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In traditional robotics, model-based controllers are usually needed in order to bring

a robotic plant to the next desired state, but they present critical issues when the

dimensionality of the control problem increases and disturbances from the external

environment affect the system behavior, in particular during locomotion tasks. It is

generally accepted that the motion control of quadruped animals is performed by

neural circuits located in the spinal cord that act as a Central Pattern Generator and

can generate appropriate locomotion patterns. This is thought to be the result of

evolutionary processes that have optimized this network. On top of this, fine motor

control is learned during the lifetime of the animal thanks to the plastic connections

of the cerebellum that provide descending corrective inputs. This research aims at

understanding and identifying the possible advantages of using learning during an

evolution-inspired optimization for finding the best locomotion patterns in a robotic

locomotion task. Accordingly, we propose a comparative study between two bio-inspired

control architectures for quadruped legged robots where learning takes place either

during the evolutionary search or only after that. The evolutionary process is carried

out in a simulated environment, on a quadruped legged robot. To verify the possibility

of overcoming the reality gap, the performance of both systems has been analyzed by

changing the robot dynamics and its interaction with the external environment. Results

show better performance metrics for the robotic agent whose locomotion method has

been discovered by applying the adaptive module during the evolutionary exploration for

the locomotion trajectories. Even when the motion dynamics and the interaction with the

environment is altered, the locomotion patterns found on the learning robotic system are

more stable, both in the joint and in the task space.

Keywords: evolutionary algorithm, bio-inspired controller, cerebellum-inspired algorithm, robotic locomotion,

neurorobotics, central pattern generator
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1. INTRODUCTION

From the outside, locomotion appears to be performed
spontaneously and effortlessly by both animals and humans,
but a complex neural system controls it. Movements are mainly
controlled by the Central Nervous System (CNS) which generates
commands at a cortical and spinal level and integrate those
commands based on different sensory feedback. All the muscular
activation and coordination processes can be unexpectedly
produced without the need for conscious control (Takakusaki,
2013). In quadrupeds, the neural control of locomotion happens
along with all the CNS, involving the contribution of cortical
areas as the pre-motor and motor cortices and also more
peripheral areas such as the spinal cord. In particular, the
existence of a Central Pattern Generator (CPG) in the spinal

cord has been first demonstrated in the middle of the twentieth
century (Hughes andWiersma, 1960). It is a network of cells that
generates basic locomotion patterns by the repetitive contraction

of different muscle groups thanks to its periodic oscillations in

exciting or inhibiting certain motoneurons.
The cerebellum plays an important role, too, in both

quadruped and human locomotion. It improves the accuracy
in motor learning, adaptation and cognition on the control
commands from the motor cortex (Ito, 2000), computing
the inverse dynamics of a body component and delivering a
contribution to the present neural signals from the motor cortex
(Kawato and Gomi, 1992; Wolpert et al., 1998). In nature,
the optimal locomotion strategies are discovered by the long
process of evolution. Evolution bases its research on a no-
random selection of randomly generated individuals and the final
evaluation strictly depends on the agent and its interaction with
the surrounding environment. By inspiration from the biological
evolution process, the new concept called Embodied intelligence
or Embodied brain emerged more recently (Starzyk, 2008). The
idea conveys the importance of the body to properly learn the
interaction between intelligence and outer world. Evolution and
learning operate on different time scales but both are forms of
biological adaptation from which is important to take inspiration
from. Evolution reacts to slow environmental changes whereas
learning produces adaptive reactions in an individual during its
lifetime (Pratihar, 2003).

In robotics, finding effective locomotion strategies has always
been a challenge and this task gets even more complicated when
the environmental conditions change. To face dynamical external
conditions, different methods have been developed, in robotics,
and leg-based motion is one of the most effective locomotion
mechanism to deal with changing terrains (Full and Koditschek,
1999). However, legged locomotion is usually very complex to be
modeled and controlled due to the high-dimensional, nonlinear
and dynamically coupled interactions between the robot and
the environment. New approaches, employing synergies and
symmetries, have been proposed to simplify the problem and
decrease its redundancy (Ijspeert, 2008). In some cases, bio-
inspired CPG-based controllers have been used to prove how
a primitive neural circuit used for generating periodic motion
patterns can be extended for generating different types of
locomotion. For instance, the research work from Ijspeert et al.

(2007) shows a CPG model which switches between swimming-
like to walking-like locomotion by just changing a few parameters
of the model, as the oscillation threshold of the system.

The need for refined motor control pushed bio-inspired
robotics to deeply study the cerebellar contribution and design
mathematical models to mimic some of its biological functions
in motion control (Wolpert et al., 1998). Cerebellar-like neuro-
controllers have also been implemented recently. The cerebellum
exploits long-term synaptic plasticity (LTP) to store information
about body-object dynamics and to generate internal models of
movements. This evidence has been studied by Garrido Alcazar
et al. (2013) and implemented for adaptable gain control for
robotic manipulation tasks. In this case, it is useful to have
cerebellar corrective torques which are self-adaptable, operate
over multiple time scales and improve learning accuracy, in
order to minimize the motor error. An error-dependent signal
operating as a teaching contribution is needed for this purpose.

The interesting interaction between CPG-based oscillators
and cerebellar inspired networks has been implemented in bio-
inspired control design, too. In the research work proposed
by Fujiki et al. (2015), the spinal model generates rhythmic
motor commands using an oscillator network based on a Central
Pattern Generator and modulates the commands formulated in
immediate response to foot contact, while the cerebellar model
modifies motor commands, through learning, based on error
information related to the difference between the predicted and
the actual foot contact timings of each leg.

Another interesting research branch is evolutionary robotics
which is becoming a very popular approach in the search for
new robotic morphology and controllers. The main advantage
of this approach is that it is “prejudice-free,” in the sense that
it mainly depends on the behavior of an agent in interaction
with the external environment. In fact, genetic algorithms derive
from the kind of long-term adaptation that humans share with
other species. This idea of adaptation is meant as a relational
property that involves the agent, its environment, and the
maintenance of some constraints and can be in the wide sense
described as the ability of an agent of interacting with its
environment to maintain some existence constraints. Thus, the
idea is exploiting the sensorimotor interactions with a dynamic
environment to minimize the prior assumptions that are built
into a “human-made” model, which reduces the capability of the
model itself to count for new and unknown relevant features or
artifacts in the system (Harvey et al., 2005). Many enhancements
have been done recently, in finding either optimal robotic
morphologies (Corucci et al., 2016) and adaptable robotic brains
(Floreano et al., 2008). Hence, exploiting the interplay robot-
environment, the evolutionary approach represents a model-free
method to discover optimal locomotion patterns based on the
interaction robot-terrain.

In this work, we present a new bio-inspired and model-
free control architecture for quadruped robotic locomotion
which takes advantages from the collaboration of evolution
and adaptation. The evolutionary approach part for optimizing
the Central Pattern Generator model on a simulated robot has
already been investigated and tested (Urbain et al., 2018), while
the cerebellar-like adaptive controller has been proven to be
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effective on both control of voluntarymovements, such as control
of a robotic arm (Tolu et al., 2012, 2013), and control of reflexes,
such as in gaze stabilization tasks (Vannucci et al., 2016, 2017).

In comparison to the previous research works, where the
evolutionary scenario is applied on the CPG parameters of the
quadruped robot Tigrillo (Urbain et al., 2018), we proposed a
comparative research proving the advantages of performing the
evolution on an adaptive quadruped system body + brain. In
the controller, the adaptive part is a cerebellar-inspired circuit
(Tolu et al., 2012), which presents a modular structure for the
quadruped locomotion task case. Further, for the first time,
the paper shows the benefits of using the Cerebellar-inspired
layer, already proposed by Ojeda et al. (2017), for robotic
locomotion task.

To conclude and extend the result to a more general
perspective, it is analyzed a comparison to the case where the
evolution is performed just on the body, while the adaptive
control part is included after the definition of the locomotion
patterns, so after the findings of the locomotion trajectories by
the evolutionary algorithm.

A comparison of the locomotion stability of the two
bio-inspired controllers is then performed under different
experimental constraints, to assess the generalizability of the
results. These final experiments are very important because
of the difficulty to transfer results found in simulation to the
real world due to differences in sensing, actuation, and in the
dynamic interactions between robot and environment. This
phenomenon is called reality gap (Lipson and Pollack, 2000) and
it is even more evident in adaptive approaches, where the control
system is gradually designed and tuned through the repeated
interactions between the agent and the surrounding scenario.
Robots might evolve to match the specificities of the simulation,
which differ from the real-world constraints. To prevent this
problem, many approaches can be possible, such as adding
independent noise to the values of the sensors or changing the
robot dynamic model and its interaction with the environment
(Nolfi et al., 2000; Vandesompele et al., 2019). In comparison
to the classical approach where this simulation variability is
added during the evolutionary optimization, in this research, the
possibility of overcoming the reality gap and the transferability
of the approach is demonstrated afterwards. Furthermore, to
test the robustness of the proposed control architecture in the
interaction with the environment, the static contact friction with
the ground is changed during the test experiments. Usually,
adaptive closed-loop CPG are exploited to counteract the changes
in the environment (Kousuke et al., 2007; Ryu et al., 2010)
while, in this research work, the learning and the adaptation of a
cerebellar-inspired control module (Tolu et al., 2012) are applied
instead to face the dynamically changing interaction with the
external world.

The paper is structured as follows: in section 2 we describe the
architecture of the controller, the evolutionary process employed
and the implementation details; in section 3 we show the results
of the evolutionary procedure and of the subsequent tests that
have been performed; finally, in section 4 we discuss the obtained
results and we draw the conclusions on the advantages of
combining evolutionary processes and adaptive control.

2. MATERIALS AND METHODS

In this work, a bio-inspired control architecture is implemented
for the quadruped configuration of Fable robot (Pacheco et al.,
2014), simulated on the Neurorobotics Platform (Falotico et al.,
2017).

Figure 1 shows the system which consists of two parts: the
controller, which is a simplified model of the CNS, comprising
the CPG and the cerebellar circuit, and a simulated model of a
quadruped robot, the Fable robot (Pacheco et al., 2014).

The robot has two degrees of freedom (DoF) for each leg
(Figure 2A), but only one is actuated (the hip joint), while
keeping the other fixed (Figure 2B) in order to reduce the
number of parameters and simplifying the evolutionary process.
This simplification does not pose a problem, as locomotion
patterns can still be achieved by only using the hip joints.

2.1. Central Pattern Generator (CPG)
In quadruped biological systems, simple locomotion can be
generated as a low-level brain function, in the spinal cord, in the
form of CPG. The term central indicates that there is no need
for peripheral sensory feedback to generate the rhythms. From a
control point of view, the CPG has also very interesting properties
such as distributed control and modulation of locomotion by
simple high-level commands (Ijspeert, 2008).

In our system, this biological neural function is
mathematically modeled as a network of coupled non-linear
oscillators and they are represented as the gray box in Figure 1

(Gay et al., 2013). These oscillators are then used to plan the
angular excursion in time of the hip joints of a quadruped robot
(Figure 2). The benefits of using these oscillators lie in the fact
that they are controlled by a low number of parameters that
specifically affect certain aspects of the locomotion pattern. For
instance, one of the most relevant parameters is the duty cycle (d
in Equation 4) which controls the shape of a skewed sine wave
modulating the protraction-retraction of the hip joint of the
robot as shown in the systems of equations 1-4.

The CPG module is the main block involved in the
evolutionary procedure (Sect. 2.3) and it is implemented in open-
loop in the control architecture.
The initial parameters and the boundaries of the oscillators
(Table 1), employed as a CPG, are selected to be a general starting
point for the optimization algorithm. In defining the variables
of the CPG oscillators, a difference between the front and hind
legs is made to better characterize the morphology of the robot
and to follow the default specifications of the work by Gay
et al. (2013). These variables are the deterministic specifications
which induce a certain type of locomotion for the Fable robot.
Indeed, the locomotion patterns represent the phenotype for the
evolutionary process, which means that they are the observable
characteristics resulting from the interaction of the genotype of
the robot with the environment. Equally, the CPG parameters
(Table 1) represent the genotype which is evolved and mutated
through multiple generations, whose expression are de facto
the locomotion patterns (phenotype). In fact, to not steer the
evolution toward a limited area in the space of the possible
genetic outcomes, the generalizability and unbiasedness of the
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FIGURE 1 | Bio-inspired control system design and implementation. The main modules of the architectures are a CPG-inspired trajectory planner, whose

characteristic parameters have been chosen by a Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) (Hansen, 2006) approach and a Proportional

“Integral” Derivative (PID) feedback controller which can cooperate with a cerebellar-inspired adaptive controller (Ojeda et al., 2017).

FIGURE 2 | The Fable Robot in the Neurorobotics Platform (NRP). The robot has 4 legs (A) and 2 revolute joints per leg (B) which rotate around 2 perpendicular axes

(C) (Pacheco et al., 2014; Falotico et al., 2017).

starting values of the genotype are fundamental.
The selected parameters are listed in Table 1, where their initial
values, boundaries and final optimal results are presented.

Here below, the equations of the unit oscillators model for the
i− th robotic hip, with φ2π = φi(mod 2π):

ṙi = γ
(

µi − r2i
)

ri (1)

φ̇i = ωi +

4
∑

j=1

wij sin(φj − φi − ψij) (2)

θi = ri cos
(

φLi
)

+ oi (3)

φLi =







φ2π
2di

if φ2π < 2πdi
φ2π + 2π(1− 2d)

2(1− di)
otherwise

(4)

r is the radius of the hip oscillator, µ is its hip target amplitude,
ω its frequency, φ its phase, o its offset and θ its output angular
excursion in radians. γ is a positive gain defining the speed of
convergence of the radius to the target amplitudes µ. d is the
virtual duty factor since the actual duty factor depending on
the robot dynamics and on parameters of the gait. The four
hips of the robot are also phase-coupled to synchronize them,
to achieve different gaits. More in details, the coupling between
hip oscillators i and j is obtained by adding the term wijsin(φj −
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TABLE 1 | Distinctive parameters of the coupled oscillators which define the four joint trajectories for the robot.

Parameters Initial values Boundaries Results

Min Max adapt-after-evo adapt-in-evo

CPG EVOLVED PARAMETERS

Front legs amplitude (µ) 1.58 0.5 1.56 1.04 1.46

Hind legs amplitude (µ) 0.88 0.5 1.56 0.69 0.71

Frequency (ω) 5 1 10 4.9 8.57

Phase shift leg 1-2 (φ) 0.001 0 6 1.19 0.38

Phase shift leg 2-3 (φ) 1.14 0 6 5.9 3.42

Phase shift leg 3-4 (φ) 4.35 0 6 1.4 3.32

Duty cycle leg 1 (d) 0.12 0 0.9 0.88 0.29

Duty cycle leg 2 (d) 0.75 0 0.9 0.57 0.73

Duty cycle leg 3 (d) 0.40 0 0.9 0.84 0.28

Duty cycle leg 4 (d) 0.85 0 0.9 0.9 0.69

Offset left front leg (o) −20.8 −60 60 −12.73 22.3

Offset right front leg (o) 18.53 −60 60 36.58 −10.9

Offset left hind leg (o) −17.96 −60 60 57.24 52.47

Offset right hind leg (o) 52.72 −60 60 8.64 26.79

These parameters define the four outputs of the Central Pattern Generator described in Gay et al. (2013) and their values are evolved during the CMA-ES search for the optimal solutions
(Hansen, 2006) either in the adapt-after-evo and in the adapt-in-evo.

FIGURE 3 | The simplified biological model of the cerebellar microcircuit (A) and its functional and computational implementation (B) (Ojeda et al., 2017). The

implementation of the main parts of the biological cerebellar model (A) is represented in the same color in the corresponding control block (B).

φi−ψij) in Equation (2), whereψij is the desired phase difference
between the oscillators controlling hips i and j andwij is a positive
gain. Eventually, φL (Equation 4) is a filter applied on the phase
φ and cos(φL) is used to compute the output angle θ of the
hip oscillator.

The described CPG oscillator acts as a trajectory planner in
the control architecture since coordinates the robotic motion,
defining the locomotion characteristics. In quadrupeds, the
neural signal which descends from the spinal cord along the
motoneurons regulates the contraction of the peripheral muscle
fibers (Takakusaki, 2013). To obtain a consistent motor control
signal, the final signals sent to the robotic legs are joint
efforts. In the case of the Fable robot, these efforts are motor
torques, computed by a PID feedback controller, after the CPG
planning (Figure 1).

2.2. Bio-inspired Adaptive Controller
The proposed bio-inspired controller (in light blue and yellow
in Figure 1) mimics one of the cerebellar roles in locomotion:
the computation of the feedback-error-learningmodel. The body,
or a part of the body as a leg, is a physical entity whose
movements are controlled by the CNS. The controlled entity
can be considered as a cascade of transformations between
motor command (e.g., muscle activations in the biological
case and joint torques in the robotic one) and links motion
(e.g., joint angular position). This cascade of transformations
defines the system dynamics. The neural description, which
models the transformation from the desiredmovement trajectory
to the motor commands needed to obtain it, is called the
inverse model. This concept explains that if the inverse model
is accurate, it can be used as a feedforward controller,
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making the actual trajectory be reasonably comparable to its
reference (Wolpert et al., 1998).

The proposed controller is then composed by a feedback
part and a bio-inspired part (Tolu et al., 2012). The feedback
part element is a PID controller (in light blue in Figure 1),
often used in engineering for torque control, while the bio-
inspired one is a simplifiedmodel of a cerebellar circuit (in yellow
in Figure 1).
The cerebellar-inspired model has the role of computing a
corrective torque contribution based on the inverse model of
the system. As in the biological cerebellum, a specific circuit
is dedicated to the inverse model of each one of the legs, but
still merging information concerning the global body/robot state.
Each circuit works as a Unit Learning Machine (ULM) which
encodes the internal model of a body part to more precisely
perform more precise motion control (Ito, 2008).

In Figure 3, the simplified model of one of the four biological
cerebellar microcircuits and its mathematical implementation
is shown.

The main functional biological sub-parts in the cerebellar
microcircuit are:

• theMossy fibers (MF): they transfer the sensory inputs to the
cerebellum (green in Figure 3);

• theGranular cells (GC): they expand the sensory information
from the mossy fiber to abstract the inverse model of the
body movement corresponding to the specific body part
(orange in Figure 3);

• the Parallel fibers (PF): they transmit the information from
the granular cells to the Purkinje cells. This layer is shared
among all the cerebellar microcircuits and represents where
the information is shared among the four cerebellar modules
(light blue in Figure 3);

• the Purkinje cells (PC): they modulate the input from the
granular cells, which is carrying information about the actual
state of the robot. The modulation is performed thanks to
teaching information coming from the inferior olives through
the climbing fiber (yellow in Figure 3);

FIGURE 4 | Description of the two systems adapt-after-evo and adapt-in-evo. On top, during the evolution, the adapt-after-evo evolves the initial parameters of the

CPG and the PID gains and during the experiments, the bio-inspired module is plug in the architecture. On the bottom, the adapt-in-evo architecture keeps the PID

gains fixed to the initial values of the same values for the adapt-after-evo.
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TABLE 2 | PID gains and hyper-parameters of the Cerebellum-inspired controller.

PID parameters Adapt-after-evo Adapt-in-evo

Boundaries Result values (fixed)

Min Max

Kp 0.5 1 0.86 0.81

Ki 0.001 0.009 0.005 0.005

Kd 0.02 0.06 0.022 0.040

In the adapt-after-evo, the Kp, Ki , and Kd are evolved in the CMA-ES, as the CPG
parameters in Table 1, while in the adapt-in-evo they are fixed as the initial values of the
adapt-after-evo. Concerning the remaining four parameters, they are specifications for the
learning modules of the architecture and for that, they are used just in the adapt-in-evo.

• the Climbing fibers: they carry the teaching signal to
the Purkinje cells to modulate their activity (red dashed
line in Figure 3);

• the Deep nuclear cell (DCN): it gathers and integrates
inputs from the information elaborated by the Purkinje and
Granular cells. It generates the final cerebellar output (white
in Figure 3).

The cerebellar inspired control module contains a total of 4
ULMs, one for each leg (Figure 1). Each ULM is considered
as a single cerebellar microcircuit and the communication and
synchronization through the different circuits are provided by the
PFs layer and encoded as the information pk in the Equation (3).
pk is also transferred between two sub-modules of the learning
machine (in light blue in Figures 3A,B). Each microcircuit
consists of 3 modules: a module for the cortical layer of the
cerebellum (in orange in Figure 3), a module for its molecular
layer, mainly constituted by the Purkinje Cells Layer (PL) (in
yellow in Figure 3), and eventually, a model of the Cerebellar
Nuclei (DCN) (the white circle in Figure 3B). All modules
contribute to computing the final corrective command which
constitutes the inverse model effort contribution uim to the robot.

More in detail, the cortical layer module is implemented
through the Locally Weighted Projection Regression (LWPR)
algorithm. The LWPR is an algorithm for incremental nonlinear
function approximation in high-dimensional spaces with
redundant and irrelevant input dimensions (Vijayakumar
and Schaal, 2000). This machine learning technique is
computationally efficient and numerically robust thanks to
its regression algorithm; it creates and combines N linear
local models which perform the regression analysis in selected
directions of the input space, taking inspiration from the partial
least squares regression. The main advantages of using the
described learning algorithm are listed in the following:

• it optimizes the role of the GC in the cerebellum, which exploit
their particular plasticity to learn the dynamic model of the
body for motor control (orange in Figure 3);

• it acts as a radial basis function filter which implies the
processing of the sensory information input from the MF to
the DCN (pk in Equation 7 and in black in Figure 3);

• it allows rapid learning based on incremental training which
perfectly fit in the specification of the designed system which

should be able to perform online learning, based on the
dynamical environmental constraints;

• its learning is extremely fast and accurate since the weights
of each kernel is based only on local information and its
computational complexity is linear for each input information.

Each LWPR model is fed with the sensory inputs which are the
reference position for the specific leg hip joint (Qd) and the actual
positions (Qlegy for y inULMs) of all the 4 controlled joints. Then,
the algorithm performs an optimal function approximation and
divides the sensorimotor input space into a set of receptive fields
(RFs), which represent the neurons of the cerebellar GCs layer.
The RFs geometry is described by Equation (5), which describes a
Gaussian weighting kernel. For eachmultidimensional input data
point xi, a RF activation pk is computed, based on its distance to
the center of the Gaussian kernel Ck.

pk(xi) = e−
1
2 ((xi−ck)

T ·Dk(xi−ck)) (5)

Basically, each RF activation pk is an indicator of how often an
input happens to be in the validity region of each RF linear
model. The validity region is defined by a positive definite
distance matrix Dk. The distance matrix is updated at each
iteration according to a stochastic leave-one-out cross-validation
technique to allow stable on-line learning. At each iteration, the
LWPR weights pk are sent to the cerebellarmolecular layermodel
and once that the optimal centers and widths are found for each
RF, the accuracy and the learning speed increase. Equation (3)
has been proved to lead to a sparse code of the input data xi and
this facilitates the persistence of remaining sites of plasticity for
the incremental learning process, as in the biological cerebellar
circuit (Dean et al., 2010).
The output of the kth RF is shown in Equation (4), where wk is
the weight vector of the RF and ǫk is the bias.

yk(xi) = wkxi + ǫk (6)

Moreover, the LWPR acts as a radial basis function filter
which elaborates the sensory information and returns it as ulqpr
(Equation 7), that is the contribution from the cortical layer of
the cerebellar microcircuit model. This contribution is modeled
as a weighted linear combination of the kernels outputs yk(xi).

ulwpr(xi) =

∑N
k=1 pk(xi)yk(xi)
∑N

k=1 pk(xi)
(7)

pk (Equation 3) also represents the contribution which is
transmitted through the parallel fiber to the Purkinje Layer (PL).
The parallel fibers gather all the information from the different
GCs kernels. This information is multiplied by a set of weight
rk and thus, we obtain upl, the Purkinje Cell Layer (PL) output
(Equation 6).

upl(xi) =
∑

k

rkpk(xi) (8)

The learning rule used for updating the weights in the Purkinje
Cells Layer is explained in Equation (7), where the update gain δrk
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FIGURE 5 | Locomotion performance and characterization of the two systems; on the left the adapt-after-evo system and, on the right, the adapt-in-evo one.

(A,E) Represent the mean and the standard deviation of the position error of the four legs joints and (B,F) instead describe the mean and the standard deviation of the

contribution ratio of the different modules of the control architecture. (C,G) Describe the periodic behavior relation between the actual joint trajectories of leg 1 and leg

2 compared to their reference values, in pink (among the other pairs of legs, the relation is periodic in a comparable way). Eventually, (D,H) represent the dynamics of

the CoM of the robot, on the vertical axis to the ground. By plotting the CoM velocity against its position on the vertical axis, we can extract relevant information about

the stability of the locomotion.

Frontiers in Neurorobotics | www.frontiersin.org 8 August 2019 | Volume 13 | Article 71

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Massi et al. Evolutionary and Adaptive Robotic Locomotion

is computed. β is a small learning rate (usually 0.07) and ufb(xi)
is the motor command from the feedback part of the controller,
used as teaching signal.

δrk = βufb(xi)pk(xi) (9)

Taking inspiration from the biological cerebellar micro-structure,
the final output of the entire cerebellar circuit is the neural
command coming from the Deep Cerebellar Nucleus (DCN) or
Deep Nuclear Cell which represents the inverse model corrective
torque uim (Equation 8).

At each simulation iteration, the total effort command ut to be
sent to the robot is computed as in the Equation (8).

ut(xi) = ufb(xi)+ uim(xi) = ufb(xi)+ ulwpr(xi)+ upl(xi) (10)

2.3. Evolutionary Algorithm
In evolutionary robotics, the desired robotic behaviors emerge
automatically through evolution due to the optimization and
interactions between the robot and its surrounding environment.
As a specification for the evolutionary procedure, a fitness
function, which measures the ability of a robotic individual
to perform the desired task, is defined based on this
optimization procedure, the algorithm identifies the optimal
robotic configuration (Pratihar, 2003).

In this research, an evolutionary algorithm to optimize the
initial parameters of the CPG is applied using a covariance matrix
adaptation evolutionary strategy (CMA-ES) (Hansen, 2006). It is
a stochastic optimization algorithm which, compared to other
evolutionary procedures, has the advantage of converging rapidly
in a landscape with several local minima and requires few
initialization parameters (Hansen, 2006). In an iterative fashion,
the algorithm changes the initial CPG parameters (Table 1) and
simulates the resulting locomotion patterns on the simulated

robotic platform for 2 min. At the end of the simulation,
a fitness function computes a score to give to the different
individuals, based on the distance each robot has covered during
the locomotion simulation. The initial parameters for the CMA-
ES are implemented as described by Hansen (2006).

2.4. Experimental Design
To assess the advantages of exploiting adaptability in employing
evolution strategies for robotic locomotion tasks, two different
configurations of the system are evolved (Figure 4):

• adapt-after-evo: Co-evolution of the CPG parameters and
PID gains (Tables 1, 2)

– genotype: CPG parameters + PID gains
– phenotype: locomotion patterns

• adapt-in-evo: Evolution of the CPG parameters + learning
phase of the cerebellar circuit (fixed PID gains, Tables 1, 2)

– genotype: CPG parameters
– phenotype: locomotion patterns + RFs in the

cerebellar circuit

The PID gains are part of the evolved parameters in the adapt-
after-evo in order to have a fair comparative study of the
performance of the two systems. The classic controller (the
adapt-after-evo) should be also optimized by the evolutionary
exploration. Their initial conditions and the boundaries for the
CPG parameters are the same, as in Table 1.

As a starting point for the evolution, the PID gains are
the same for both robotic configurations: adapt-after-evo and
adapt-in-evo. In the adapt-after-evo configuration, the PID gains
are part of the evolutionary process and their boundaries are
defined according to empirical evaluations on the stability of
the system, while in the adapt-in-evo system configuration when

FIGURE 6 | Histograms which summarize the mean and standard deviation of the distance covered by the 15 individuals with the two control strategies adapt-in-evo
and adapt-after-evo in the three different levels of robot-ground friction. The p-values, regarding the statistical significance of the performance of the two system

adapt-in-evo and adapt-after-evo, are also shown in the figure.
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FIGURE 7 | Locomotion performance and characterization of the two systems; on the left the adapt-after-evo system and, on the right, the adapt-in-evo one, with a

friction coefficient of 0.95 between robot and terrain. (A,E) Represent the mean and the standard deviation of the position error of the four legs joints and (B,F) instead

(Continued)
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FIGURE 7 | describe the mean and the standard deviation of the contribution ratio of the different modules of the control architecture. (C,G) Describe the periodic

behavior relation between the actual joint trajectories of leg 1 and leg 2 compared to their reference values, in pink, and to the behavior of the no perturbed system, in

red (among the other pairs of legs, the relation is periodic in a comparable way). Eventually, (D,H) represent the dynamics of the CoM of the robot, on the vertical axis

to the ground, compared the same CoM dynamics when the system is not perturbed (in red).

the cerebellar circuit is plugged in the system, they are fixed
(Figure 4, Table 2).

Concerning the specification of the cerebellar circuit,
an experimental tuning has been performed on four
of the most significant hyper-parameters of the LWPR
algorithm (Vijayakumar and Schaal, 2000) (init_D, init_α,
w_gen and add_threshold in Table 2), to obtain a stable
and corrective system behavior for the frequency range
of the locomotion trajectories (ω in Table 1), used as
starting point of the evolutionary algorithm. This is an
important constraint for the experiments because the
response of the system needs to be stable for all the
possible solutions found by the evolutionary algorithm.
Ensuring stability in the system allows inspecting an unbiased
comparison even if the adaptive part of the controller is
included afterwards.

The first two hyper-parameters considered (init_D and init_α)
are related to the creation of new Receptive Fields, while the
last two (w_gen and add_threshold) directly influence the local
regression algorithm. All the hyper-parameters are the same
for the 4 Unit Learning Machines and they are described
as follows:

• init_D = 0.7, it represents the initial distance metric which is
assigned to each new created Receptive Fields (RFs);

• w_gen = 0.6, it is critical for the creation of new RFs. If no local
model shows an activation greater than this value, a new RF is
generated;

• init_α = 500, it is the initialization value for the learning rate
in the gradient descent algorithm which minimizes the error
in the different regressions of the input space;

• add_threshold = 0.95, it operates as a threshold value to
stand when a new regression direction should be added to
the algorithm. If the ratio between the mean squared error of
the current regression dimension and the same mean squared
error, at the previous time iteration, is lower than this value,
thus, a new regression direction can be exploited in the robot
modeling process.

All the simulations were run on the Neurorobotics Platform
and implemented through its utilities, which has been shown
capable of implementing robotic control loops (Vannucci
et al., 2015). The controller was implemented using a
domain-specific language that eases the development of
robotic controllers, and that is part of the Neurorobotics
Platform simulation engine (Hinkel et al., 2017). Another
tool, called Virtual Coach and also included in the platform
and employed to implement the evolutionary algorithm. It
was used because capable of launching batch simulations
with different parameters and gathering and storing results
from these.

3. EXPERIMENTAL RESULTS

In both evolutionary configurations, each of the 16 generations
consists of 10 individuals. Every simulation lasted for 2 min,
which is enough time for the LWPR to converge. After the
simulation, the fitness function has been computed.

In Table 1, the resultant characteristic parameters of the final
CPG configurations for the best individuals in the adapt-after-evo
and adapt-in-evo configuration, are shown.

In Table 2, for theadapt-after-evo, the PID gains are part
of the genotype and their initial conditions represent the
same fixed controller parameters used for the adapt-in-evo.
Thus, in theadapt-after-evo case, the PID gains are changed
by the evolutionary process, within the experimentally found
boundary conditions for the starting locomotion robotic patterns
to be stable and tolerable. Differently, the adapt-in-evo profits
from the contribution of the cerebellar-inspired controller
(Figure 3B), whose hyper-parameters (init_D, init_α, w_gen
and add_threshold) are set as shown in Table 2 and explained
in section 2.4.

After the evolutionary process, experiments that compare the
behavior of the two systems have been performed. To perform
this comparison, the same cerebellar circuit, that was used in the
adapt-in-evo, was plug in the adapt-after-evo. Thus, both systems
are now adaptive thank to the contribution of the cerebellar
control module and it is possible to test and compare the
benefits of control adaptability during or after the optimization
of the planning of the locomotion trajectories. The two resultant
control architectures are then representative for:

• control adaptability during the evolutionary optimization of
the CPG locomotion patterns (adapt-in-evo)

• control adaptability after the evolutionary optimization of the
CPG locomotion patterns (adapt-after-evo)

While the individual representative for the adapt-in-evo
architecture can safely be chosen as the winner of the
evolutionary algorithm, the effect of adding the adaptive
component to create the adapt-after-evo cannot be easily
predicted. Thus, in order to better choose the individual for the
adapt-after-evo architecture, the cerebellar circuit was added
to the best three individuals resulting from the evolutionary
process. After evaluating again, the fitness with the adaptive
component, the one individual with better performances was
chosen as the representative one.

In general, to provide a fair comparison between the two
systems, the distance is computed only after the cerebellar
algorithm has converged, as in the initial phase, where
learning occurs, we can observe some instability. After this
initial phase, that lasts for around 20 s, we can notice no
significant improvements in the position error on the joint
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FIGURE 8 | Locomotion performance and characterization of the two systems; on the left the adapt-after-evo system and, on the right, the adapt-in-evo one, with a

friction coefficient of 0.5 between robot and terrain. (A,E) Represent the mean and the standard deviation of the position error of the four legs joints and (B,F) instead

(Continued)
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FIGURE 8 | describe the mean and the standard deviation of the contribution ratio of the different modules of the control architecture. (C,G) Describe the periodic

behavior relation between the actual joint trajectories of leg 1 and leg 2 compared to their reference values, in pink, and to the behavior of the no perturbed system, in

red (among the other pairs of legs, the relation is periodic in a comparable way). Eventually, (D,H) represent the dynamics of the CoM of the robot, on the vertical axis

to the ground, compared the same CoM dynamics when the system is not perturbed (in red).

trajectories, which could indicate that most of the learning
has been done. This can also be observed by looking at the
number of receptive fields created by the LWPR algorithm,
that is not increasing anymore. Therefore, to avoid having
the learning phase affecting the computation of the distance
covered by the robot, a time window of 20 s is considered,
from 30 to 50 s, during which the distance covered by the
robot is recorded and compared between the two different
cases (adapt-after-evo and adapt-in-evo).

3.1. Base Comparison
After simulating the best adapt-after-evo and adapt-in-evo
individuals 10 times for 1 min, the results show that the
winner robot walks for 1.72 m on average with the adapt-in-
evo controller while it walks for 1.48 m with the adapt-after-evo.
The respective standard deviations are 0.2 m for the adapt-in-
evo controller and 0.11 m for the adapt-after-evo. This shows
that, in the task space, there are benefits in using the adaptive
controller during the search for the best locomotion patterns,
rather than connecting it to the control architecture afterwards.
The superiority of the adapt-in-evo approach is raised also by
the fact that PID gains are no evolved and they keep the values,
presented in Table 2, while the same gains are optimized in the
adapt-after-evo approach.

Regarding the behavior of the two systems in the joint space,
we analyze the differences in their performances as shown in
Figure 5. On the left column, the adapt-after-evo-related plots
are shown and on the right column, the plots related to the
adapt-in-evo-system are presented.

Figures 5A,E represent the mean and the standard deviation
of the position error of all the robotic legs. In both pictures, after
an overshoot at the beginning of the simulation, which represents
the transient where the cerebellar controller is calibrating its
corrective contribution, the error decreases along with the
simulation. Comparing the two plots, it is appreciable that in
the adapt-in-evo trial (e) the error in following the reference
positions is almost half compared to the other case adapt-after-
evo (a). Their Root Mean Square Error (RMSE) are, respectively,
0.035 radians and 0.056 radians.

Then, in Figures 5B,F, the mean and the standard deviation
of the ratio of the contributions of the different parts of the bio-
inspired cerebellar controller are highlighted. It is evident that,
in both cases, the contribution of the LWPR, whose teaching
signal is the global motor command to the robot ut, becomes
predominant compared to the feedback controller contribution
(PID). Furthermore, the PL contribution, whose teaching signal
is the feedback controller ufb, follows the trend of the output of
the PID controller, which decreases along with the simulation,
meaning that the final motor commands to the robot are mostly
relying on the uim output.

On the third line, Figures 5C,G stress the periodic and stable
locomotion which characterizes the system after the first seconds
of simulation. In the Figures 5C,F, just the cyclic behavior of two
robotic legs (leg 1, one of the front legs, and leg 2, one of the
hind legs) has been reported. The remaining two legs present
comparable performances. It is appreciable from Figures 5C,G

that the relation among the angular excursions of the two legs
becomes more periodic along with the simulation time and closer
to the pink limit cycle, shown to mark the reference trajectories
of leg 1 and leg 2.

Ultimately, at the level of the task space, a dynamic analysis
of the robotic locomotion is exhibited in Figures 5D,H when the
robot vertical position is plotted against its vertical speed. In these
images (Figures 5D,H), the dynamics of the system becomemore
defined and constrained over time. It is relevant to point out
that, in the adapt-in-evo case (Figure 5H) the winner locomotion
patterns grant more robust locomotion, which is represented by
a more confined stability region in the phase space with respect
to the adapt-after-evo system (Figure 5D).

3.2. Statistical Analysis on Different
Experimental Conditions
After discussing the results concerning the advantages of using
control adaptability during the optimization of the locomotion
trajectories (adapt-in-evo) rather than employing it afterwards
(adapt-after-evo), we investigated on the effects of altering
the experimental conditions with respect to the simulation
circumstances where the locomotion patterns have been found.
These experiments are also useful for testing the system in more
realistic scenarios, which goes toward overcoming the reality
gap. The adaptation to the changes in the experimental scenario
is possible since the weights of the LWPR are never locked
to certain values, but they are always updating based on the
experimental circumstances.

The changes in the experimental constraints have been applied
in the following order:

• variability in the robotic dynamics;
• variability in the interaction with the environment.

First, to verify the abstraction potential of the previous results, a
population of 15 slightly different Fable robots is generated. After
checking the consistency of the simulation in a certain range of
variation of the robotic model dynamic parameters, we decided
to generate 15 robots with the following features:

• additive white Gaussian noise (AWGN) fed in the encoder of
the motors and randomly selected from a uniform distribution
in the range of [0–10] % of the motor signal;

• damping coefficient, randomly taken from a uniform
distribution in the range of [0.08–0.25] Ns

m , to define the
dynamic model of all the hip joints of the robot.
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FIGURE 9 | Locomotion performance and characterization of the two systems; on the left the adapt-after-evo system and, on the right, the adapt-in-evo one, with a

friction coefficient of 0.3 between robot and terrain. (A,E) Represent the mean and the standard deviation of the position error of the four legs joints and (B,F) instead

(Continued)
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FIGURE 9 | describe the mean and the standard deviation of the contribution ratio of the different modules of the control architecture. (C,G) Describe the periodic

behavior relation between the actual joint trajectories of leg 1 and leg 2 compared to their reference values, in pink, and to the behavior of the no perturbed system, in

red (among the other pairs of legs, the relation is periodic in a comparable way). Eventually, (D,H) represent the dynamics of the CoM of the robot, on the vertical axis

to the ground, compared the same CoM dynamics when the system is not perturbed (in red).

Thus, the resulting 15 Fable robots have different dynamic
characteristics and noisy signals injected in their motors’
encoder. These modifications model the variability in the
robotic population.

Subsequently, other experimental constraints have been
modified. They represent the variability in the interaction robot-
environment. Thus, to modulate this aspect of the simulation,
the static friction coefficient is altered in the x − direction of the
world reference frame. The default value of the simulator for this
parameter is 1, meaning maximum static friction between robot
and ground and we decided to affect the experiments by giving
three different levels: 0.3, 0.5, 0.95 of static friction coefficient to
the interaction robot-ground. Lower coefficients imply greater
disturbances to the system. To have consistent results, the
previously generated robotic individuals are simulated ten
times for 1 min in each of the 3 different friction conditions
explained above.

Figure 6 shows histograms with an error bar for the mean
and standard deviation of the distance covered by all the
combinations robot-terrain, simulated with the two different
control architectures adapt-after-evo and adapt-in-evo, 10 times
per individual.

A two-way repeated measures ANOVA (Potvin and Schutz,
2000) was run to determine the effect of the two systems
(adapt-in-evo, and adapt-after-evo), i.e., factor controller over
three different ground-robot interactions (low, medium and high
friction), i.e., factor ground on the explanatory variable walked
distance (D), expressed in meters. Data are mean ± standard
deviation. Analysis of the studentized residuals showed that there
was normality, as assessed by the Shapiro-Wilk test of normality
(Razali and Wah, 2011) and no outliers, as assessed by no
studentized residuals greater than ± 3 standard deviations. The
assumption of sphericity was violated for the interaction term, as
assessed by Mauchly’s test of sphericity (X2(2) = 7.003, p = 0.03)
(Gleser, 1966). There was a statistically significant interaction
between controller and ground on D, F(1.412,19.767) = 4.288, p
= 0.04, ǫ = 0.706 (Greenhouse-Geisser correction Abdi, 2010),
partial ν2 = 0.234.

Simple main effects were run for the factor controller
(Figure 6). D of adapt-in-evo controller was always higher than
that of adapt-after-evo:

• data for low-friction ground were (1.69± 0.71) m and (0.80±
0.27) m, respectively, p-value< 0.0005 (3 stars in Figure 6);

• data for medium-friction ground, (1.66± 0.45) m and (1.34±
0.55) m, respectively, p-value< 0.05 (1 star in Figure 6);

• data for high-friction ground, (1.68 ± 0.38) m and (1.28 ±

0.31) m, respectively, p-value< 0.0005 (3 stars in Figure 6);

Figures 7–9 describe the behavior of the two systems adapt-after-
evo (on the left column) and adapt-in-evo (on the right one) in

the three different friction conditions with the terrain (Figure 7
is high friction, Figure 8 is medium friction and Figure 9 is
low friction). To analyze data from a representative experiment,
the plots (Figures 7–9) include the behavior of one of the ten
reiterations of the robotic individual whose performance, in
covered distance D, is the closest to the average behavior among
all the individuals in the two control cases adapt-after-evo and
adapt-in-evo, for all the 3 levels of friction. This selected agent
has a noise injected in the encoder which is 2% of its total motor
signal, while its joints damping coefficient is 0.19 Ns

m .
In all three cases (Figures 7–9), subplots (a) (adapt-after-evo)

and (e) (adapt-in-evo) highlight that during the first minute of
simulation, the position errors at the joint level are decreasing,
even if the experimental conditions (robotic model and robot-
ground friction coefficient) are changed compared to the initial
simulation constraints, where the locomotion patterns have been
found. The error for the system adapt-in-evo (right column) is
always smaller than for the other system adapt-after-evo (left
column), observing both its mean and standard deviation across
the four legs. In the three different robot-ground interactions
(Figures 7–9), the Root Mean Square Error (RMSE) in the
following of the desired joint trajectories is shown in Table 3.

The contributions of the different modules of the controller
architecture (subplots b and f) show the same trend as in
Figure 5; after a few seconds after the beginning of the
simulation, u-lwpr becomes predominant and u-pl learns the
u-fb and they together decrease their contributions along
the simulation.

The most significant differences between the behavior of
two compared systems adapt-after-evo and adapt-in-evo without
disturbances (Figure 5) and that when the dynamics of the
experiments have been changed (Figures 7–9), can be observed
in subplots (c, d, g, h). At joints level (Figures 7C,G, 8C,G,
9C,G), the performances of the two systems adapt-after-
evo and adapt-in-evo demonstrate a less stable behavior if
compared to the same subplots (c) and (g) in Figure 5. The
trend of the joins trajectories still converges to the limit
cycle obtained by the position references, which is indicated
in pink, and to the periodic shape got in the last 10
s of simulation for the same system without disturbances.
However, lower the friction coefficient value, longer the time
the systems take to converge to the desired periodic behavior
(Figures 7–9). It is also relevant to point out that the entropy
of the joint trajectories increases in inverse proportion to
the static friction coefficient of friction with the ground
(the minimum tested static friction coefficient is showed
in Figure 9).

Eventually, a meaningful index of the difference in the
stability response of the two systems adapt-after-evo and adapt-
in-evo is the plot showing the dynamics of the Center of
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TABLE 3 | Root Mean Square Error in following the desired locomotion

trajectories for the representative Fable robot individuals.

Friction coefficient Adapt-after-evo Adapt-in-evo

High 0.056 rad 0.035 rad

Medium 0.039 rad 0.033 rad

Low 0.044 rad 0.041 rad

These values are related to Figures 7A,E, 8A,E, 9A,E.

Mass (CoM) of the robot (d, h). Here, the stability region
in the no disturbances case is represented in red, while the
behavior for the affected systems is in the remaining color
gradient timeline (Figures 7, 8, 9D,H). In all the three figures
(Figures 7, 8), the behavior of the adapt-in-evo agent (on the
right) is confined in a region of the phase space which is very
close to region covered by the dynamics of the same system
without disturbances (in red in subplots d and h). Instead, the
dynamics of the center of mass of the adapt-after-evo experiments
(on the left column in Figures 7–9) are always more unstable
than its equivalent adapt-in-evo (Figures 7–9), meaning that the
adaptability, brought by the cerebellar inspired module, as a
control feature during the evolutionary exploration for effective
locomotion trajectories, contributes to discovery more flexible
robotic locomotion patterns.

3.3. Dynamically Changing Experimental
Set-Up
After testing the control architecture with a set of simulated
Fable robots with different dynamical characteristics
and friction interactions with the environment, further
experiments are performed. This set of tests has been
carried out to compare the performances of the two
systems with respect to scenarios in which the interaction
with the environment changes dynamically. In this
case, the static friction coefficient is changed during
the experiment, respectively, at 50 and 100 s from the
beginning of the simulation and the simulation lasts 2 min
in total.

For these experiments, the same representative individual
we choose for designing the previous plots (2% of the motor
signal as noise in the encoders and 0.19 Ns

m of joints damping
coefficient) is tested for the dynamically changing set-up, and the
simulations are run 5 times per type of controller (adapt-after-evo
and adapt-in-evo).

Concerning the task space, the average, among the 5 trials, of
the distance covered by the robot, from 50 to 120 s of simulation,
is 6.18m for the adapt-after-evo and 10.28m for the adapt-in-evo,
respectively, with standard deviation 2.25 and 2.40 m.

In Figure 10, we show the response of the two systems
adapt-after-evo, on the left, and adapt-in-evo, on the right,
when the friction coefficient is dynamically changed during
the simulation. As explained in section 3.2, the initial static
friction coefficient is 1, the maximum value allowed in the
Gazebo simulator and then it is decreased to 0, its minimum,
around 50 s from the beginning of the simulation, and increase

again to 0.5 at 100 s. In Figure 10 the same graphs, as for
the previous experiments, are shown. In subplots (a) and (e)
the mean and standard deviation of the legs are shown. A fast
spike is visible around 50 s of simulation when the interaction
with the environment is changed, but then the position error
decreases again and a slight change in the graph is also visible
around 100 s when the friction is changed again. Both systems
adapt-after-evo and adapt-in-evo reject the disturbance given
by changing the static friction coefficient. Also, in this case,
the assessment of the advantage brought by the adapt-in-evo
controller is quantitatively proved by the RMSE which is 0.05
radian in the adapt-after-evo and 0.04 radian in the adapt-in-
evo one.

In Figures 10B,F, it is clear that around 50 s of the simulation,
an unexpected change perturbs the system and the u-lwpr and
u-pl need to learn again the model of the interaction among
robot and ground. The second change in the static friction
coefficient is lightly visible around 100 s from the beginning of
the simulation.
In conclusion, in the Figures 10C,D,G,H, the difference in the
rejection of the disturbances among the two systems adapt-
after-evo and adapt-in-evo, is more evident. In fact, after the
second 50 of simulation, the adapt-after-evo is not able to
completely recover from the disturbance. In fact, the last seconds
of simulation (in dark blue) are slightly different from the
behavior of the no-perturbed system (in red). This happens both
at joint level in Figure 10C and at the task level in Figure 10D.
On the contrary, the adapt-in-evo system feels the change in the
interaction with the environment, but it can return to a state of
the system which is closer to the initial one whose response is
highlighted in red. The temporary divergence of the behavior of
the system is visible around second 50 either in Figure 10G, in
light green, and in Figure 10H, in pink. In these final subplots (c,
e, g, h), the second change in the static friction coefficient does
not have an evident impact, either in the adapt-after-evo and in
the adapt-in-evo case. A significant divergence in the locomotion
stability of the system is visible just in the dynamics of the CoM
of the adapt-after-evo system in Figure 10D.

4. DISCUSSION

For the first time, taking inspiration from nature, the proposed

research uses robotics to suggest the advantages and benefits of

employing adaptive controllers in conjunction with optimization
strategies, such as evolutionary algorithms. For this purpose,

a new bio-inspired approach to control robotic locomotion is
presented. The control design is based on neurophysiological
evidences concerning a simplified model of the neural control in
the locomotion of quadruped animals. In the proposed control
architecture, the trajectory planner is a CPG-inspired system of
equations and the motion controller is composed of a PID and
a bio-inspired algorithm, whose weights are changing on-line
with the simulation time. This latter part of the architecture
models the adaptive role of the Cerebellar-inspired circuit in the
locomotion of vertebrates which encodes information about the
inverse dynamic model of the quadruped.
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FIGURE 10 | Locomotion performance and characterization of the two systems; on the left the adapt-after-evo system and, on the right, the adapt-in-evo one, with a

friction coefficient that has been changed from 1 to 0 at 50 s and from 0 to 0.5 at 100 s. (A,E) Represent the mean and the standard deviation of the position error of

the four legs joints and (B,F) instead describe the mean and the standard deviation of the contribution ratio of the different modules of the control architecture. (C,G)

Describe the periodic behavior relation between the actual joint trajectories of leg 1 and leg 2 compared to their reference values, in pink, and to the behavior of the no

perturbed system, in red (among the other pairs of legs, the relation is periodic in a comparable way). Eventually, (D,H) represent the dynamics of the CoM of the

robot, on the vertical axis to the ground, compared the same CoM dynamics when the system is not perturbed (in red).
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The main contribution of the paper is investigating the
advantages of using a learning control module during the
optimization of the locomotion patterns for a quadruped robot
rather than employ it when the optimal locomotion patterns
have already been found (as it is usually done in already existing
approaches, Urbain et al., 2018; Vandesompele et al., 2019). This
idea comes from nature since evolution has always been acting
on plastic and learning systems. The research aims to investigate
if the solutions found out by the evolution-inspired algorithm
are statistically better when a learning module is included in the
controller, during the evolution. The presented approach shows
the advantages of this optimization procedure for quadruped
robotic locomotion both in the task and in the joint space. The
distance covered by the robot is greater when the learningmodule
is involved in the genetic optimization process and, the position
error of the joints is smaller.

These results are also reflected in new experiments when
the robot dynamic characteristics are changed, and some noise
is injected in the robot encoders. The preponderance of the
adapt-in-evo solution has been generalized by running other
experiments with a different robot-environment interaction,
which allows to infer the crossing of the reality gap. Further,
the robot-ground interaction has also been dynamically changed
during the experiments, assessing the potential of the adapt-in-
evo approach in readjusting to different experimental constraints
even though learning stability has already been reached by the
cerebellar inspired module. The results show that the inclusion of
the cerebellar-inspired control in the process of optimization of
the locomotion trajectories allow a maximization of the synergy
between the CPG-inspired trajectory planner and the adaptive
cerebellar controller. The best patterns, which emerge during the
previously explained synergy, are more robust. Even when the
experimental conditions change, in the dynamics of the robot
and in its interaction with the environment, before or during

the experiments, the locomotion preserves more stability both at
joint and task level.

In conclusion, further investigations can be done by testing
the architecture on the real Fable robot since the conducted
experiments aimed at proving the suitability of employing the
same controller in real scenarios. In fact, the results show
that both control strategies, adapt-after-evo and adapt-in-evo,
are robust enough to work, without changing parameters, in
unexpected conditions such as noisy sensors or slippery terrains
(also applied in the same experiment).

DATA AVAILABILITY

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

The bio-inspired control architecture was primarily developed
by EM and ST. The use of the evolution-based approach was
mainly handled by EM, GU, AV, and JD. EM, LV, UA, and MC
worked on the implementation of the experiment. EM, AS, and
EF statistically analyzed and interpreted the data. EM, LV, ST, EF,
and CL wrote and reviewed the manuscript. All authors read and
approved the final manuscript.

FUNDING

This project/research has received funding from the
European Union’s Horizon 2020 Framework Programme
for Research and Innovation under the Specific Grant
Agreement No. 785907 (Human Brain Project SGA2)
and from the Marie Skłodowska-Curie Project No.
705100 (Biomodular).

REFERENCES

Abdi, H. (2010). The greenhouse-geisser correction. Encyclop. Res. Design 1,

544–548.

Corucci, F., Cheney, N., Lipson, H., Laschi, C., and Bongard, J. (2016). “Evolving

swimming soft-bodied creatures,” in ALIFE XV, The Fifteenth International

Conference on the Synthesis and Simulation of Living Systems, Late Breaking

Proceedings (Cambridge, MA), 6.

Dean, P., Porrill, J., Ekerot, C.-F., and Jörntell, H. (2010). The cerebellar

microcircuit as an adaptive filter: experimental and computational evidence.

Nat. Rev. Neurosci. 11:30. doi: 10.1038/nrn2756

Falotico, E., Vannucci, L., Ambrosano, A., Albanese, U., Ulbrich, S., Vasquez Tieck,

J. C., et al. (2017). Connecting artificial brains to robots in a comprehensive

simulation framework: The neurorobotics platform. Front. Neurorobotics 11:2.

doi: 10.3389/fnbot.2017.00002

Floreano, D., Dürr, P., and Mattiussi, C. (2008). Neuroevolution: from

architectures to learning. Evol. Intell. 1, 47–62. doi: 10.1007/s12065-007-0002-4

Fujiki, S., Aoi, S., Funato, T., Tomita, N., Senda, K., and Tsuchiya, K. (2015).

Adaptation mechanism of interlimb coordination in human split-belt treadmill

walking through learning of foot contact timing: a robotics study. J. R. Soc.

Interface 12:20150542. doi: 10.1098/rsif.2015.0542

Full, R., and Koditschek, D. (1999). Templates and anchors: neuromechanical

hypotheses of legged locomotion on land. J. Exp. Biol. 202, 3325–3332.

Garrido Alcazar, J. A., Luque, N. R., D’Angelo, E., and Ros, E. (2013).

Distributed cerebellar plasticity implements adaptable gain control in a

manipulation task: a closed-loop robotic simulation. Front. Neural Circuits

7:159. doi: 10.3389/fncir.2013.00159

Gay, S., Santos-Victor, J., and Ijspeert, A. (2013). “Learning robot gait stability

using neural networks as sensory feedback function for central pattern

generators,” in IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), number EPFL-CONF-187784 (Piscataway, NJ), 194–201.

doi: 10.1109/IROS.2013.6696353

Gleser, L. J. (1966). A note on the sphericity test. Ann. Math. Stat. 37, 464–467.

doi: 10.1214/aoms/1177699529

Hansen, N. (2006). “The cma evolution strategy: a comparing review,” in Towards

a New Evolutionary Computation, eds J. A. Lozano, P. Larrañaga, I. Inza, and E.

Bengoetxea (Berlin: Springer), 75–102.

Harvey, I., Paolo, E. D., Wood, R., Quinn, M., and Tuci, E. (2005). Evolutionary

robotics: a new scientific tool for studying cognition. Artif. Life 11, 79–98.

doi: 10.1162/1064546053278991

Hinkel, G., Groenda, H., Krach, S., Vannucci, L., Denninger, O., Cauli, N.,

et al. (2017). A framework for coupled simulations of robots and spiking

neuronal networks. J. Intell. Robot. Syst. 85, 71–91. doi: 10.1007/s10846-016-

0412-6

Hughes, G., andWiersma, C. (1960). The co-ordination of swimmeret movements

in the crayfish, procambarus clarkii (girard). J. Exp. Biol. 37, 657–670.

Frontiers in Neurorobotics | www.frontiersin.org 18 August 2019 | Volume 13 | Article 71

https://doi.org/10.1038/nrn2756
https://doi.org/10.3389/fnbot.2017.00002
https://doi.org/10.1007/s12065-007-0002-4
https://doi.org/10.1098/rsif.2015.0542
https://doi.org/10.3389/fncir.2013.00159
https://doi.org/10.1109/IROS.2013.6696353
https://doi.org/10.1214/aoms/1177699529
https://doi.org/10.1162/1064546053278991
https://doi.org/10.1007/s10846-016-0412-6
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Massi et al. Evolutionary and Adaptive Robotic Locomotion

Ijspeert, A. J. (2008). Central pattern generators for locomotion

control in animals and robots: a review. Neural Netw. 21, 642–653.

doi: 10.1016/j.neunet.2008.03.014

Ijspeert, A. J., Crespi, A., Ryczko, D., and Cabelguen, J.-M. (2007).

From swimming to walking with a salamander robot driven by a

spinal cord model. Science 315, 1416–1420. doi: 10.1126/science.11

38353

Ito, M. (2000). Mechanisms of motor learning in the cerebellum1. Brain Res. 886,

237–245. doi: 10.1016/S0006-8993(00)03142-5

Ito, M. (2008). Control of mental activities by internal models in the cerebellum.

Nat. Rev. Neurosci. 9:304. doi: 10.1038/nrn2332

Kawato, M., and Gomi, H. (1992). A computational model of four regions of

the cerebellum based on feedback-error learning. Biol. Cybern. 68, 95–103.

doi: 10.1007/BF00201431

Kousuke, I., Takaaki, S., and Shugen, M. (2007). “Cpg-based control of

a simulated snake-like robot adaptable to changing ground friction,” in

2007 IEEE/RSJ International Conference on Intelligent Robots and Systems

(Piscataway, NJ), 1957–1962.

Lipson, H., and Pollack, J. B. (2000). Automatic design and manufacture of robotic

lifeforms. Nature 406:974. doi: 10.1038/35023115

Nolfi, S., Floreano, D., and Floreano, D. D. (2000). Evolutionary Robotics: The

Biology, Intelligence, and Technology of Self-Organizing Machines. Cambridge,

MA: MIT Press.

Ojeda, I. B., Tolu, S., and Lund, H. H. (2017). “A scalable neuro-inspired robot

controller integrating a machine learning algorithm and a spiking cerebellar-

like network,” in Conference on Biomimetic and Biohybrid Systems (Berlin:

Springer), 375–386.

Pacheco, M., Fogh, R., Lund, H. H., and Christensen, D. J. (2014). “Fable: a

modular robot for students, makers and researchers,” in Proceedings of the

IROS Workshop on Modular and Swarm Systems: From Nature to Robotics

(Piscataway, NJ).

Potvin, P. J., and Schutz, R. W. (2000). Statistical power for the two-factor

repeated measures anova. Behav. Res. Methods Instrum. Comput. 32, 347–356.

doi: 10.3758/BF03207805

Pratihar, D. K. (2003). Evolutionary robotics’a review. Sadhana 28, 999–1009.

doi: 10.1007/BF02703810

Razali, N. M., and Wah Y. B. (2011). Power comparisons of shapiro-wilk,

kolmogorov-smirnov, lilliefors and anderson-darling tests. J. Stat. Model. Anal.

2, 21–33.

Ryu, J.-K., Chong, N. Y., You, B. J., and Christensen, H. I. (2010). Locomotion

of snake-like robots using adaptive neural oscillators. Intell. Serv. Robot. 3:1.

doi: 10.1007/s11370-009-0049-4

Starzyk, J. A. (2008). “Motivation in embodied intelligence,” in Frontiers in

Robotics, Automation and Control, ed A. Zemliak (London, UK: InTech),

83–110.

Takakusaki, K. (2013). Neurophysiology of gait: from the spinal cord to the frontal

lobe.Movem. Disord. 28, 1483–1491. doi: 10.1002/mds.25669

Tolu, S., Vanegas, M., Garrido, J. A., Luque, N. R., and Ros, E. (2013). Adaptive

and predictive control of a simulated robot arm. Int. J. Neural Syst. 23:1350010.

doi: 10.1142/S012906571350010X

Tolu, S., Vanegas, M., Luque, N. R., Garrido, J. A., and Ros, E. (2012). Bio-inspired

adaptive feedback error learning architecture for motor control. Biol. Cybern.

106, 507–522. doi: 10.1007/s00422-012-0515-5

Urbain, G., Vandesompele, A., Wyffels, F., and Dambre, J. (2018). “Calibration

method to improve transfer from simulation to quadruped robots,” in

International Conference on Simulation of Adaptive Behavior (Berlin: Springer),

102–113.

Vandesompele, A., Urbain, G., Mahmud, H., wyffels, F., and Dambre, J. (2019).

Body randomization reduces the sim-to-real gap for compliant quadruped

locomotion. Front. Neurorobotics 13:9. doi: 10.3389/fnbot.2019.00009

Vannucci, L., Ambrosano, A., Cauli, N., Albanese, U., Falotico, E., Ulbrich, S.,

et al. (2015). “A visual tracking model implemented on the icub robot as a use

case for a novel neurorobotic toolkit integrating brain and physics simulation,”

in IEEE-RAS International Conference on Humanoid Robots (Piscataway, NJ),

1179–1184. doi: 10.1109/HUMANOIDS.2015.7363512

Vannucci, L., Falotico, E., Tolu, S., Cacucciolo, V., Dario, P., Lund,

H. H., et al. (2017). A comprehensive gaze stabilization controller

based on cerebellar internal models. Bioinspir. Biomimet. 12:065001.

doi: 10.1088/1748-3190/aa8581

Vannucci, L., Tolu, S., Falotico, E., Dario, P., Lund, H. H., and Laschi,

C. (2016). “Adaptive gaze stabilization through cerebellar internal models

in a humanoid robot,” in 2016 6th IEEE International Conference on

Biomedical Robotics and Biomechatronics (BioRob) (Piscataway, NJ: IEEE),

25–30. doi: 10.1109/BIOROB.2016.7523593

Vijayakumar, S., and Schaal, S. (2000). “Locally weighted projection regression: an

o (n) algorithm for incremental real time learning in high dimensional space,”

in Proceedings of the Seventeenth International Conference onMachine Learning

(ICML 2000) (San Francisco, CA), Vol. 1, 288–293.

Wolpert, D. M., Miall, R. C., and Kawato, M. (1998). Internal models in

the cerebellum. Trends Cogn. Sci. 2, 338–347. doi: 10.1016/S1364-6613(98)0

1221-2

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Massi, Vannucci, Albanese, Capolei, Vandesompele, Urbain,

Sabatini, Dambre, Laschi, Tolu and Falotico. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 19 August 2019 | Volume 13 | Article 71

https://doi.org/10.1016/j.neunet.2008.03.014
https://doi.org/10.1126/science.1138353
https://doi.org/10.1016/S0006-8993(00)03142-5
https://doi.org/10.1038/nrn2332
https://doi.org/10.1007/BF00201431
https://doi.org/10.1038/35023115
https://doi.org/10.3758/BF03207805
https://doi.org/10.1007/BF02703810
https://doi.org/10.1007/s11370-009-0049-4
https://doi.org/10.1002/mds.25669
https://doi.org/10.1142/S012906571350010X
https://doi.org/10.1007/s00422-012-0515-5
https://doi.org/10.3389/fnbot.2019.00009
https://doi.org/10.1109/HUMANOIDS.2015.7363512
https://doi.org/10.1088/1748-3190/aa8581
https://doi.org/10.1109/BIOROB.2016.7523593
https://doi.org/10.1016/S1364-6613(98)01221-2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	Combining Evolutionary and Adaptive Control Strategies for Quadruped Robotic Locomotion
	1. Introduction
	2. Materials and Methods
	2.1. Central Pattern Generator (CPG)
	2.2. Bio-inspired Adaptive Controller
	2.3. Evolutionary Algorithm
	2.4. Experimental Design

	3. Experimental Results
	3.1. Base Comparison
	3.2. Statistical Analysis on Different Experimental Conditions
	3.3. Dynamically Changing Experimental Set-Up

	4. Discussion
	Data Availability
	Author Contributions
	Funding
	References


