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Abstract
In a competitive electricity market traditional demand side
management options offering customers curtailable
service at reduced rates are replaced by voluntary
customer responses to electricity spot prices. In this new
environment, customers wishing to ensure a fixed
electricity price while taking advantage of their flexibility
to curtail loads can do so by purchasing a forward
electricity contract bundled with a financial option that
provides a hedge against price risk and reflects the "real
options" available to the customer. This paper describes a
particular financial instrument referred to as a "double
call" option and derives the value of that option under the
assumption that forward electricity prices behave as a
geometric Brownian motion process. It is shown that a
forward contract bundled with an appropriate double call
option provides a "perfect hedge" for customers that can
curtail loads in response to high spot prices and can
mitigate their curtailment losses when the curtailment
decision is made with sufficient lead time.

1. Introduction

Interruptible/curtailable service contracts at reduced
rates have been introduced by many electric utilities in the
1980's as part of numerous demand side management
programs (DSM) aimed at reducing the cost of electricity
by taking advantage of customers' flexibility to manage
their load. These programs were designed to incent
customers to reduce their load during shortages or system
peaks as an alternative to costly spinning reserves and
expansion of the generation capacity that would have been
needed to serve the growing demand for electricity. Most
interruptible service contracts offered alternative warning
times. Tariff T-3 of Southern California Edison and Tariff
E-20 of PG&E, for instance, offer higher discounts for
shorter notification of an impending curtailment. A shorter
warning requirement enables the utility to substitute
interruptible load for spinning reserves and reduces its unit
commitment cost. Consequently a shorter warning time
entitles the customer to a lower rate. From the customers
point of view, earlier notification of an impending
curtailment may mitigate the shortage costs (for example
0-7695-0001-3/99 $10
by closing operation). A similar situation may exist with
respect to long term supply contracts. In countries that
heavily depend on hydro, such as New Zealand, there have
been initiatives to develop approaches for early long term
notification (say several months) of projected shortages due
to low hydro reserves. With proper price incentives such
early notification could motivate an Aluminum smelter, for
instance, to plan a seasonal shutdown.

A methodology for the design of priority service price
schedules with an early notification option was described
by Strauss and Oren [7] as an extension to the seminal
work on priority service by Chao and Wilson [1].  With the
advent of deregulation of the electric power industry in the
US and around the world, quantity controls such as
curtailments are being replaced by price signals provided
by daily and hourly spot markets for electricity that have
been established as part of the industry restructuring. In
such markets, a customer can benefit from its flexibility by
responding to the price signal and exercise its "real option"
to reduce consumption when the price is high. Such an
approach requires the customer to actively participate in
the spot market. Customers that prefer to avoid the risk of
price fluctuation can "hedge" the price risk and secure a
fixed price through forward purchases of power or bilateral
contracts for differences (CFD). The CFD are contracts
which entitle/obligate the parties to receive/pay the
difference between the spot price and an agreed upon fixed
price with the net effect that the parties experience a fixed
price of electricity while trading power at the spot prices
(for a detailed explanation of CFDs and their use in the
UK see ENRON [3]). Simple hedges that ensure a fixed
price do not account for a customer's flexibility and
willingness to curtail its load when the spot price is high
due to shortages or high demand. In the presence of a spot
market, customers willing to exercise their curtailment
option can sell their acquired power at the spot prices.
However, if a customer wants to secure a fixed rebate for
willing to exercise voluntary curtailment he/she can do so
by selling back a call option on the power secured by the
forward contract. The equivalence between interruptible
service contracts and forward contracts bundled with a call
option has been first described by Gedra [4] and in Gedra
and Varaiya [5]. They show that a rational customer whose
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valuation of a MWh is V will self-select to sell a call
option with strike price V and will curtail its load
whenever the option is exercised, i.e, when the spot price
exceeds the strike price V. Furthermore, the actuarial value
of the call option equals to the corresponding interruptible
rate discount.

In this paper we extend the above results to account for
the effect of early notification and introduce a new type of
financial instruments that allows a customer to secure the
benefit of its real option to curtail load and to commit to
such curtailment early or late if properly incented.

2. Hedging price uncertainty with early and
late curtailment options.

Suppose that a customer has a shortage loss  $V0 per
MWh if curtailed close to delivery time but a lower
shortage cost of $VT per MWh if a shut down is planned at
an early date T prior to the physical delivery date. He/she
could purchase a forward electricity supply contract and
sell back an exotic call option which can be executed at
delivery time at strike price V0 or  at time T before delivery
at strike price VT. The premium received by the customer
for that call lowers his/her cost of doing business while the
exercise of the option will nullify the forward contract,
forcing the customer to face spot prices when theses prices
exceed the strike prices of the option. In these
circumstances, however, since the spot price of electricity
exceeds the customer's willingness to pay for it the
customer will choose to curtail its load. Such a "perfect"
hedging instrument could reduce a customer's transaction
costs and enables customers to divest their unwanted risk.

Figure 1 below illustrates a contractual arrangement
that can provide a perfect hedge for a customer who can
mitigate shortage cost through early notification. In this
arrangement, the customer purchases a forward contract
and sells back a "double call" option that can be exercised
either at an early date T prior to delivery or at delivery
time at two different strike prices. The customer can select
the two strike prices while the holder of the option decides
if and when to exercise the call.  An early exercise cancels
the forward at time T prior to delivery and pays the early
strike price while exercise at delivery time cancels the
forward and pays the late strike price. If the call is not
exercised the forward is settled through physical delivery.

   Buyer
(Selects strike
  prices    kT,
k

k0 )

Owns 1 Forward

Short 1 Double
Call

Seller
(Exercises Call at
T or at delivery)

Short 1 Forward

Owns 1 Double
Call

Forward price

- Double Call price

OR

1 unit energy

$kT  at time T

$k0  at delivery

OR
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Figure 1: Contractual obligations, payments and
choices in a forward contract bundled with a

Double Call option.

The efficacy of a financial instrument in achieving
allocative efficiency depends on its ability to induce
customer and supplier choices that are consistent with the
decisions that would have been taken by a benevolent
central planner with perfect information. Figure 2
illustrates the decision tree for a central planner with
perfect information about customers' shortage costs and
forward electricity contracts.

At time T the planner knows the early and late shortage
costs  V0  and  VT, the forward price fT and the probability
distribution  Pr{f0|fT} over the forward price at delivery
(same as spot). The immediate decision is whether to

curtail at the early date or wait. Ignoring sunk costs, early
curtailment yields the value of the forward at delivery less

Figure 2: Decision tree at early date for central
planner with perfect information

Figure 3: Efficient rationing with perfect shortage
cost information

(for geometric Brownian motion with notification interval volatility

σ T = 1)
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the early shortage cost. Foregoing early curtailment
presents a second decision whether to curtail at delivery or
deliver. Economic efficiency dictates curtailment at
delivery if and only if the spot price exceeds the shortage
cost. Hence, the net value (net of sunk costs or sure gains)
of the second decision is the expected value of Max[0, f0-
V0] which is the value at time T prior to delivery of a
simple call option with strike price  V0, given the forward

price Tf , i.e., )( 0 TT fVC
. Subsequently, the optimal decision

at time T prior to delivery is to curtail if fT > k  , where
)( 0 kfVCVk TTT ==− . This result follows from an

assumption that the forward price at any point in time
equals the risk neutral expectation of the spot price at
delivery (this ignores interest) and the spot and forward
prices reflect a competitive market equilibrium. Thus, the
threshold forward price for socially efficient early
curtailment is the sum of the immediate shortage cost plus
the value of the forgone late call option. If the forward
price at time T exceeds that threshold level it is socially
optimal to curtail service at that time. Figure 3 illustrates
the efficient rationing policy as function of the foreword
prices at the early and late dates and the combination of
early and late shortage costs. Under optimal rationing,
loads in the shaded area should be curtailed early while
those in the lined area curtailed at delivery time. As the
early forward price increase more load will be interrupted
early in anticipation of a shortage reflected by these prices.
Similarly if the spot price at delivery is higher than more
load (with shortage cost below that price) will be curtailed.

Let us consider now the exercise decision by the holder
of a double call option with strike price kT at time T and k0

at time of delivery. The decision tree for such a decision is
identical to that shown in Figure 2 with VT and V0

replaced by kT and k0. The corresponding optimal exercise

decisions are therefore, to exercise at delivery if f0 > k0

and exercise at T prior to delivery if fT > k , where

}( 0 kfkCkk TTT ==− .
The optimal exercise policy is illustrated in Figure 4

showing the early and late exercise regions as a function of
the strike prices of the option and the forward prices at the
early exercise date and at delivery. Note that while the spot
price threshold level for late exercise of a double call
option equals the late strike price, the forward threshold
value for early exercise depends on both strike prices and
will always exceed the value of the early strike price (this
accounts for the value of the remaining option if the option
is not exercised early).

3. Self-selection of the strike prices for a
double call option
0-7695-0001-3/99 $10.
It is evident from the above analysis that the optimal
exercise of a double call option with strike prices kT=VT

and k0=V0 produces the same outcome as socially efficient
curtailment of a load with early and late shortage costs VT

and V0. In a competitive environment, however, shortage
costs are customers' private information. Thus, to achieve
efficient curtailment through the exercise of double call
options, it is necessary that customers will find it

Figure 4: Optimal exercise policy for a double call
option

(for geometric Brownian motion with notification interval volatility

σ T = 1)

advantageous to select strike prices that equal their
privately known shortage costs. Figure 5, illustrates the
decision tree for a hedging customer with shortage costs
VT and V0 having to select strike prices for a double call
option. The customer takes into consideration the market
valuation of such options and the optimal exercise strategy.
A speculator who can only sell the forward contract at the
prevailing market prices but has no private value for the
commodity will face the same decision tree as a hedger
with the exception that  VT  and V0 are replaced with the
foreword prices fT and f0  respectively.  Market efficiency
which precludes arbitrage gains dictates that the expected
gains of a speculator are zero for any selection of strike
prices. This condition and the optimal exercise policy

determine the value  $ ( , )C k k ft T t0  of the double call option.
In the following analysis we use the no arbitrage

condition and the optimal exercise policy to prove that
indeed it is optimal (maximizes expected gain) for a
hedging customer to select strike prices that equal the
corresponding curtailment costs and hence, the optimal
exercise of the call option will result in efficient
curtailment.

The decision tree in Figure 5 illustrates the strike price
selection decision faced by a hedger with early and late
interruption losses of  VT and V0. The expected hedging
gains are thus given by:

 Conference on System Sciences - 1999
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Figure 5: Customer self-selection of strike prices
for double call option.

where k  is defined in terms of the strike prices and the
value of a simple call option by the equation:

k k C k kT T− − =( )0 0
The same tree will represent the decision of a speculator

who has no private use for the commodity and hence
values it at the respective spot prices fT and f0. However,
market efficiency (no arbitrage gains) dictates that the
expected gains of the speculator are zero for any strike
prices which implies:
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We can use the above equation to substitute for the
value of the double call in the expression for hedging
gains, resulting in:
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The inner integral above can be expressed as:
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For the special case where the strike prices match the
interruption losses we have:

B V V V V f f V d f f C V f d f ft T T t T Tk T t T T

k

T t( , ; , ) ( ) Pr{ } ( ) Pr{ }
$

$

0 0 00
= − +

∞z z
where $k  is defined by the equation:

$ ( $)k V C V kT T− − =0 0

Using the above expressions we can now rewrite the
hedging gains as:
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By mean value theorem,
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But the term in the square bracket is nonnegative since

the slope of a simple call price with respect to the spot

price is never greater than "one" . Hence, for  $k k≥ , the
integrand in the first integral of the hedging benefit

equation above, is nonnegative (since $k fT− ≥ 0).  For
$k k< ,  the integrand is negative but the sign of the integral
is still positive due to the switched integration limits.
Similarly the second integral is negative since either the
integrand is negative or the integration limits of the inner
integral are switched.  It follows that:

B k k V V f B V V V V ft T T t t T T t( , ; , ) ( , ; , )0 0 0 0≤
so the hedger's gains are maximized by selecting early

and late strike prices that match the early and late
interruption costs, respectively

4. Pricing of Double Call options

Based on the optimal exercise policy and the no
arbitrage condition described above we determine the value
of the double call option at any time t, as follows:

{ } T>for t )](,max[

T=for t          )](,[

T<for t                                 )(

 ),(ˆ

0

0

0

0

tTTTT

TTTT

tt

tTt

ffkCkfE

fkCkfMax

fkC

fkkC

−
−=

where the expectation is taken with respect to the risk
neutral probabilities.

The value of the call option after the early exercise
(assuming it is still alive) can be determined in a straight
forward manner using the Black-Scholes formula
(assuming that the forward price follows a geometric
Brownian motion process). In the absence of dividends this
formula has the form:

C k f f N x k r N x t
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f k r

t
t

t t t

t
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−

−

σ
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In the above formula r represents the interest rate and
N( ) is the cumulative of the standardized normal
distribution (zero mean and unit standard deviation). For
simplicity we will ignore the interest rate, i.e., assume r=1
in the subsequent discussion. Figure 6 illustrates the value
of the late option at various times expressed as multiples of
the early exercise time (T).
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Because of the early exercise option we are only
interested in the value of the late option if the early option
is not exercised, i.e., for t T≤ . The payoff function of the
early option at t=T  is the largest of the early option payoff
or the late option value at that time. Figure 7  below
illustrates the payoffs of a double call option at delivery
time and at the early exercise time. At  t=0 it is the payoff

function Max f k[ , ]0 0 0− , whereas at the early exercise date

it is given by Max f k C k fT T T T[ , ( )− 0 ].  (The curved line
in Figure 7 represents the value of the late call option at
the early exercise time.)

Figure 6: Value of late call option
(for geometric Brownian motion with notification interval volatility

σ T = 1)

Figure 7: Value of double call option at the two
exercise times

(for geometric Brownian motion with notification interval volatility
σ T = 1)
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Note that the exercise price of the early option k , which
was defined earlier, is higher than the early strike price
due to the residual value of the late option.  We refer to
this early exercise price  as the effective early strike. Under

the Black-Scholes model, k k kT( , )0  can be calculated from
the implicit equation:

k k N x N x T k k

where x
k k

T
T

T/ ( ) ( ) ( / )

log( / )

0 0

0 1
2

1c ha f− + − =

= +

σ

σ
σ  

Figure 8 illustrates the above relationship between the
effective early strike price and the two strike prices of the
double call option.

Figure 8: Effective early strike price as function of
double call strike prices and notification interval

(for geometric Brownian motion with volatility σ = 1)

The valuation of the double call option at times prior to
the early exercise time is more involved and requires
numerical integration or use of binomial trees.  The
calculation can be simplified by decomposing the double

call option into a regular call with strike price of  k   (the
effective early strike) and an option on the late call option

whose payoff function at time T is Min c k f k kt T[ ( ), ]0 0− ,
The decomposition is illustrated in Figure 9 below.
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Figure 9: Decomposition of a double call option
prior to the early exercise

The value of the double call option for t>T can then be
computed (under the geometric Brownian motion
assumption) as:
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geometric Brownian motion with expected return of 1 we
have:
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where  k k C k kT T− = ( )0      and  C k ft ( ) is the value of
a standard call (without dividend or interest) given by the
Black Scholes formula:

C k f fN x kN x t
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In Figure 10 we illustrate the price evolution of a double
call option for various values of t  prior to the early
exercise time when the forward price follows geometric
Brownian motion. For illustrative purposes we again
assume notification interval volatility σ T = 1 and early to

late price strike ratio of  k kT / .0 0 5= .
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Figure 10: Value of double call prior to early
exercise time

(for geometric Brownian motion with volatility σ = 1)

5. Conclusion

In a competitive electricity market, financial
instruments and derivatives based on underlying
commodity futures will play an important role as means for
risk management speculative investments and capital
formation.  Such instruments can also emulate traditional
contracts between customers, utilities and independent
power producers aimed at improving the efficiency of
resource utilization. Custom design of financial
instruments can be specifically targeted at implementing
such contracts in a decentralized environment with
independent decisions by buyers and sellers. Such targeted
instruments reduce transaction costs and provide perfect
hedging tools for buyers and sellers of electricity. However,
while one could conceive of many exotic forms of options
that would meet specific needs for hedging and speculation
we should also emphasize the importance of
standardization. No financial instrument can be viable
without sufficient liquidity and proliferation of customized
instruments may result in "thin markets" with insufficient
liquidity. It is not surprising, that only a small fraction of
new futures and derivatives in stock and commodity
markets develop sufficient liquidity to become viable.
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