
Combining FFT and Spectral-Pooling for Efficient

Convolution Neural Network Model

Zelong Wang1,*, Qiang Lan1,2, Dafei Huang1,2 and Mei Wen1,2
1Department of Compute, National University of Technology Defense, Changsha 410000, China

2National Key Laboratory of Parallel and Distributed Processing, National University of Defense Technology, Changsha 410000,

China
*Corresponding author

Abstract—Convolution operation is the most important and time

consuming step in a convolution neural network model. In this

work, we analyze the computing complexity of direct convolution

and fast-Fourier-transform-based (FFT-based) convolution. We

creatively propose CS-unit, which is equivalent to a combination

of a convolutional layer and a pooling layer but more effective.

Theoretical computing complexity of and some other similar

operation is demonstrated, revealing an advantage on

computation of CS-unit. Also, practical experiments are also

performed and the result shows that CS-unit holds a real

superiority on run time.

Keywords-computing complexity; FFT-based convolution; CS-

unit

I. INTRODUCTION

Convolution neural networks (CNNs)[11] are widely used,
for their considerable performance in visual
applications[6][5][9][15]. However, while delivering the
impressive accuracy gain in computer vision and machine
learning problems, the application of CNN is largely limited by
high storage consumption and computational complexity,
especially on embedded facilities.

There is some recent work aiming at reducing the
complexity of CNN models. Denton et al.[4] exploited the
redundancy of CNN models with linear compression
techniques, resulting in significant speedups for the evaluation
of trained large scale networks, with minimal compromise to
performance. They reported experiments on Imagenet models[9]
and showed empirical speedups on convolutional layers by a

factor of 2 3 and a reduction of parameters in fully

connected layers by a factor of 5 10 . Jaderberg et al.[8]

illustrated a group of tensor decomposition schemes, with the

speedup going up to 4.5 . Given a layer, Lebedev et al.[10]

computed a low-rank CP-decomposition on 4-D convolution
kernel tensors into a sum of rank-one tensors. Then the original
convolutional layer would be replaced with a sequence of four
convolutional layers with small kernels. Their approach

obtained a 8.5 CPU speedup of whole network for the 36-

class character classification CNN. Based on Jaderberg et al.[8],
Tai et al.[16] further developed the tensor decomposition idea,
proposing a new method for training low-rank constrained
CNNs from scratch and a new algorithm for computing the

low-rank tensor decomposition. They achieve a considerable

speedup (1.5) on NIN[12] model.

Contributions above have a similar idea, that is utilizing
decomposed models with less parameters to approximate
original convolutional kernels. Except for decomposition
schemes, Niecolas et al.[17] used FFT implementation of
convolution on the Torch7[3] frame work, resulting a
considerable speeding up. Micheal et al.[13] presented the
back-propagation of FFT based convolution, reducing the
computation complexity thus making CNN training much
faster.

Pooling is a layer in a CNN model for reducing dimension
of features, so as to make parameters capacity and computation
not too large. A number of pooling schemes are proposed, such
as max pooling[2], average pooling[11], fraction max
pooling[7],etc. Rippel et al.[14] proposed Spectral-Pooling,
which performed dimensionality reduction by truncating the
representation in the frequency domain. They showed it
preserved significant more information for the same number as
other pooling schemes. The output map of Spectral-Pooling
can also specify to be any arbitrary dimension. It achieves a
competitive classification rate on cifar-10 and cifar-100.

In this work, we give some details about the FFT-method
based convolution operation together with computing
complexity analysis conducted by comparing with the direct
convolution. Also, Spectral-Pooling will be further exploited.
Unlike existed scheme that conducting Spectral-Pooling after
the FFT based convolution, we combine FFT based
convolution and Spectral-Pooling together and propose a CS-
unit, which reduces a FFT and a IFFT operation. Along with
detailed illustration, comparison of computational complexity
is also conducted among different kinds of schemes to
highlight the efficiency of our CS-unit.

In order to support the analytical deduction, practical
experiments are also performed through comparing the actual
run time of different schemes. We report the running time of
FFT-method convolution and direct convolution in a single
layer to illustrate that FFT-method convolution indeed has a
advantage on computing complexity in practice. Also, running
time of some schemes of convolution operation and pooling
operation is reported. The results all reveal that CS-unit has the
least running time among the several schemes.

2nd International Conference on Artificial Intelligence and Industrial Engineering (AIIE2016)

Copyright © 2016, the Authors. Published by Atlantis Press.

This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Intelligent Systems Research, volume 133

203

II. THEORY

A. Convolution Theorem

Convolution operation is the most important and time-
consuming step in a CNN model. As a common technique in
signal processing, Fourier transformation on the result of
convolution operation can be converted to element-wise
multiplication of Fourier transformation. More clearly, we'll
illustrate this procedure according to convolution theorem.

For convenience, here we only consider the 1-D operation,
since 2-D (matrix) operation has a similar formation and is easy
to derive.

Given with two 1D vectors: v = (
0v ,

1v , ,
1Nv), w =

(
0w ,

1w , ,
1nw), we denote the convolution operation

between v and w by:

1

0

, 0, , 1
N

n k n k

k

c v w v w n N

Here we define
i N iw w where 0, , 1i N , since

circular convolution is adopted here.

Then we represent the Fourier transformation on the
convolution output c (the formula below is generic thus can be

applied to any other 1D vectors, e.g., v and w .) using:

21

0

() , 0, , 1
nN i u

N
u n

n

c c e u N

where cos sini
e i
 .

Based on the notation above, the convolution theorem can
be interpreted as follows.

THEOREM 1 (CONVOLUTION THEOREM)

() () ()c v w

where denote the element-wise multiplication.

The 2-D form of the convolution theorem is the same as the
theorem above expect for the different dimension of the
variables. Therefore, according to the theorem, the convolution

result of two matrices, X and W , can be calculated in

another way:

1(() ())X W X W

B. Computing Complexity of FFT

Former researches had explained a little about the
computing complexity of two convolution schemes (direct and

FFT-based). In the following discussion, we explain this idea in
detail.

For a single image of size n n with a kernel of size

k k , direct convolution holds a complexity of
2 2

n k , since

the kernel flips for
2

n times and there are
2

k operations for

FIGURE I. ILLUSTRATION OF THE COMPUTATION OF DIRECT

CONVOLUTION (THE BLUE LINE) AND FFT-BASED

CONVOLUTION (THE RED LINE), WHERE KERNEL SIZE

IS 7 7

each time (Here, we consider the output size is the same as the
input size). According to (3), there is 4()n complexity for

DFT-based convolution

In practical, we can decrease the DFT's computing

complexity from 4()n to 2 2(log)n n , by using a new

implementation called fast Fourier transform (FFT). A number
of FFT implementations have been proposed and there are also
many languages (like MATLAB, Numpy in Python etc.)
having packages to implement it.

As for FFT-based convolution, the whole computing
complexity is composed by two aspects. On one hand, each

FFT operation has a complexity of 2 2(log)n n while there

are three times for doing that. The first one is FFT operation on
the image, the second one is that on the kernel and the third one
is that on the result of multiplication. On the other hand, the

multiplication operation has a complexity of
24n . Therefore

the whole computing complexity of FFT is 2 26 log 4Cn n n ,

where C denotes a constant number. A comparison of

complexity between the two schemes is demonstrated in Figure
I.

According to the analysis above, we see that computing

complexity of direct convolution depends on n and k , while

that of FFT-based convolution only depends on n . Therefore,

when given an image, the bigger k is, the more computing

complexity FFT-based convolution has. This is meaningful
since a big kernel can observe more information in a model.
Also, a practical experiment is done in section IV

Advances in Intelligent Systems Research, volume 133

204

III. FAST SPECTRAL POOLING

Spectral-Pooling proposed by Rippel et al.[14] makes CNN
models get more powerful ability on classification tasks.
However, when using this pooling scheme with direct
convolution, a large amount of computing consumption is
unavoidable. Considering the input of size n n and kernel of

size k k as before, according to the analysis in section II.B,

direct convolution holds a complexity of 2 2n k . Based on

Algorithm I: This is a description of CS-unit.

Rippel et al.[14], the complexity of computation of the

Spectral-Pooling operation is 2 2(2 log) (2 log)n n m m ,

where m denotes the output size after pooling layer. Therefore,

Spectral-Pooling with direct convolution holds a complexity of
2 2 2 2(2 log) (2 log)n k n n m m , which can also be

represented as 2 2 2

12 logn k C n n + 2

22 logC m m , where
1 2,C C

are constant numbers.

Rippel et al.[14] mentioned a little that Spectral-Pooling
can be used in convolution neural networks that employ FFTs
for computation. However we did not find much detailed
information. According to the analysis above, the complexity
of the scheme that adopts Spectral-Pooling after FFT-based

convolution is 2

16 logC n n + 24n + 2

12 logC n n + 2

22 logC m m .

In this work, we propose a algorithm to combine a
convolution operation and a pooling operation as a whole unit,
making further reduction in computing complexity. We name
the unit as CS-unit.

Now some details of CS-unit is following and you can see
the complete algorithm in Algorithm I.

First, we do the FFT on both image and kernel, and then
element-wise multiplication will be executed. After that, some
steps for Spectral-Pooling are executed instead of IFFT. At last
we do the IFFT on the output of the Spectral-Pooling, and
these steps are corresponding to the convolution layer with
pooling layer.

The detailed steps are illustrated in Algorithm I. The
CropAndAdjust is corresponding to CropSpectrum and
TreatCornerCase referred in the contribution of Rippel et al
[14]. These operations are just for cropping dimensions of
output and making it meet the conjugate symmetry constrains.

Based on the Algorithm 1, complexity of CS-unit can be easily

figured out, that is 2

14 logC n n + 24n + 2

22 logC m m . We

compare the complexity of a group of schemes in TABLE I.

TABLE I.

Schemes Complexity of computation

Direct conv + SpecPool
2 2 2 2

1 22 log 2 logn k C n n C m m

FFT+SpecPool
2 2 2

1 28 log 4 2 logC n n n C m m

CS-unit
2 2 2

1 24 log 4 2 logC n n n C m m

IV. EXPERIMENT

A. Direct-Conv and FFT-Conv

We report the running time of direct method convolution

and FFT-based convolution, and then we illustrate the timing

consumption graph to give a clear vision. We do this

experiment on the Tensorflow[1], which is famous for a

powerful deep-learning framework of Google.

The result illustrated in the Figure II is corresponding to

the analysis in section II.B that the computation requirement

will increase when kernel size becomes large.

 And according to the complexity analysis of FFT-based

convolution in section II.B, since the input size is fixed, the

running time of FFT-based convolution remains stable.

B. FFT Convolution with Spectral-Pooling and CS-unit

In this part, we demonstrate the running time of three

different convolution and pooling schemes (direct convolution

with max-pooling, FFT convolution with Spectral-Pooling and

CS-unit). The result in the Figure III shows that the running

time increases with input size becoming large. It reveals that

CS-unit is the most efficient operation among the three

schemes. Here, input channel is 3 and output channel is 10

with pooling size is 64 64 .

FIGURE II. EXPERIMENT RESULT OF THE RUNNING TIME OF

DIRECT CONVOLUTION SCHEME AND THE FFT METHOD

BASED CONVOLUTION SCHEME, WHERE INPUT SIZE IS

512 512 3, OUTPUT CHANNEL = 32. WE CAN

OBVIOUSLY SEE THAT TIME USAGE IS GOING UP WITH

THE INCREASE OF THE KERNEL SIZE, WHILE THAT OF

THE FFT METHOD BASED CONVOLUTION

SUBSTANTIALLY REMAINS STABLE.

Advances in Intelligent Systems Research, volume 133

205

FIGURE III. RUNNING TIME OF THREE DIFFERENT SCHEMES OF

CONVOLUTION OPERATION AND POOLING OPERATION IN

A SINGLE LAYER. HERE, THE INPUT CHANNEL IS 3.

OUTPUT CHANNEL IS 10 WITH POOLING SIZE IS 64 64.

OBVIOUSLY CS-UNIT HAS THE LEAST RUNNING TIME.

V. DISCUSSION

In this work, we take convolution neural network from

spatial domain to frequency domain by using fast Fourier

Transform based convolution and Spectral-Pooling. The

reason for doing this work has two aspects. Firstly, FFT-based

convolution has a great advantage on complexity of

computation thus it can achieve a significant speedup.

Secondly, as a pooling operation on frequency domain,

Spectral-Pooling has an advantage in accuracy on

classification task. We combine the two methods, making it

equivalent to two operation (FFT-based and Spectral-Pooling)

and getting a considerable speedup.

There are also some limitations in our work. For example,

CS-unit is only available on a pre-trained CNN model.

However, this problem can be solved later, since back-

propagation algorithm is not difficult to implement. We will

do this in follow-up work. In the future work, a main point is

to implement the back-propagation algorithm of CS-unit and

apply it on a large scale task. What is more, by using fast

Fourier transform based method, great speedup is achieved.

However, a large amount of storage is consumed since kernel

must be padded to the same size as input to implement

element-wise multiplication. Therefore, FFT method is a way

that takes space for time.

ACKNOWLEDGMENT

The authors would like to thank Dr. Lan for his useful
discussion and some creative ideas. Dafei Huang is a genius
doctor in Nation University of Defense Technology. He gave
many suggestions when writing this paper, thanks to him. Also,
we would give many thanks to Mei Wen, who is our professor.
She pointed out many details that we can make better.

The authors gratefully acknowledge supports from National
Nature Science Foundation of China under NSFC No.
61502509, 61402504 and 61272145; National High

Technology Research and Development Program of China (863
Program) under No. 2012AA012706.

REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, et al. Tensorflow: Large-scale
machine learning on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

[2] Y.-l. Boureau, Y. L. Cun, et al. Sparse feature learning for deep belief
networks. In Advances in neural information processing systems, pages
1185–1192, 2008.

[3] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A matlab-like
environment for machine learning. In BigLearn, NIPS Workshop,
number EPFL-CONF-192376, 2011.

[4] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus.
Exploiting linear structure within convolutional networks for efficient
evaluation. In Advances in Neural Information Processing Systems,
pages 1269–1277, 2014.

[5] R. Girshick. Fast r-cnn. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1440–1448, 2015.

[6] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 580–587, 2014.

[7] B. Graham. Fractional max-pooling. arXiv preprint arXiv:1412.6071,
2014.

[8] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up convolutional
neural networks with low rank expansions. arXiv preprint
arXiv:1405.3866, 2014.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105, 2012.

[10] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempitsky.
Speeding-up convolutional neural networks using fine-tuned cp-
decomposition. arXiv preprint arXiv:1412.6553, 2014.

[11] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[12] M. Lin, Q. Chen, and S. Yan. Network in network. arXiv preprint
arXiv:1312.4400, 2013.

[13] M. Mathieu, M. Henaff, and Y. LeCun. Fast training of convolutional
networks through ffts. arXiv preprint arXiv:1312.5851, 2013.

[14] O. Rippel, J. Snoek, and R. P. Adams. Spectral representations for
convolutional neural networks. In Advances in Neural Information
Processing Systems, pages 2449–2457, 2015.

[15] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[16] C. Tai, T. Xiao, X. Wang, et al. Convolutional neural networks with
low-rank regularization. arXiv preprint arXiv:1511.06067, 2015.

[17] N. Vasilache, J. Johnson, M. Mathieu, S. Chintala, S. Piantino, and Y.
LeCun. Fast convolutional nets with fbfft: A gpu performance evaluation.
arXiv preprint arXiv:1412.7580, 2014.

Advances in Intelligent Systems Research, volume 133

206

