
ETH Library

Combining finite element and
finite volume methods for efficient
multiphase flow simulations
in highly heterogeneous and
structurally complex geologic
media

Journal Article

Author(s):
Geiger, Sebastian; Roberts, Steven; Matthäi, Stephan K.; Zoppou, Christopher; Burri, Adrian

Publication date:
2004-11

Permanent link:
https://doi.org/10.3929/ethz-b-000160244

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Geofluids 4(4), https://doi.org/10.1111/j.1468-8123.2004.00093.x

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000160244
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1111/j.1468-8123.2004.00093.x
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Combining finite element and finite volume methods

for efficient multiphase flow simulations in highly

heterogeneous and structurally complex geologic media

Sebastian Geiger ∗ Steven Roberts † Stephan K. Matthäi ‡
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Abstract

The permeability of the Earth’s crust commonly varies over many orders of mag-

nitude. Flow velocity can range over several orders of magnitude in structures of

interest that vary in scale from centimeters to kilometers. To accurately and effi-

ciently model multiphase flow in geologic media, we introduce a fully conservative

node-centered finite volume method coupled with a Galerkin finite element method

on an unstructured triangular grid with a complementary finite volume subgrid. The

effectiveness of this approach is demonstrated by comparison with traditional so-

lution methods and by multiphase flow simulations for heterogeneous permeability

fields including complex geometries that produce transport parameters and lengths

scales varying over four orders of magnitude.
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1 Introduction

Modelling the transport of multiphase fluids, for example of water and oil, in the Earth’s
crust is very challenging. Hydrological properties such as permeability, porosity, and fluid
velocity vary over many orders of magnitude. Hydraulic conditions often focus fluid flow in
large-scale fluid reservoirs into structures of much smaller scale, for example into fractures.
In such cases the scale of interest can vary from the kilometer to the millimeter scale with
order of magnitude velocity variations between the different scales (Fig. 1) (Matthäi &
Roberts 1996; Matthäi et al. 1998; Matthäi & Belayneh 2004). As a further difficulty, con-
stitutive relations for multiphase flow, i.e. the relative permeability and capillary pressure
functions, are nonlinear. In certain cases the numerical solution requires computationally
costly iterative schemes (Helmig 1997).

Various numerical methods have been applied to model multiphase flow. Traditionally,
the governing equations have been solved by finite difference methods (Aziz & Settari 1979).
Fully coupled upwind-weighted finite element methods have also found many applications,
as they allow for a more realistic representation of geologic structures than finite difference
methods (Huyakorn & Pinder 1978; Dalen 1979; Forsyth 1991; Letniowski & Forsyth 1991;
Helmig & Huber 1998; Bastian & Helmig 1999). Such methods are mathematically similar
to the integrated finite difference method (Narasimhan & Witherspoon 1976), another ap-
proach suitable to simulate multiphase flow (Pruess 1991). The key difference between fully
coupled upwind-weighted finite element methods and integrated finite difference methods
lies in the calculation of the fluid pressure gradient (Narasimhan & Witherspoon 1976).
The integrated finite difference method computes the gradient using a finite difference
approximation. This requires that the interface between two nodes is perpendicular to
the line connecting the nodes. Finite element methods, in general, do not suffer from this
restriction because the gradient is calculated on the basis of the element interpolation func-
tions. Therefore, finite element methods commonly allow for a more flexible representation
of geological structures, particularly if Delaunay triangulations are used (Shewchuck 2002).
Coupled finite element methods, as well as integrated finite difference methods, have the
drawback that the resulting algebraic solution matrices are often poorly conditioned and
not diagonally dominant. This makes the application of fast matrix solvers difficult. In
addition, computationally costly iterative schemes such as Newton’s method are needed
to solve for the nonlinearities (Huber & Helmig 1999; Burri 2004). Recent advances in
the simulation of multiphase flow in complex reservoirs are flux continuous finite difference
methods (Lee et al. 2002) or hexahedral multi-block methods (Jenny et al. 2002).

Combinations of finite element and finite volume methods (FEFVM) are increasingly
popular (Eymard et al. 1989; Durlofsky 1993; Bergamaschi et al. 1998; Huber & Helmig
1999). In this approach, a finite volume subgrid is constructed as a complement to the
finite element grid. The geometric flexibility of the finite element method is retained, but
in terms of run-time and accuracy, FEFVM simulations yield better results than fully cou-
pled upwind-weighted finite element methods as long as capillary pressures only varies in
continuous fashion (Huber & Helmig 1999; Burri 2004). The FEFVM are often embedded
within an implicit pressure, explicit saturation formulation (IMPES) to simulate multi-
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phase flow in porous media. In the IMPES approach, a parabolic fluid pressure equation
(flow equation) is solved implicitly (here using the finite element method) while the sat-
uration field is fixed, yielding the velocities of the fluid phases. These velocities are used
to calculate the mass balance of the fluid phases in the hyperbolic continuity (transport)
equation (here using the finite volume method) while the pressure field remains fixed (Aziz
& Settari 1979).

The IMPES formulation therefore allows the combination of the best features of the
finite element and the finite volume method. In particular: The geometric flexibility
of the finite-element method allows to resolve the inhomogeneous flow field over several
orders of magnitude in scale (Fig. 1). The fluid pressure and continuity equation, which
both exhibit nonlinearities, can be decoupled from each other. This avoids the necessity of
using a nonlinear solution algorithm such as Newton’s method. The fluid pressure equation
can be solved efficiently by the finite element method and the transport equation by the
finite volume method. When the nonlinear flow and transport equations are decoupled,
multigrid solvers are readily applied to solve the system of equations. Algebraic multigrid
methods in particular deal well with the large variations in permeability and porosity and
solve the symmetric positive definite matrix for the fluid pressure equation (Matthäi &
Roberts 1996; Roberts & Matthäi 1996). Mass conservative, second order accurate, total
variation diminishing (TVD) finite volume schemes can be used to accurately track the
propagation of the saturation fronts when solving the continuity equation.

Here, we will present a finite volume method that is coupled with a standard Galerkin
finite element method embedded within an IMPES formulation. A finite volume subgrid
is constructed on the basis of the finite element grid. This method is similar to the one
discussed in the classical paper of Durlofsky (1993), but it differs in three important points.
Durlofsky (1993) uses a mixed finite element solution for the pressure and velocity equa-
tions. Because the flux is continuous between two finite elements in this formulation, the
finite volumes in the approach by Durlofsky (1993) are equal to the finite elements. Sat-
uration is therefore piecewise constant from element to element. Finally, a higher-order
accurate approximation of the flux between two elements (i.e., finite volumes) is obtained
by a preprocessing step in which the element saturations are linearly interpolated between
three adjacent elements. This gradient is then limited to avoid spurious oscillations.

In the approach presented here, the fluid pressure field is calculated using a standard
Galerkin method. The fluid velocity, obtained by element-wise differentiation of the nodal
fluid pressure, is constant in each finite element. The finite volume cells are constructed
around the corner nodes of each finite element and saturations are calculated at the finite
element nodes. The fluid velocities are discontinuous between two adjacent finite elements
but continuous between two adjacent finite volumes. Higher-order accurate approximation
of the flux between two finite volumes is obtained in a preprocessing step by calculating
a linear gradient of the saturations on the basis of a least-squares method using all finite
volumes surrounding the one of interest. A limiting procedure is applied as well to avoid
spurious oscillations. Our numerical methods are implemented in the object-oriented C++
code CSP (Matthäi et al. 2001).

We will demonstrate that the combination of node-centered finite volumes with stan-
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dard Galerkin solutions of the pressure equation within the IMPES formulation allows us
to efficiently model nonlinear multiphase flow in highly heterogeneous geologic media with
complex structures. This method is further fully mass conservative, does not show any
grid orientation effects and accurately retains shock fronts and rarefaction fans occurring
during multiphase flow.

This paper is structured as follows: In the next section, the governing equations for
multiphase flow in geologic media are discussed. This is followed by a detailed description
of the discretization, numerical method, and its extension to a second order accurate,
TVD scheme for node-centered finite volumes on unstructured grids. Next, the numerical
method is compared to an analytical solution, other numerical techniques, and reference
solutions. In the last section, we conduct further numerical experiments and apply the
FEFVM to hypothetical examples where oil is pumped out of reservoir with a random
permeability field and out of a fractured reservoir. We also present an example application
of secondary oil migration due to buoyancy driven flow.

2 Governing Equations

Flow of an immiscible fluid phase through porous media is described by the continuity
equation and Darcy’s law (Bear 1972). Assuming that the fluid and rock matrix are
incompressible, the mass balance for a fluid phase α is given by

φ
∂Sα

∂t
= −∇ · vα + qα α ∈ {w, n} (1)

where φ is the porosity of the rock and S is the saturation (volume fraction) of phase α. The
subscripts w and n denote the wetting (water) and non-wetting (oil) phase, respectively.
The saturations S must satisfy the relation Sw + Sn = 1. The fluid velocity of phase α is
given empirically by Darcy’s law:

vα = −λαk (∇pα − ραg) (2)

The mobility λα = krα/µα is the ratio between the relative permeability krα of phase α
and its viscosity µα. The relative permeability describes how the presence of a fluid phase
perturbs the flow behavior of the other phase and vice versa (Fig. 2). k is the permeability
tensor of the porous medium, pα is the fluid pressure of phase α, ρα is the fluid phase
density, and g = [0, 0,−g]T is the gravitational acceleration vector. The fluid pressure
for the wetting and non-wetting phase are related through the capillary pressure pc as
pn = pw + pc. Several classical functions exist for the calculation of relative permeability
krα and capillary pressure pc (Brooks & Corey 1964; Van Genuchten 1980).

Neglecting capillary effects such that pw = pn, Darcy’s law for both fluid phases can be
expressed similarly to equation 2 as

vt = −λtk∇p − kg (λwρw + λnρn) (3)
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where vt = vw + vn is the total velocity of the fluid phases and λt = λw + λn is the total
mobility.

If the fluid is incompressible, the divergence of the flow field is equal to the total fluid
source or sink qt = qw + qn

∇ · vt = qt (4)

By inserting Darcy’s law from equation 3 into equation 4, the following equation for the
fluid pressure of incompressible fluids in a reservoir is obtained

0 = ∇ · [λtk∇p] + k (λwρw + λnρn) g∇z + qt (5)

For reservoirs with slightly compressible fluids and/or rock matrix where ct(∆p) ≪ 1,
which is a valid assumption on the reservoir scale (Durlofsky 1993), equation 5 becomes
the parabolic fluid pressure equation

φct

∂p

∂t
= ∇ · [λtk∇p] + k (λwρw + λnρn) g∇z + qt (6)

Here, ct is the total compressibility of the fluid and rock system.
If we further assume that gravity effects are absent such that for the incompressibility

condition the fluid pressure is given by

0 = ∇ · [λtk∇p] (7)

then the phase velocity vα is equal to

vα = fαvt (8)

where fα = λα/λt is the fractional flow function. This allows rewriting equation 1 as

φ
∂Sα

∂t
= −∇ · (fαvt) + qα (9)

To include capillary as well as gravity effects, equation 9 must be expanded as (Durlofsky
1993)

φ
∂Sα

∂t
= −∇ · (fαvt) + ∇ ·

(

λ̄tk∇pc

)

−∇ ·
(

∆ρgλ̄tk∇z
)

+ qα (10)

where λ̄t is defined as λ̄t = (λnλw) /λt and ∆ρ as ∆ρ = ρα − ρα2, the subscript 2 denoting
the second phase. Note that the capillary pressure term has a positive sign if α = n and
negative sign if α = w. For capillary pressure, the transient fluid pressure equation (Eq.
6) becomes (Durlofsky 1993)

φct

∂p

∂t
= ∇ · [λtk∇p] + ∇ ·

[

1

2
(λn − λw)k∇pc

]

+ k (λwρw + λnρn) g∇z + qt (11)
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3 Numerical Methods

3.1 Choice of Discretization

In order to capture the flow geometry with the flexibility that the finite element method
offers, we discretize the two-dimensional domain with a constrained conforming Delaunay
triangulation (Shewchuck 2002), see Figure 3. The finite volumes are constructed from
the basis of the finite elements. A common choice for triangular finite element grids is
to use node-centered finite volumes (Durlofsky 1994; Huber & Helmig 2000). For a given
triangular finite element mesh, a finite volume subgrid is constructed by connecting the
barycenters of the triangles with the midpoints of the associated edges (Fig. 4).

3.2 Calculation of Fluid Velocities

In the IMPES formulation, an accurate representation of the fluid velocity field is essen-
tial for calculating the advance of the fluid phases. The best technique to calculate fluid
velocities from the fluid pressure field using finite element methods has been subject of con-
siderable discussion (Cordes & Kinzelbach 1992; Durlofsky 1994; Mosé et al. 1994; Cordes
& Kinzelbach 1996). In general, two approaches based on different finite element formu-
lations are possible. The first one is a mixed-element formulation in which fluid pressures
are calculated at the element centers and fluid fluxes are obtained simultaneously at the
midpoints of the finite element edges (Chavent & Jaffre 1986). The flux calculated by
the mixed-element method is continuous across adjacent finite elements. This approach is
commonly used in the IMPES formulation (Eymard et al. 1989; Durlofsky 1993; Bergam-
aschi et al. 1998; Huber & Helmig 1999). The second approach is to calculate the fluid
velocities by element-wise differentiation of the pressure field. This has been successfully
employed in high-resolution simulations of fluid flow in complexly fractured networks and
porous media using linear (Matthäi & Roberts 1996; Matthäi et al. 1998) and quadratic
(Matthäi & Belayneh 2004) finite element interpolation functions. For linear interpolation
functions, the velocities are element-wise constant and hence discontinuous between two
adjacent elements. They are, however, continuous between adjacent node-centered finite
volumes (Fig. 5). By integrating the flux at each segment, i.e. the product of velocity, nor-
mal vector, and segment length, over the entire surface of the finite volume, conservation
of mass is obtained on the finite volumes (Durlofsky 1994).

Either method has distinct advantages and disadvantages. It has been argued that
the continuous fluxes of the mixed-element formulation commonly yield more accurate
streamlines, particularly for coarse meshes and strongly heterogeneous permeability fields
(Durlofsky 1994; Mosé et al. 1994). On the other hand, mixed-element methods produce
solution matrices that are no longer symmetric positive definite and contain between 1.5 to
4 times more unknowns as in standard finite element methods (Durlofsky 1994; Cordes &
Kinzelbach 1996). It further can be shown that the lowest order mixed-element methods
yields the same results (pressure, velocity, and flux) as linear triangular finite elements
(Cordes & Kinzelbach 1996). Cordes & Kinzelbach (1992) use a postprocessing technique
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to increase the accuracy of element-wise differentiated velocities. The error of the velocity
field computed from mixed-element or Galerkin methods is approximately the same for
sufficiently large models (Lachassagne et al. 1989) because mixed-element methods ap-
proximate the conductivity in the stiffness matrix as the harmonic mean while standard
Galerkin methods approximate it by arithmetic weighting (Cordes & Kinzelbach 1996).
Mixed-element methods therefore underestimate the total flux while standard Galerkin
methods overestimate it. Hydrological scenarios are hence likely to occur where either
method is closer to the true solution (Cordes & Kinzelbach 1996). Due to the successful
applications of Galerkin methods to model fluid flow in strongly heterogeneous porous and
fractured media (Matthäi & Roberts 1996; Matthäi et al. 1998; Matthäi & Belayneh 2004)
and its suitability for applications of fast matrix solvers such as algebraic multigrid meth-
ods (Roberts & Matthäi 1996), we employ the Galerkin finite element method to calculate
the fluid pressure field and use element-wise differentiation for the fluid velocities. This
method is described in the next section.

3.3 Finite Element Method

We use a standard Galerkin finite element method, where the transport parameters (i.e.,
k, φ, q) are defined on the finite elements, to approximate the spatial operators in equation
6. If capillary pressure is present, then we approximate equation 11 and solve for the
wetting phase pressure pw. For simplicity, we first explain the finite element approximation
of equation 6 and expand this later to include capillary pressure (Eq. 11). The backward
Euler method is used to discretize the time derivative. This yields the fluid pressure at the
nodes of the finite elements at each time step. The nodal fluid pressure is differentiated to
compute the total velocities from Darcy’s law (Eq. 3). Fluid flux conserves mass across
the boundary segments of finite volumes within associated finite elements (Fig. 5).

The Galerkin finite element method is well established and excellent descriptions are
available in the literature (Huyakorn & Pinder 1983; Zienkiewicz & Taylor 2000). There-
fore, only a brief description is provided here.

The computational domain Ω is discretized into a family of triangular finite elements
(Fig. 3). We also consider a finite element space V of linear polynomial functions which are
restricted to each triangle in the finite element mesh. For each such finite element space
there is a set of m Lagrange points Nh = {xi}m

i=1 and a set of basis functions {Φi}m
i=1 ⊂ V

such that

Φi(xj) =

{

1 if i = j,
0 otherwise.

(12)

xj is the coordinate vector at node j. Any v ∈ V can be written as

v(x) =

M
∑

j=1

v(xj)Φj(x). (13)

Consider a general differential equation

L[u] = 0 (14)
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where L is a spatial differential operator. The Galerkin finite element approximation to
the solution of this equation is obtained as the function u ∈ V which satisfies

∫

Ω

L[u] Φi dx = 0 (15)

for all basis functions Φi. This leads to a set of m (possibly nonlinear) equations which
need to be solved for the coordinates of u in the given basis {Φi}m

i=1.
The Galerkin finite element form of equation 6 is given by a function p(x, t) such that

for fixed time t, the function p(·, t) ∈ V. The function p satisfies
∫

Ω

φct

∂p

∂t
Φi dx = −

∫

Ω

λt∇pk∇Φi dx (16)

−

∫

Ω

(λnρn + λwρw)gTk∇Φi dx +

∫

Ω

qtΦi dx

for all basis functions Φi. p is represented by the interpolation function

p(x, t) =
m

∑

j=1

pj(t)Φj(x) (17)

In terms of the functions pj(t) = p(xj, t), equation 16 can be written as the coupled
system of algebraic differential equations

m
∑

j=1

dpj

dt
(t)Aij(t) = −

m
∑

j=1

pj(t)Kij(t) + qi(t). (18)

where

Aij(t) =

∫

Ω

φctΦjΦi dx and Kij(t) =

∫

Ω

λt∇Φjk∇Φi dx (19)

and

qi(t) = −

∫

Ω

(λnρn + λwρw) gTk∇Φidx +

∫

Ω

qtΦi dx (20)

Using backward Euler time-stepping to solve this system of equations, we obtain an equa-
tion for pk

j where the superscript k denotes the approximation of the function at time k∆t,
where ∆t is the time-step. The evolution equation for pk

j is given by

m
∑

j=1

(Ak+1
ij + ∆tKk+1

ij )pk+1
j =

m
∑

j=1

Ak
ijp

k
j + ∆tqk+1

i (21)

Mass lumping, i.e. diagonalization, of the matrix Aij is common and was shown to be
essential to avoid spurious oscillations for simulations of unsaturated flow (Celia et al.
1990). Each finite element mass matrix is diagonalized by summing up all entries of a row

Ãe,ij =

{ ∑

j=1
Ae,ij for i = j

0 for i 6= j
(22)

8



Capillary pressure effects are included by the finite element discretization of the term
∇1

2
[(λn − λw)k∇pc] in equation 6 and its addition to the right-hand side qi(t) in equation

20 as
1

2

∫

Ω

(λn − λw)∇pT
c k∇Φidx (23)

Equation 21, which may be written as Ax = b, is sparse, symmetric, and positive
definite and can be solved efficiently using (algebraic) multigrid methods (Roberts &
Matthäi 1996; Stüben 2001). A multigrid solver repeatedly applies a v-cycle, during which
x is approximated by the trial solution x̃. This solution is then smoothed and the grid
is coarsened, i.e. the problem Ax = b is restricted recursively to smaller grids until the
problem can be solved exactly on the coarsest grid, for example by LU decomposition.
This solution is then interpolated back onto successively finer grids until an improved trial
solution x̃ is obtained. Repeated smoothing, grid coarsening, and interpolation will then
lead to a trial solution that solves the problem Ax = b within numerical precision. In
particular, algebraic multigrid solvers do not require any geometric information of the
domain and can therefore be used as a plug-in that yields the most efficient method to
solve problems with very large numbers of unknowns in geometrically complex structures
(Stüben 2001).

We obtain the element-wise constant phase velocity vα in a post-processing step after
solving equation 21 from

vαj =

n,d
∑

i,j

−pαikij∇Φjiλα + kijλαgjρα (24)

Here, i and j are indices over the n nodes of e, respectively its dimension d. ∇Φ is a matrix
of size d × n holding the derivatives of Φ. λα and ρα are assumed, for simplicity, to be
constant in e.

3.4 Finite Volume Method

In the finite volume method, the element-wise constant velocities calculated from equation
24 are employed to compute the mass balance for the fluid phases (Eq. 1). For simplicity,
we first assume that capillary and gravity effects are absent and derive the complete finite
volume formulation including capillary and gravitational flow later. We use the identity
vα = fαvt and integrate equation 9 over a finite volume Vi

∫

Vi

φ
∂Sα

∂t
dV = −

∫

Vi

∇ · (fαvt) dV +

∫

Vi

qα dV (25)

Within each finite volume Vi, the saturation Sα is assumed to be constant. Applying the
divergence theorem to equation 25 leads to the accumulation of all segment fluxes in and
out of Vi

∫

Vi

φi

∂Sα

∂t
dV = −

1

Ai

nsi
∑

j

[fαjvtj]
k · nj +

∆t

Ai

nei
∑

e

1

3
qk
αeAe (26)

9



where
∑nsi

j is the summation of all fluxes [fαjvtj] ·nj at segment j belonging to the group
of segments nsi of finite volume Vi. Ai is the area of the control volume, Ae that of the finite
element, and nj is the outward normal vector to j-th segment, scaled by the length of the
segment. As the source/sink terms qα are defined on the finite elements, their contribution
to a finite volume i is computed by summation

∑nei

e of each source term associated with
a finite element e that belongs to the group of finite elements nei connected to the finite
volume Vi. Note that source/sink terms must be multiplied by 1/3 because each finite
element contributes 1/3 of its volume to the associated finite volumes (Fig. 4). Using a
forward Euler discretization in time on equation 26 yields, after rearranging, the evolution
of Sα in Vi from time k to k + 1 in the final form

Sk+1
αi = Sk

αi −
∆t

φiAi

nsi
∑

j

[fαjvtj] · nj +
∆t

φiAi

nei
∑

e

1

3
qαeAe (27)

where ∆t is the time-step. Its size is given by the CFL criterion, stating that the maximum
volume flux per time-step must not exceed the area of the associated finite volume.

If capillary and gravity effects are present, equation 25 must include the divergence
terms for capillary pressure and gravity from equation 10

∫

Vi

φ
∂Sα

∂t
dV = −

∫

Vi

∇ · (fαvt) dV

+

∫

Vi

∇ ·
(

λ̄tkpc

)

dV

−

∫

Vi

∇ ·
(

∆ρgλ̄tk∇z
)

dV +

∫

Vi

qα dV (28)

Applying the same procedure to equation 28, i.e. the divergence theorem and forward
Euler discretization in time, yields the finite volume formulation including the segment
fluxes for capillary and gravity flow

Sk+1
αi = Sk

αi −
∆t

φiAi

nsi
∑

j

[fαjvtj]
k · nj

+
∆t

φiAi

nsi
∑

j

[

λ̄tj∇pc

]k
· nj

−
∆t

φiAi

nsi
∑

j

[

∆ρgλ̄tjk∇z
]k

· nj +
∆t

φiAi

nei
∑

e

1

3
qk
αeAe (29)

Note that ∇pc and ∆ρ are, as vα, element-wise constant.

3.4.1 Second-order Accuracy and Slope Limiters

A first-order accurate scheme for solving equation 27 or 29 is obtained if we approximate
Sαi by a constant for each volume Vi and compute the flux at segment j using a simple
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upwinding scheme, i.e. calculating fαj and λ̄tj from Sαi at the finite volume V up
i that lies

upstream of j. This leads to highly diffuse non-physical saturation fronts. A higher-order
accurate approximation of Sαi, respectively fαj and λ̄tj, is hence needed.

We obtain a second-order accurate solution of equation 27 or 29 by reconstructing the
linear gradient of the saturation Sαi in the control volume Vi. This is achieved by using
a least squares method to fit a plane through Sαi and the saturation values Sαj at the ni

neighboring control volumes Vj of Vi, such that Sαi varies linearly in Vi. In two dimensions,
this gradient a = (a1, a2) satisfies

2
∑

l=1

Mklal = bk (30)

where

Mkl =
n

∑

j=1

(xjk − xik)(xjl − xil) (31)

and

bk =
n

∑

j=1

(Swj − Swi)(xjk − xik) (32)

and xi1 and xi2 are the two-dimensional spatial coordinates of the center of mass of finite
volume Vi, and xj1 and xj2 are the spatial coordinates of the center of mass of the neigh-
boring finite volumes Vj. The linearly approximated saturation S̃αj is, at any point within
the finite volume Vi, is given by

S̃αi(x) = Sαi + a · (x − xi) (33)

where x ∈ Vi. Evaluating S̃αi at each segment j, the fractional flow fαj is then calculated
for S̃αi at the upstream finite volume V up

i such that equation 27 or 29 is solved to second-
order accuracy.

Although second-order accuracy in space is now achieved, the linear reconstruction S̃αi

will introduce spurious oscillations resulting in non-physical values of Sα, because fαj may
over- or under-predict the flux where sudden jumps (shocks) in Sα occur over two adjacent
finite volumes. The application of a slope limiter is hence essential to smooth the gradient
of Sαi if such shock fronts occur. In particular the limited function S̄αi is obtained for S̃αi

as
S̄αi(x) = Sαi + Ψi (a · (x − xi)) (34)

where 0 ≤ Ψi ≤ 1 is a chosen limiter. With Ψi = 1, the gradient of Sαi is fully retained.
With Ψi = 0, the saturation Sαi is constant in Vi resulting in a first-order scheme. With
0 < Ψi < 1, the gradient of Sαi is limited by a factor Ψi. Values of Ψi < 1 occur in the
vicinity of shock fronts (i.e., discontinuous changes of Sα) to limit the gradient and avoid
spurious oscillations.

We use the MINMOD limiter to calculate Ψj as the minimum of a value ri or 1

Ψj = min [ri, 1] (35)
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The minimum of ri is calculated by comparing Sα at finite volume i and its linear approx-
imation S̃αj at all segments j belonging to i

ri =







(Smax
αi − Sαi)/(S̃αj − Sαi) S̃αj > Sαi

(Smin
αi − Sαi)/(S̃αj − Sαi) S̃αj < Sαi

1 S̃αj = Sαi

Smin
αi and Smax

αi is the minimum, respectively maximum value of Sα at finite volume i and
S̃αj at all its segments j. Solving equation 29 with fαj and λ̄tj calculated for the linearly
approximated and limited saturation S̄αj at segment j of the upstream finite volume V up

i

yields

Sk+1
αi = Sk

αi −
∆t

φiAi

nsi
∑

j

[

fαj

(

S̄αj

)

vtj

]k
· nj

+
∆t

φiAi

nsi
∑

j

[

λ̄tj

(

S̄αj

)

∇pc

]k
· nj

−
∆t

φiAi

nsi
∑

j

[

∆ρgλ̄tj

(

S̄αj

)

k∇z
]k

· nj +
∆t

φAi

nei
∑

e

1

3
qk
αeAe (36)

Such total variation diminishing (TVD) schemes (Harten 1983; Sweby 1984) appear to
be computationally the most efficient methods when applied to a simple one-dimensional,
linear conservation law such as the advection equation. Therefore, TVD methods are
usually employed to solve the advection equation within the FEFVM framework (Eymard
et al. 1989; Durlofsky 1993; Bergamaschi et al. 1998; Huber & Helmig 1999).

4 Validation of the Numerical Methods

4.1 Buckley-Leverett Problem

If gravity and capillary effects are neglected, the multiphase flow problem reduces to the
Buckley-Leverett problem (Buckley & Leverett 1942), for which analytical solutions can
be derived (Helmig 1997). Our numerical method is compared to an analytical solution of
the one dimensional Buckley-Leverett problem using the relative permeability functions

krw(Sw) = S4
w

and
krn(Sw) = (1 − Sw)2(1 − S2

w)

of the Brooks-Corey model (Brooks & Corey 1964) with a pore size distribution index of
2 (Fig. 2). We chose a uniform isotropic permeability of k = 10−13 m2, a uniform porosity
φ = 0.15 and a fluid pressure gradient of 1000 Pa m−1. The viscosity of the water phase
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µw and the oil phase µn are the same at 0.001 Pa s−1. Initially, the medium is saturated
with oil (Sn = 0.9) that is replaced from the left by the intruding water phase with a
saturation of Sw = 0.9. The meshes are pseudo one-dimensional with uniform triangular
finite elements and consist of 60 and 200 nodes, respectively, in the x-direction. The fluid
pressure is updated every 0.1 days.

Figure 6 shows the comparison of the numerical solution for the coarse and fine meshes
with the analytical solution for the Buckley-Leverett problem after 105 days. The numerical
solution shows a very good agreement with the analytical solution. Numerical diffusion
at the shock front is minimal and the rarefaction fan, i.e. the nonlinear change in Sw to
the left of the shock front, is matched very closely. The solution improves as the mesh is
refined.

4.2 Comparison to other Methods

We now present a comparison of the numerical results for the Buckley-Leverett prob-
lem to results obtained with an upwind-weighted, fully coupled finite element method
(Huyakorn & Pinder 1978; Dalen 1979; Forsyth 1991; Helmig & Huber 1998) implemented
into CSP by Burri (2004) and with the integrated finite difference method (Narasimhan &
Witherspoon 1976) using TOUGH (Pruess 1991). The same parameters as in the FEFVM
simulations were used for the fully coupled finite element and TOUGH simulations. Fur-
thermore, simulations carried out with TOUGH used an upstream weighting of mobility
and permeability. The module EOS8 was employed with the appropriate adjustment of
the relative permeability model for the oil phase. The oil viscosity was fixed at 0.001 Pa
s−1. The gas phase was absent. The temperature was held uniform at 20◦C and pressures
varied from 1.1 × 106 Pa at the left boundary to 1.0 × 105 Pa at the right boundary such
that the water viscosity was constant at 0.001 Pa s−1 in the entire model while retaining
a pressure gradient of 1000 Pa m−1.

Figure 7 shows the results for the coarse mesh (60 nodes in x-direction) after 105 days.
Clearly, the FEFVM matches the analytical solution the closest. The fully coupled finite
element solution is also in relatively good agreement with the analytical solution but does
not match the shock front as well. The results obtained with TOUGH show the strongest
deviation from the analytical solution. The location of the shock front agrees partly but the
resolution of shock front is very diffuse. The numerical solutions with TOUGH improve
significantly as the mesh is refined. For the fine mesh (200 nodes in x-direction, not
shown), the numerical solution matches that of the fully coupled finite element method for
the coarse mesh. The fully coupled finite element method, however, has the drawback that
it requires significantly more CPU time due to the use of iterative schemes (Table 1).

4.3 Five-spot Waterflood Problem

In order to test the sensitivity of our numerical scheme to grid orientation effects we apply
it to the five-point waterflood problem (Spivak et al. 1977). This problem consists of
two test cases, neglects capillary and gravity effects, and only considers incompressible
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and immiscible fluid flow. In both cases, a square domain (here 100 × 100 meters with
k = 10−14 m2) is initially saturated with oil (Sn = 1.0). In the first case (Fig. 8a), water
is injected in the lower left corner (Sw = 1.0), replacing the oil, which is extracted in the
upper right corner. Here, the principal flow direction is diagonal to the grid. In the second
case (Fig. 8b), water is injected in the lower left and upper right corners (Sw = 1.0), oil
is replaced and extracted in the lower right and upper left corners, respectively. Here, the
flow is parallel to the grid. In both cases, the pumping rates are held constant. We solve
the five-point waterflood problem for finite element grids consisting of 4,096 and 32,768
triangular finite elements using the same Brooks-Corey function and viscosity ratio as for
the Buckley-Leverett test case. The fluid pressure field is updated every 4.32 × 10−4 pore
volumes injected (PVI).

Figure 9 shows the saturation contours for the water phase for both cases after 0.015
PVI. A good numerical scheme should reproduce quarter circle shaped saturation fronts
or the water phase (Spivak et al. 1977). For the coarse and the fine mesh, the numerical
scheme does not show major grid orientation effects or cross diffusion and the saturation
fronts are represented by highly resolved quarter circles.

5 Two-phase Flow in Heterogeneous Reservoirs

In the following, three numerical experiments are discussed which test the applicability of
our method to simulations of multiphase flow in highly-heterogeneous reservoirs represented
by regular and irregular triangulated finite element meshes. The first test case considers
flow in a porous medium with a random permeability field, the second test case describes
flow towards a pumping well within an idealized fractured reservoir. The same relative
permeability model as in section 4 is used. The last test-case comprises buoyancy driven
hydrocarbon migration in an idealized faulted sedimentary basin.

5.1 Flow in a Random Permeability Field

We have modeled flow in a square domain with a random permeability structure. The
model setup is analogous to the first test case of the five-spot waterflood problem (Fig.
8a). Water is injected in the lower left corner at a constant rate (Sw = 1.0) into a reservoir
initially fully saturated with oil (Sn = 1.0). Oil is pumped out of the reservoir in the upper
right corner. In both cases, pumping rates are held constant. A random permeability field
was created using a log normal distribution, a mean of -12.0, a variance of 0.3, and a corre-
lation length of 2.0 (Bellin & Rubin 1996). The fine triangular finite element discretization
of the five-spot waterflood problem consisting of 32,768 elements was used.

Figure 10 shows the permeability field and the numerical solution of the water phase
after 0.015 PVI. Our method retains the shock fronts even in a permeable medium with
permeability variations over four orders of magnitude.
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5.2 Flow Towards a Pumping Well Within an Interconnected

Fracture Model

Faults in oil reservoirs have a strong influence on the total permeability and cause difficul-
ties when predicting oil recovery (Matthäi & Roberts 1996; Matthäi et al. 1998) (Fig. 1).
Furthermore, permeability fields are discontinuous because variations in permeability are
bound to distinct geological structures. To study the ability of the numerical method to
model pumping in a reservoir with an idealized interconnected fracture system, flow around
a well located in the center of an interconnected fracture network is examined (Fig. 11).
All fractures have an equivalent porous media representation and are represented as thin
cuts (10 cm) in a plan view of the reservoir. The fracture aperture is still over-represented
by a factor 100 and the effective medium permeability has been adjusted accordingly. The
matrix permeability in the reservoir is set to km = 10−13 m2 while the fracture permeability
is kf = 10−9 m2. The matrix porosity is φm = 0.1 while the fracture porosity is φf = 1.0.
The oil phase is twice as viscous as the water phase. Initially, the reservoir is assumed to be
completely filled with oil (Sn = 1.0) and subsequently pumped empty (Dirichlet conditions
of Sw = 1.0 along the boundaries of the model). Reservoir boundary pressures are fixed,
simulating infinite-acting reservoir behavior. The model dimensions are 50 × 50 meters.
The unstructured mesh consisted of 20,586 finite elements. Element areas vary from 0.001
to 1 m2. The smallest triangles are located within the fractures. The fluid pressure is
updated every 0.025 pore volumes extracted (PVE).

Figure 12 shows that the presence of conductive fractured leads to dramatic deviations
from radial drawdown. Water is focused into the fractures where the flow is fastest. Oil
can be extracted efficiently through the fractures but only slowly from some parts of the
matrix. The oil within the fracture-bounded block in the reservoir around the well (i.e., the
part of the reservoir that is totally surrounded by fractures) is recovered first and displaced
by water. This implies that oil-production rate rapidly decreases with time as water break
through in the well occurs long before any of the oil in most parts of the matrix has been
mobilized.

5.3 Secondary Migration in a Faulted Reservoir

To illustrate the ability of the numerical method to compute density driven two-phase flow
on the reservoir scale, we have modeled two-phase flow including gravity and capillary
effects to simulate secondary migration within an idealized faulted sedimentary basin. The
sedimentary basin comprises an anticlinal structure that is offset by two normal faults that
are highly permeable. The anticline consists of four different sedimentary layers. Its top
layer (Layer 4) has the low permeability of 10−16 m2 and high capillary entry pressure of
10000 Pa. It hence forms a barrier. Table 2 lists the properties of the different sedimentary
layers. We assume that oil is lighter than water, having a density of ρn = 800 kg m−3 while
the water phase has a density of ρw = 1000 kg m−3. Furthermore, oil is assumed to be
three times as viscous as water. Dirichlet boundary conditions were applied at the top
and bottom model boundary for the oil saturations and on the top boundary for the fluid
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pressure. The oil source is initially entirely saturated with oil (Sn = 0.9), the overlying
reservoir entirely with water (Sw = 1.0).

Figure 14 shows the oil movement after 2000 and 4000 years of migration, respectively.
In this hypothetical example, oil rises in a series of individual fingers from its source
region. Water is being displaced by the buoyant oil and sinks down. In the shallower part
of the model, oil is trapped below the low-permeability layer of the anticline. Since oil
is lighter than water, it flows underneath this barrier to the top of the anticline. As oil
accumulates below the low-permeability layer, the capillary pressure increases. When the
capillary pressure in the layer below the barrier is higher than the barrier’s entry pressure,
small amounts of oil diffuse into the low-permeability layer due to the capillary pressure
gradient (Fig. 14b). Where the fault zone breaks the barrier, oil rapidly discharges into
the sediments above. It is interesting to note that the flow is not distinctly focused into the
high-permeability faults. Oil only flows through the fault zone where the fault cross-cuts
the low-permeability layer.

6 Discussion

The presented combination of a node-centered finite volume method with a standard
Galerkin finite element method is well suited to model multiphase flow in structurally
complex geologic media. It is computationally more efficient and accurate than alterna-
tive fully coupled solution techniques using finite element or integrated finite difference
discretizations. The technique is an interesting alternative to the approach discussed by
Durlofsky (1993), because it does not need a mixed-element formalism. It hence can be
implemented straightforwardly into existing finite element (or finite difference) codes that
can solve parabolic and elliptic partial differential equations.

Three limitations of the combined finite element-finite volume method, however, exist.
First, the storage and CPU requirements necessary to construct a 3D finite volume subgrid
from tetrahedral elements are high. This makes the method less efficient for 3D simulations.
The number of finite elements, and consequently finite volumes, can be reduced significantly
if mixed finite element meshes are used in three dimensions (Matthäi 2003).

Second, if extremely high fluid velocities occur in very small finite volumes, the explicit
solution of the continuity equation requires very small time-steps, which increases the
CPU time. A possibility to circumvent this problem could be the use of finite volume
time domain methods. These techniques are commonly employed in numerical simulations
of electromagnetic processes (Fumeaux et al. 2004). They partition the finite volume
domain into several sub-domains where local time-steps can be applied without violating
the stability criterion.

Last, Huber & Helmig (1999) have discussed that a finite volume discretization of
the capillary flux (Eq. 29) leads to instabilities in the numerical solution if the capillary
pressure varies discontinuously at material interfaces. It is, however, possible to derive an
alternative, numerically more stable formulation for the capillary pressure (Helmig 1997).
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Using the chain rule, ∇pc can be expressed as

∇pc =
dpc

dSα

∇Sα (37)

Note that dpc/dSα has a positive sign if α = n and negative sign if α = w. By inserting this
identity into the capillary pressure term of equation 10, the following nonlinear diffusion
equation can be derived

φ
∂Sα

∂t diff

= ∇ ·

(

λ̄tk
dpc

dSα

∇Sα

)

(38)

This equation describes the diffusive spreading of the saturation due to capillary pressure
effects with the diffusivity given by the term λ̄tkdpc/dSα. Due to its parabolic nature, it
is well suited for solution by implicit finite element methods. Its solution can occur before
or after the finite volume calculation of the advective transport of the fluid phases. While
this formulation is numerically more stable than the finite volume discretization of the ∇pc

term (Eq. 29) it under-predicts, however, the possible build-up of saturation at material
interfaces (Helmig 1997; Burri 2004).

7 Conclusions

We have combined a standard Galerkin finite element method with a second order accurate
TVD finite volume method to model multiphase fluid flow in the Earth’s crust. This tech-
nique applies an implicit pressure, explicit saturation formalism. The use of least-squares
methods to obtain a TVD method for node-centered finite volumes allows us to compute
very precise numerical solutions that accurately preserve shock fronts and rarefaction fans.
Cross-diffusion is virtually absent in this TVD scheme. This approach proves as an efficient
way to model two-phase flow of incompressible fluids in geologic media with complex geo-
metrical structures and large variations and discontinuous changes in the hydrological rock
properties (permeability, porosity) and fluid velocities. Our node-centered finite volume
method does not require the use of a mixed-element formulation to solve for fluid pressure
and fluid velocity simultaneously.
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Eymard R, Gallouët T and Joly P (1989) Hybrid finite element techniques for oil recovery
simulation. Computer Methods in Applied Mechanics and Engineering, 74, 83–98.

Forsyth PA (1991) A control volume finite element approach to NAPL groundwater con-
tamination. SIAM Journal on Scientific Computing, 12, 1029–1057.

Fumeaux C, Baumann D, Leuchtmann P and Vahldieck R (2004) A generalized local time-
step scheme for efficient FVTD simulations in strongly inhomogeneous meshes. IEEE
Transactions on Microwave Theory and Techniques, 52, 1067–1076.

Harten A (1983) High resolution schemes for hyperbolic conservation laws. Journal of
Computational Physics, 49, 357–393.

Helmig R (1997) Multi-phase Flow and Transport Processes in the Subsurface, Springer
Verlag, Berlin.

Helmig R and Huber R (1998) Comparison of Galerkin-type discretization techniques for
two-phase flow in heterogeneous porous media. Advances in Water Resources, 21,
697–711.

Helmig R and Huber R (1999) Multi-phase flow in heterogeneous porous media: A classical
finite element method versus and implicit pressure-explicit saturation-based mixed
finite element-finite volume approach. International Journal for Numerical Methods
in Fluids, 29, 899–920.

Huber R and Helmig R (2000) Node-centered finite volume discretizations for the nu-
merical simulation of multi-phase flow in heterogeneous porous media. Computational
Geosciences, 4, 141–164.

Huyakorn PS and Pinder GF (1978) A new finite element technique for the solution of
two-phase flow through porous media. Advances in Water Resources, 1, 285–298.

Huyakorn PS and Pinder GF (1987) Computational Methods in Subsurface Flow, Academic
Press, New York.

Jenny P, Wolfensteiner C, Lee SH and Dourlofsky LJ (2002) Modeling flow in geometrically
complex reservoirs using hexahedral multiblock grids. SPE Journal, 7, 149–157.

Lee SH, Tchelepi HA, Jenny P and DeChant LJ (2002) Implementation of a flux-continuous
finite-difference method for stratigraphic hexahedron grids. SPE Journal, 7, 267–277.

19



Letniowski FW and Forsyth PA (1991) A control volume finite element method for three-
dimensional NAPL groundwater contamination. International Journal for Numerical
Methods in Fluids, 13, 955–970.

Lachassagne P, Ledoux E and de Marsily G (1989) Evaluation of hydrogeological param-
eters in heterogeneous porous media. In: Groundwater Management: Quantity and
Quality (Proceedings of the Benidorm Symposium, October 1989) IAHS Publications,
188, 3–18.
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(a)

(b)

Fault

Figure 1: Fluid pressure contours (dashed lines) and stream lines (bold lines) in a rock
matrix (500 × 450 meters) with a highly permeable fault zone (approximately 50 cm wide),
after Phillips (1991). The permeability of the fault zone is 5 orders of magnitude higher
than the matrix permeability and fluid velocities vary up to 5 orders of magnitude. Due
to its high permeability, fluid flow is focused into the fault zone (a). Flow is fastest where
the fluid pressure contours have the closest spacing, i.e. at the tip of the fault (b)
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Figure 2: Relative permeability curves as a function of the saturation of the wetting phase
for the Brooks-Corey model and the Van Genuchten model with input parameters of 2 and
5, respectively. Residual saturations are 0 in both models.
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Figure 3: Triangular finite element mesh of the geometry depicted in Figure 1.
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Figure 5: One-dimensional uniform finite element – finite volume grid showing the flux-
continuity across boundaries of adjacent finite volumes. The long dashed lines are the
boundaries between four finite elements e. The short dashed lines are the boundaries, i.e.
finite volume segments, between five node-centered finite volumes V . The run of the fluid
pressure p is shown by the gray line. The derivative dp/dx, which is proportional to the
fluid velocity v, is shown by the black horizontal lines. For linear interpolation functions
Φ, dp/dx is constant and continuous across each finite volume segment but discontinuous
across two neighboring finite elements. Integration of the segment flux, i.e. the product of
velocity, normal vector, and segment length, over the surface of the finite volume conserves
mass on the node-centered finite volume.
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Figure 6: Comparison of the pseudo one-dimensional numerical solution for a coarse and
fine mesh (60 nodes and 200 in x-direction, respectively) to the analytical solution of the
Buckley-Leverett problem. The water phase displaces the oil phase in a homogeneous
porous media. Snapshot is taken after 105 days.
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methods on the coarse mesh (60 nodes in x-direction). The water phase displaces the oil
phase in a homogeneous porous media. Snapshot is taken after 105 days.
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Figure 8: Setup of the five-spot waterflood problem with part of the triangular finite
element mesh (not to scale). In case 1, water is injected in the lower left corner, while oil
is extracted in the upper right corner (a). Flow is diagonal to the grid. In case 2, water is
injected in the lower left and upper right corners, while oil is extracted in the lower right
and upper left corners (b). Flow is parallel to the grid. Dimensions are 100 × 100 meters.
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Figure 9: Numerical solution for the five-spot waterflood problem for a coarse (a,c) and
fine (b,d) finite element mesh, respectively. Contours show the water saturation after 0.015
PVI. In cases (a) and (b), water is injected in the lower left corner, while oil is extracted
in the upper right corner. Here, flow is diagonal to the grid. In cases (c) and (d), water is
injected in the lower left and upper right corners, while oil is extracted in the lower right
and upper left corners. Here, flow is parallel to the grid.
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Figure 10: Permeability field (darkest values correspond to k = 10−14 m2, brightest values
to k = 10−10 m2) (a) and numerical solution showing the contours of the water saturation
after 0.015 PVI (b).
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Figure 11: Model setup (plan view) for the simulation of pumping in a reservoir with an
interconnected fracture system (a) and finite element triangulation (b). Note that triangles
within the fractures and their immediate vicinity are so small that they are not resolved
on the model scale and appear as bold black lines. Model dimensions are 50 × 50 meters.
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Figure 12: Contours of water saturation after 10 PVE (a) and close-up of the model in the
area of the well (b). Arrows depict direction of flow. Note how flow is focused into and
out of the fractures due to the deviations in fluid pressure from the radial drawdown.
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Figure 13: Structure of the idealized faulted sedimentary basin with its lithologies (a)
and the corresponding triangular finite element mesh (b). The properties of the different
lithologies are listed in Table 2. The model was discretized by 17,545 triangular finite
elements with element areas varying from 18 to 108 m2. Model dimensions are 1500× 700
meters.
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Figure 14: Oil saturation after 2000 years (a) and 4000 years (b).

35



Scheme ∆t [d] Runtime [min] Total iterations Avg. iterations
Picard 0.1 1:55 6980 4.65
Picard 0.33 1:18 4195 9.22
Newton 0.1 4:07 6057 4.09
Newton 0.33 2:13 3377 7.35
FEFVM 0.1 0:16 - -

Table 1: Runtime properties for fully coupled finite element and FEFVM approaches for
the Buckley-Leverett problem using the coarse mesh. Picard and Newton iteration schemes
were employed in the fully coupled finite element formulation. Simulations were carried
out on a Pentium IV processor with 2.6 GHz. Runtime properties for TOUGH simulations
are not shown because these runs were carried out on a Sun workstation.
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Layer log k [m2] φ [-] BC [-] pe [Pa] Swr [-] Snr [-]
Oil source -14.3 0.2 2.5 5000.0 0.05 0.15
Layer 1 -13.0 0.2 2.5 1000.0 0.05 0.15
Layer 2 -14.0 0.15 2.0 3000.0 0.07 0.17
Layer 3 -12.3 0.22 3.0 750.0 0.05 0.10
Layer 4 -16.0 0.1 1.8 10000.0 0.09 0.22
Fault -12.0 1.0 1.0 0.0 0.01 0.07

Table 2: Properties of the different rock units of the sedimentary basin depicted in Figure
13. BC denotes the Brooks-Corey parameter, pe the capillary entry pressure, and Swr and
Snr the residual saturations of the wetting and non-wetting phase, respectively.

37



Symbol Parameter Unit
a Gradient vector [m−1]
A Finite volume area [m2]
ct Total system compressibility [Pa−1]
e Element [–]
f Fractional flow function [–]
g Gravitational acceleration vector [kg m s−2]
i, j Indices over nodes [–]
kr Relative permeability function [–]
k Permeability tensor [m2]
n Non-wetting (oil) phase [–]
n Normal vector [–]
p Fluid pressure [Pa]
q Fluid source/sink [m3 s−1]
r Limiter value [–]
s Finite volume segment [–]
S Saturation [–]
t Time [s]
t As subscript: Total (oil + water) property [–]
v Fluid velocity [m s−1]
V Finite volume [–]
w Wetting (water) phase [–]
x Coordinate vector [m]
α Phase [–]
∆ Increment [–]
λ Mobility [Pa s−1]
µ Viscosity [Pa s−1]
φ Porosity [–]
Φ Basis or interpolation function [–]
Ψ Limiter function [–]
ρ Density [kg m−3]
Ω Computational domain [–]

Table 3: List of used symbols and corresponding units.
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