
 

 

Delft University of Technology

Combining Fault Analysis Technologies for ISO26262 Functional Safety Verification

Augusto da Silva, Felipe; Bagbaba, Ahmet Cagri; Hamdioui, Said; Sauer, Christian

DOI
10.1109/ATS47505.2019.00024
Publication date
2020
Document Version
Accepted author manuscript
Published in
Proceedings - 2019 IEEE 28th Asian Test Symposium, ATS 2019

Citation (APA)
Augusto da Silva, F., Bagbaba, A. C., Hamdioui, S., & Sauer, C. (2020). Combining Fault Analysis
Technologies for ISO26262 Functional Safety Verification. In R. S. Bilof (Ed.), Proceedings - 2019 IEEE
28th Asian Test Symposium, ATS 2019 (Vol. 2019-December, pp. 129-134). [8949396] (2019 IEEE 28TH
ASIAN TEST SYMPOSIUM (ATS)). IEEE . https://doi.org/10.1109/ATS47505.2019.00024
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ATS47505.2019.00024
https://doi.org/10.1109/ATS47505.2019.00024


Combining Fault Analysis Technologies for ISO26262 Functional Safety

Verification

Felipe Augusto da Silva1,2, Ahmet Cagri Bagbaba1, Said Hamdioui2 and Christian Sauer1

1Cadence Design Systems, Feldkirchen, Germany - {dasilva, abagbaba, sauerc}@cadence.com
2Delft University of Technology, Delft, The Netherlands - {f.augustodasilva, s.hamdioui}@tudelft.nl

Abstract— The development of Integrated Circuits for the
Automotive sector imposes in complex challenges. ISO26262
Functional Safety requirements entail extensive Fault Injection
campaigns and complex analysis for the evaluation of deployed
Software Tools. This paper proposes a methodology to improve
Fault Analysis Tools Confidence Level (TCL) by detecting
errors in the classification of faults. By combining the strengths
of Automatic Test Pattern Generators (ATPG), Formal Methods
and Fault Injection Simulators we are able to automatically
generate a Test Environment that enables the validation of the
tools and provide supplementary information about the design
behavior. Our results showed fault detection rates above 99%
including information to improve ISO26262 metrics calculation.

Keywords - ISO26262; Fault Injection; Formal Methods;
Simulation; Tool Confidence Level; Functional Safety; Verifi-
cation; ATPG.

I. INTRODUCTION

Functional Safety Verification is one of the most chal-

lenging steps for Integrated Circuit (IC) compliance with

ISO26262. Particularly for safety-critical applications such

as autonomous driving, where in case of a failure, a life-

threatening situation can happen. For such applications, the

system must include Safety Mechanisms being able to detect

up to 99% of the random faults susceptive of the design.

At the IC Gate-Level representation, the number of faults

can easily reach the millions figure, requiring huge efforts to

analyze all of them. In addition, ISO26262 requires that all

possible malfunctions of tools (used during fault analysis)

have to be considered, meaning that developers have to

assess the level of confidence on the outputs of a tool.

The tool may require compliance with Tool Qualification

requirements; this even increases the complexity of func-

tional safety verification. Therefore, there is a high demand

for effective Functional Safety Verification methodologies

allowing the reduction of costs while maintaining the same

levels of safety.

The commonly used method for Functional Safety Veri-

fication is Fault Injection (FI) Simulation [1][2][3][4]. The

purpose is to show that fault effects can propagate to outputs

and that Safety Mechanisms can detect them. Propagation

of faults during simulation is key for achieving ISO26262

requirements. An injected fault that is not observed on the

outputs, must be re-simulated or proven to be untestable. In

order to provoke propagation of all faults, complex verifi-

cation environments with numerous test inputs are required,

resulting in long FI Campaigns. To address this challenge,

we can deploy different verification technologies in a single

methodology. Formal Methods can be employed to leverage

the most appropriate setups for simulation campaigns. The

ability of formal in analyzing design behavior to all test

inputs can help to identify untestable faults and to determine

test inputs for corner cases [5][6][7]. Anyhow, Formal Meth-

ods are not capable of analyzing all faults in an acceptable

time frame. Therefore, another solution is still required to

analyze a large portion of the faults. The application of

automatically generated ATPG Testbenches can decrease

the efforts on the development of simulation environments.

ATPG tools are able to create test patterns that potential-

ize fault propagation. Simulation can be performed with

the generated test vectors aiming to achieve better failure

coverage with reduced simulation times [8][9]. Nonetheless,

ATPG focuses on manufacturing test and is not optimal for

determining untestable faults or covering faults on areas out

of the scan chains reach. Even though Simulation, Formal

Methods, and ATPG have complementary strengths, to the

best of our knowledge, they were not previously combined

in a single fault analysis flow that aims at fault propagation

for compliance to ISO26262 requirements.

Our work takes advantage of three different technologies

aiming to verify the correctness of fault classification while

providing data to support traditional FI Campaigns. Initially,

ATPG is used to generate a verification environment that

provides high fault propagation rate. The outputs from ATPG

are used by the FI Simulator, to verify the functional behavior

of the design under each fault. In parallel, Formal Methods

are applied to identify faults that are untestable and determine

the behavior of faults that are not covered by ATPG. Finally,

the outputs of each tool are verified against each other

to identify malfunctions, increasing the confidence in the

tool’s outputs, as required by ISO26262 [10]. The main

contributions of our methodology are:

• Increasing Tool Confidence Level according to

ISO26262. By providing an automated flow for error

detection in Fault Analysis tools, we can avoid the

extensive ISO26262 Tool Qualification requirements.

• Identification of untestable faults. Formal Methods can

prove that faults cannot be tested, and therefore can

be ignored during safety metrics calculation, increasing

compliance with ISO26262 fault metrics.

• Initial assessment of the fault propagation behavior by

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or 
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for 

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. 



the deployment of ATPG Test Environments and Formal

results. The achieved fault detection rates, above 99%

on tested designs, can be employed to support the

ISO26262 Functional Safety Verification.

This paper is organized as follows. Section II investigates

how fault analysis is implemented by different technologies.

Section III describes the proposed methodology. Section IV

presents the validation process and explain our results. And

last, Section V presents our final conclusions.

II. FAULT ANALYSIS

This section investigates how fault analysis is implemented

by different technologies. The examination aims to identify

the strengths and weaknesses of each solution and deter-

mine how they comply with Functional Safety requirements.

ISO26262 requires that any component that implements

a safety-related functionality, reach a minimum level of

tolerance to random hardware failures. Coverage for this

type of failure is usually increased by the addition of Safety

Mechanisms to the design. Safety Mechanisms, as defined by

ISO26262, should be able to detect faults or control failures

in order to achieve or maintain a safe state.

The effectiveness of the design to cope with random

hardware failures should be quantitatively demonstrated by

the calculation of metrics defined by the standard [11]. It

is necessary to evaluate the efficiency of the Safety Mech-

anisms to handle critical faults, contributing to achieving

targeted safety metrics. Fault Injection Simulation is a widely

used technique to perform this analysis being the method

recommended by ISO26262.

A. Fault Injection Simulation

Analysis of Fault Injection by Simulation is widely used

and available in a variety of tools. These tools are able

to analyze a Register Transfer Level (RTL) or Gate-Level

(GTL) descriptions of an IC and, based on given test inputs,

simulate their behavior. The effect that a fault produces in

the design is determined by comparing the behavior of the

design with and without faults. The flow implemented by

Fault Injection Simulation Tools is described below:

1) Elaboration of RTL/GTL design description.

2) Fault List Generation: candidates for fault injection are

defined for each available fault model. The user should

define rules (e.g. all signals) to identify fault node

candidates and fault models (e.g. Stuck-at-0 (SA0)

and Stuck-at-1 (SA1)). Information is stored in a fault

database.

3) Fault List Optimization: Faults list is analyzed to

identify candidates for optimization. Based on the

elaboration results, tools can estimate the behavior

of some faults decreasing the number of faults to be

simulated. Information is updated on the fault database.

4) Good Simulation: fault-free behavior of design is sim-

ulated. The user should define observation points in the

design to identify: (1) Fault propagation to a functional

output: functional strobes; (2) Activation of the Safety

Mechanism: checker strobes. The values of the Strobes

during good simulation are stored.

5) Fault Injection Simulation: For each fault in the fault

database, the design faulty behavior is simulated, and

the observation points compared against the reference

values from the Good Simulation. The behavior of the

design under each fault is analyzed and stored.

FI Simulation determines the behavior change provoked by

a fault when the effect is observable in one of the outputs

(strobes). Faults that don’t produce changes in the strobes

are classified as Undetected. This is considered a weak

result of the simulation, as a different test may cause fault

propagation. Fault propagation is required to assure correct

classification. If there are no test stimulus that provokes the

propagation of a fault, this should be proved by analysis.

For that reason, FI Simulation demands the development of

complex Testbenches and additional untestable fault analysis.

B. Formal Methods

Identification of untestable faults requires proof that the

fault cannot be tested by ANY functional test stimulus.

Formal analysis appears as a good alternative for this purpose

since it is not limited to a specific time or state. Instead,

the scope is global, and every evaluation context and test

stimulus is considered. Consequently, formal analysis can

exhaustively prove that a fault can never produce any failure.

This class of faults can be considered untestable and don’t

require further fault simulation.

Different EDA vendors explore fault analysis capabilities

in their formal solutions. Generally speaking, these solutions

automatically generate properties, not requiring knowledge

of formal languages. In addition, they allow integration with

FI Simulators providing fault lists optimization and reducing

simulation campaigns. Tools used for fault formal analysis

usually apply two main fault analysis techniques, Standard

Analysis, and Advanced Analysis.

The Standard Analysis aims to determine the testability of

faults. It is applied as a pre-qualification flow for simulation,

to reduce the fault list by identifying untestable faults. The

testability of the faults is determined by verifying:

• if there is a physical connection between the fault

location and the observation points (strobes).

• if the signals that drive the fault node allows activation

of the fault.

• if the fault could be observable in at least one strobe of

the design.

A fault that does not pass these verifications can be

classified as untestable. In addition, the fault list may be

optimized by Fault Relation Analysis. The tool analyzes the

design to determine the relationship between fault pairs. Fault

pairs are then included in the same Collapsing Group. The

behavior of all Collapsing Group is predicted by simulation

of only one representative of the group, called the Prime

Fault.

The Advanced Analysis deploys formal techniques to

analyze propagation and activation of the faults. Activation



TABLE I

FAULT ANALYSIS TECHNOLOGIES COMPARISON

Technology Strengths Weaknesses

FI Simulation
- Comprehensive behavior analysis
- Recommended by ISO26262

- Single test input at a time
- Multiple simulations to propagate all faults
- High Testbench development efforts

Formal Methods

- Analysis of all possible test inputs
- Analysis of untestable faults
- Generates test inputs for corner cases

- Time-consuming
- Not able to determine behavior of all faults

ATPG
- Automatically generated Testbenches
- High fault propagation rate

- Focus on manufacturing tests
- No analysis of untestable
- Do not reach corner cases

Analysis indicates whether the fault can be functionally acti-

vated from any combination of inputs. Propagation Analysis

verifies if there is a combination of inputs that provoke

fault propagation. Advanced Analysis will classify the faults,

which were not previously classified by the Standard Anal-

ysis, in three groups:

• Untestable: Faults that cannot be activated or propa-

gated.

• Dangerous: The tool identified a combination of test

inputs that results in fault propagation.

• Unknown: All the others.

Formal properties to perform the Advanced Analysis are

automatically generated and verified with respect to all

possible input stimulus. The Advanced Analysis relies on

formal properties and analysis to prove the properties to be

true. The analysis of formal properties is time-consuming and

cannot find results for all faults in complex designs. For that

reason, this analysis is often applied as a last resource, on the

faults that were not classified after fault injection simulation.

The different strengths of Simulation and Formal can

complement each other. An integrated fault analysis flow

allows the deployment of the Standard Analysis before the

start of the simulation. The analysis will reduce the number

of faults to be simulated by leveraging results for untestable

faults and collapsing groups. After the simulation, Advanced

Analysis can be executed on the remaining undetected faults

to verify if there is a combination of test inputs that would

result in fault propagation.

Even with the combination of Formal and Simulation,

the development of the test environments is challenging.

Advanced Analysis from Formal tools, that can support the

identification of test stimulus for fault propagation, are time-

consuming and cannot find results for all fault list. In this

context, ATPG appears as a possible solution for generating

Testbenches and test inputs that can be used for the FI

Simulation.

C. Automatic Test Pattern Generator

Test patterns can be generated to identify if an IC contains

manufacturing induced defects. In other words, to distinguish

between the correct circuit behavior and the faulty circuit

behavior. When applying the test pattern to the inputs of

a circuit, the values observed at the outputs should be

monitored. A defect is detected if any of the outputs are

different from the expected pattern. Nowadays, ATPG is a

well-established technology being used on the development

of almost all IC. ATPG tools can generate a minimal group

of test vectors to achieve acceptable levels of manufacturing

defects detection. In addition, tools can generate reports

about the testability of each defect, allowing the generation

of metrics to indicate test quality and test application time.

Usually, an ATPG flow receives as inputs a Gate-Level

description of an IC and specification of the scan chains.

Then, it verifies if the implemented scan chains can ensure

the required levels of testability. If affirmative, it generates a

fault model and test patterns, to assure propagation of fault

effects to the design outputs. Typically, the test patterns and

expected outputs are programmed in a Test Equipment that

will be used in IC manufacturing tests. The Test Equipment

applies the test patterns in the inputs of the circuit and

monitors the outputs to verify if the values are the expected

ones. We propose a similar approach using FI Simulation.

Instead of using a Test Equipment, we apply the ATPG test

patterns on the design simulation and use the strobe function-

ality to monitor the outputs of the design. During the Good

Simulation, the Simulator stores the strobe values, defining

the expected output pattern. Afterward, the simulation of

each fault is executed using the same inputs and monitoring

the outputs. This way, we can use the propagation capabilities

of ATPG to identify behavioral changes caused by injected

faults.

The fault propagation potential of ATPG test environments

is a powerful benefit for compliance with Functional Safety.

However, ATPG focuses on manufacturing tests and the

estimated results should be demonstrated via simulation. In

addition, ATPG doesn’t consider untestable faults and faults

out of the scan chain reach. Formal Analysis can be deployed

for addressing these cases.

Table I summarizes the strengths and weakness of each

technology. Considering this examination, we propose a

methodology that highlights the strengths of Simulation,

Formal and ATPG for Functional Safety Verification.

III. PROPOSED METHODOLOGY

This section describes the application of three fault anal-

ysis technologies in an efficient methodology for ISO26262



Fig. 1. Fault Checker Execution Flow.

Functional Safety Verification. The methodology highlights

the strengths of Simulation, Formal and ATPG to generate

a comprehensive fault analysis report. An application was

developed aiming to automate the execution of the different

tools. The Fault Checker application implements a generic

control flow that is configurable with tools from different

vendors. In the end, the reports of each tool are parsed and

saved in a common format. The fault classification of each

tool is combined in a final report that allows the identification

of tool malfunctions and detailed analysis of faults behavior.

The Fault Checker application must be configured with

scripts to control the execution of each tool and with the rules

for parsing the reports. Also, the user must provide design-

specific information, as fault targets and observation points

(strobes). With all the required information, the application

can start the execution of the ATPG and Formal flows. As

these two flows are independent, they can be executed in

parallel using different CPUs. Simulator flow requires the

ATPG Testbench and test vectors to start. So, after the ATPG

flow is finished, the Fault Checker will extract the generated

Test Environment and will use it for the FI Simulation. At the

end of each flow, the reports generated by the tools are parsed

to a common format and saved. Finally, at the end of all

flows, the relevant parsed data is retrieved and compared. The

comparison is based on rules that associate the classifications

used by each tool. In case a rule is not obeyed, the Fault

Checker will include a Warning tag, informing that this fault

requires attention from the designer. Fig. 1, illustrates the

execution flow of the Fault Checker application.

Results can be analyzed in a CSV report that details the

classification of each fault by each tool. An error caused

by a malfunction in one of the tools will be indicated by a

Warning in the report. For example, if the Simulator classifies

a fault as Detected and Formal classifies the same fault as

Safe, this would indicate a malfunction in one of the tools.

A sample of the detailed report is demonstrated in Table II.

In addition to malfunction indication, the report provides

supplementary information for fault analysis. For example,

signal ”dut.u0.sig2” in Table II, is classified as Undetected

by the Simulator and Ignored by ATPG. However, the fault is

listed as Dangerous by Formal, meaning that formal analysis

identified at least one test stimulus that can propagate the

fault to a strobe. This information can be used on a new FI

Simulation to achieve detection of this fault. Another exam-

ple to highlight is ”dut.u0.sig1”, where Formal classified the

fault as Safe, while the other tools classified as Undetected

and Ignored. Results from the formal analysis can be used

to demonstrate that the fault cannot propagate to a strobe,

and therefore can be considered untestable, contributing to

achieving ISO26262 metrics. Any other discrepancy between

the faults is indicated in the report, as illustrated by signal

”dut.u0.INsT0.0”.

IV. VALIDATION

This section describes the validation process of the pro-

posed methodology. First, we describe the adopted setup,

the configuration of the tools and the tested designs. Then,

we demonstrate our results and describe the benefits and

limitations of our solution. The following validation aspects

were considered: Detection of malfunction in the tools via

detailed report; Application of fault analysis results to sup-

port Functional Safety verification of the design.

A. Validation Setup

The methodology was validated by deploying the Fault

Checker application on example designs. First, the Fault

Checker must be configured with the tools to execute each

flow. Our work has adopted Cadence R© XceliumTM Fault

TABLE II

FAULT CHECKER REPORT EXAMPLE.

Signal

Name

Fault

Type

Formal

Classification

Simulator

Classification

ATPG

Classification

Checker

Results

dut.u0.rst SA0 Dangerous Detected Tested PASS
dut.u0.sig1 SA1 Safe Undetected Ignored WARNING
dut.u0.sig2 SA0 Dangerous Undetected Ignored WARNING
dut.u0.sig3 SA1 Dangerous Detected Tested PASS
dut.u0.iNsT0.0 SA1 not listed not listed Tested WARNING



TABLE III

FAULT CHECKER RESULTS.

Design
Faults

(SA0/SA1)
Detection

Rate
PASS WARNING

Up Down Counter 162 100% 162 0
Memories 2782 99.78% 2776 6
AC97 57226 99.77% 57108 118
Conmax 153454 99.80% 153191 263

Simulator (XFS), Cadence R© JasperGold (JG) Formal Ver-

ification Platform Functional Safety Verification (FSV) and

Cadence R© Modus DFT Software Solution ATPG compo-

nent, as the representatives of each technology.

The selection of the designs contemplated different levels

of complexity and the availability of Functional Testbenches.

Complexity was determined by the number of fault targets in

each design. The ISO26262 defines that all cell ports in the

IC Gate-Level representation should be analyzed for faults.

The selected designs were synthesized using the standard

cell reference libraries provided with Cadence 45nm Generic

Process Design Kit (GPDK) [12]. The selected designs are

available on the IWLS 2005 benchmark [13]. The designs

are: (1) Up-Down Counter: 4 bits adder containing 81 cell

ports; (2) Memories: Two memories with CRC, containing

1391 cell ports; (3) AC97: An Audio Codec Controller

compatible with Wishbone bus, containing 28610 cell ports;

and (4) Conmax: An interconnect matrix IP core featuring

parameterized priority-based arbiter, with 76727 cell ports.

Designs (1) and (2) were initially deployed to verify that

the Fault Checker application was working properly. As the

designs are smaller, it was possible to manually check the

classification of each fault to ensure the correctness of the

final report. The other designs were deployed to verify the

behavior of the Fault Checker application when analyzing

larger designs. In addition, for designs (3) and (4), the

achieved results were compared with fault injection results

using Functional Testbenches only. The achieved results are

described in the following sections.

The experiments were executed on two Intel Xeon E5-

2680 CPUs with 16 Cores and 252 GB of memory each.

Being the Formal flow executed on CPU1 and ATPG fol-

lowed by Simulation Flow in CPU2. Parallel fault injection

simulations were performed to improve the overall time of

the Simulation Flow.

B. Results

Table III demonstrates the results of the methodology

for the selected designs. It details, for each design, the

total number of faults, the fault detection rate, and the

Pass/Warning indication resulting from the Fault Checker

verification.

During the Up Down Counter design verification, the Fault

Checker confirmed that all faults have equivalent classifi-

cations. As the example is relatively simple, the different

technologies can determine that all faults can propagate to

observation points (strobes).

TABLE IV

FAULT DETECTION COMPARISON.

Design
Faults

(SA0/SA1)
Functional Testbench Fault Checker

Detected Undetected Detected Undetected

AC97 57220 71,50% 28,48% 99,77% 0,21%
Conmax 153454 81,66% 18,34% 99,80% 0,20%

For the Memories design, the application detected 6 faults

with discrepant classifications. In this example, the Warn-

ings were due to classifications of Safe Faults by Formal

and Undetected by the Simulator. For these 6 faults, the

Formal analysis proves that the faults are untestable, and

can be disregarded, improving results for ISO26262 metrics

calculation.

On the AC97 design, the Fault Checker was able to detect

118 faults with distinctive classifications. From these, 49

faults were classified as Safe by Formal and Undetected

by the Simulator, and can be declared as untestable; 23

were classified as Dangerous by Formal and Undetected by

the Simulator, meaning that these faults can be Detected

in Simulation by applying the results from Formal as test

inputs; 46 faults were considered Undetected by Simulation

and ATPG and Unknown by Formal, indicating that none of

the tools was able to define the possible behavior of these

faults, and they require manual analysis; 6 faults were in cell

ports related to power that are not relevant for Functional

Safety Verification.

During the analysis of the Conmax design, the method-

ology detected 263 discrepancies between the tools. From

these, 7 faults were classified as Dangerous by Formal and

Undetected by Simulation. Meaning that results from Formal

can be applied for detecting these faults during simulation.

The other 256 faults were classified as Redundant by ATPG,

Undetected by Simulation and Unknown by Formal. As

the classifications are not conclusive, these faults should be

manually analyzed.

To analyze the capability of the methodology for fault clas-

sification, we compared the Fault Checker results with results

from fault injection when using a Functional Testbenches.

The AC97 and Conmax designs include simulation envi-

ronments for verification of their functionalities. Table IV

demonstrate results of the FI simulation of the AC97 and the

Conmax designs when deploying the Functional Testbenches

and when using the Fault Checker. Due to the characteristics

of fault propagation provided by the ATPG Testbenches, after

one execution of the Fault Injection campaign, the Fault

Checker achieves a fault Detection Rate improvement of

28,2% for the AC97 and 18,2% for the Conmax.

The Undetected classification is inconclusive for fault

analysis. Undetected faults must be proven Untestable to

collaborate to ISO26262 metrics and are more likely to mask

a malfunction in a tool. For these reasons, we want to achieve

as many detected faults as possible. If we have applied

Functional Testbenches to achieve the same level of fault

detection from the Fault Checker, we would need to repeat



the Fault Injection Campaign with new test inputs, until all

faults get propagated to outputs, demanding the development

of new Test Environments and longer FI Campaigns.

C. Discussion

The results demonstrated above corroborate with the se-

lected evaluation criteria. First, the deployment of multiple

fault analysis technologies enables the detection of erroneous

fault classifications. The proposed methodology allows a

high degree of confidence in tool error detection, resulting

in a Tool Confidence Level (TCL) of one. A methodol-

ogy with TCL1 doesn’t require Tool Qualification, avoiding

big efforts on documentation and analysis for compliance

with ISO26262 [10]. Second, identification of Safe faults

collaborates with ISO26262 compliance. By proving that a

fault is untestable, we are able to disregard it, decreasing

the total number of faults to be simulated and improving

ISO26262 metrics [11]. Third, the proposed methodology

achieved substantial fault detection rates. The use of ATPG

test vectors during simulation and identification of Danger-

ous faults by Formal, provide extra information about the

design behavior. In summary, our results can be applied to

support the following aspects of ISO26262 Functional Safety

Verification:

• Avoid efforts with Tool Qualification by automating tool

error detection.

• Identification of Untestable Faults allows improvement

of ISO26262 metrics and reduction of the number of

faults to be simulated.

• Fault supplementary data can be used to support further

fault injection campaigns.

Even though we have achieved high fault detection rates,

we need to consider that the examples used were of average

complexity. One of the next steps of our work is to apply our

methodology to more complex designs. We need to explore

how the fault detection provided by ATPG in complex

designs can leverage the Safe and Dangerous classifications

from Formal for the achievement of ISO26262 requirements.

Another aspect to acknowledge is the possibility of

changes in the fault propagation patterns when ATPG scan

chains are disabled. The application of our technique in more

complex designs, for instance, an Automotive CPU, should

consider this effect and employ formal results to assess

differences in the classification of the faults.

V. CONCLUSIONS

Due to the harsh requirements for random hardware

failures tolerance, Functional Safety verification is a chal-

lenging step for ISO26262 compliance. Fault analysis, as

part of this process, becomes a extensive procedure, that

is usually repeated numerous times until the metrics for

fault detection are achieved. Furthermore, ISO26262 requires

specific criteria to determine the level of confidence in the

adopted software tool, increasing the efforts even further.

We propose a methodology that deploys ATPG and Formal

to support Simulation results and to decrease the overall

efforts of ISO26262 compliance. Our methodology enables

the use of test environments created with ATPG tools for the

simulation of faults, and the use of Formal for identification

of untestable faults. Formal results allow the optimization

of the Fault List, reducing the number of faults to be

simulated, and the generation of test vectors for the detection

of corner cases. In addition, the results of the tools are

compared to identify potential malfunctions. The inclusion of

redundancy as a method to detect malfunctions in tools is a

suggested method for achieving ISO26262 Tool Confidence

[10]. Our results have shown high fault detection rates,

achieving more than 99% of detected faults. In addition,

detailed fault information provided contributes to achieving

ISO26262 metrics.

ACKNOWLEDGMENT

This research was supported by project RESCUE funded

from the European Unions Horizon 2020 research and inno-

vation programme under the Marie Sklodowaska-Curie grant

agreement No 722325.

REFERENCES

[1] A. Nardi and A. Armato, “Functional safety methodologies for auto-
motive applications,” in 2017 IEEE/ACM International Conference on

Computer-Aided Design (ICCAD). IEEE, nov 2017.
[2] S. Pateras and T.-P. Tai, “Automotive semiconductor test,” in 2017

International Symposium on VLSI Design, Automation and Test (VLSI-

DAT). IEEE, apr 2017.
[3] D. Alexandrescu, A. Evans, M. Glorieux, and I. Nofal, “EDA support

for functional safety — How static and dynamic failure analysis can
improve productivity in the assessment of functional safety,” in 2017

IEEE 23rd International Symposium on On-Line Testing and Robust

System Design (IOLTS). IEEE, jul 2017.
[4] Y.-C. Chang, L.-R. Huang, H.-C. Liu, C.-J. Yang, and C.-T. Chiu, “As-

sessing automotive functional safety microprocessor with ISO 26262
hardware requirements,” in Technical Papers of 2014 International

Symposium on VLSI Design, Automation and Test. IEEE, 2014.
[5] K. Devarajegowda and J. Vliegen, “Deploying formal and simulation

in mutual-exclusive manner using jaspergolds proofcore technology,”
in Cadence User Conference CDNLive EMEA, 2017.

[6] S. Marchese and J. Grosse, “Formal fault propagation analysis that
scales to modern automotive SoCs,” in 2017 Design and Verification

Conference and Exhibition DVCON Europe, 2017.
[7] A. Traskov, T. Ehrenberg, and S. Loitz, “Fault proof: Using formal

techniques for safety verification and fault analysis,” in 2016 Design

and Verification Conference and Exhibition DVCON Europe. DV-
CON, 2016, pp. 27–32.

[8] S. Praveen, S. Yellampalli, and A. Kothari, “Optimization of test time
and fault grading of functional test vectors using fault simulation flow,”
in 2014 International Conference on Electronics, Communication and

Computational Engineering (ICECCE). IEEE, nov 2014.
[9] S. Arekapudi, F. Xin, J. Peng, and I. G. Harris, “ATPG for timing-

induced functional errors on trigger events in hardware-software
systems,” in Proceedings The Seventh IEEE European Test Workshop.
IEEE Comput. Soc, 2002.

[10] ISO, ISO 26262 - Road Veichles - Functional Safety - Part 8:

Supporting processes, International Standardization Organization Std.,
Nov. 2011.

[11] ISO, ISO 26262 - Road Veichles - Functional Safety - Part 5: Prod-

uct development at the hardware level, International Standardization
Organization Std., Nov. 2011.

[12] GPDK045 Reference Manual, Revision 5.0 ed., Cadence Design
Systems , Inc., 2016.

[13] C. R. Berkeley, “International workshop on logic and synthesis (IWLS)
2005 benchmarks,” Tech. Rep., 2005.


