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Abstract—Convolution operation is the most important and time 

consuming step in a convolution neural network model. In this 

work, we analyze the computing complexity of direct convolution 

and fast-Fourier-transform-based (FFT-based) convolution. We 

creatively propose CS-unit, which is equivalent to a combination 

of a convolutional layer and a pooling layer but more effective. 

Theoretical computing complexity of   and some other similar 

operation is demonstrated, revealing an advantage on 

computation of CS-unit. Also, practical experiments are also 

performed and the result shows that CS-unit holds a real 

superiority on run time. 

Keywords-computing complexity; FFT-based convolution; CS-
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I. INTRODUCTION  

Convolution neural networks (CNNs)[11] are widely used, 
for their considerable performance in visual 
applications[6][5][9][15]. However, while delivering the 
impressive accuracy gain in computer vision and machine 
learning problems, the application of CNN is largely limited by 
high storage consumption and computational complexity, 
especially on embedded facilities. 

There is some recent work aiming at reducing the 
complexity of CNN models. Denton et al.[4] exploited the 
redundancy of CNN models with linear compression 
techniques, resulting in significant speedups for the evaluation 
of trained large scale networks, with minimal compromise to 
performance. They reported experiments on Imagenet models[9] 
and showed empirical speedups on convolutional layers by a 

factor of 2 3   and a reduction of parameters in fully 

connected layers by a factor of 5 10  . Jaderberg et al.[8] 

illustrated a group of tensor decomposition schemes, with the 

speedup going up to 4.5 . Given a layer, Lebedev et al.[10] 

computed a low-rank CP-decomposition on 4-D convolution 
kernel tensors into a sum of rank-one tensors. Then the original 
convolutional layer would be replaced with a sequence of four 
convolutional layers with small kernels. Their approach 

obtained a 8.5  CPU speedup of whole network for the 36-

class character classification CNN. Based on Jaderberg et al.[8], 
Tai et al.[16] further developed the tensor decomposition idea, 
proposing a new method for training low-rank constrained 
CNNs from scratch and a new algorithm for computing the 

low-rank tensor decomposition. They achieve a considerable 

speedup (1.5 ) on NIN[12] model.  

Contributions above have a similar idea, that is utilizing 
decomposed models with less parameters to approximate 
original convolutional kernels. Except for decomposition 
schemes, Niecolas et al.[17] used FFT implementation of 
convolution on the Torch7[3] frame work, resulting a 
considerable speeding up. Micheal et al.[13] presented the 
back-propagation of FFT based convolution, reducing the 
computation complexity thus making CNN training much 
faster. 

Pooling is a layer in a CNN model for reducing dimension 
of features, so as to make parameters capacity and computation 
not too large. A number of pooling schemes are proposed, such 
as max pooling[2], average pooling[11], fraction max 
pooling[7],etc. Rippel et al.[14] proposed Spectral-Pooling, 
which performed dimensionality reduction by truncating the 
representation in the frequency domain. They showed it 
preserved significant more information for the same number as 
other pooling schemes. The output map of Spectral-Pooling 
can also specify to be any arbitrary dimension. It achieves a 
competitive classification rate on cifar-10 and cifar-100. 

In this work, we give some details about the FFT-method 
based convolution operation together with computing 
complexity analysis conducted by comparing with the direct 
convolution. Also, Spectral-Pooling will be further exploited. 
Unlike existed scheme that conducting Spectral-Pooling after 
the FFT based convolution, we combine FFT based 
convolution and Spectral-Pooling together and propose a CS-
unit, which reduces a FFT and a IFFT operation. Along with 
detailed illustration, comparison of computational complexity 
is also conducted among different kinds of schemes to 
highlight the efficiency of our CS-unit. 

In order to support the analytical deduction, practical 
experiments are also performed through comparing the actual 
run time of different schemes. We report the running time of 
FFT-method convolution and direct convolution in a single 
layer to illustrate that FFT-method convolution indeed has a 
advantage on computing complexity in practice. Also, running 
time of some schemes of convolution operation and pooling 
operation is reported. The results all reveal that CS-unit has the 
least running time among the several schemes. 
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II. THEORY 

A. Convolution Theorem 

Convolution operation is the most important and time-
consuming step in a CNN model. As a common technique in 
signal processing, Fourier transformation on the result of 
convolution operation can be converted to element-wise 
multiplication of Fourier transformation. More clearly, we'll 
illustrate this procedure according to convolution theorem.  

For convenience, here we only consider the 1-D operation, 
since 2-D (matrix) operation has a similar formation and is easy 
to derive. 

Given with two 1D vectors: v = (
0v ,

1v , ,
1Nv  ), w = 

(
0w ,

1w , ,
1nw  ), we denote the convolution operation 

between v  and w  by: 
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Here we define 
i N iw w   where 0, , 1i N  , since 

circular convolution is adopted here. 

Then we represent the Fourier transformation on the 
convolution output c  (the formula below is generic thus can be 

applied to any other 1D vectors, e.g., v  and w .) using: 
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where cos sini
e i
    . 

Based on the notation above, the convolution theorem can 
be interpreted as follows. 

THEOREM 1 (CONVOLUTION THEOREM) 

( ) ( ) ( )c v w    

where    denote the element-wise multiplication. 

The 2-D form of the convolution theorem is the same as the 
theorem above expect for the different dimension of the 
variables. Therefore, according to the theorem, the convolution 

result of two matrices, X  and W , can be calculated in 

another way: 


1( ( ) ( ))X W X W      

B. Computing Complexity of FFT 

Former researches had explained a little about the 
computing complexity of two convolution schemes (direct and 

FFT-based). In the following discussion, we explain this idea in 
detail. 

For a single image of size n  n  with a kernel of size 

k k , direct convolution holds a complexity of 
2 2

n k , since 

the kernel flips for
2

n  times and there are 
2

k  operations for  

 

FIGURE I.  ILLUSTRATION OF THE COMPUTATION OF DIRECT 

CONVOLUTION (THE BLUE LINE) AND FFT-BASED 

CONVOLUTION (THE RED LINE), WHERE KERNEL SIZE 

IS 7 7  

each time (Here, we consider the output size is the same as the 
input size).  According to (3), there is 4( )n  complexity for 

DFT-based convolution 

In practical, we can decrease the DFT's computing 

complexity from 4( )n  to 2 2( log )n n , by using a new 

implementation called fast Fourier transform (FFT). A number 
of FFT implementations have been proposed and there are also 
many languages (like MATLAB, Numpy in Python etc.) 
having packages to implement it. 

As for FFT-based convolution, the whole computing 
complexity is composed by two aspects. On one hand, each 

FFT operation has a complexity of 2 2( log )n n  while there 

are three times for doing that. The first one is FFT operation on 
the image, the second one is that on the kernel and the third one 
is that on the result of multiplication. On the other hand, the 

multiplication operation has a complexity of 
24n . Therefore 

the whole computing complexity of FFT is 2 26 log 4Cn n n , 

where C denotes a constant number. A comparison of 

complexity between the two schemes is demonstrated in Figure 
I. 

According to the analysis above, we see that computing 

complexity of direct convolution depends on n  and k , while 

that of FFT-based convolution only depends on n . Therefore, 

when given an image, the bigger k  is, the more computing 

complexity FFT-based convolution has. This is meaningful 
since a big kernel can observe more information in a model. 
Also, a practical experiment is done in section IV 
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III. FAST SPECTRAL POOLING 

Spectral-Pooling proposed by Rippel et al.[14] makes CNN 
models get more powerful ability on classification tasks. 
However, when using this pooling scheme with direct 
convolution, a large amount of computing consumption is 
unavoidable. Considering the input of size n n  and kernel of 

size k k  as before, according to the analysis in section II.B, 

direct convolution holds a complexity of 2 2n k . Based on  

Algorithm I: This is a description of CS-unit. 

 

Rippel et al.[14], the complexity of computation of the 

Spectral-Pooling operation is 2 2(2 log ) (2 log )n n m m  , 

where m  denotes the output size after pooling layer. Therefore, 

Spectral-Pooling with direct convolution holds a complexity of 
2 2 2 2(2 log ) (2 log )n k n n m m   , which can also be 

represented as 2 2 2

12 logn k C n n  + 2

22 logC m m , where 
1 2,C C  

are constant numbers. 

Rippel et al.[14] mentioned a little that Spectral-Pooling 
can be used in convolution neural networks that employ FFTs 
for computation. However we did not find much detailed 
information. According to the analysis above, the complexity 
of the scheme that adopts Spectral-Pooling after FFT-based 

convolution is 2

16 logC n n + 24n + 2

12 logC n n  + 2

22 logC m m . 

In this work, we propose a algorithm to combine a 
convolution operation and a pooling operation as a whole unit, 
making further reduction in computing complexity. We name 
the unit as CS-unit. 

Now some details of CS-unit is following and you can see 
the complete algorithm in Algorithm I. 

First, we do the FFT on both image and kernel, and then 
element-wise multiplication will be executed. After that, some 
steps for Spectral-Pooling are executed instead of IFFT. At last 
we do the IFFT on the output of the Spectral-Pooling, and 
these steps are corresponding to the convolution layer with 
pooling layer. 

The detailed steps are illustrated in Algorithm I. The 
CropAndAdjust is corresponding to CropSpectrum and 
TreatCornerCase referred in the contribution of Rippel et al 
[14]. These operations are just for cropping dimensions of 
output and making it meet the conjugate symmetry constrains. 

Based on the Algorithm 1, complexity of CS-unit can be easily 

figured out, that is 2

14 logC n n  + 24n  + 2

22 logC m m . We 

compare the complexity of a group of schemes in TABLE I.  

 

 

TABLE I.   

Schemes Complexity of computation 

Direct conv + SpecPool 
2 2 2 2

1 22 log 2 logn k C n n C m m 

FFT+SpecPool 
2 2 2

1 28 log 4 2 logC n n n C m m 

CS-unit 
2 2 2

1 24 log 4 2 logC n n n C m m 

IV. EXPERIMENT 

A. Direct-Conv and FFT-Conv 

We report the running time of direct method convolution 

and FFT-based convolution, and then we illustrate the timing 

consumption graph to give a clear vision. We do this 

experiment on the Tensorflow[1], which is famous for a 

powerful deep-learning framework of Google. 

The result illustrated in the Figure II is corresponding to 

the analysis in section II.B that the computation requirement 

will increase when kernel size becomes large. 

 And according to the complexity analysis of FFT-based 

convolution in section II.B, since the input size is fixed, the 

running time of FFT-based convolution remains stable. 

B. FFT Convolution with Spectral-Pooling and CS-unit 

In this part, we demonstrate the running time of three 

different convolution and pooling schemes (direct convolution 

with max-pooling, FFT convolution with Spectral-Pooling and 

CS-unit). The result in the Figure III shows that the running 

time increases with input size becoming large. It reveals that 

CS-unit is the most efficient operation among the three 

schemes. Here, input channel is 3 and output channel is 10 

with pooling size is 64 64 . 

 
FIGURE II.  EXPERIMENT RESULT OF THE RUNNING TIME OF 

DIRECT CONVOLUTION SCHEME AND THE FFT METHOD 

BASED CONVOLUTION SCHEME, WHERE INPUT SIZE IS 

512 512 3, OUTPUT CHANNEL = 32. WE CAN 

OBVIOUSLY SEE THAT TIME USAGE IS GOING UP WITH 

THE INCREASE OF THE KERNEL SIZE, WHILE THAT OF 

THE FFT METHOD BASED CONVOLUTION 

SUBSTANTIALLY REMAINS STABLE. 
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FIGURE III.  RUNNING TIME OF THREE DIFFERENT SCHEMES OF 

CONVOLUTION OPERATION AND POOLING OPERATION IN 

A SINGLE LAYER. HERE, THE INPUT CHANNEL IS 3. 

OUTPUT CHANNEL IS 10 WITH POOLING SIZE IS 64  64. 

OBVIOUSLY CS-UNIT HAS THE LEAST RUNNING TIME. 

V. DISCUSSION 

In this work, we take convolution neural network from 

spatial domain to frequency domain by using fast Fourier 

Transform based convolution and Spectral-Pooling. The 

reason for doing this work has two aspects. Firstly, FFT-based 

convolution has a great advantage on complexity of 

computation thus it can achieve a significant speedup. 

Secondly, as a pooling operation on frequency domain, 

Spectral-Pooling has an advantage in accuracy on 

classification task. We combine the two methods, making it 

equivalent to two operation (FFT-based and Spectral-Pooling) 

and getting a considerable speedup. 

There are also some limitations in our work. For example, 

CS-unit is only available on a pre-trained CNN model. 

However, this problem can be solved later, since back-

propagation algorithm is not difficult to implement. We will 

do this in follow-up work. In the future work, a main point is 

to implement the back-propagation algorithm of CS-unit and 

apply it on a large scale task. What is more, by using fast 

Fourier transform based method, great speedup is achieved. 

However, a large amount of storage is consumed since kernel 

must be padded to the same size as input to implement 

element-wise multiplication. Therefore, FFT method is a way 

that takes space for time. 
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