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Abstract

In this work we develop an approach for anomaly detec-

tion for large scale networks such as that of an enterprize

or an ISP. The traffic patterns we focus on for analysis are

that of a network-wide view of the traffic state, called the

traffic matrix. In the first step a Kalman filter is used to fil-

ter out the “normal” traffic. This is done by comparing our

future predictions of the traffic matrix state to an inference

of the actual traffic matrix that is made using more recent

measurement data than those used for prediction. In the

second step the residual filtered process is then examined

for anomalies. We explain here how any anomaly detection

method can be viewed as a problem in statistical hypothe-

sis testing. We study and compare four different methods

for analyzing residuals, two of which are new. These meth-

ods focus on different aspects of the traffic pattern change.

One focuses on instantaneous behavior, another focuses on

changes in the mean of the residual process, a third on

changes in the variance behavior, and a fourth examines

variance changes over multiple timescales. We evaluate

and compare all of these methods using ROC curves that

illustrate the full tradeoff between false positives and false

negatives for the complete spectrum of decision thresholds.

1 Introduction

Traffic anomalies such as attacks, flash crowds, large file

transfers and outages occur fairly frequently in the Internet

today. Large enterprise networks often have a security op-

erations center where operators continuously monitor the

network traffic hoping to detect, identify and treat anoma-

lies. In smaller networks, these tasks are carried out by

general network administrators who are also carry out other

day-to-day network maintenance and planning activities.

Despite the recent growth in monitoring technology and in

intrusion detection systems, correctly detecting anomalies

in a timely fashion remains a challenging task.

One of the reasons for this is that many of today’s

security solutions yield equipment that collects and ana-

lyzes traffic from one link at a time. Similarly many re-

search efforts consider anomaly detection on a per link ba-

sis [2, 8, 3]. To detect traffic anomalies one typically seeks

to characterize, or build a model, of what constitutes nor-

mal behavior. After filtering out normal looking traffic,

anomaly detection methods analyze the residual traffic pat-

tern for deviations. Considering only one link is limiting.

Since any flow will traverse multiple links along its path,

it is intuitive that a flow carrying an anomaly will appear

in multiple links, thus increasing the evidence to detect it.

Instead in this paper, we focus on using data from all the

links in an enterprise or ISP network simultaneously. Since

any anomaly has to traverse multiple links on route to its

destination, an anomaly has the potential to be visible in

any of the links its traverses. Since we cannot know in ad-

vance where anomalies will originate, nor the path they will

take, it is advantageous to consider the behavior of all the

links in an enterprise simultaneously when developing both

a model of ”normal” traffic and a method for analyzing the

”residuals”.

A traffic matrix is a representation of the network-wide

traffic demands. Each traffic matrix entry describes the av-

erage volume of traffic, in a given time interval, that orig-

inates at a given source node and is headed towards a par-

ticular destination node. In an enterprise network these

nodes may be computers, whereas in an ISP network the

end nodes can be routers. In this paper we propose to use

predictions of traffic matrix behavior for the purposes of

anomaly detection.

Since a traffic matrix is a representation of traffic vol-

ume, the types of anomalies we might be able to detect

via analysis of the traffic matrix are volume anomalies

[12]. Examples of events that create volume anomalies

are denial-of-service attacks (DOS), flash crowds and al-

pha events (e.g., non-malicious large file transfers), as well

as outages (e.g., coming from equipment failures).

Obtaining traffic matrices was originally viewed as a

challenging task since it is believed that directly measuring
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them is extremely costly as it requirements the deployment

of monitoring infrastructure everywhere, the collection of

fine granularity data at the flow level, and then the pro-

cessing of large amounts of data. However in the last few

years many inference based techniques have been devel-

oped (such as [22, 23, 19, 18, 20, 6] and many others) that

can estimate traffic matrices reasonably well given only

per-link data such as SNMP data (that is widely available).

These techniques focus on estimation and not prediction.

In this paper we build upon one of our previous tech-

niques [20, 18] for traffic matrix estimation by using it to

provide predictions of future values of the traffic matrix. A

traffic matrix is a dynamic entity that continually evolves

over time, thus estimates of a traffic matrix are usually pro-

vided for each time interval (e.g., most previous techniques

focus on 5 or 10 minute intervals). We predict the traffic

matrix one step (e.g., 5 minutes) into the future. One of

the key ideas behind our approach lies in the following ob-

servation. Five minutes after the prediction is made, we

obtain new link-level SNMP measurements, and then esti-

mate what the actual traffic matrix should be. We then ex-

amine the difference between our prediction (made without

the most recent link-level measurements) and the estima-

tion (made using the most recent measurements). If our es-

timates and predictor are usually good, then this difference

should be close to zero. When the difference is sizeable

we become suspicious and analyze this residual further to

determine whether or not an anomaly alert should be gen-

erated.

We compare four different methods for signalling alerts

when analyzing residual traffic. The simplest method com-

pares the instantaneous residual traffic to a threshold. The

second method considered is a small variation on the de-

viation score idea presented in [2]. Their key idea is to

compare a local (temporally) variance calculation with a

global variance assessment. The deviation score used in

[2] is computed using output signals of a wavelet transform

applied to IP flow level data from a single link. We apply

this idea of comparing the local to the global variance on

our filtered residual signal. In our third scheme, we apply

wavelet analysis only on the filtered traffic (in [2] wavelet

analysis is applied directly on the original signal). We sig-

nal an alert when the detail signal (now a type of residual) at

each of a few different timescales exceeds a threshold. We

raise an alarm only if the threshold is exceeded at multiple

timescales. The fourth method uses a generalized likeli-

hood ratio test to identify the moment an anomaly starts,

by identifying a change in mean rate of the residual signal.

These last two methods, introduced here for the first time,

are particular applications of known statistical techniques

to the anomaly detection domain.

Our approach is different from other approaches in that

usually anomaly detection is performed directly on moni-

tored data that is captured at the target granularity level. In-

stead we perform anomaly detection on origin-destination

(OD) flows, a granularity of data that we infer from other

measurements (link statistics). Our study shows that it is

possible to follow such an approach towards a positive out-

come.

To validate our methods we use both real data from the

Abilene network and a synthetic anomaly generator that

we developed. These two approaches are complementary

as their advantages and disadvantages are opposite. The

advantage of evaluating using real world traces is that we

test our methods on actual anomalies that have occurred

in the Internet. The disadvantage of using only collected

traces is that the statistical parameters of the anomaly can-

not be varied. One cannot therefore identify the limits of

a method. For example, one cannot ask ”would we still

detect the anomaly if its volume were lower?”. Using syn-

thetically generated anomalies in which we carefully con-

trol the anomaly parameters, we can stress test and identify

the limits of an algorithm. However the synthetic anoma-

lies are limited because we have no evidence of them in the

Internet. Our approach to validation thus employs both of

these approaches in order to extract the benefits of each.

We use ROC (Receiver Operating Characteristic) curves

as our key evaluation criteria. ROC curves have received

wide usage in medical diagnosis and signal detection the-

ory, but relatively little in network security. A ROC curve is

a graphical representation of the tradeoff between the false

positive and false negative rates for every possible deci-

sion threshold. We include a brief description of the mean-

ing and theory behind ROC curves to illustrate a general

methodology for analysing network security solutions. We

use these to compare our four solutions. The advantage of

this approach is that it permits scheme comparison through-

out the entire range of decision thresholds. This eliminates

the difficulty that arises when one tries to compare meth-

ods each of which uses a particular and seemingly ad hoc

threshold choice. In addition, we also present the perfor-

mance of these methods in terms of their detection time.

This is important as most anomaly detection methods incur

some lag time before reaching a decision. Finally we assess

the false positive and false negative rates our schemes yield

as the volume of an anomaly is varied from low-volume

anomalies to high-volume ones.

The most important, and only, work to date that uses

a network-wide perspective for volume anomaly detection

was that of [12]. In this work, the authors used the en-

semble of all the links in a network and performed Princi-

ple Components Analysis to reduce the dimensionality of

the data. They illustrate that by projecting onto a small

number of principal components one could filter out the

”normal” traffic. The traffic projected onto the remaining

components is analyzed for anomalies using a G-statistic

test on the predictive error. While our paper essentially

tackles the same problem, our work differs in numerous
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ways: i) we process the incoming link data using kalman

filters rather than PCA analysis and generate traffic matrix

predictions; ii) the granularity we focus on is that of OD

flows whereas they use link data when analyzing residu-

als. (Note, they use the OD flows as a secondary step, after

detecting an anomaly, in order to identify the source); iii)

they consider a single test on the residual traffic whereas

we propose two new ones and conduct a comparative eval-

uation of four schemes; iv) our method for validation dif-

fers since we supplement the Abilene data with synthetic

anomaly testing; v) our evaluation is different because we

make use of ROC curves for evaluation, examine detection

lag times as well as sensitivity to anomaly volume sizes.

Section 2 describes how we model the OD flows and

our solution for traffic matrix prediction. The methods

for analyzing filtered traffic and determining how to de-

tect an anomaly are presented in Section 3. We discuss

our approach to validation and fully describe our synthetic

anomaly generator in Section 4. All of our evaluations and

the results are shown in Section 5.

2 Modeling Normal Traffic

We assume that the monitoring infrastructure in our net-

work can easily obtain per-link statistics on byte counts (as

in SNMP today). From this we want to infer the traffic ma-

trix that includes all pairs of origin-destination (OD) flows.

This is the classic traffic matrix estimation problem. If we

design a realistic model for the evolution of the network’s

traffic matrix, then we can use this to filter our usual behav-

ior. For the sake of completeness we now summarize our

linear dynamic state space model for the OD flows and our

Kalman filter method for estimating the traffic matrix. This

was originally presented in [18]. We expand on our previ-

ous work by illustrating how this can be used to make future

predictions of the traffic matrix and describe the resulting

residual processes that can be obtained when filtering via

this approach.

Since the OD flows are not directly observable (measur-

able with today’s technology) from the network, we refer to

them as hidden network states or simply as network states.

The link load levels (e.g., total bytes per unit time) are

directly observable in networks, and are captured via the

SNMP protocol that is widely deployed in most commer-

cial networks today. Because the total traffic on a link is the

sum of all the OD flows traversing that link, the relationship

between SNMP data and OD flows can be expressed by the

linear equation Yt = AtXt + Vt, where Yt represents the

vector of link counts vector at time t, and Xt is the OD

flows organized as a vector (hidden network states). At de-

notes the routing matrix whose elements at(i, j) are 1 if

OD flow j traverses link i, and zero otherwise. (In some

networks fractional routing is supported.) The term Vt cap-

tures the stochastic measurement errors associated with the

data collection step. All these parameters are defined for a

general discrete time t.

To capture the dynamic evolution of OD flows we need

a model that specifies Xt+1 as a function of Xt. We seek a

model that can be used for prediction of the OD flows one

step into the future. Providing an efficient model that cap-

tures traffic dynamics is not so simple. It has been observed

that traffic entering the network is characterized by highly

variable behavior in time [13]. There are many sources of

this variability, including daily periodic behavior, random

fluctuations with relatively small amplitude, and occasional

bursts. Sudden changes in the traffic are not uncommon and

can be related to different benign causes such as the addi-

tion of new customers, network equipment failures, flash

crowds or to malicious activities such as attacks conducted

against the network. Ignoring the attacks for the moment,

our model for OD flows must be rich enough to incorpo-

rate these sources of variability for normal traffic. It is

also known that both temporal correlations within a sin-

gle OD flow exist, and that spatial correlations across some

OD flows occurs [18].

We adopt a linear state space model to capture the evolu-

tion of OD flows in time. This predictive model relates the

network state Xt+1 to Xt as follows: Xt+1 = CtXt + Wt,

where the state transition matrix Ct captures temporal and

spatial correlations in the system, and Wt is a noise process

that accounts for both the randomness in the fluctuation of

a flow, and the imperfection of the prediction model. Lin-

ear stochastic predictive models, combined with Gaussian

noise, have been successfully applied to a large spectrum

of monitoring problems.

The matrix Ct is an important element of the system. A

diagonal structure for Ct indicates that only temporal cor-

relations are included in the model of an OD flow. When

Ct has off-diagonal elements that are non-zero, then spa-

tial correlation across OD flows have been incorporated

into the model. For traffic matrix estimation, using a non-

diagonal matrix for Ct is preferable so that one can bene-

fit from incorporating spatial correlation (as used in [20]).

When traffic matrix estimation is carried out, the main task

is that of taking a total byte count for each link and parti-

tioning it among the the multiple OD flows traversing that

link. When an anomaly occurs on a link, it is possible for

an anomaly (originating within one OD flow) to get spread

across all the OD flows on that link during the estimation

procedure. To avoid this phenomenon, that would make it

more difficult to detect anomalies in OD flows, we use a

diagonal structure for Ct (unlike the model used in [18]).

Putting the above elements together, our complete model

is that of a linear state space dynamical system, that relates

the observables (Yt) to the unobservables (Xt), and is given

by,
{

Xt+1 = CtXt + Wt

Yt = AtXt + Vt

(1)
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We assume both the state-noise Wt and the

measurement-noise Vt to be uncorrelated, zero-mean

Gaussian white-noise processes and with covariance

matrices Qt and Rt:

E[WkWT

l
] =

{

Qk, if k = l

0, otherwise

E[VkV T

l
] =

{

Rk, if k = l

0, otherwise

E[WkV T

l
] = 0 ∀k, l (2)

These assumptions might appear restrictive however a

large body of research in the control theory literature has

been devoted to Kalman filtering robustness. The lessons

learned from this literature are that because of the feedback

mechanism, and ongoing readjustment of estimated values,

Kalman Filters are robust to model imprecision as well as

to some deviation from gaussianity in the noise. The rule

of thumb for reaching a certain level of robustness is to use

noise with slightly larger variance for Wt than obtained by

direct evaluation of noise.

Given the above assumptions and a set of observations

{Y1, ..., Yt+1}, the task is to determine the estimation filter

that at the (t + 1)-st instance in time generates an optimal

estimate of the state Xt+1, which we denote by X̂t+1. Op-

timality is defined in the sense of Minimum Variance Error

Estimator that is defined as follows:

E[||Xt+1−X̂t+1||
2] = E[(Xt+1−X̂t+1)

T (Xt+1−X̂t+1)]
(3)

The classical tool for dealing with this type of problem is

the well known Kalman Filter [10]. It addresses the general

problem of trying to estimate a discrete state vector when

the observations are only a linear combination of this un-

derlying state vector. The Kalman filter estimates the sys-

tem state process by using a two step approach, that iterates

for each time t. We use X̂t|i we refer to the estimation of

Xt based on time i, t ≥ i. (We introduce here the more

general case of time-varying systems, where all the param-

eters are indexed by time.)

• Prediction Step: Let X̂t|t denote the estimate of the

state at time t given all the observations up to time t (i.e.

Y t). This term has a variance that is denoted by Pt|t. Let

X̂t+1|t denote the one step predictor. This prediction is

made using all the observed data up to time t. Since the

model Xt+1 = CtXt + Wt includes the noise term Wt

(with covariance Qt), this prediction will have some asso-

ciated variability, that is denote as Pt+1|t. In the prediction

step, we are given X̂t|t and Pt|t, and compute both our pre-

diction, and the variance of this prediction, as follows.

{

X̂t+1|t = CtX̂t|t

Pt+1|t = CtPt|tC
T
t

+ Qt

(4)

• Estimation Step: In this step, the kalman filter updates

the state estimate Xt+1|t+1, and its variance (Pt+1|t+1) by

using a combination of their predicted values and the new

observation Yt+1. The new estimate at time t + 1 is given

by,











X̂t+1|t+1 = X̂t+1|t + Kt+1[Yt+1 − At+1X̂t+1|t]

Pt+1|t+1 = (I − Kt+1At+1)Pt+1|t(I − Kt+1At+1)
T

+Kt+1Rt+1K
T
t+1

(5)

The new estimate at time t + 1 for X̂t+1|t+1 is com-

puted using the prediction from the previous time instant

X̂t+1|t that is adjusted by a correction factor. Consider

the latter part of this equation. By multiplying our pre-

diction X̂t+1|t by At, we generate a prediction for the

link counts Ŷt+1. Hence the term in brackets [Yt+1 −
At+1X̂t+1|t] = Yt+1 − Ŷt+1 is the error in our predic-

tion of the link counts. This term is multiplied by the ma-

trix Kt+1 that is called Kalman gain matrix. It is obtained

by minimizing the conditional mean-squared estimation er-

ror E[X̃T

t+1|t+1
X̃t+1|t+1|Y

t] where the estimation error is

given by X̃t|t = X̂t|t − Xt. By applying some basic linear

algebra, we can write it as:

Kt+1 = Pt+1|t AT

t+1[AtPt+1|tA
T

t+1 + Rt+1]
−1 (6)

Hence this second step takes the new observation of

Y when it becomes available, and corrects its previous

prediction. The above equations together with the initial

conditions of the state of the system X̂0|0 = E[X0] and

the associated error covariance matrix P0|0 = E[(X̂0|0 −

X0)(X̂0|0 − X0)
T ] define the discrete-time sequential re-

cursive algorithm, for determining the linear minimum

variance estimate, known as Kalman Filter.

In our previous paper [18], the traffic matrix is popu-

lated (i.e. estimated) using X̂k+1|k+1. Nevertheless, it is

clear that the Kalman filter gives more information than

only estimates. Using the predictive ability of the filter it is

possible to estimate the future evolution of the traffic ma-

trix. The correction step in Equation (5) essentially cap-

tures the part of the process that our model could not pre-

dict. It is this unpredictable part that we want to track for

anomaly detection. Based on the study in [18], we know

that the Kalman filter method for estimating the traffic ma-

trix works well. Hence most of the time, the correction

factors are negligible. Now if at some time instant we see

a large correction of our prediction , we could flag this as

anomalous and generate an alert.

We are thus motivated to examine the errors that our one-

step predictor generates. The errors in our prediction of the

link values are denoted by,

ǫt+1 = Yt+1 − At+1X̂t+1|t,
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In Kalman filtering terminology this error is typically

the innovation process. It is the difference between

the observed (measured) value Yt+1 and its prediction

At+1X̂t+1|t. The innovation process ǫt is considered to be

white gaussian noise with a covariance matrix given by :

E
[

ǫt+1ǫ
T

t+1

]

= At+1Pt+1|tA
T

t+1 + Rt+1. (7)

Since in our case, we are interested in anomalies in the

OD flows, we can define, by extension, the residual ηt+1,

ηt+1 = X̂t+1|t+1 − X̂t+1|t = Kt+1ǫt+1,

that is the difference between the new estimate of the state

(X̂t+1|t+1), corrected using the most recent measurement

at time (t + 1), and its prediction X̂t+1|t made based only

on information available up to time t. It is also a measure of

the new information provided by adding another measure-

ment in the estimation process. Using Equation (5), we can

see that the error in the OD flow estimate is related to the

error in the link estimate via ηt+1 = Kt+1ǫt+1.

This is also a zero-mean gaussian process, whose vari-

ance St+1 can be easily derived as

St+1 = E[ηt+1 ηT

t+1] = Kt+1(At+1Pt+1|tA
T

t+1+Rt+1)K
T

t+1

(8)

The residual process can be shown to be asymptotically

uncorrelated, i.e. E
[

ηt ηT

l

]

= 0, t 6= l. This can be un-

derstood by observing that asymptotically the gain matrix

of Kalman filter Kt+1 converge to a fixed point K̄. The

residual is an important measure of how well an estima-

tor is performing. A non-zero residual could mean that an

anomaly has occurred, and in the next section 3, we present

a few schemes for further examining this residual time se-

ries to detect anomalies.

In this section, we presented the Kalman filtering method

in its general settings under non-stationary assumptions. In

the following sections, we will assume a stationary situa-

tion where the matrices A,C, Q and R are constant in time,

making it possible to drop their subscripts. However, the

rest of the methodology presented in this paper can easily

be generalized to incorporate time dependency.

There is an issue of calibration for using such a Kalman

filter model because the matrices C,Q and R need to be

calibrated. We developed and presented in [20] an Expec-

tation Maximization based approach for calibrating these

matrices. In [20] we showed that for reliable OD flow es-

timation we need to recalibrate the Kalman filter every few

days when the underlying model changes. When there are

anomalies, this might suggest that the model should be re-

calibrated every time an anomaly occurs. However, one

interesting result of this current paper is that this recali-

bration step is often not needed if the goal is just anomaly

detection. For example, in applying our anomaly detection

schemes on the Abilene data, we found that no recalibra-

tion was needed for 7 days (covering 74 anomalies). Hence

the requirements for recalibration appear to be stronger for

traffic matrix estimation than for anomaly detection.

3 Analyzing Residuals

Before explaining our four methods for examining residu-

als to look for anomalies, we discuss some important issues

regarding sources of errors, understanding the meaning of

decision thresholds, and how they are selected. In doing

so, we explain our methodology for comparing different

anomaly detection schemes.

There are two sources of errors that can appear in the

residual process. One is from errors in the underlying

traffic model, while the second will come from anomalies

in the traffic. Suppose, for a moment, that we consider

any general random process Zt that we want to check for

anomalies. Let Ẑt denote our prediction for this process

based upon a model. Since our model may not be exact,

we let ζt denote the expected prediction error, a zero-mean

random variable with known covariance. If we define ξt as

the anomaly term at time t, we can write :

Zt = Ẑt + ζt + ξt.

In this equation ξt is a random variable accounting for the

unexpected change caused by the anomalies, i.e. ξt = 0
if there are no anomalies and ξt 6= 0 when there is an

anomaly.

There is an important decision to be made as to which

data granularity to examine in order to try to observe

anomalies. We can consider either looking at the predic-

tion errors observed on the link data Yt or the estimation

errors on the OD flows Xt. Our experience showed us that

detection schemes work better when operating at the gran-

ularity level of the OD flow rather than at that of the link.

Although we cannot observe the OD flow directly, we can

observe the error in our prediction of the OD flow and that

turns out to be plenty sufficient for our purposes. We point

out that the four schemes we discuss for examining errors

can be applied to either type of error. These methodologies

require only that we understand the covariance process of

the associated ζt process.

To detect anomalies on the SNMP link counts, one

should use the statistics of the innovation process in place

of the statistics of ζ. This is readily available in our model

since it is equivalent to the statistics of the innovation pro-

cess in the Kalman Filter. The innovation obtained as the

output of the Kalman filter is exactly the prediction error

ζt + ξt.

Anomaly detection on OD flows is more tricky as the

prediction error is not directly observable (as OD flows are

hidden). However, the good news is that the covariance of

ζ is known and equal to Pt+1|t+1. Moreover, the residual

ηt+1 = X̂t+1|t+1 − X̂t+1|t = Kt+1ǫt+1 can be observed
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and its covariance can be derived as St+1. And last but not

least the estimation error ζ and the residual η are correlated

gaussian processes, i.e one might use one for estimating the

other and the least squared error estimator is :

ζt + ξt ≈ −KtAtPt|t−1S
−1
t

ηt (9)

The approximation comes from the fact that this is just an

estimation of an unobserved value (the OD flows estima-

tion error) based on an observed value (residual).

3.1 Anomaly detection as a statistical test

We now wish to illustrate how any anomaly detection

scheme can be viewed as a statistical hypothesis test. To

do this, we first explain how such tests are evaluated. The

tested are evaluated by exploring the fundamental tradeoff

between the false positive and false negative rates. Hypoth-

esis testing explains how to pick decision thresholds when

faced with balancing this particular tradeoff.

All four of the schemes we use to evaluate the residuals

rely on the selection of a threshold that is used to decide

whether or not an alarm is raised. In fact, any anomaly or

change detection method will require that a threshold be

selected. In our evaluation of these methods we consider

all possible thresholds for each method. We do this by as-

sessing the performance of our method using Receiver Op-

eration Characteristic (ROC) curves.

ROC curves have been developed in the context of sig-

nal detection [5], and have been widely used for medical

analysis purposes [24]. ROC curves are useful because the

describe the full tradeoff between false positives and false

negatives over the complete spectrum of operating condi-

tions (i.e., decision threshold settings). In an ROC curve,

we plot the false positive rate on the x-axis and one minus

the false negative rate on the y-axis. The y-axis thus repre-

sents the true positives (the anomalies we want to catch).

An algorithm is considered very good if its ROC curve

climbs rapidly towards the upper left corner of the graph.

This means that we detect a very high fraction of the true

anomalies with only a few false positives. Sample ROC

curves can be seen in Figure 1 (to be fully explained later).

To quantify how quickly the ROC curve rises to the up-

per left hand corner, one simply measures the area under

the curve. The larger the area, the better the algorithm.

ROC curves are essentially parametric plots as each point

on the curve corresponds to a different threshold. Each

point illustrates a particular tradeoff between false positives

and false negatives. Each algorithm results in one curve,

and by comparing these curves we can compare algorithms.

The curve with the largest area underneath it corresponds to

the better algorithm. Since each curve represents the entire

range of thresholds, we can compare algorithms throughout

their entire region.

ROC curves are grounded in statistical hypothesis test-

ing. As mentioned earlier, any anomaly detection method

will at some point use a statistical test to verify whether

or not a hypothesis (e.g., there was an anomaly) is true

or false. Recall that ξt is our residual process and should

be zero (or roughly zero) when there is no anomaly. We

can form the hypothesis H0 : ξt = 0 for the case when

there is no anomaly. We can form an alternate hypothesis

H1 : ξt! = 0 for the case when there an anomaly occurs.

This last hypothesis is difficult to handle mathematically,

so for the sake of simplicity of exposition, we rewrite the

alternate hypothesis as H1 : ξt = µ. (Conceptually we

can continue to think of this as the case when an anomaly

occurs). The random variable ξt in each hypothesis is as-

sumed to have some distribution. Upon observing a sample

of this random variable we compare it to a threshold to de-

cide if we reject H0 (thereby accepting H1) or vice versa.

Let FPR denote the false positive rate, the probability

that we detect an anomaly given there was no anomaly. Put

otherwise, this is the likelihood that we reject H0 when it

was true. The false negative rate, FNR, is the probability

that we detect nothing when an anomaly occurs (or the like-

lihood that we accept H0 when we should have rejected it).

In order to decide whether or not to accept H0, we compare

our observation of ξt to a threshold. The Neyman-Pearson

criteria says that we should construct this decision thresh-

old to maximize the probability of detection (true positives)

while not allowing the probability of false alarm to exceed

some value α.

The optimization problem to solve is to find the maxi-

mum probability of detection (1-FNR) such that FPR ≤

α. The likelihood ratio is defined as the ratio of FPR/FNR.

The Neyman-Pearson lemma says that the optimal decision

threshold is one that satisfies the likelihood ratio test.

FPR

FNR
≤ T (α)

In solving for T (α) (i.e., deriving the curve), each point

of this curve corresponds to one value of the decision

threshold. In practice, this curve is plotted as the correct

detection rate,i.e. 1 − FNR as a function of false positive

rate FPR thus yielding the ROC curve.

For a fixed FPR = α, all values 1 − FNR ≤ β∗ are

achievable by a non-optimal anomaly detector, or equiv-

alently all points below the optimal ROC curve can be

achieved. The ROC curve can be derived analytically typ-

ically only under simple assumptions (such as ξt is Gaus-

sian). In this case the derived curve is an optimal curve.

The optimal curve is not a perfect solution (i.e., 100% true

positive detection and 0% false positives) because usually

there is some inherent noise in the process this limits the

best decision one can make.

As a simple example, consider the case when ξt is a

gaussian random variable with a cumulative distribution

Internet Measurement Conference 2005 USENIX Association336



given by Φ. The ROC curve for the hypothesis H0 : ξt = 0
vs. H1 : ξt = µ is given by :

1 − FNR = 1 − Φ(Φ−1(FPR) − µ)
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Figure 1: Optimal ROC curve for a gaussian hypoth-

esis testing between H0 : ζ = 0 vs. H1 : ζ = µ.

Fig. 1 shows the ROC curve for this case for three dif-

ferent alternate hypotheses H1. In practice, the optimal

ROC curves cannot be derived, which limits our ability to

see how far a particular detection scheme is from optimal,

where optimal is determined based on the underlying noise

of the system. However since each scheme yields a differ-

ent ROC curve, these remain a powerful means of compar-

ison across schemes. If one curve has less area beneath it,

then it is clearly inferior, regardless of the threshold level

selected.

3.2 Basic analysis using Variance

The first anomaly detector that will be described is also

the simplest one. As seen previously in normal operational

condition one might assume that ξt = 0 and that the pre-

diction error ζt follows a process with mean 0 and known

variance. Under the situation that the statistics of ζt, the

prediction error are fully known, it is easy to construct a

statistical test following the Neyman-Pearson theorem. For

this purpose we might use the construction given in Eq. 9.

The approach consists of constructing the process τt =
−KtAtPt|t−1S

−1
t ηt and rising an alarm for an OD pair i

whenever τti > T ×
√

(Pt+1|t+1)ii where T is the thresh-

old. Actually, this approach verifies if the prediction error

is inside a confidence interval. This anomaly detector is the

optimal one for the case where ζt + ηt follow a gaussian

distribution. However, if this hypothesis in not precisely

true (as frequently in practice), application of this anomaly

detector will lead to a ROC curve that is lower than the

optimal one.

An interesting property of this method is that the test is

verified as soon as a new observation has been processed by

the Kalman filter and it can therefore trigger an anomaly

very fast. However the drawback of the approach is that

each test is being done independently of past observations.

This might lead to high false positive rate when the process

ζt has a heavier tail than the gaussian. One might want to

have a less sensitive approach that will not raise an alarm

based on only one observation diverging from the bound.

3.3 CUSUM and Generalized Likelihood

Ratio test

The previous method missed an essential fact, since we

are in the context of random processes, tests executed at

each time t are not independent. The classical approach

for detecting a change in a random process is the CUSUM

(Cumulative Summation) method and its variants [4]. The

main intuition behind the CUSUM method is that when a

change occurs the log-likelihood ratio of an observation yi,

defined as si = log L1(y)
L0(y) , shifts from a negative value to a

positive one (as after the change hypothesis H1 becomes

more likely). This means that the log-likelihood of ob-

serving a sequence of N observations {yN−1
0 }, defined as

SN−1 =
∑N−1

i=0 si, that was decreasing with N , begins to

increase after the change. The minimum value of Sj gives

an estimate of the change point. Therefore a simple statis-

tical test for change detection consists of testing whether :

Sk − min
0≤j≤k

Sj > T,

where Sk is the log-likelihood ratio defined previously and

T is a threshold. After a change has been detected, the time

of change can be estimated as :

t̂c = arg min
0≤j≤k

{Sj}

The previously described CUSUM algorithm has been

widely used for anomaly detection. However it suffers

from a key drawback. It is stated in the context of a simple

hypothesis, where the alternative hypothesis H1 should be

completely defined, i.e. the level of the change or in other

terms the intensity of the anomaly should be known a pri-

ori. However in practical settings, this is exactly unknown

as by definition anomalies are not predictable.

A solution for this issue is provided by the General Like-

lihood Ratio Test. In this approach the level of change in

the CUSUM algorithm is replaced by its maximum likeli-

hood estimate. To describe the approach let’s fix a scenario.

Suppose an anomaly occurs and this results in a shift in the

mean of the residual process. After the shift, the estima-

tion error will no longer be a zero mean random variable

of variance σ (σ is assumed to be known), but instead is

translated to a mean µ, that is unknown, and the same vari-

ance. The GLR algorithm uses a window of estimation er-

ror {τ j+N−1
j } and applies for each i, j ≤ i ≤ j+N−1 the

following test. It first estimates the mean of the estimation

error over the window {i, . . . j + N − 1} as

µ̂ =
1

j + N − 1 − i

j+N−1
∑

l=i

τl
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It then performs a simple CUSUM test with µ̂ as the level

change value and we raise an alarm if a change is de-

tected. We implemented here a variant of the classical GLR

method described in [7]. This method is very powerful

since there exists a proof that this is the best estimator when

level change µ and variance σ are unknown. However its

main drawback is that it adds some delay for the detection

of the anomaly since it needs some observations after the

anomaly to estimate the deviation level. The detection de-

lay will not be constant and will depend on the anomaly.

For example, the effect of small volume anomalies on the

mean will propagate slowly and thus may not be detected

as quickly as large volume anomalies.

3.4 Multiscale analysis using variance

Multi scale analysis has been proposed as a promising ap-

proach to make robust anomaly detectors and is now com-

monly accepted as a powerful tool. The rational behind

using multiscale analysis is that anomalies should appear

at different time scales and by monitoring these multiple

scales one should be able to reduce the False Positive Rate,

because a change appearing on only one time scale will not

trigger an alarm.

We implemented a multi-scale analysis based on a cas-

cade decomposition of the original signal τt into a low fre-

quency approximation aL

t
and a cascade of details di

t
. The

multi-scale decomposition lead to the following relation :

τt = aL

t
+

L∑

i=1

di

t
.

where :

di

t
=

∑

s

τs2
−iψ(2−is− t), i = 1, . . . , L,

aL

t
=

∑

s

τs2
−Lφ(2−Ls− t),

and ψ(.) is a mother wavelet function and φ(.) its corre-

sponding scaling functions [14].

Now, an anomaly detection mechanism, similar to that

described in the basic analysis using variance subsection,

is applied to each details time series. For each level l ∈

[1, L]we create a 0-1 sequence: each time instant t is as-

signed either a 0 or 1 where 0 indicates that no anomaly

was detected and 1 means an anomaly was flagged. By

summing across these 0-1 time series, for a given time in-

stant, we have the number of times that an anomaly was de-

tected across all the details signals. The larger this numer,

the more time scales at which the anomaly was detected.

(In practice, we sum not over a single time instant, but over

a small window in each signal). An anomaly flag is raised

if the anomaly is detected at a sufficient number of scales.

The computation of the wavelet introduces a lag in the de-

tection; this lag will be a function of of the largest scale

used.

3.5 Multi scale variance shift

This method is derived from [2]. In this paper the authors

detect the difference between the local and the global vari-

ance of the process. They first remove the trend of the sig-

nal using a wavelet transform, i.e. the remove the approx-

imation part of a wavelet transform. Thereafter they use a

small window to compute a local variance. Whenever the

ratio between this local variance and the global variance

(computed on all the data) exceeds a threshold T then an

alarm is triggered.

This method is in fact a special case of the multiscale

analysis previously described, where only two scales are

analyzed, the scale at which the global variance is calcu-

lated and the local scale where the local variance is cal-

culated. The approach can be assimilated to wavelet trans-

form with a Haar wavelet. The other interesting point of the

approach is that it detects a variation in the variance of the

process in place of detecting a variation in the mean as pre-

viously described approaches. It is noteworthy that other

approaches could also be adapted to detecting changes in

variance in place of the mean.

This method will also experience a detection lag time,

since the wavelet approach introduces a lag due to the time

needed to compute the wavelet transform in the two scales.

The width of the window of time over which to computes

the local variance is very important and will depend on the

duration of the anomaly to detect.

4 Validation Methodology

The validation of any anomaly detection method is always

fraught with difficulty. The challenge comes from our in-

ability to establish the ”ground truth”. Among the most

interesting performance metrics for such methods are the

false positive and false negative rates. However computing

these rates requires us to know exactly which events (and

corresponding point in time) were anomalies and which

were not. One common approach to evaluating anomaly

detection algorithms is to collect live data in the form of

a packet or flow level trace, and then to have this trace

”labeled”. Labeling or marking a trace is the procedure

by which each anomalous event is identified along with its

start and finish time. Perhaps the best way to do this in to-

day’s world is for a security operations expert to do the la-

beling either via visual inspection or with the help of tools.

They have a wealth of real world experience that is hard

to automate. Although this is currently our best option,

the labeling method is not perfect as operators can make

mistakes, either missing an anomaly or generating a false
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positive. The advantage of using labeled traces is that they

capture real world events. The disadvantage is that such

traces contain a fixed number of events whose parameters

cannot be varied. For example, one cannot ask ”suppose

the volume of the attack had been a little lower, would our

algorithm have caught it?”

A second approach to validation is to synthetically gen-

erate attacks. The advantage of this approach is that the

parameters of an attack (attack rate, duration, number of

flows involved, etc.) can be carefully control. One can then

attempt to answer the above question. This enables sensi-

tivity testing of any detection algorithm. Clearly the disad-

vantage is that these attacks have not happened anywhere

and thus may be of less interest.

We believe that a good approach to validation of an

anomaly detection algorithm should contain both of the

above approaches, so as to obtain the benefits of each

method. For our set of real world data with anomalies, we

obtained four weeks of traffic matrix data from the Abilene

Internet2 backbone network. Abilene is a major academic

network, connecting over 200 US universities and peering

with research networks in Europe and Asia. This data was

labeled using the method in [12]. We developed our own

synthetic anomaly generator and implemented it in Matlab.

This is described in detail further below.

4.1 Abilene Data

The Abilene backbone has 11 Points of Presence (PoP)

and spans the continental US. The data from this net-

work was collected from every PoP at the granularity of

IP level flows. The Abilene backbone is composed of Ju-

niper routers whose traffic sampling feature was enabled.

Of all the packets entering a router, 1% are sampled at ran-

dom. Sampled packets are aggregated at the 5-tuple IP-flow

level and aggregated into 5 minute bins. This thus dictates

the underlying time unit of all of our estimations and de-

tections. The raw IP flow level data is converted into a

PoP-to-PoP level matrix using the procedure described in

[11]. Since the Abilene backbone has 11 PoPs, this yields

a traffic matrix with 121 OD flows. Note that each traffic

matrix element corresponds to a single OD flow, however,

for each OD flow we have a four week long time series de-

picting the evolution (in 5 minute increments) of that flow

over the measurement period.

4.2 Synthetic Anomaly Generation

Our approach to synthetically generation anomalies makes

use of the Abilene traffic matrix. The idea is to select either

one, or a set of, OD flows to be involved in the anomaly, and

then to add anomalies on top of the baseline traffic level for

those OD flows. Our reasons for adding anomalies on top

of the existing traffic matrix are as follows. We want to

detect anomalies using the ensemble of all network links,

we need to populate the load of the entire network. Other

methods are available such as [17]. But they generate sin-

gle link packet traces while we need multi-link SNMP data.

Thus we rely on our measured dataset for generating mali-

cious data.

Using the abilene traffic matrix allows us to recreate

realistic loads network-wide. This includes all the many

sources of variability exhibited on the set of network links.

To inject an anomaly into this network, we use a three

step procedure. These procedure is carried out for each OD

flow involved in the anomaly.

1. Extract the long-term statistical trend from the se-

lected OD flow. The goal is to capture the diurnal

pattern by smoothing the original signal.

2. Add Gaussian noise onto the smoothed signal.

3. Add one of the anomalies as described in Table 1 on

top of this resulting signal.

These three steps are depicted pictorially in Figure 2. It

was shown in [19] that OD pairs in an ISP exhibit strong

diurnal patterns. These 24-hour cycles represent normal

types of variability in aggregated traffic. Another normal

source of variability in OD flows simply comes from noise

[13], and thus the first two steps are intended to represent

the level of traffic in an OD flow right before the anomaly

starts; this should look like regular non-anomalous traffic.
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Figure 2: Three steps for synthetic generation of an

anomaly.

We extract the diurnal trend using a discrete wavelet

transform; wavelet methods here useful since these trends

are typically non-stationary. Evidence of the ability
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of spectral methods to capture the underlying trends in

highly aggregated traffic has been observed in [19, 8, 2].

We compute the first five approximation signals using a

Daubechies-5 mother wavelet with 5 levels. We keep the

approximation signal at the 5th level, thus filtering out ev-

erything except this smoothed signal. This smoothed, or

de-noised, signal is shown in the top left plot of Figure 2

as the solid line. We add to this baseline signal a zero mean

Gaussian noise who variance is computed as follows. We

take the first 5 detailed signals from our wavelet transform,

and compute the variance of the sum of the 5 detailed sig-

nals. A sample signal produced after step 2 is depicted in

the upper right plot of Figure 2. An important reason to

use a signal that has been smoothed and only supplemented

with Gaussian noise is to ensure that there is no anomaly in

this OD flow other than the one we are about to add.

The last step is to add an anomaly onto this baseline

traffic. This is depicted in the bottom plot of Figure 2

where we see the anomaly added on top of the filtered OD

flow. In our synthetic anomaly generator we characterize

each anomaly by four parameters, namely, volume, dura-

tion, number of OD flows involved, and a shape function.

The shape function refers to the rate of increase when the

anomaly begins (also called ramp up), as well as the rate

of decrease as the anomaly tapers off. We include four dif-

ferent shape functions: ramp, exponential, square and step.

The ramp function is further characterized by a slope pa-

rameter, and the exponential shape by its rate parameter.

Our intent is to define a feasible range for each of these

parameters such that we are able to capture the general be-

havior of known anomaly types as well as to encompass a

broader range of behaviors.

As pointed out in [15], there are unfortunately no com-

prehensive studies yet that provide detailed statistical de-

scriptions of a broad set of volume anomalies. There are a

handful of studies [2, 11, 16, 9, 3] that provide useful pieces

of information towards this end. The characterization part

of these studies often touch briefly on a wide variety of

metrics, from attack rate and duration to others such as the

distribution of source or victim IP addresses, type of proto-

col involved in the attack, and the effect on the end system

(e.g., number of sessions open), etc. Some of these studies

do provide a few statistics on the parameters we wish to cal-

ibrate. Whenever possible, we draw upon these works and

include their findings as particular examples. As it is hard

to generalize from these specific cases, we allow our pa-

rameters to vary through a broader range than those found

in these studies.

The types of anomalies we would like to be able to

mimic include: DDOS, flash crowd, alpha, outages and

ingress/egress shift. Since we focus on detecting changes

in traffic volume patterns, we do not include other anoma-

lies such as worms and scans. A DDOS attack represents a

flooding attack against a single destination. These attacks

can have either a single source (DOS) or many distributed

sources (DDOS). The latter occurs when many machines

(called ’zombies’) are compromised and a single attacker

sends commands to all of the zombies enabling them to

jointly flood a victim. A flash crowd occurs when there

is a surge in demand for a service and is typically mani-

fested by a large number of clients trying to access, and

thus overwhelming, a popular Web site. Flash crowds can

be predictable (e.g. a scheduled baseball game, or a soft-

ware release) or unpredictable (e.g., news breaking event)

[9].

An alpha anomaly refers to the transfer of a file(s) with

an unusually large number of bytes. This typically involves

one OD flow as there is a single source and a single desti-

nation. An outage refers to scenarios such as failures which

can cause the load on a link to drop to zero. Such drops can

either be short-lived or long-lived, and the short-lived out-

ages are not infrequent since failures of one sort or another

are fairly commonplace in the Internet today [1]. An egress

shift occurs when the destination of an OD flow moves

from one node to another. This can happen in a traffic ma-

trix if there is a change in a BGP peering policy, or even a

failure, as many OD flows can have multiple possible exit

points from an ISP. Policy changes could also cause a shift

of ingress point for a particular destination. In [21] the au-

thors showed that traffic movement due to ingress or egress

shifts, although not frequent, does indeed happen. None of

these anomalies, other than DDOS attacks, are malicious.

Yet all of them will generate potentially sudden and large

shifts in traffic patterns, thus appearing anomalous.

In Table 1 we list our five parameters characterizing an

anomaly. For each parameter we list the options for values,

or value ranges, that the parameter can take on. We allow

the duration to be anything from minutes, to hours, to days

and for forever. We include the forever case as this includes

the ingress and egress shift anomalies that will last until

there is another policy change. Since [21] indicates these

events are not that frequent, we can view the shift in traffic

pattern as ”permanent”. The duration of an anomaly can

vary throughout a large range, and it is unclear what the

future will bring. Although most DDOS attacks observed,

in the backscatter data of [16], lasted between 5 and 30

minutes, there were some outliers lasting less than 1 minute

and others that lasted several days. Similarly, the majority

of the DDOS events in the Abilene data of [11], lasted less

than 20 minutes; a few outliers exceeds 2 hours. Alpha

and flash crowd events could be of any length, although

typically alpha events would be shorter than flash crowd

events. In general, we do not include events whose order

or magnitude of duration are less than minutes because we

are adding these events on top of the Abilene data that is

available to us with a minimum time interval of 5 minutes.

We change the traffic volume in two ways when anoma-

lies occur. Sometimes we use a multiplicative factor δ that
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is multiplied by the baseline traffic to generate the new traf-

fic load. Using δ ∼ 0, we can easily capture outage scenar-

ios. When an egress shift occurs, we assume that a subset

of the prefixes travelling between the source and destina-

tion router are being shifted to a new exit point. This will

shift a portion of the router-to-router traffic (as these poli-

cies are more likely to affect only a subset of the IP level

prefixes) from the old OD pair to the new one. Remov-

ing 10%, for example, of the original OD flow’s data is

simply captured by using δ = 0.9. This amount of traffic

is added into the new OD flow using the constant additive

term ∆. Allowing 1 ≤ δ ≤ 2, we can capture a variety of

either alpha, flash crowd or DOS events. Note that because

we are considering aggregate flows at the router to router

level, doubling the traffic from an ingress router is already

an enormous increase in traffic load. Large increases can

occur when there are many end hosts behind the router that

are involved in the anomaly (e.g., zombies, flash crowd).

We don’t consider δ > 2 because such attacks are so obvi-

ously irregular that they are trivial to detect. We also allow

a change in volume to be indicated by simply adding a con-

stant factor, ∆, into the existing volume. This can capture

the effect of a DDOS attack in which many zombies flood

a victim at their maximum rate.

The number of sources and destinations indicates the

number of OD flows involved in an anomaly. The notation

(1, 1) refers to a single source and a single destination. This

could happen either for a DOS attack or an alpha event. The

case of (N, 1) arises for DDOS and flash crowds. In the

case of a link failure, all the OD flows traversing the link

are affected. The case of (2, 2) can occur for an ingress

or egress shift. By this we mean that there are two OD

flows involved (that share either a common source or des-

tination). One of these flows will experience an increase

in volume, while the other experiences an equal amount of

decrease. We do not include the case of (k, k) because we

assume that one BGP policy will change at a time.

As mentioned earlier, our shape function can take on one

of four possible forms: a ramp, exponential, square or step

function. The shape function is multiplied by the extra vol-

ume amount before it is added onto the baseline traffic.

This thus determines the ramp up and drop-off behavior

of most anomalies. Not only are these shapes intuitively

useful, but there is also some evidence for them in existing

datasets. In [3] the authors found that a flash crowd can be

characterized by a rapid rise in traffic that is then followed

by a gradual drop-off over time. It also has been shown for

flash crowd events that although their ramp up can be very

quick, it is typically not instantaneous [9]. The initial in-

crease of a DDOS attack could be captured by a ramp; this

allows us the flexibility of representing scenarios in which

the zombies reach their maximum flood rates in succession

(medium slope) or via a very sharp rise [3] (steep slope).

Outage anomalies could exhibit a near instantaneous drop

in volume and thus we include the ’square’ function. Alpha

events could exhibit either a near instantaneous increase in

volume or a ramp up. The step function is included to rep-

resent the ingress or egress shift anomalies because in these

cases the change in traffic pattern is permanent (at least un-

til the next policy change).

When we generate an anomaly we randomly select the

values for these four parameters. Some combinations of

them will look like the anomalies we have discussed. By

varying each of the four characteristics in our generator, we

can create a wide variety of anomalies.

5 Results

5.1 False Positive and False Negative Perfor-

mance

We start by looking at the performance of our methods in

the Abilene network. The abilene data contains 27 anoma-

lies. Within each method, for each value of the thresh-

old, we examine the entire traffic matrix (thus traversing all

anomalies and non-anomalies). We can thus compute one

false positive percentage and one false negative percentage

for each threshold configuration of a scheme. The perfor-

mance of our 4 methods on the Abilene data is depicted in

the ROC curve of Figure 3(a). We see clearly that the ba-

sic method performs best. For a false positive rate of 7%, it

misses no anomalies (100% true positives), while the next

best method catches about 85% of the true anomalies for

the same false positive rate. The wavelet method was un-

able to achieve 0% false negatives. Thus we observe an

incomplete curve that does not reach the FNR = 0 limit,

even with a huge threshold.
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Figure 3: ROC curves using Abilene and Synthetic data

We now examine the performance of our algorithms us-

ing our synthetic anomaly generator. We generated about

500 different anomalies by varying the parameters of our

generator. For these attacks, the duration was varied ran-
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Parameter Duration Volume Num (Src,Dst) Shape

possible Minutes ∆ (1, 1) Ramp

values Hours 1 ≤ δ ≤ 2 (N, 1) Exponential

Days δ = 1.1 or 0.9 (2, 2) Square

Forever δ ∼ 0 all ODs on 1 link Step

Table 1: Anomaly description parameters. ∆ is an additive factor, δ is a multiplicative factor.

domly between 5 min and 2 hours. The volume of the

original OD flow added on top of the anomalous OD pair

ranged between 40% and 140%. The number of OD pairs

involved was between 1 and 7 OD pairs per anomaly, and

those selected were randomly chosen. The performance of

our four schemes for these 500 scenarios is presented in

Figure 3(b). For this data, the basic and GLR performed

best and equivalently. It is interesting to note that the rank-

ing of the four schemes, in terms of the ROC curve areas

is not entirely consistent between the Abilene data and the

synthetic ones. The main difference occurs with the GLR

method that does not perform very well for the Abilene data

but does for the synthetic data. The reason may lie in the

statistical properties of the anomalies themselves. In our

synthetic generator the way we add extra volume is equiva-

lent to changing the mean of the OD flow for the duration of

the anomaly. Since the GLR method is focused on detect-

ing changes in the mean, it does well. It is possible that the

anomalies in the Abilene data experience variance changes

as well as mean changes. If this were true, it would explain

why the vshift method is second best for the Abilene data.

We leave the exploration of the statistical properties of the

anomalous moments for future work.

When using marked traces we should be careful. There

is always the risk that an anomaly is undetected or a nor-

mal behavior is marked as an anomaly. We conducted a

visual inspection to remove any false positive(s) detected

using the algorithms presented in [12]. We did not check

for the false negatives. Consider the examples in Figures

4(a) and 4(b). On the top plots we show how a single OD

pair evolves in time. The dashed line is our kalman fil-

ter estimation of this OD flow. We can see how it tracks

the changes in the OD flow. On the bottom plots we show

the residual process for each of these two example flows.

We also include the markings produced by the labeling al-

gorithm in [12]. Each box greater than 0 means that an

anomaly was marked at this time. In figure 4(a) our resid-

ual process indicates that there were two anomalies, while

the labeling procedure only marks one of them. According

to our methodology above, we would thus label the first

spike as a false positive since we use the labeling method

to represent the “truth”. This anomaly could easily have

been a legitimate one. A similar situation arises for our

second example flow. For these two examples, a simple
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Figure 4: Example of the Innovation of an OD pair

visual inspection of the upper curve is enough to indicate

that these events should have been True Positives since the

two anomalies per flow indicate the beginning and ending

of the anomaly. Because our algorithm may be able to de-

tect events that the labeling algorithm of [12] does not, yet

we use this algorithm to compute the FP ratio, it means that

our computed false positive rate should be considered as an

upper bound instead of the true value of the false positive

ratio.

5.2 Detection Time

One of the critical performance aspects of any anomaly de-

tection algorithm is the speed with which it can detect the

anomaly. The onset of attacks and/or anomalies on the In-

ternet today is extremely rapid thus creating real-time re-

quirements for anomaly detection algorithms that are chal-

lenging. Few, if any, of the previous work we have seen,

evaluate their algorithms in terms of detection time. We

define detection lag as the time at which we detect a true

anomaly minus the time the anomaly began. Since the un-

derlying time unit of our traffic matrix data is 5 minutes,

each additional lag corresponds to an increment of 5 min-

utes. (Note that our methods are not intrinsically tied to a 5

minute time interval.)

Each anomaly in the two sets (Abilene and synthetic)

generates one sample detection lag value. We ensemble all

these values and summarize them using a cumulative distri-

bution. The results for the Abilene data are shown in Fig-
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Figure 5: CDF of the detection lag using Abilene and Syn-

thetic traces

ure 5(a) while the results for the synthetic data are shown

in Figure 5(b). In both cases, the basic method and GLR

methods exhibit excellent detection times. In the case of

Abilene data, the GLR method detected 90% of the anoma-

lies with no lag, while the basic method detected 95% of

the anomalies with no lag. For the synthetic data, the GLR

curve is not visible because it lies on the line where the

y-axis is 1 (underneath the basic curve). For the synthetic

cases, both the GLR and basic methods were able to detec-

tion 100% of the anomalies with no lag at all. The wavelet

analysis method performs less well; in particular there ap-

pear to be some difficult anomalies that can take over half

an hour to detect. It is interesting that the vshift method

performs well for the synthetic data but not for the Abi-

lene data. In the synthetic case to detect an anomaly the

volume should be high enough to raise an alarm as soon

as it is observed otherwise it remains undetected and we

cannot computes a lag time. Whereas in the Abilene data

the vshift method is able to detect a subtle deviation in the

statistics of the process and therefore need more samples to

detect it. The motivation for using a wavelet method was

an intuition that “an anomaly should diffuse itself at several

time scales”. However, in the results the anomalies appear

differently at different time scales, and hence this approach

was not very powerful in detecting anomalies. Other uses

of wavelet methods in this context might prove more ben-

eficial. For example, they might be useful for classifying

anomalies since wavelet methods can give a rich descrip-

tion of the anomaly dynamics. This interesting problem is

out of the scope of this paper.

5.3 Sensitivity Analysis

It is intuitive that enormous anomalies will be easy to detect

and that very tiny ones are going to be missed. It is interest-

ing to explore the space in between and see the impact of

the false positive and false negative ratios as the volume of

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Volume of the anomaly [%]

F
N

R

wlet
glr
basic
vshift

(a) FNR

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

Volume of the anomaly [%]

F
P

R

wlet
glr
basic
vshift

(b) FPR

Figure 6: FNR and FPR as a function of the anomaly size

anomalies get smaller and smaller. In Figure 6(a) we plot

the false negative ratio versus the percentage increase in

the anomalous flow. To get a broad range of anomalies, for

each tested volume level, we generate 50 anomalies with

various start times or number of OD flows involved. We

did this for 10 different volumes with 1.2 ≤ δ ≤ 2.

Figure 6(a) matches our intuition. If the OD flow in-

creases by only 10 or 20% of its original value, we going to

miss the anomalies. However the drop off of three methods

is similar and fairly quick in the range of 40 - 100%. This

implies that if the load from an ingress node doubled, it

should be easy to catch all anomalies (low missed anomaly

rate). Note that this justifies the fact that we don’t use δ > 2

in our synthetic anomaly generator.

The curve for the false positive rate (Figure 6(b)) is sur-

prising. Initially we would have expected for this also to

be a decreasing curve. But, as the anomaly becomes larger

(δ ≥ 1.5) all the flows sharing a link have their estimates

corrected by a large amount. Thus the error is spread inside

the kalman filter to normal OD flows. This in turn increases

the innovations leading to more false positives. This will

not impact the ability to detect an anomaly but rather cloud

the identity of the OD flow carrying the anomaly.

6 Conclusions

Our solution to tackling volume anomalies in large net-

works consists of many parts. First we select an interesting

granularity level at which to perform anomaly detection,

namely that of a traffic matrix. Second we use kalman fil-

ters to filter the predictable part of the traffic and to isolate

the prediction error. The form of our model allows us to

obtain the prediction error on the unobservable part of the

network system (the OD flows) as well as for the observ-

able part (link loads). Third, we proposed two detection

schemes, but compared the performance of four of them.

Finally we discuss how to make decisions about the pres-
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ence of anomalies through the use of statistical hypothesis

testing. We argue that the main measure of performance

of an anomaly detector should be the ROC curve that ex-

plicitly captures the relationship between false positive and

false negative rates. We give a mathematical foundation for

this approach through the Neyman-Pearson theorem that

identifies how to select decision thresholds when balancing

the false positive and false negative tradeoff.

We considered four detection schemes that differ in the

statistical change they seek to detect. Interestingly, but per-

haps not surprisingly in retrospect, we found that the GLR

method (whose goal is to detect changes in the mean) per-

forms best when the anomaly is one that causes a change in

the mean (e.g., in the synthetic cases). Similarly we found

that the ’vshift’ method performs better for the Abilene data

than the synthetic data. We hypothesize that this occurs be-

cause the statistical properties of the anomalies themselves

in the Abilene data contain changes in the variance of the

residual traffic process. (We intend to verify this in future

work by adding extra features into our synthetic anomaly

generator that will alter the variance of the anomaly.) If the

latter hypothesis is true, the implication is that the statisti-

cal change method that works best is the one checking the

parameter that undergoes a deviation in the anomaly. On

the one hand, this is motivation to do a study of the statisti-

cal properties of anomalies themselves. On the other hand,

it suggests that the best method for network administrators

could be a composite method that makes use of multiple

different kinds of tests.

In our study, the wavelet based method did not perform

well. Due to the popularity of wavelet based analyses, this

raises interesting questions as to when wavelet analysis is

and isn’t useful for the problem domain of anomaly detec-

tion. Most importantly, from a practical point of view, it is

good news that the simplest method performed best across

all validation tests. This could be due to the fact that the

Kalman model for the OD flows correctly models the nor-

mal traffic and thus the first filtering step is successful itself

in isolating anomalies.
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