imum error, if the input is from the same system. The AANN
model consists of one input layer, one output layer, and one or
more hidden layers. The nodes in the input and output layers
are linear, whereas the nodes in the hidden layers are nonlinear.
The neural network is expected to capture the speaker-specific
information present in the higher order relations among the sam-
ples of residual phase. A five-layer neural network architecture
(see Fig. 2) is considered for the letter. The structure of the net-
work is , where represents linear
nodes, represents nonlinear nodes, and numerals represent
number of nodes in the layer. The structure of the network was
arrived at empirically after some preliminary studies. During
the training phase, six blocks of 40 samples around each GC
event are considered with a shift of one sample. Each block is
presented as input to the network, and the output is computed.
The error vector between input and output is used to update the
weights of the network using the back propagation algorithm
[14], [15]. The AANN model is trained for 500 epochs. The net-
work indeed captures the higher order relations present among
the samples of the residual phase, as can be seen by the reduc-
tion in the error in the training error curve (see Fig. 3).

During the testing phase, six blocks of 40 samples around
each GC instant are considered with a shift of one sample. Each
block is applied as input to the AANN, and the output is com-
puted. The squared error between the input and the output
of the AANN is converted into a confidence score using the re-
lation exp , where refers to the block index. In this
letter, we have chosen . The average confidence score for a

Fig. 3. Training error curves for random noise and residual phase.

Fig. 4. DET curves for the system based on residual phase.

given test utterance is computed as , where
is the total number of blocks in the test utterance. The perfor-

mance of the speaker recognition system is given by the detec-
tion error tradeoff (DET) curve [16] shown in Fig. 4. From the
DET curve, the EER is found to be 26%. Test utterance normal-
ization (TNorm) is performed on the raw confidence scores in
order to transform the scores into a similar range. After TNorm,
the performance has improved to 22%.

C. Speaker Verification Using MFCCs

The MFCC features are extracted from voiced segments of
the speech signal. The first 19 cepstral coefficients, other than
the zeroth value (average of the log-spectral values), are used.
Cepstral mean subtraction is performed to reduce the channel
effects. The structure of the AANN for capturing the distribu-
tion of the MFCCs of each speaker is ,
as described in [17]. During training, the feature vectors are pre-
sented in a random order to the AANN. One model is trained for
each speaker for 60 epochs. The performance of the AANNs did
not improve, even if the number of epochs was increased to 500.
Hence, all the AANN models were trained for only 60 epochs.

During testing, the MFCCs are extracted from the test ut-
terance. The MFCC feature vectors are applied to the AANN
models. For each frame of 20 ms, the squared error between
the MFCCs and the output of AANN is computed. The squared
error is converted into a confidence value, and the average
confidence across all frames is used to score the test utter-
ance against a given model. The performance of the speaker
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Fig. 5. DET curves for the system based on MFCC features.

Fig. 6. DET curves for the combined system. DET curves for system based on
MFCCs and residual phase are also given for comparison.

recognition system using the MFCC-based spectral features is
shown in the form of the DET curve in Fig. 5. From the DET
curve, the EER for the raw scores obtained from the spectral
features is 24%. The performance has improved to 14% when
normalization techniques [model normalization (ZNorm) and
TNorm] are employed [18].

D. Combination of Speaker Recognition Systems

The confidence scores and obtained using MFCCs and
the residual phase, respectively, for each speaker are combined
using the linear weighted sum, given by .
The performance of the combined system is plotted as the DET
curve in Fig. 6. For , the EER of the combined system is
10.5%. This shows that, due to complementary speaker-specific
information present in the residual phase, the performance of
the system based on the spectral features can be improved by
combining the scores.

V. CONCLUSION

The objective of this letter was to demonstrate the comple-
mentary nature of the residual phase and to show that this in-
formation indeed helps in improving the performance of the

conventional systems based on spectral features such as MFCC.
It was demonstrated by conducting speaker verification exper-
iments on the NIST-2003 speaker recognition evaluation data-
base. The speaker recognition system using only the residual
phase information resulted in an EER of 22%, and that using
only the MFCC features resulted in an EER of 14%. However,
the combined system led to an EER of 10.5%, which is signif-
icantly better than both of the individual systems. The AANN
models used in this letter were not optimized in terms of the net-
work structure and training. Also the scores may be combined
in a better way to improve the performance of the combined
system.
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