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Abstract. The content-based publish/subscribe model has been adopted by many
services to deliver data between distributed users based onapplication-specific se-
mantics. Two key issues in such systems, the semantic expressiveness of content
matching and the scalability of the matching mechanism, areoften found to be in
conflict due to the complexity associated with content matching. In this paper, we
present a novel content-based publish/subscribe architecture based on peer-to-peer
matching trees. The system achieves scalability by partitioning the responsibility of
event matching to self-organized peers while allowing customizable matching func-
tionalities. Experimental results using a variety of real world datasets demonstrate the
scalability and flexibility of the system.
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1 Introduction

The deployment and application of event-based publish/subscribe services has increased
considerably over the past years. A number of emerging applications, ranging from simple
personal tools to large-scale and critical systems, benefitfrom this paradigm. Examples
include stock quote notification, Internet news feeds, real-time traffic control, and various
monitoring/management systems. Publish/subscribe systems deliver events from publish-
ers to subscribers based on their interests. Publishers andsubscribers can be completely
unaware of one another and communicate via the message brokers that match events to in-
terested data users. This decoupling provides an attractive communication mechanism for
building large scale distributed systems.

The expressiveness of subscriber interests is a key factor in such middlewares. Early
publish/subscribe systems like TIBCO [20] and CORBA event channels [13] are subject-
based. Subscribers join a set of subject groups that they areinterested in and receive all
messages associated with the subjects.

Content-based publish/subscribe systems allow more flexibility in specifying subscriber
interests. Subscriptions specify filters on event contents. Only those events with attributes
matching the filters are delivered to the subscriber. A typical application is stock quote
notification. The events carry attributes of prices and trade volumes of individual stocks.
Subscribers may specify triggering ranges of price or volume for the stocks that they are
interested in. They get notification once events matching their subscriptions occur. Another
scenario is literature reference tracking. Researchers may subscribe to new publications
matching certain keywords in their titles, abstracts or bodies. They may also choose to
track new papers from certain authors or citing certain previous works. In both examples,
content-based filtering provides fine-grained control on the relevance of messages.



However, the power of expressiveness introduces an additional cost of matching events
to the complex filters specified by subscribers. As the systemscales with the number of sub-
scriptions and the volume of event messages, a centralized matching solution cannot meet
the computation and communication requirements. Therefore, we seek a solution to the
scalability issue by distributing the matching responsibility to many machines. In particu-
lar, we leverage peer-to-peer overlay techniques to build ahighly scalable publish/subscribe
system. In our system, broker nodes self-organize and maintain a decentralized data struc-
ture that stores the subscriptions, match the events to the subscriptions, and deliver the
events to relevant subscribers. Broker nodes may be added toor removed from the sys-
tem without global coordination. A key problem facing such ascalable system is how to
partition the workload among participating peers in a load-balanced fashion.

The flexibility provided by content expressiveness createschallenges to system scala-
bility. While a subject-based publish/subscribe system can easily partition the workload of
event delivery to a large set of servers by hashing the subjects among the servers, content-
based systems have more complex subscription structures that impede the workload parti-
tion. Three factors contribute to this difficulty:

1. High dimensionality of the content space: a general publish/subscribe system might
have to operate in a setting that involves a large number of attributes. To make things
even worse, subscribers and publishers do not always speak the same schema. Sub-
scribers seldom know in advance the schemas used by (potentially many) publishers.
Even if they do, they might be interested in only a subset of it.

2. Type flexibility : attributes may have various types that require different filtering tests.
3. Skewed data distribution is common in real world subscriptions and events. It can

create a load imbalance in the system that throttles the scalability.

Previous work on workload partitioning usually impose restrictions on the flexibility of
subscriptions and events. In [22] and [19], the set of attributes and their values are hashed
to decide the servers managing the subscriptions. This requires events and subscriptions to
follow certain pre-defined schemas, and only works well withequality tests. It is difficult to
efficiently support range subscriptions in such systems. Meghdoot [9] leverages CAN [15]
to partition the multi-attribute space. Though it can support range subscriptions, it is still
confined to numerical attributes and also can not handle skewed distributions efficiently.

Our Solution

In this paper, we propose a peer-to-peer architecture that achieves high scalability and gen-
erality. We address the expressiveness problem with a modular matching tree structure. This
tree organizes the subscriptions into hierarchical groupsbased on their similarity. It sup-
ports flexible schemas and multiple attribute types in subscriptions and events, and allows
customization of new attributes and filtering types. We distribute this matching tree in a
peer-to-peer system where each peer processor manages a small fragment of the tree. They
maintain the distributed tree by peer-wise communicationswithout global coordination.

Events can enter the system from any processor. A decentralized tree navigation algo-
rithm is used to forward the events to those tree fragments that may contain matching sub-
scriptions. In experiments using several real world data sets, the proposed system demon-
strates excellent scalability: the distributed event matching only visits a small number of
processors, processors maintain a small amount of state about peers, and the workload is
well-balanced across the processor set.



The next section gives a survey of related work. Section 3 details the structure of the
matching tree. Section 4 discusses how the tree is distributed and how to navigate the tree
in a decentralized manner. Section 5 focuses on how the distributed tree is maintained in
the face of churn and changing load conditions. Section 6 presents experimental results.

2 Related Work

Several centralized algorithms for content-based publish-subscribe [8, 7, 2, 10] have been
proposed to address the efficiency of the matching operation. Our matching tree bears some
similarity to previous work, such as [2, 10], which also use search tree structures. The key
differences are: 1) Our matching tree is more flexible, partitioning the subscriptions by
both schema content and attribute value, while [2, 10] only partition by the attribute value
specified in subscriptions. 2) We distribute the matching tree amongst peer processors to
address the scalability problem.

Distributed content-based publish/subscribe systems deploy a network of broker servers
to efficiently match and deliver events. Examples include Elvin [17], Siena [4], and Gryphon [2].
Elvin uses a central server to store subscriptions and matchevents. Therefore, it still im-
poses a bottleneck at the matching engine. Siena and Gryphondistribute the responsibility
of matching events to a set of distributed servers. Events follow a multicast tree to reach
all matching subscribers. However, they require the subscriptions to be replicated on all
servers. This causes a burden on server management and is a stumbling block to scalability.

To address this scalability problem, several systems consider the partitioning of content-
space and the subscription set. Riabovet al. have proposed clustering algorithms that par-
tition similar subscriptions into multicast groups. EDN [22] partitions the content space
subject to the restriction that the schema is fixed. For equality test, the attribute IDs and
values are hashed to generate a key to locate the server managing it. For inequality tests,
EDN uses an R-tree to decide offline how to assign subscriptions to processors, and requires
each processor to maintain a complete map of this assignment. This approach is limited to
small-scale systems with a fixed set of subscriptions, and itis also unclear as to whether it
works efficiently for high dimensional content space.

Peer-to-peer overlays have emerged as a promising approachto realizing highly scal-
able distributed systems. Several systems provide application-level multicast [12, 3] that
divides the data dissemination responsibilities amongst peers. They do not, however, ad-
dress the selective delivery of events. Recently, Distributed Hash Tables (DHTs) have been
employed to build scalable publish/subscribe systems. Scribe [5] uses Pastry [16] to build
a subject-based publish/subscribe service. It hashes eachtopic to a peer, which then acts
as the rendezvous point. The routing paths from subscribersto the rendezvous point form
a multicast tree for this subject. This approach, however, can not be adapted to efficiently
support the content-based publish/subscribe model.

A few previous projects have addressed content-based publish/subscribe in peer-to-peer
systems. [19] partitions the content-space by hashing a setof selected attributes and their
values into peer processors. The domain of attribute valuesare partitioned into intervals
for the hashing. A range subscription may need to be decomposed to multiple intervals,
resulting in storage and matching inefficiency. Furthermore, the subscriptions and events
are limited by the pre-selected attribute sets. Meghdoot [9] relaxes the restrictions on sub-
scriptions. It uses CAN [15] to manage the multi-attribute content-space. A subscription
defines a rectangular region in theD-attribute content space bounded by the minimal and



maximal value specified. Unspecified attributes take the whole value range. The hyper-
rectangle is projected to a point in a2D-dimension CAN constructed from the minimal
and maximal values of theD-dimension rectangle. An event is then mapped to a rectangle
in the2D space, and the mapping is performed in a manner such that the rectangle covers
all subscription points relevant to the event. This novel approach reduces the subscription
matching problem into a range query operation in CAN. The drawback with this approach
is that subscriptions are limited to numerical comparisons. Other tests like keyword subset
can not be supported. Furthermore, the subscriptions are only mapped to the upper-left side
of the diagonal hyper-plane of the CAN space, which may create load imbalance.

3 Content-based Event Matching

In this section, we start by describing the specification of events and subscriptions in our
system. We then present the main data structure, the matching tree, used in the system.

We also note that we focus primarily on the logical organization and navigation of the
matching tree in this section. The distributed operation and maintenance of the tree will be
presented in following sections.

3.1 Content-based Publish/Subscribe Model

We adopt a general event-space model with multiple attributes, based on the models used
in previous systems [7, 4, 2]. The contents of an event message is represented by a set of
attribute-value pairs. Each attribute has a unique name or ID. We support several types
of attributes:numerical (integer, floating point, and date/time),string, andset. The event
message can be represented ase = {A1 = v1, A2 = v2, . . . , Ak = vk}. Events from
different publishers may use different schemas, but we assume a consistent assignment of
unique attribute IDs and their types across the publishers to avoid naming confusion. One
could also employ hierarchical namespaces to achieve this coordination.

As an example, consider an event from a research reference database. Its contents may
be formulated as[title = TTT, date = YY/MM , authors = {A, B, C}, references =
{D1, D2, ...Dn}], wheretitle hasstring type,date is numerical, andauthors andreferences
fields are both of typeset, meaning they include an unordered list of keys.

A subscription is a conjunction of predicates over the attributes. Each predicate speci-
fies a boolean test over an attribute. The test specified by a predicate depends on the type
of the attribute. Table 1 lists the type of tests supported inour system. Disjunction of pred-
icates can be expressed by the “OR” of multiple conjunctions, so we treat a disjunctive
subscription as a set of independent conjunctive subscriptions.

We do not require events and subscriptions to use the same schemas. There may be a
large number of possible attributes, while any event and subscription may specify only a
subset of attributes. An event matches a subscription if every predicate specified is satisfied
by the attribute-value content of the event message. Not allattributes in the event need to
appear in the matching subscription. The additional attributes do not affect the matching re-
sults, since the subscription does not care about the valuesof these attributes. However, the
event does not match a subscription if an attribute specifiedin the subscription’s predicates
is missing from the event. This semi-structured matching capability is important for envi-
ronments with heterogeneous publishers. Some systems, like EDN [22], require all events
to use the same schema. Such restrictions limit the generality of the system and thus is not
desirable.



type tests
Numerical =, <, ≤, >, ≥

String =, <, ≤, >, ≥, prefix match
Set ∋, ⊇

Table 1.Predicates supported in the system

3.2 Content-Space Partition with a Matching Tree

We propose a matching tree algorithm to partition a general event space. A hierarchical
tree structure is used to partition the set of subscriptionsbased on their predicates. Each
internal node partitions the subscriptions by a similaritytest, so similar subscriptions can
be grouped to the same tree branch. In order to adapt to flexible attribute sets and schemas,
we build the similarity tests dynamically.

Two types of similarities are used in the tests. The first is the similarity of the attribute
set. The test takes an attribute from the subscriptions and hashes its name. The subscriptions
are assigned to one of two branches based on the hash value. After recursive partitioning
with several levels of internal nodes, each branch will havesubscriptions sharing the same
attribute. The second type groups subscriptions having similar value constraints for a com-
mon attribute. Depending on the type of this attribute, the test assigns the subscriptions to
two branches. For convenience, we label the child branches of an internal nodeL andR. In
addition, there is a wildcard branch, labeled as*, for subscriptions that do not contain the
attribute specified by the internal node.
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Fig. 1. Matching Tree

Figure 1 gives an example of the matching tree used for subscriptions to research pub-
lications. The root node partitions the subscriptions based on attributes specified in their
predicates. It takes the first attribute in the subscription(A1), hashes the name (A1.name),
and assigns the subscription to one of two branches based on the demarcating value of 5
for the result of the hash. The left child node of the root further partitions the subscrip-
tions based on the value of thedate attribute. If a subscription has a predicate that tests
thedate attribute, then it is stored in one or both of theL andR branches. For instance, if
the range of the predicate on the ‘date’ attribute intersects with the range(0, 03/05), the
subscription would be inserted in the left branch; if it intersects with the range[03/05,∞),
it would be inserted in the right branch; and a subscription that covers a broad range, like
{date > 12/04, authors ∋ X}, would be inserted in both branches. If a subscription’s
first attribute hashes to a value less than 5 and if that subscription does not have any pred-



icates referring to thedate attribute, then it is stored in the wild-card* branch. The right
child of the root node partitions the subscriptions based onhow they test theauthors at-
tribute. Sinceauthors is a set attribute, we pick any of the keys specified in the predicate
testing theauthors attribute, and hash it to decide the branch the subscriptionbelongs to.
The subscription{title == T } falls into the default branch∗, since it does not contain any
predicates testing theauthors attribute.

Event messages also navigate the same matching tree to find matching subscriptions.
Figure 1 gives an example of how an event is handled. The eventstarts from the root node.
It is passed on to both branches, because the attributes in the event,date andauthors,
hash to theL andR branches respectively. The event is further propagated through theR
branch at the left child node based on itsdate value. At the right child node, bothL and
R branches are followed, because the elements in theauthors field hash to either side of
the pivot value 7. At the leaf nodes, a centralized matching algorithm like the counting
algorithm [7] is used to match the event to the set of matchingsubscriptions.

Next, we give further details regarding the two partitioning methods.

3.3 Partitioning the Attribute Set

The first type of partitioning tries to group together subscriptions that test similar attributes.
We first order the predicates of a subscription based on theirselectivity. For simplicity,
we order equality tests before subset tests, and consider inequalities as the least selective.
More sophisticated techniques that take into account data distribution to order predicates
regarding their selectivity are also possible. We then takethe most selective predicate in
the subscriptions, and hash the attribute name into a binH(A1.name). Each child branch
manage a sequence of hash bins and the subscriptions fallinginto the sequence. A pivot
value separates the hash bins of the left and right branches.

While a subscription only descends into either the left or the right branch of this internal
node, an event may follow both branches. Given an event{A1 = v1, A2 = v2, . . . , Ak =
vk}, the left branch is taken if any of the hash valuesH(Ai.name) corresponds to the bins
on the left side of the pivot. Similarly, the right branch is taken if any of the hash values
corresponds to right-hand side bins. In general, when this form of partitioning is performed
iteratively at multiple internal nodes, an event withk attributes navigates into at mostk
branches under attribute set partitioning.

Given a set of subscriptions in a leaf node, we choose the pivot value that evenly parti-
tions the subscriptions. When the subscriptions’ most selective attribute is the same, either
because of user subscription pattern or due to prior partitioning of the attribute set, we parti-
tion based on the second and third most selective attributes. Therefore, the state information
maintained in an attributed set partitioning node includesthe order of the attribute being
hashed, the range of hash bins owned by this node, and the pivot value used for partitioning.

3.4 Partitioning Attribute Content

After partitioning the attribute set, each branch of the matching tree contains subscriptions
with similar attributes. We can therefore partition further using the value ranges of their
common attributes. We apply different strategies based on the attribute’s data type.

– Value range partition applies to numerical attributes. It splits the value range of the
attribute by a pivot value. The value range specified by predicates in the subscriptions



are compared to the pivot. If the whole range falls to the left/right of the pivot, the sub-
scription is assigned to the left/right branch. Otherwise,the subscription is replicated
into both branches. This strategy is therefore suitable forsubscriptions specifying nar-
row value ranges, for example, equality tests. The attribute set partitioning policy that
gives priority to highly selective predicates also improves efficiency of value range par-
tition. While subscriptions may be replicated in both branches, an event only descends
into one of them. So this approach reduces matching cost by using additional storage.

– Min/max partition divides the set of subscriptions instead of the value space.The
minimal/maximal value in the constraints is used to decide the branch it belongs to.
Therefore, a subscription is only assigned to one of the left/right branches. Conse-
quently, an event may need to navigate into both branches to locate matching sub-
scriptions. Figure 2 illustrates differences between the three strategies used to partition
range constraints on a numerical attribute.

– String value partition is similar to value range partitioning. A subscription witha
prefix predicate may be assigned to both branches if the prefixincludes the pivot string.

– Set partition hashes the keys specified in the subscriptions and divides the hashed key
space into two halves across a pivot key. A subscription specifying several keys for the
set attribute may choose to follow the branch decided by any of the keys. An event
message would have to navigate into all branches that its setmembers hash to. This is
necessary to ensure that all related subscriptions can be reached. Therefore, an event
message specifyingk keys for the set attribute may navigate into up tok branches
under multiple levels of set partitioning.

(a) Partition by Value Range (b) Partition by Min Value (c) Partition by Max Value

Fig. 2. Partitioning options based on a numerical attribute.

In all of the above mentioned types of attribute content based partitioning, the default
∗ branch may be taken if a subscription does not specify the attribute. An event always
traverses into the∗ branch if it exists, unless the attribute being partitionedis the only one
specified in the event.

3.5 Choosing Partition Method

The matching tree grows by splitting leaf nodes. We aim at distributing the subscriptions in
the leaf node evenly to the branches of the newly formed internal node. The two partitioning
methods described above have different levels of effectiveness under different situations.
When the subscriptions carry sets of attributes that differsignificantly, partitioning the value
space of any single attribute may only work on a small part of subscriptions while leaving
the majority in the wildcard branch. Attribute set partitioning is more effective in this case.
After subscriptions with the same attributes are grouped together, partitioning the content
of this attribute will yield more balanced results.

When a leaf node needs to be partitioned, we scan the subscriptions in the node, and
count the number of subscriptions associated with each attribute. We try to partition the



attributes that appear in at least half of the subscriptions, and choose the partition method
that yields best load balance, defined as the largest number of subscriptions in the branches
after split. If such attributes do not exist, we partition the attribute set.

Besides the partitioning approaches discussed above, we also use a special “partition”
method that replicates the set of subscriptions to both children branches. An event may
choose to follow any of the mirrored branches. As the branches are assigned to different
processors, this replication spreads out the load of event matching. We use this method
when the processor managing the leaf node is saturated by theevent traffic targeting the leaf
node. Such event hot spots may be found in some subscriptionsthat match a broad range
of events, for example,{V olume ≥ P1} in stock quote notification service (Section 6.1).

3.6 Extensibility

The above discussion illustrates that several different partitioning methods are used in our
system. Generally, for each data type, the system needs at least one partitioning method to
decide how the subscriptions and the events navigate the matching tree. Each partitioning
method is implemented as a module that provides three interface functions:

– Subscription branching: given the state in the node, decide which branch(es) a new
subscription needs to take.

– Event branching: given the state in the node, decide which branch(es) an event message
needs to take.

– Node split: given the set of subscriptions in a leaf node, decide the best way to partition
the subscriptions once the leaf node gets overloaded.

This modular design allows new data and predicate types to beintroduced into our system,
therefore ensuring generality.

4 Peer-to-Peer Matching Tree with Brushwood

In this section, we present the design of our peer-to-peer architecture. We distribute the
matching tree using peer-to-peer overlay techniques in order to achieve the following:

– Balanced distribution: We partition the matching tree into a set of subtrees, so that
the workload of managing subscriptions and matching eventscan be divided among
peer processors in a balanced manner.

– Locality and ability to support complex event filtering: Since the distribution is
at the granularity of subtrees, related subscriptions are stored on the same processor.
Furthermore, the generality of the matching tree ensures that our system can handle
subscriptions with range predicates and efficiently match events to such subscriptions.

– Symmetric distribution that avoids hotspots:We ensure that no processor in the sys-
tem is subject to inordinately high load. We avoid distribution schemes that assign the
root of the matching tree to a single processor, which is thensubject to handling every
new event or subscription. Instead, we make all subtrees self-contained and indepen-
dent. Each processor maintains the path from the root of the matching tree to the root
of the subtree in addition to maintaining the full set of internal nodes and leaf nodes
of the subtree. An event or subscription could be routed to any one of the processors,
which can either handle it locally or forward it to the appropriate processor(s).



– Scalability: We require that processors maintain small amounts of state regarding the
current state of the system. In particular, each processor in our system keeps track of
a logarithmic number of peers in the system. Peers periodically exchange information
regarding their portion of the matching tree, so that they can maintain a weakly consis-
tent partial view of the global matching tree. This partial view allows the processors to
forward subscriptions and event messages to relevant matching tree nodes.

4.1 Brushwood

We extend the Brushwood framework described in our positionpaper [24] to build the peer-
to-peer matching tree. Brushwood is a peer-to-peer search tree designed for scalable index-
ing of high dimensional data. Here we adapt its distributed organization for the publish-
subscribe needs.

Tree distribution: Brushwood partitions a search tree into self-contained fragments coop-
eratively managing the distributed tree. Figure 3 (a) illustrates our approach in distributing
a matching tree. The edges are labeled as ‘L’, ‘R’ and ‘*’ for left, right and default branches.
We linearize the tree nodes by pre-order traversal and then partition them into eight frag-
ments separated by the dotted vertical bars. This partitioning method preserves locality of
similar subscriptions since the low level subtrees are not split. The tree fragments are as-
signed to eight processorsA - H , shown as the rectangles below the tree. We identify the
fragments, and the processors managing them, with itsleft boundary. The left boundary is
defined as the the left-most tree node in the partition under pre-order traversal. This bound-
ary can be uniquely identified by the sequence of edge labels along the path from the root
of the matching tree to the boundary node. We use this sequence as theTree ID of the tree
fragment. The Tree ID of each of the fragments are shown in theprocessor rectangles.

Data structure maintained by each processor:In a dynamic peer-to-peer system, pro-
cessor joins and departures are frequent events. Each join/departure changes the location
of some subtree. Therefore, we can not afford to replicate across all processors the global
map of which processor owns which portion of the tree. Instead, a processor only maintains
a partial tree view, which is a sub-graph of the global matching tree. This partial tree of a
processor consists of the following: 1) all the leaf nodes managed by the processor, 2) the
left boundary nodes of some selected peer processors, and 3)all internal tree nodes along
the paths from the root of the matching tree to the nodes specified above in (1) and (2). In-
formation about the peer boundary nodes are collected by contacting peer processors. The
construction of the partial view is, therefore, a localizedoperation with cost proportional
to the number of peers. The selection of peer processors is discussed later in this section.
Figure 4 shows the partial view ofA andD.

Event Handling: When a new event is received by a processor, the event is processed
using the partial tree view. The event is propagated throughthe partial tree view, starting
from the root of the partial tree, to determine which portions of the tree are related to the
event. During this process, one or more of the following types of actions are performed:

– The event is relevant to one or more of thelocal leaf nodes managed by this processor.
The matching can be then performed locally.



– The event needs to be routed to aremote leaf node managed by a peer.
– The event is relevant to someobscure nodes corresponding to unknown portions of the

matching tree that is not managed by any peer. The event is then routed to some peer
that is more likely to be aware of the obscure node.
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Example: Now we show how to perform event matching in a distributed tree with an
example event message{A1 = 20, A2 = 90}. Assume the event enters the system from
processorA. A navigates its partial tree to find all subtrees that may contain subscriptions
matching this event. In this case, subtreesRR, R∗ and∗ are involved.A forwards the query
to the processors managing these regions.RR is managed by peerD. Obscure nodesR∗
and∗ have to be reached by overlay routing. We route the messages to the peer that is
farthest in the same direction as the obscure node (given thepre-order linearization of tree
nodes) without passing over the target. In this example, allthree subtrees are forwarded to
peerD for further matching.D further navigates its partial tree to identify related regions
to be searched. It performs local matching in subtreeRR, and forwards the message toE
andG for further matching. Event matching is therefore performed starting from any pro-
cessor by “jumping” among the processors instead of traversing a distributed tree path from
the root to the target. Each forwarding step refines the subtrees that need to be searched.
The number of hops is logarithmic in the number of processors, regardless of tree depth.
Subscription insertion follows a similar procedure.

4.2 Routing Substrate

We now consider the question of establishing peers. To ensure system scalability, we limit
the amount of state information managed by individual processors. Each processor only



maintainslog N peers and their partition boundaries in anN -processor system. Therefore,
each node join and departure can be handled efficiently by contacting onlylog N proces-
sors. A tree navigation can be done withinlog N steps regardless of the shape of the tree.
We extend Skip Graphs/Nets [1, 11] to achieve such an efficient lookup.

Conceptually, a processor in a Skip Graph maintainslog N levels of peer pointers,
pointing to exponentially farther peers in the linear ordering of N processors. Figure 3 (b)
depicts the overlay structure of the Skip Graph among the eight processors. Each processor
uses a random membership vector to decide its peers. At leveli, the peers are the nearest
processors on the left and right sides with membership vectors that match the processor’s
membership vectors for the firsti bits.

Brushwood routing depends on a linear ordering of partitions. In this sense, any linear
space DHT routing facility can be used. We choose Skip Graphsfor two reasons. First of all,
Skip Graphs do not impose constraints on the nature and structure of keys. It can work with
complex keys, like the variable-length Tree IDs, as long as there is a total ordering. Second,
even if one can encode tree nodes into key values, such unhashed and often skewed keys
can cause routing imbalances in some DHTs, as they use key values to decide the peering
relation. Skip Graphs do not suffer from this problem because its peering is decided by
purely random membership vectors, even though the keys are unhashed.
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Fig. 5. Routing Imbalance under Skewed Key Distribution

We simulated Chord [18] and Skip Graphs with a skewed key distribution to show the
imbalance in routing. Figure 5 (a) depicts the maximal processor degrees of Chord and
Skip Graphs with 1K∼32K processors. The processor keys are derived from a normaldis-
tribution with standard deviation0.125 in the range[0, 1]. With such unhashed keys, Chord
processors falling into the sparsely populated regions will manage larger portions of the
keyspace, and are therefore likely to have a large number of in-bound peers. Furthermore,
the imbalance in peer distribution also leads to imbalance in routing costs. We route 1000
messages between random pairs of nodes. Figure 5 (b) shows the imbalance as the ratio of
maximal routing load to mean load. We observed similar routing imbalances in Meghdoot,
which employs CAN for routing in (skewed) subscription content space. We present this
result in Section 6.

5 Maintaining the Partition Tree

In this section, we discuss the maintenance of the dynamic matching tree in a peer-to-peer
setting. The major challenges are: 1) the frequent processor joins and departures, typically
referred to as churn, and 2) balancing the workload among thedynamic processor set.
Our design leverages Skip Graphs to achieve efficient routing while maintaining only a



logarithmic number of peers. Therefore, the processor joins and departures only result in
small maintenance overheads. Balancing the workload associated with publish/subscribe
events is important for the scalability of the system. The challenges that it presents in the
context of the distributed matching tree differ from what previous work in DHTs have
addressed. Therefore, we focus on this issue in this section. Our solution is based on a
limited, loosely consistent knowledge about global load distribution. What is interesting
about our scheme is that we use the distributed matching treeto aggregate this information.

5.1 Gossip-based Aggregation

In most peer-to-peer systems, periodical polling of peer nodes is necessary for detecting
failures. We piggyback load information in the pair-wise heart-beat traffic between peers.
Peer processors aggregate the global load information fromthese gossip messages. This
approach is inspired by previous work [21].

Each processor maintains load summaries for the nodes in itspartial tree view. This
summary corresponds to the workload of the matching subtreerooted at the node and the
resources available on the processors that maintain the subtree. In particular, it includes
the following information: 1) the total number of subscriptions in the subtree; 2) the total
rate of events visiting the subtree; 3) the total capacity ofprocessors managing the subtree.
The first two items show the load associated with subscription storage and event matching.
The third summarizes the resource devoted for managing the load. We define capacity
as the network bandwidth of the processor instead of storage, since this is the limiting
factor for matching and delivering events. This information reflects the heterogeneity of
participating processors. The load-to-capacity ratio in the summary indicates whether the
subtree is overloaded or underloaded.
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Fig. 6. Gossiping and aggregation of load information

Periodically, a processor sends to peers its load summariesabout nodes along its Tree
ID path (Section 4.1). Recall that this path stretches from the root to the first node (under
pre-order) belonging to the processor. Figure 6 illustrates the Tree ID paths of peerB and
D, and the gossip messages they send toA.

A maintains the storage and event processing load for the subtree it manages locally.
After receiving load summaries from its peers,A can aggregate the load for the internal
nodes in its partial tree. The summary about the root node gives the global load information.
This information is loosely consistent. It is easy to see that the aggregation converges within
O(log N) steps in aN -processor system, because information about one processor reaches
all other processors withinO(log N) forwarding steps, the diameter of a Skip Graph. With a



typical heart-beat interval of 30 seconds, the aggregationconverges within several minutes,
during which time the overall load is unlikely to change by a substantial amount.

5.2 Processor Join

When a new processor joins the system, it contacts a known processorP that is currently
in the system.P uses the load summary in its partial tree view to direct the join request.
It navigates the tree, locally, to find a subtree with a high load level, as determined by the
ratio of total load to capacity associated with the subtree.If this subtree is remote or obscure
(defined in Section 4.1), the join request is forwarded towards that subtree, and eventually
reaches a peerQ with high load level. This forwarding process is similar to the distributed
tree navigation for inserting subscriptions and matching events.

After receiving the join request,Q divides the set of leaf nodes it manages and hands
over one half to the joining processor. If there is only one leaf node, or if one leaf node has
significantly higher load than others, this leaf is partitioned using algorithms described in
Section 3.5. The joining processor receives fromQ the leaf nodes, which also determines
the new Tree ID of the joining processor. The processor then joins the Skip Graph and
establishes its partial tree view by contacting the peers.

Section 3.5 describes two strategies of leaf node partitioning: split or replicate. If the
high load is caused by larger than average number of subscriptions, we choose one of the
various options to partition the set of subscriptions amongthe new branches. If the load is
caused by high event rate to the subscriptions, we may replicate the subscriptions in the
new branches to spread out the event processing load.

5.3 Processor Departure and Failures

Processors in the system may leave gracefully or fail/quit silently without warning. In the
former case, it notifies its peers of the intention to leave and hands over the set of leaf nodes
and subscriptions to its left-hand side peer, and the Skip Graph will route corresponding
messages to this peer after the processor’s departure.

Failures and non-cooperative departures are detected by periodic heart-beat messages.
If a processorP does not hear from a peer for several consecutive heart-beatintervals,
this peer is marked as failed and is excluded from the partialtree view. If the peer is the
immediate right-hand side peer,P takes over the responsibility of managing the leaf nodes
of the failed peer. In order to avoid data loss, we can replicate subscriptions to left hand
side peers during normal operation. This replication strategy is used in many peer-to-peer
systems [16, 18, 15].

5.4 Reactive Load Balancing

Besides the load-balanced join process, reactive load balancing of heavily loaded proces-
sors is also desirable. Such imbalance may be caused by insertion of new subscription,
transfer of data after peer departure, or change of event traffic pattern. Processors in the
system detect load imbalance from the global load information. If a processor sustains
significantly higher load than global average, it can start aload balancing process by nav-
igating the distributed tree to find an underloaded processor. This processor is forced to
quit its current position, offload its work to its neighboring processor, and rejoin the sys-
tem as the overloaded processors’ neighbor in order to take over half of the load from the
overloaded processor.



6 Experimental Results

In this section, we present our experimental results. We usetwo very different real world
datasets for publish/subscribe workload. We also evaluatesystem scalability with larger
synthetic workloads. We start by describing the example applications and the datasets be-
fore presenting the experimental results.

6.1 Example Applications

Stock quote alert is a popular publish/subscribe service. Users subscribe to events about
stock price changes and transaction volume fluctuations. Such services are usually im-
plemented with DBMS triggers in a centralized server. Similar subscriptions that specify
numerical data ranges may be found in other systems like monitoring and sensor networks.
Therefore, we use stock quote alert as one of our representative applications.

We use the stock quote dataset collected by Guptaet al. to evaluate Meghdoot [9]. It
was obtained from Yahoo! Finance [23] by downloading the daily quotes of 100 stocks
from 2/Jan/1998 to 31/Dec/2002. This event set contains 115,353 events. The schema
and value range of the events are summarized in Table 2. The data distribution is highly
skewed. Most stock prices/volumes are within a relatively narrow range, except for a few
high price/volume stocks quotes.

Attribute Date Symbol Open High Low Close Volume
Type String String Float Float Float Float Integer

Minimal 2/Jan/98 aaa 0 0 0 0 0
Maximal 31/Dec/02 zzzzz 500 500 500 500 310000000

Table 2.Schema of Stock Quote Events

Subscription Prob.Description
{Symbol = P1 ∧ P2 ≤ Open ≤ P3} 20% Notify when stockP1 opens with price betweenP2 andP3.
{Symbol = P1 ∧ Low ≤ P2} 35% Notify when the price of stockP1 is at mostP2.
{Symbol = P1 ∧ High ≥ P2} 35% Notify when the price of stockP1 is at leastP2.
{Symbol = P1 ∧ V olume ≥ P2} 5% Notify when stockP1 is traded at leastP2.
{V olume ≥ P1} 5% Notify when any stock is traded more thanP1.

Table 3.Templates of Stock Quote Subscriptions

We follow the method used in [9] to generate stock subscriptions. Subscriptions ran-
domly select one of five templates designed to model common user interests in stock events.
Table 3 lists the subscription templates and their probabilities. The parameters are generated
using random draws from uniform distributions over the dataranges of the corresponding
fields, while maintaining the constraints. The fifth template is a “rare” case of a broad sub-
scription that matches any stock with trading volume above agiven parameter. In the real
world, users are usually interested in events specific to a narrow group of stocks. Therefore,
this template is assigned a relatively low probability.

While stock quote events exhibit a well-formed schema with numerical attributes, a
number of applications use semi-structured data representations. We use the CiteSeer sci-
entific literature digital library [6] as a representative data source for such applications.
CiteSeer uses the Open Archives Initiative [14] protocol topublish the metadata of its lit-
erature collection. This metadata is encoded in XML, which accomodates semi-structured
data and allows for efficient data manipulation. We parse theXML records published by
CiteSeer to generate events one per publication, with the following extracted attributes:



Date, Title, Authors, Subject, andReferences. We further extractKeywords from the subject
line by removing stop words and obtaining the stems of the remaining words. TheAuthors,
Keywords, andReferences fields are represented with theSet type defined in Section 3.1.
Note that some fields, likeReferences, might be missing in some cases due to incomplete
records. A total of 574,128 events are extracted.

We generate three types of subscriptions for our experiments:

– {Authors ∋ P}: notify when the author list of a newly published paper includesP .
We select parameterP from the list of authors appearing in the data set, with probabil-
ity proportional to the occurrence frequency.

– {Keywords ⊇ P}: notify when a newly published paper includes the keyword listP .
P is a set of one to three keywords selected randomly from the set of keywords in the
data set, with probability proportional to keyword occurrence frequencies.

– {References ∋ P}: notify when a newly published paper cites another documentP .
Again,P is randomly chosen according to data distribution.

Besides the above two publish/subscribe data sets, we also use a synthetic workload
to test system scalability, similar to that used in [4]. Thisworkload uses events and sub-
scriptions that specify one of more of 1000 numerical attributes. This synthetic workload
models a general purpose publish/subscribe system that does not limit the users to a small
set of pre-defined schemas. Each subscription specifies 1 to 10 predicates. Each predicate
randomly selects an attribute, a comparison operator of=, >, <, ≤ or ≥, and a value be-
tween 0 to 999. We use either an uniform or a zipf distribution(α = 0.8) to select the
attributes. The operator and value fields are chosen uniformly randomly. Published events
randomly specify between 1 to 20 attributes and their values, under the same distribution
as for subscriptions.

We compare Brushwood matching tree against Meghdoot for thestock quote alert ex-
periments. Meghdoot uses CAN to partition the multi-dimensional content-space to peer
nodes. Meghdoot does not support the CiteSeer data set (due to the presence of set predi-
cates) or the synthetic workload (due to the large number of attributes and the flexible event
schema). So for these datasets, the experiments only evaluate our system under different
parameters.

6.2 System Scalability

We first use the synthetic workload to evaluate system scalability. We simulate from 1024
to 16384 peer processors. The number of subscriptions is fixed at 1 million. The number
of event messages is 110000. We start with a single processorand add the remaining at
random intervals, in order to simulate a peer join process. In the mean time, we insert the
subscriptions into the system. We count the number of messages forwarded for inserting
subscriptions and publishing events as a measure of the communication cost. Some of the
messages require further processing at the recipients: to insert a subscription or to match an
event to local subscriptions. We measure this cost as the number of processors processing
the request. We refer to this number as the textitspan of the operation, and the processors
asvisited by the operation. For subscriptions, it is the number of sites the subscription is
replicated to. For events, it is the number of nodes that needto perform predicate evaluation
or matching.

Figure 7 depicts the average number of processors visited and the average number of
messages forwarded for a subscription/event. Even with 16384 nodes, a typical publishing
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Fig. 7. Synthetic workload: cost vs. system scale

event spans less than1% of the processors, showing good scalability. The maximal span
we observed is about 250.

When attributes are selected using the Zipf distribution, the span of publishing events
increases much faster than under uniform distribution. Thereason is that a skewed distri-
bution generates many similar subscriptions and events. Inorder to balance the load, these
closely related subscriptions are partitioned across different processors. Events matching
such subscriptions have to visit more partitions.

An interesting trend in Figure 7 is that the event span decreases when the number of
processors increase from 12288 to 16384 (for Zipf distributed attributes). Meanwhile, the
degree of subscription replication (indicated by the number of processors visited for sub-
scription insertion) increases from 2 to 4. This is because that as more processors join,
while the total number of subscriptions remains the same, our tree partitioning algorithm
devotes the newly joined processors to store replicated subscriptions, thereby decreasing
the number of processors that an event has to visit.

6.3 Stock Quote Alert

Next we evaluate the performance of our system and Meghdoot using the stock quote
dataset. We scale the system from 128 processors to 8192 (theN parameters in the graphs).
We also scale the number of subscriptions proportionally tothe number of processors
(100N).

Figure 8 shows the number of messages forwarded by subscription insertion and event
matching as we increase the number of peer processors. Compared to Meghdoot, our
scheme shows a substantially lower cost for processing events. This is first because we
partition the subscription set based on data distribution.Meghdoot uses CAN’s partition-
ing method that splits a zone into halves of equal sizes (The reason for this regular split
is to avoid interleaving of the zone spaces that can significantly increase the number of
peering zones.) Therefore it suffers load imbalance under the highly skewed dataset. In
order to alleviate this imbalance, Meghdoot replicates theoverloaded nodes, resulting in a
higher number of subscription messages. Another reason is the flexible value partitioning
method used in the matching tree (Section 3.4). Meghdoot partitions the subscriptions by
Min/Max range specified for the attributes. This approach splits the subscriptions into non-
overlapping sets, but an event may need to visit both zones after the split. We use value



range partitioning method that allows events to visit only one branch after the partition.
Our approach also replicate some subscriptions, but only limited to broad ones. So the
subscription cost is still lower than that of Meghdoot.
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Figure 9 shows the histogram of event spans (the number of processors visited by the
event). Under all three settings of system scale, our schemedemonstrates relatively small
and stable span, due to reasons discussed above.

Next, we compare the load balance of the two systems. We consider several aspects
of load balance: subscription storage, event matching, androuting state. Routing state is
represented by the number of peers that processors maintain.
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Fig. 10.Stock: load distribution

Figure 10 (a) presents the cumulative distribution (CDF) ofthe number of subscriptions
managed by the processors. Our system exhibits evenly balanced storage loads, while most
of the subscriptions in Meghdoot are managed by a small number of nodes. The imbal-
ance in Meghdoot is due to the fact that only some of the zones (the portion of the CAN
space above the diagonal plane) are used to store subscriptions. Moreover, the constraint of
equal-space partitioning also limits its ability to achieve balanced load under skewed data
distribution.

Figure 10 (b) depicts the CDF of the percentage of events prcessed by the processors.
Note that each event may be examined by multiple processors,so the total is higher than the
number of events submitted to the system. Our system shows better load balance in event



processing, because the subscriptions are more evenly partitioned among the peers. Some
of the subscriptions match very broad range of events (like those only specifyingVolume
in Table 3), Both Brushwood and Meghdoot replicate some subscriptions to share the event
matching load. Therefore, there is not a significant difference between the two schemes in
balancing the loads associated with event processing.

We discussed the routing state balance problem in Section 4.2. In Skip Graphs, the peer-
ing relationship is decided by random membership vectors, and hence is not affected by
skewed key distributions. Meghdoot uses CAN for overlay routing, which decides peering
by zone neighborhood. Therefore, larger zones may have morepeers if the zones are par-
titioned into different sizes under a skewed data distribution. In a high dimensional space,
this imbalance is more significant since zones can make contact along more dimensions.
Figure 11 confirms this intuition.
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6.4 Literature Reference Notification

Now we present the results of the CiteSeer experiments. We use simulation settings sim-
ilar to the above tests, except that the subscriptions choose parameter values based on a
real distribution derived from the data set, instead of using uniform random distributions.
Figure 12 shows the CDF of the subscription storage and eventmatching load on the pro-
cessors. Although the contents of subscriptions and eventshave skewed distributions, the
load balancing mechanisms in Brushwood ensure good load balance.

Figure 13 (a) (b) shows the cost of inserting subscriptions and the cost of processing
events. Both the number of messages and the number of nodes visited are small. Since the
attributesAuthors, Keywords, andReferences are ofSet type, the span of subscription and
event messages is mainly decided by the number of items specified. In this real-world data
set, the number of authors, keywords and references are usually small. Therefore the Brush-
wood approach performs well. However, we do observe a sharp increase in publishing cost
as the number of processors is increased from 4096 to 8192. This is due to the dynamic load
balancing mechanism discussed in Section 5.4. As the peer population increases, popular
subscriptions can receive a significant number of subscribers. Therefore, peers maintaining
them get overloaded and split their load to more processors.As a result, events involving
such subscriptions have to flood more peers, while each peer still maintains a reasonable
share of load (Figure 13). We did not observe such a trend in previous experiments because
their subscription values are drawn from a uniform distribution. Though there is an in-
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crease in publishing cost, we do note that the reactive load balancing mechanism manages
to balance load even in the face of skewed subscription patterns.

7 Conclusions

In this paper, we propose a content-based publish/subscribe middleware built by distribut-
ing a matching tree over a peer-to-peer system. The main contribution is in the decentralized
navigation and management algorithms for the distributed matching tree in peer-to-peer
settings. Our system achieves efficient event matching while requiring only small amounts
of state to be maintained by the peers. Processors in the system build partial views of the
global tree based on information about only a logarithmic number of peers. Therefore, the
system provides high scalability. Compared to other peer-to-peer approaches, it imposes
no restrictions over the schemas associated with subscriptions and events. The use of a
matching tree provides more generality and extensibility in the types of data and predicates
that can be supported. The peer-to-peer tree also provides aggregated load information that
assists reactive load balancing. Experiments demonstratethat the proposed design effec-
tively supports real world subscription scenarios. Besides publish/subscribe, we have used
the Brushwood framework to build other applications, including high dimensional index
and distributed file systems. We believe that the combination of techniques brought to-



gether in Brushwood (such as the ability to support search tree data structures, efficient
decentralized navigation using partially consistent views, load-balance using aggregated
information) shows promise as a powerful toolkit for building scalable distributed applica-
tions.
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