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Summary 

Most contemporary CT-sytems employ non-exact methods. This treatise reports on how these methods could 
be transformed from non-exact to exact reconstruction methods by means of iterative post-processing. 
Compared to traditional algebraic reconstruction (ART) we expect much faster convergence (in theory 
quadratic), due to a much improved “first guess” and the fact that each iteration includes the same non-exact 
analytical reconstruction step as the first guess.  

This proposal for combining analytical and iterative reconstruction methods was first presented in [6]. Here it 
is redrawn (in Fig.1.1) and slightly reformulated mathematically. The iteration loop corresponds to a matrix 
that we call , where  is a Fourier-based reconstruction technique, such as filtered back-projection, and QP Q

P  is the forward projection operator. In exact reconstruction , for non-exact reconstruction . 

The iteration will converge as the error matrix 

1−= PQ 1−≠ PQ

( ) 0→−=∆ QPI α . Initially, there were some hopes that the 

convergence rate would indeed be quadratic, meaning that the largest pixel or voxel error, a diagonal element 

kkδ  in ∆  should decrease quadratically as  with the number of iterations i . However, the experiments 

indicate a slower convergence rate.  

2/i
kk

δ

Column of the matrix comprises the point-spread function for pixel . If the point-spread functions are 

identical under circular permutation for all k, then  represents a space-invariant filter. The convergence 

could then be understood in filter theoretical terms, by which theQP -matrix implements a filter  and the 

eigenvalues 

k QP k

QP

QPh

kλ  of the matrix can be identified as the frequency components of this space-invariant point-

spread function. It can then be shown that the iterative loop converges if and only if for all frequency 

components )(uHQP of this filter  ( ) α
2max0 << uH QP

u
, where α  is the loop gain. 

The criteria for symmetry of QP  (but not space-invariance) seems to be fulfilled for many non-exact 

reconstruction techniques, including the PI-methods for helical cone-beam tomography. Certain convergence 
criteria, or at least rules of thumb for convergence, can then be formulated. In general these formulas tell us 
how stability and convergence for larger degrees of non-exactness in the analytical reconstruction (larger pixel 
errors) is obtained at the price of lower gain α  and slower convergence rate.  

Several pit-falls for a successful implementation of the above ideas are contained in the interpolation 
procedures necessary for back-projection into a digital (sampled) image and even more so in computing 
projections thereof. To this end we first we clarify that the choice between so called pixel- and ray-driven 
mode is insignificant for the outcome of projection as well as back-projection. Of utmost importance, 
however, is to choose a suitable basis function, or, equivalently, to choose the window (interpolation) 
function, which in the 2D-case is the Radon transform of the actual basis function. The window function also 
goes under names like projection, profile, footprint, and the like. Traditionally, when employed in filtered 
back-projection from measured projection data, simple linear interpolation seems to work well, while for 
iterative CT, we found the simple linear interpolation to be detrimental, to say the least. Various new forms of 
aliasing (new, since they are hardly mentioned in the literature) come forward when we model and analyze 
such projection and back-projection in the Fourier domain.  

The underlying cause of the problem is that the bandwidth of a Cartesian sampled image varies with direction. 
Typically, the width of a linear interpolation filter is tuned to the maximum bandwidth of input data. In the 
present case input data is the measured projections, the bandwidth of which is set to the Nyquist limits 

1
2
1 −∆± x , where is the sampling distance in the main directions of the image to be reconstructed. The most 

outspoken form of aliasing, that we have coined DC-aliasing, tend to appear for projections in or near 45

x∆
0- 

and 1350-directions. It consists of diminished, but still rather strong copies of the DC-component of the image, 

which are aliased to appear at the frequencies ( ) 112 −∆−± x . Joseph’s interpolation method improves this 

aliasing situation, but it is not the final answer. Another aliasing effect (un-coined so far) seems to be lurking 

at the frequency  ( ) 1
2
1 12 −∆−± x . The imaginary part of this aliased component is phase-shifted 1800 which 
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switches the negative feed-back in the main loop to become positive and thereby making the feed-back 
positive instead of negative. Only the DC-aliasing effects has been clearly verified experimentally.  

There are at least two practical solutions to the aliasing problem, both of which employ more advanced 
window functions. The one we have been using is called the SinCot filter. In the Fourier domain this filter 
strongly attenuates all frequency components to values below DB80−  outside the double Nyquist limit. An 

alias-free situation is then obtained by using a detector density 1
2
31 −− ∆=∆ xt . In this treatise experiments on 

convergence for non-exact filtered back-projection are demonstrated only for the 2D-case. In many cases 
satisfying results are obtained after two iterations. For grossly non-exact reconstruction convergence is 
obtained by lowering the gain factor α in the main loop, which is in full accordance with the theory.  
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1. The proposal. Related work  

The present document outlines an idea to combine analytical reconstruction methods with iterative 

reconstruction techniques. Here, analytical techniques means filtered back-projection or direct Fourier 
methods, while iterative techniques stand for algebraic reconstruction in general. We hope to show that such a 
combined approach is able to turn a simple-to-implement but mathematically non-exact reconstruction method 
into an exact one. One of many examples of such non-exact reconstruction is the PI-method [13], [18] 
suggested for helical cone-beam CT. With the addition of iterative methods the hope is to achieve an image 
quality that for all practical purposes is as good, maybe even better than what could be obtained by exact 
analytical methods. The potential to improve over purely analytical methods stems from the ability inherent in 
iterative methods to model the projection data input more precisely, possibly also to optimize image quality in 
the presence of noise.   

A drawback in the exact reconstruction methods for helical cone-beam CT that have been presented hitherto 
[19],[20],[21] is their inability to utilize all projection data regardless of speed in the data-capture process. 
Many non-exact methods, such as the “Book-let method” adopted by Siemens [22] and the “Wedge” method 
adopted by Philips [23], but not the PI-methods, can tolerate an almost continuous range translation velocities 
and still not let any detector readings go wasted. Obviously, this helps to make an optimal choice between 
speed, dose and signal-to-noise ratio. At the best, the exact methods and the PI-methods are only able to make 
use of all measurements for some fixed translation speeds such as one third, one fifth, one seventh of the 
maximum. Still, without loss of generality, since the authors of this report are well acquainted with the PI-
methods we are going to use these for the final tests of the proposal below.  

The specific combination of analytical and iterative technologies that we have taken an interest in is illustrated 
in Fig.1.1. We may view this block diagram either as filtered back-projection augmented with an iterative 
image enhancing post-processing loop, or as a simultaneous algebraic reconstruction (SIRT) procedure using 
filtered difference projections in the back-projection loop. The tomography literature is abundant with iterative 
reconstruction methods. For CT-reconstruction in general, however, the scheme of Fig. 1.1 is hardly described 
at all not, even if it might be identical to the one called ILIN180 and evaluated in the experimentally study by 
Nuyts et al, [1]. Only linear interpolation was exploited in projection and back-projection in [1]. One reason 
for the relatively meager interest in this type of iteration is probably that existing analytical methods have 
been both fast and sufficiently accurate. Therefore, the incentive has not been great to pursue a technique that 
is obviously much more computer demanding. In our own work we have discovered how a poorly designed 
projection operator easily devastates the result in iterative CT-reconstructions. Some previous attempts in the 
direction of Fig.1.1 might have cooled off because of this. 

As a general mathematical inversion method, however, schemes similar to Fig.1.1 can be found in handbooks, 
e.g. in Numerical recipes [2], which refers to this as Schultz’s method or Hotelling’s method. The same 
subject, although tuned more specifically towards tomographic reconstruction is dealt with by Pan et al [4].  
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 Fig.1.1  A proposal for combining analytical and iterative reconstruction techniques. The projection operator P  

and the reconstruction operator 
1−≠≡ PHBQ  are known, while the exact inverse  is unknown. 
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2. Recurrence equations  

To explain Fig.1 we employ common matrix notation, where the image pixels (voxels) and the projection 
values (the line integrals through the images) constitute the vectors and , respectively. The matrices are 

the operators 

f p

P  for projection, B  for back-projection, H for filtering, and Q for combined filtering and 

back-projection, respectively. The non-exactness is reflected in the fact that we may have . 

The image may be two or three-dimensional. Assuming we initialize 

1−≠≡ PHBQ

00 =≡ ffi  we have 

( ) =∆−≡=−+⇐ fffffff QPPPQ αα 001  Correct result f  - artifact     (2.1)  f∆

To get a quick feeling how the iterative loop works assume that the gain 1=α . Then it is readily seen that the 

main purpose is to add negative errors in and subtract positive ones.  ip

If the object function f  is a M-dimensional vector, the linear operator is defined by an -matrix, 

which by our definition in (2.1) is the difference between the unity matrix 

PQ MxM

I and the error matrix . Hence,  ∆

1fff −=∆        fff 1 ∆+= ,    QPI α−=∆       (2.2) 

From Fig.1.1 we find that the iteration loop yields 

      ( ) ( )( ) ( fffffffffffff −∆+= )−∆−+=−+=−+⇐ −−−− 1111111 )( i-i-ii-iiii IQPPPQ αα   (2.3) 

Therefore,       ( )ffff -ii 1−∆=−         (2.4) 

and      ( ) ( ) ( )ffffffffff −∆+==−∆+=−∆+= −− 02
2

1 ..... i
iii   

With  we get   00 =f

fff
i

i -∆=          (2.5) 

The usefulness of the iterative scheme depends on two features of the matrix i∆ , namely  

i) convergence conditions for  and  i∆

ii) speed of this convergence 

 

3. Convergence conditions. The symmetric QP-matrix  

For any matrix, e.g.  it is well known that convergence, i.e.   for i∆ 0→∆i ∞→i , occurs if and only if 

1)(max <∆λ ,         (3.1) 

where |)(| max ∆λ  is the largest magnitude of the eigenvalues of ∆ . If the matrix  is symmetric the 

eigenvalues are real. In the more general case that 

∆
∆  is non-symmetric the eigenvalues are complex. Since 

QPI α−=∆  the condition (3.1) can be expressed in terms of eigenvalues of the -matrix as follows. QP

    11)()(1)1(max <−=−=−
∀∀

QPQPQP
k
k

k
k λαλααλ     (3.2) 

Condition (3.2) does not seem to be very helpful, since we now require something from all eigenvalues of 
, not only the largest one in . Furthermore, the condition now involves not only the eigenvalues QP ∆

)(QPkλ  but also the gain α . However, without loss of generality we assume a common positive gain, i.e. we 

introduce the condition  

       α<0          (3.3)  

by which (3.2) yields  
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ααλ 11)( <−
∀

QP
k
k         (3.4) 

If the eigenvalues are complex numbers, the condition (3.2) can be illustrated by the graph in Fig.3.1. All 
complex numbers inside the dashed circle satisfies the condition (3.4). For real eigenvalues (3.4) simplifies to 

αλ 2)(0 << QPk . In our case, input (projections) and output (images) for reconstruction algorithms are real 

valued, not complex. Most reconstruction algorithms, including Fourier methods that are based on filtered 
back-projection, can be described and implemented by linear signal domain operators which make no use of 
complex coefficients. Hence, we allow ourselves to assume that contains no complex elements.  QP

Re 
α
2  

α
1−  α

1  

kλ  

Convergence area 
Im  

Convergence interval  

α
10 α

2  

kλ  
 

 

α
1− 

 

Fig. 3.1  Convergence for  expressed as conditions for complex and real eigenvalues i∆ kλ  of QP  

In order to find convergence conditions that are more related to image artifacts, i.e. reconstruction errors 
caused by the non-exact filtered back-projection operator, let assume that the nxn  matrix  is indeed 

symmetric, i.e.  

QP

( ) ( )lkkl QPQP =      for ),( lk∀       (3.5)   

Also, let the input vector f to the mapping be a single unit pulse at position . The output vector, the 

result , is the discrete point-spread function ,  which consists of the matrix elements of column  

.  If all columns of  are equal under permutation all point-spread 

functions are identical, QP  performs space-invariant filtering. However, the target application of the 

scheme in Fig.1.1 is non-exact reconstruction from cone beam projections, and such reconstruction is bound to 
have space-variant point-spread functions.  

QP k

fQP kPsf k

( ) ( ) ( ) ( )nkkkkk QPQPQPQP ,...,.., 21 QP

kPsf

Fig.3.2 illustrates the relation between matrix elements and two space-variant point-spread functions laid out 
in a 2D image domain spanned by the spatial coordinate x . The point-spread functions  and  are 

overlapping but not identical. From (2.2) we have  
kPsf lPsf

)( ∆−= IQPα  from which follows that the symmetry 

(3.5) in QP  implies that  is also symmetric. Furthermore, from (2.2) follows that the elements ∆ kkδ  and klδ  

in an arbitrary column  of k ∆  can be expressed by the corresponding elements in QP  as  

     ( ) ( kkkkQP δα −= − 11 ) ( ) lkkllkQP δα 1
,

−
≠ −=      (3.6) 

( )kkkk QPαδ −= 1    ( ) kllklk QP ≠−= ,αδ      (3.7) 

Summing squared elements in column  of the matrix k ∆  yields   

( )( ) ( ) ( )∑∑∑ =≠≤≤
+−=+−=

n

l lkkkkl lkkknl lk QPQPQPQP
1

22222
1

2 211 ααααδ   (3.8) 

Because of the symmetry of , the left hand side of (3.8) is nothing but the diagonal element ∆ thk ( )kk
2∆  of 

the matrix .  ∆⋅∆≡∆2
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Fig.3.2 Two  point-spread functions )(xPsfk  and )(xPsf l  assuming a symmetric QP -matrix.  

The symmetry  implies kkQPkxPsf )()( ≡= , llQPlxPsf )()( ≡=  

 

 

 

Assume now that all columns are -normalized  so that 2L

( ) 1
1

2 =∑ =
n

l lkQP       for k∀       (3.9) 

by which we obtain the positive quantity  

( ) ( ) 2
1

22 210 ααδ +−==∆< ∑ ≤≤ kknl lkkk QP      (3.10)  

Assume that all other normalized diagonal matrix element are larger or equal to , which means that all 

other diagonal error matrix elements are smaller or equal to 

kkQP)(

( )kk
2∆  . A necessary condition for convergence 

 for  is that  0→∆i ∞→i

( ) ( ) 1210 22 <+−=∆< αα kkkk QP     for all k     (3.11) 

Let us focus first on the left hand inequality in (3.11). We note that since all columns are -normalized  2L

( ) 1≤kkQP          (3.12) 

and also that the left hand inequality of (3.11) can be written as  

( )
α
α

2

1 2+
<kkQP                   (3.13) 

The function to the right in (3.13) has a minimum = 1 for 1=α  from which follows that the left hand of 
(3.11) is always true. The right hand condition of (3.11) can be written as 

      ( )kkQP2<α         (3.14)  

Minimizing  ( ) ( ) 22 21 αα +−=∆ kkkk QP  as a function of α  brings about  

( )kkQP=α          (3.15)  

and the minimum itself amounts to     

( ) ( )22 1)( kk
Min
kk QP−=∆ α        (3.16) 

It is tempting to take this quantity, or rather the inverse thereof, as a general measure of quadratic 

convergence rate. However, this is only true, or rather approximately true, if the diagonal elements ( )kkQP  
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dominate strongly over the non-diagonal ones. In the potential applications for Fig.1.1 we believe this is 
indeed the case.  

Example. The scheme of Fig.1.1 is applied for 2D-reconstruction with no ramp-filtering or any other filter 
before back-projection. The remaining operations in the QP-loop will then deliver a strongly low-pass filtered 
result. We assume a circular image support having a diameter x∆1024 , where is the image grid unit 

distance. The projection data are back-projected as they are, although divided (normalized) with the factor 
, the number of views. The space-variant point-spread function can be derived as follows. See Fig. 3.3.  

x∆

vN

Fig. 3.3.  A Circular symmetric point-spread function with density variation ( . The area is divided i

a set of concentric rings at distance 1, 2, 3, …. The center pixel receives unit signal value provided the back-

projected signal is normalized with the number of views vN  

1)2 −rπ nto 

3

2
1

 
 

x

y  
Back-projection swath  

 

 

 

 

 

 

 

 

 

Let the input image be a single Dirac pulse located in a pixel in the exact image center. The projection-back-
projection operation then brings about a correct pixel result identical to the input in the image center, i.e. 

( ) 0,1 0000 == δQP . The space-invariant point-spread function is rotationally symmetric. At distance xr∆ a 

ring-shaped area of width  contains x∆ rπ2≈  pixels. The same unit signal value that was pumped back to the 

center pixel is evenly distributed to these pixels to yield the signal value . Hence, the sum of energies 

of elements   at this distance 

1)2( −rπ

( ) kQP 0 r  from the center yields  and the total -sum amounts to 2)2(2 −rr ππ 2L

( ) 2512ln1121
2
1

512

1
1

2
1

2512

1 2
12 ≈+=+≈+≡ ∫∑ = ππππβ drr

rr r
    (3.17) 

Thus, a correct -normalization requires that we divide all projection data, not with  but with 2L vN vN2 . 

As a result we obtain for the diagonal elements ( )
2

1=kkQP , which also equals the square root of the sum of 

all off-diagonal elements  in a column k. According to (3.15) optimal convergence rate is obtained with ( )lkQP

( )
2

1== kkQPα  and from (3.16) we have  

      ( ) ( )
2
122 1 =−=∆ kkkk QP        (3.18) 

which indicates a rather slow convergence factor of 
2

1  per iteration. 
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)

4. The QP-matrix representing space-invariant filters 

(In cooperation with Björn Johansson)  

If the mapping QP is a linear system, which can be described with space-invariant filters, we can establish a 

perfect isomorphism between the world of linear algebra with its matrices and eigenvalues on one hand, and 
the world of signal processing with its convolutions, discrete Fourier transforms, and point-spread functions. 
More precisely, for any square matrix , such as we claim the following. A QP

i) When  is applied to an input image consisting of a unit pulse at pixel , the result is a 

point-spread which equals the matrix elements  in row . If this result repeats itself cyclically for all 

rows, the matrix  is equivalent to cyclic convolution with a space-invariant filter . 

A ),( yxf k

kla k

A ),( yxhA

ii) Let stand for a Fourier pair. In signal processing notation, an image  consisting 

of a single frequency component at , convolved with  yields 

Hh ⇔ ),(, yxf vu

( 11,vu Ah

            ( ) ),(),(, 1111, vuHvvuuHyxfh AAvuA =−−⇔∗ δ .     (4.1) 

In matrix notation the same operation yields 

( ) ),(),(),( 11,1111, 11
vvuuAvuHvvuuHA vuAAvu −−≡=−−⇔ δλδf ,   (4.2) 

where the single frequency image vector is called an eigenfunction, its Fourier transform vu,f

),( 11 vvuu −−δ  is an eigenvector and the response ( )Avu 11,λ  is an eigenvalue of the matrix . This 

interpretation is correct since we have found an eigenvector 

A

),( 11 vvuu −−δ , which produces the same scalar 

result, whether we let the eigen vector be operated on by the matrix  or the eigenvalueA
11,vuλ .  

iii) To get all eigenvalues efficiently, instead of applying one frequency component at a time, we can 
apply all of them at the same time. The suitable input image that contains all frequencies equally weighted is 
the unit pulse )0,0(δ  located at . However, convolved with the filter  creates nothing but a 

copy of . Hence, we have the following theorem.  

0,0 == yx Ah

Ah

Theorem on eigenvalues for space invariant QP-matrix 

The eigenvalues of a circularly symmetric matrix QPA =  representing a space-invariant point-spread 

function are found by computing the discrete Fourier transform of the point-spread function of the 

corresponding cyclic filter . The frequency components  are the eigenvalues ofAh AH A .  

Among the implications of the theorem we note the following. The point-spread function  is real. The 

eigenvalues, i.e. the frequency components , are also real since  is symmetric. Therefore, each 

eigenvector is actually the sum of the Dirac-pulse pair 

QPh

QPH QP

( ) ( )vuvu ,,
2
1

2
1 δδ +−−  . Hence, in this case we have  

   vuQPQP vuHvuH ,2
1),(),( λ=−−≡  

Conditions (3.6) and (3.7) also implies evenness in the signal domain so that ),(),( yxhyxh QPQP −−=  and 

that that all eigenfunctions are cosine functions. Any reader familiar with filter design should not be surprised 
by what we have found so far. We are studying a recursive filter, which essentially consists of a single 
negative feedback loop. The filters embedded in this loop are frequency dependent like any other filter. 
Negative values for certain frequencies in the Fourier transform of the non-recursive QP -filter means that 

these components are subjected to a 1800 phase-shift each time they are propagated around the loop. Such 
frequency components may arrive with the input image, hidden among other benevolent components and 
impossible to detect in the image domain. Nevertheless, for these frequency components, the negative 
feedback loop will the turn into an amplifier with positive feedback. Inevitably, after some time, or rather after 
some iterations, the amplitude of these parts of the image will grow out of control and drench all other data.   
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For readers which are more familiar with signal processing and filter design it is also possible to avoid the 
matrix formulations altogether. Let u  be a vector in a multidimensional Fourier space. In (2.1) we described 
Fig1.1 by the formula 

( )11 i-ii QP ffff −+= − α        (2.1) 

which translated to the Fourier domain yields 

          ( ))()()()()( 11 uFuFuHuFuF iQPii −− −+= α   for u∀   (4.3) 

  ( )( ) ( ))()()()()()(1)()( 11 uFuFuuFuFuHuFuF iiQPi −∆≡−−=− −−α       for u∀   (4.4) 

Clearly, as in (2.5) this reduces to 

     )()()()( uFuuFuF i
i ∆−=     for u∀   (4.5) 

Notice that we make sure to follow each and every frequency component in F  independently. Eq. (4.3) - (4.5) 
holds individually for each frequency component. For convergence we require likewise that  

( ) 0(1)( →−=∆ i
QP

i uHu α     for u∀   (4.6) 

which requires that           

    1)(1 <− uHQPα      ⇔     2)(0 << uHQPα   for u∀           (4.7) 

If       )(0 uHQP<       for u∀                  (4.8) 

then      α
2)(max0 << uHQP

u
        (4.9) 

Thus, (4.9) yields the following very precise convergence condition. 

The Fourier transform  of space-invariant point-spread function , , which  appears in each row of 

the matrix ,must be strictly positive and not exceed 

QPH QPh

QP α
2   

Whether we employ the eigenvalue or the frequency domain criterion in (3.6) and (4.9), respectively, we must 
make certain that the filter  that constitutes the QP -matrix is free from negative values in . One way 

to it is to make sure that all filters are even. Hence, it seems safer to use linear interpolation that is a sinc

QPh QPH
2 

function in the Fourier domain, than to use nearest neighbor interpolation, which is a sinc-function with 

negative lobes. Using an even filter function Hh  and identical functions  and  means Ph Bh TBP = , seems 

also safe, since a negative frequency component in )(uhP  makes a positive component )()( 2 uhuh PPQ =  in 

the concatenated total filter. However, as we will see in the sequel, aliasing phenomena may create 
unexpected problem in this respect.  

Any reader familiar with filter design should not be surprised by what we have found so far. We are studying 
a recursive filter, which essentially consists of a single negative feedback loop. The forward filter  (the 

point-spread function) in this loop is frequency dependent like any other filter. And placed in a recursive loop 
we must watch out for problems. Designing these filters so that their Fourier transforms are real and positive, 
makes life easy, while negative amplitude in the Fourier transform of the QP -filter will perform a 180

QPh

0 phase-

shift for each iteration. Such frequency components may be lurking in the input image, hidden among the 
majority of benevolent components, impossible to detect in the image domain. For these frequency 
components, the negative feedback loop works as an amplifier with positive feedback. Inevitably, after some 
time, or rather after some iterations, the amplitude of these image components will grow out of control and 
drench all other data as illustrated in Fig.4.1.  

Aliasing is an even more devious source of instability. As we will see in later sections of this documents linear 
interpolation using Joseph’s technique [9] is quite effective in suppressing the most devastating form of 
aliasing, namely aliasing of the DC-component.  
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5. The symmetry of the QP-matrix  

The -matrix embeds (at least) three operations; the forward projectionQP P , the filtering H , and the back-

projection B  as illustrated in Fig.5.1. The projection P  maps an input data vector  (along the inf x -axis in 

Fig 5.1) in the image domain onto a projection vector p  (along the -axis in Fig. 5.1) in the projection 

domain, in 2D also called Radon domain (but only in 2D), detector space, or projection space. The filtering 

t

H  maps the projection vector p  back to the projection space forming the vector . Finally, the back-

projection 

q

B  takes this latter vector  back to the image domain delivering the vector . q outf

P  HBQP  

x  x  x x  

tt  
Fig. 5.1  The QP-matrix is  the product of three matrices B,H,and P . The input data axis x  to the far right 

comprises all image data pixels, or its Fourier components, linearly arranged along this axis. Likewise, the 

axis t  comprises all projection data.  

 

 ≡  

 

 

 

 

 

We are interested to track down how a point-spread function comes about by following how a unit pulse in 
 at one image point, corresponding to, say, row index k  in the QP -matrix, is able to spread to give a non-

zero result in at another image point, corresponding to, say, index l  . See Fig. 5.2. Consider first a unit 

pulse at image point , which by use of an interpolation function  delivers the signal value 

inf

outf

k Ph )(ahP  to a 

projection ray. Via the ramp-filter function  this detector value will be transported with the factor  to 

a back-projection ray near image point l . Finally, via an interpolation with  the image point  receives  

 being one of many contributions to the matrix element .  

hh )(bhh

Bh l

)()()( chbhah BhP klQP)(

As shown in Fig.5.2, if a unit pulse injected at image point l , for each contribution path that went from  to  

there is now one going from  to , which amounts to .  In principle we could nail down 

every such pair of contributions by following every non-zero path from  to  and from  to , not only for 

the arbitrary projection we selected in Fig. 5.2 but for every other projection as well. In a typical case  

is accumulated from hundreds or thousands of such paths over which signal energy is transported. For 
symmetry we require that  and if we find that the two mirror contributions in an arbitrary 

chosen pair are equal, the symmetry of the 

k l

l k )()()(c ahbhh BhP

k l l k

klQP)(

lklk QPQP )()( =
−QP matrix is secured. In the present case of Fig. 5.2 the 

symmetry would be secured by using the same even interpolation functions for projection and back-
projection, i.e.  .  BP hh ≡

b

k
l

)(chP  )(ahP

)(bhh

)(chB  )(ahB

c  a

 
 x

t

 

)(ahP  

k

l

)(bhh

)(chB  

)(chP

)(ahB   

 

 
t

 

 
t 

 

x 

 

 
Fig.5. 2  The contributions (  and (  to point-spread functions Q  and Q , respectively lkQP) k lklQP)
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In some of our own experiments [ ] we have deliberately employed two different interpolation techniques for 
projection and back-projection for the following reason. Knowing that after convergence, the result 

depends on the projector  only, and not on the filter b1−P P H  nor the back-projector B , we like to simplify 
the latter operation as much as possible and back-projection usually employs simple linear interpolation. As 
will be described in later sections, in poorly designed interpolation methods, for projection rays are running 
exactly in the 450-direction, the signal value distributed from one ray along its path may exceed the average 
with as much as 10% while another parallel ray may deliver 10% less than the average. For other angles the 
situation is much more equalized, which means that the final asymmetry in the -matrix will be much less 

than . At the time of this writing, we feel that employment of different interpolation functions for 
forward and back-projection will upset the symmetry only marginally and that the previous conclusions on 
convergence still hold. More that perfect or near ideal interpolation, the symmetry of the QP -matrix is 

upheld by the symmetry of the ramp-filter 

QP

%10±

Hh .  

Non-exact 3D-reconstruction from cone-beam data, for instance the PI- method, comprises very much the 
same three basic steps of (forward) projection, ramp-filtering, and back-projection, although forward 
projection is there only when the method is extended with the iterative loop of Fig. 1.1. A major difference, 
however, is that the two projection rays, related to pixels  and  in Fig.5.2, are no longer in one plane. And 

from one view to the next the pixel k  might “loose contact” with pixel , i.e. all potential pathways have 
zero-weights. This is in stark contrast to the planar 2D-case, where each view brings about non-zero weighted 

connections, links, between any two pixels and contributes to the total matrix component 

k l

l

lkkl QPQP )()( = . 

However, for the discussion on partial contributions via identical paths between the two image points, the non-
planar situation is irrelevant and Fig.5.2 is still valid. The symmetry argument still holds.   

 

6. Input data. The Ramp-filter 

Compared to the relatively low resolution images that we aim for in CT, the X-rays themselves are pencil-
sharp and would be able to deliver projection data with very high spatial frequencies. However, the beam spot 
is not infinitely small, nor is the detector aperture. In addition, the movement of the gantry during exposure 
smears the view. Hence, already where measurements are captured and digitized the natural infinite bandwidth 
is compromised. Even so, to control the bandwidth and avoid corrupting aliasing effects at the time of data 
capture might be an important task. Exactly how this is done seems to be propriety information and  not 
disclosed by the manufacturers. Therefore, discussions on initial bandwidth limitation has to be forsaken in 
this treatise.  

In our experiments we are manufacturing our own projection data p from mathematical phantoms. Our rays 

are line integrals that are just as pencil-sharp as the real X-rays and in principle, a dense set of rays is able to 

register arbitrary high frequency components. To somewhat mimic the fact that detector aperture d∆ , is not 

infinitely small  we may compute a detector value as a weighted sum of several incoming rays, for instance 

five. Given an image sampling density of  in the main directions, the output image band-width is given 

and the ramp-filter should cut-off at the frequencies 

1−∆ x

1
2
1 −∆±= xτ . To avoid some of the potential aliasing 

problems already at the input, before or during the down-sampling to fit the detector aperture  we should 

apply a low-pass filter. In the most general case the detector aperture could be different from the detector 
sampling distance but for simplicity, we assume here that the sampling density along the detector axis 

. In the Fourier domain an ideal low-pass filter is the rectangle function 

d∆

111 −−− ∆≤∆=∆ xdt ( x∆Π )τ , which in 

the signal domain is bound to produce unwanted ringing effects of type Gibbs phenomenon, see Bracewell (p 
209). A better alternative is then the function  

     ( ) ( )xxG ∆Π∆= ττπτ cos)(        (6.1) 

See Fig.6.1. A rectangle function ( x∆Π )τ  becomes the function ( )1-1
xsinc −∆∆ xt  in the signal domain and the 

cosine function becomes a pair of Dirac-pulses. In the signal domain the filter  yields  )(tg
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      (6.2) 

The convolution kernel  is seen to have minima at )(tg etc.,,,
2
7

2
5

2
3

xxxt ∆∆∆= The side lobes amplitudes at 

are  etc,4,3,2 xxxt ∆∆∆= etc.,,,
63

2
35

2
15

2
πππ  More generally, at xnt ∆= the amplitude is 

( ) 12

12
2−nπ .  

Thus, this bandwidth limitation could be implemented in the Fourier domain by transforming the over-
sampled projections, multiply them with ( ) ( )xxG ∆Π∆= ττπτ cos)(  and transform the truncated result back to 

the signal domain. However, it might be just as convenient to produce a band-limited and down-sampled 
projection by using the function , or rather a smoothly truncated version thereof, as interpolation kernel in 

the above-mentioned domain down-sampling process.   

)(tg

 

 ⎟
⎠
⎞⎜

⎝
⎛
∆∆ x

tsinc
x

1

1−∆ x
( )x∆τπcos

)(tg

t τ
( )x∆Π τ

x∆

x∆
2
3  

 

 

 

 

 

 

 

 
Fig 6.1.   Band-limiting with a cosine function is equivalent to convolving the over-sampled 

projection with the function  )(tg 

Fig.6.2 below shows that we intend to employ the low-pass-filter only at input data. Inside the iterative loop 
we want to curb the high frequencies inside the pass-band as little as possible. After the band-limiting 
procedures input data are subjected to ramp-filtering, which includes ideal (razor sharp) band-limiting. In 
practice, operator-selected filters can be used to modify the ideal ramp-filter to yield different image qualities 
in terms of rotation-invariant frequency response. Various tissues and organs have different needs, become 
easier to read and interpret if the balance between high and low frequencies is set in a specific way. As a case 
in question, to reveal the smallest details, in images containing high contrast objects like bones, the highest 
possible frequencies should be made available with a minimum of attenuation. On the other hand, low contrast 
objects in soft tissue might be severely disturbed by ringing from nearby bone tissue unless the high frequency 
band is curbed smoothly. We abstain from using such operator or organ specific filters in our experiments.  

 

H

Input data   p ii P fp =  

 
+

+
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if  

Fig. 6.2. Input data band-

limiting takes place outside 

out-side the iterative loop  
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Assume that the reconstruction should deliver an image of diameter xxN ∆ , where is an integer power of 

2, and  is the sampling distance in both x- and y-direction. Initially, from the ideal ramp-filter given as a 

continuous function 

xN

x∆

τ  in the Fourier domain we may create a discrete filter in the signal domain by band-

limiting τ  to the interval [ ]1
2
11

2
1 , −− ∆∆− xx  , and give it a repetition period . This is the function 1−∆ x )(1 τH  

which we write formally as 

      ( ) ( )xxH ∆ΙΙΙ∗∆Π= ττττ )(1              (6.3) 

We apply the inverse (continuous) Fourier transform 
1-

F  to obtain  

[ ] ( ) ( ) ( )[ ]1
2
12

4
11

2
1-1

x
11

1
1

1 sinc-sinc)()( −−−−− ∆∆∆∆ΙΙΙ∆== xxxx tttHth τF        (6.4) 

The function  is the ramp-filter, the one that is found e.g. in Kak-Slaney [17], Figure 3.15. We notice that 

 for and that this function extends to infinity. Note that 

)(1 th

0)(1 =th ,......6,4,2 xxxt ∆∆∆= )()( 1 τHth ⇔  form 

a continuous Fourier transform pair. The )(1 τH  function still features the rampfilter in a repeated version. We 

are now going to produce another ramp-filter  with a limited extension in the signal domain and a 

sampling density that is equal or higher than the basic sampling density in the image, i.e . But  

is also bounded upwards so that 

)(3 th

11 −− ∆≥∆ xt
1−∆ t

111 2 −−− ∆≤∆≤∆ xtx         (6.5) 

Let the number of sampling points in the signal domain be  so that the total extension, the width of the 

filter is . There are two requirements on , namely that 
lN

tlN ∆ lN

i)  is the smallest power of two that complies with (6.5), and    lN

ii) The width is larger than the double image width, i.e. 

      tlxx NN ∆≤∆2         (6.6) 

These two conditions and the fact that we already assume that  is a power of two yields that in the normal 

case where  we must require that 

xN

11 −− ∆>∆ xt

xlx NNN 42 =<                      (6.7)  

from which follows that  

x

t
xl NN ∆
∆= 4      ⇔          (6.8) 124 −∆∆=∆ xtxtl NN

Under these premises we begin the actual filter design by defining    

     ( ) ( ) ττττ xtH ∆Π∗∆ΙΙΙ=)(2        (6.9) 

The inverse (continuous) Fourier transform delivers 

[ ] ( ) ( ) ( )[ ]1
2
12

4
11

2
1111

2
1

2 sinc-sinc)()( −−−−−− ∆∆∆∆ΙΙΙ∆== xxxtt tttHth τF     (6.10) 

The differences between the Fourier pairs )()( 11 τHth ⇔  and  )()( 22 τHth ⇔  are easy to observe in Fig.6.3. 

Note that the filter coefficients, the discrete sample values in  and  are no longer identical. In  

every third coefficient is zero. Where  has one single negative coefficient,  has one positive and 

one negative although their sum yields a negative sum, as we see from excerpts in the following table. 

)(1 th )(2 th )(2 th

)(1 th )(2 th
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tt
1−∆     0     1       2     3     4      5    6    7 

)(2
2 thx
−∆    

4
1  0.0358 -0.1461     0 0.0410 -0.0482    0 ……. 

   

Finally, we obtain the filter  of the correct length )(3 th txtl NN ∆=∆ 4  by limiting the extension in the signal 

domain to  samples, i.e.  lN

( ) ( ) ( ) ( ) ( )[ ]1
2
12

4
11

2
111111

2
11

3 sinc-sinc)()( −−−−−−−−− ∆∆∆∆ΙΙΙ∆∆Π=∆Π= xxxtttltl
ttttNthtNth   (6.11) 

In the Fourier domain this is equivalent to a convolution with the corresponding sinc-function so that  

( )[ ] ( ) ( ) ( ) ( ) τττττττ xttlltlltl
NNHNNthtNH ∆Π∗∆ΙΙΙ∗∆∆=∗∆∆=∆Π= −− sinc)(sinc)()( t2t2

11
3 F   

(6.12) 

In Figure 6.3 )(3 τH  is portrayed as a discrete function. Clearly, with sampling distance for this 

function, with a slight abuse of notation, we may also define the DFT-pair 

11 −− ∆ tl
N

[ ] ( ) ( )ττττ xtltl NNthDFTH ∆Π∗∆∆== sinc)()( 44     (6.13) 

        [ ] ( ) ( ) ( )[ ]1
2
12

4
11

2
111111

4
1

4 sinc-sinc)()( −−−−−−−− ∆∆∆∆∆Π== xxxttll
tttNNHDFTth τ   (6.14)  
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Figure 6.3. Ramp-filter design 

 

Contrary to the fact that , the DC-component 0)0(1 =H 0)0(4 <H . More precisely we have 
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1
2
11

2
1

0

2
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4 sinsinc2)0(

xx

dNdNNH tltltl ττπτττ π     (6.15) 

 Using the substitution tlN ∆=τσ  we obtain 

( ) ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛−∆=∆≈ ∆
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− ∫
−

x

t
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N

tl NNdNH
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12

0

12
4 cos1sin)0(

1
2
1

π
ππ σσπ   (6.16) 

With  this is   xl NN 4=

( ) ⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛−∆≈ ∆

∆−
x

t
xtx NNH ππ 2cos1)0( 1

8
1

4      (6.17) 

Example 1. Special case . This is included in the condition (6.5). Thus we may use xt ∆=∆ xl NN 2= , by 

which (6.14) reduces to   

[ ] ( ) ( ) ( )[ ]1
2
1212

4
11

2
1

4 sinc-2sinc)()( −−−−− ∆∆∆∆ΙΙΙ== xxxx tttHth τF      (6.14a) 

so that 

[ ] ( ) ( ) ( )[ ] ( )
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⎥
⎥
⎥
⎥
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⎢
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=∆−
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−
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,...4,2for              0

....5,3,1for   

         0for        

sinc-2sinc)()(
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2
4
1

1
2
1212

4
11

2
1

4

t

tt

t

tttHth x

x

xxxx πτF    (6.14b) 

This is the case illustrated in Kak-Slaney, Chapter 3. Eq. (6.17) reduces to 

       12
4 )0( −= xNH π        (6.17a) 

An alternative way to compute  is based on the fact that the DC-component . It follows then 

that not only is the sum of all function values in  also zero, but also that the sum of the truncated values 

in  (all negative) amounts to . The length of the filter in the signal domain is 

)0(4H 0)0(2 =H

)(4 th

)(4 th )0(4H− txtl NN ∆=∆ 2 . 

Hence, with  from (6.14.b) we obtain xl NN 2=

( ) ( ) ( ) ( ) 1
2
122

2
122

12
12

4 22)0( −−
∞

=

−−
∞

=

−
+

− ∆=∆≈∆= ∫∑ xx

Nt

x

Nk
kx NdttH

xx

πππ      

 (6.17b) 

where the factor 2 is due to the identical two halves of . Unfortunately, the formulas (6.17a) and (6.17b) 

differ by a factor .  

)(2 th

24 x∆π

Example 2. 1,4,128,
3
2 =∆==∆=∆ xxlxxt NNN .  

Eq. (6.17a) implies ( )[ ] [ ] 4
2
14

3
2

2
3

128
1

8
1

4 10611041282cos1)0( −− ⋅=+⋅≈−= ππH   

Eq. (6.17b) implies  24
4 104)0( −− ∆⋅≈ xH

Example 3. (Siemens)  xlxxt NNN 4,512,
21
16 ==∆=∆  

Eq. (6.17) implies   ( )[ ] [ ] 44
21
64

16
21

512
1

8
1

4 102733.01102.15122cos1)0( −− ⋅=+⋅⋅≈−= ππH  
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Example 4. Destructive truncation.  In a series of experiments we have investigated potential convergence 
problems of iterative FBP for cases where the discrete filter function  is first limited as before to the 

length and then truncated or rather zeroing all values for 

)(3 th

tlN ∆ cNt ≤  (as in cut) and the subject the  

samples as a discrete limited length signal. Thus, this operation yields the filter  

lN

)(4 th

  

         ( )[ ] ( )[ ] ( ) ( ) ( )[ ]1
2
1212

4
111

24 sinc-2sinc)()( −−−−− ∆∆∆∆ΙΙΙ∆Π=∆Π= xxxttctc tttNtthNtth  (6.18) 

 

We apply a DFT on the  samples in the interval lN [ ]tltl NN ∆∆−
2
1

2
1 ,  to obtain  

[ ] ( ) ( ) ( )[ ]τττττ ∗∆∆Π∆ΙΙΙ== tcxtl NNthH sinc)()( 44 F    (6.19) 

 

As in the case of )(3 τH we can derive  as  )0(4H
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7. Ray- and pixel-driven projection and back-projection 

In the present context it may have some interest to recollect the classic algebraic reconstruction technique 
(ART) due to Kaczmarz [5]. See Fig. 7.1. Let the image ( )lks yxf , be sampled in Cartesian points denoted 

, or simply  and let the parallel projection values produced by line integrals perpendicular to the 

angle

( lk yx , ) ),( lk

θ  be sampled at discrete points , or simply , along the detector axis mt m t . (We apologize for changing 

the meaning of  k  and  from arbitrary pixel indices [in the previous sections] to grid points at x- and y-axes, 

respectively [in the following].)  In ART projection and back-projection are traditionally executed in the 
following way, where the weight factors 

l

),,,( θmlkw are coefficients obtained as the common area for the 

square-shaped pixel and the rectangular swath defined by the detector element .  ),( lk m

Swath

),( lk

θ

Detector element  m

Detector width  d∆

 

 
Detector axis 

 

 

 

 

 

 
Fig. 7.1 

 

 

Projection:           (7.1)    ∑=
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The normalization factor in (7.2) is computed as a summation of the squared non-zero weights the ray-sum 

 will make use of when picking up contributions in (7.1). Evidently, if this ray-sum is pumped back into 

the image using (7.2) each single weight 

θ,mp

),,,( θmlkw comes in twice. Because of the given normalization in 

(7.2) the ray-sum be delivered back to the image in full and in the same proportion, which preserves numerical 
stability. Thus the projection and back-projection are using the same weights ),,,( θmlkw to define the 

dependencies (linkages, couplings) between a ray and a pixel.  

An alternative way would be to split the normalization equally and symmetrically between the two steps as in 
(7.3) and (7.4) which means that both steps are employing -normalization, which was one of the 

assumptions we used in the convergence analysis in Section 3 above.  
2L

Projection       (7.3) ∑ ∑
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⎝
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Back-projection     (7.4) ∑ ∑
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⎝

⎛
=
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θ θθ
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,
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m lk
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Both projection and back-projection can be implemented in ray-driven or pixel-driven fashion, the two of 
which only differ in the order of which the contributions are accumulated. See Fig.7.2. According to most 
authors, e.g. [1], in pixel-driven projection, for a certain pixel ( )lk , the innermost loop finds all the non-zero 

receiving rays ),( θm , computes (or fetches pre-computed) proper weights ),,,( θmlkw , and accumulates the 

contributions to the corresponding detector values ),( θmp . Thereafter, the inner loop is devoted to another 

pixel coordinate. In Fig 7.2 a), we notice how the interpolation function  is visualized as resting on the t -

axis to compute the proportions in which the incoming pixel value shall be distributed to (in this case) two 
detector sampling points. In the ray-driven projection shown in Fig.7.2 b) we instead visualize the 
interpolation function as sliding on the ray while weighting and accumulating contributions along the way 

and finally delivering the total result as one final sample on the detector axis. Clearly, the result is the same as 
in the pixel-driven case as long as the same function is employed. Since the choice of pixel-driven or ray-

driven mode is totally irrelevant to the result, in the sequel we refrain from mentioning whether a certain 
projection or back-projection operation is to be implemented as pixel- or ray-driven. What matters is the 
interpolation function .  
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 Figure 7.2. Pixel-and ray-driven projection with linear interpolation and a circular symmetric basis function 
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The coefficients ),,,( θmlkw  are derived very differently in Fig.7.1 and Fig.7.2. In Figure 7.1 area 

computations are necessary to retrieve each coefficient. To do this on the fly (on demand) is likely to be rather 
cumbersome and time consuming. Unfortunately, using pre-computed coefficients might also be a problem, 
since all four numbers θ,,, ilk  are of the same order (normally 512) which makes the total number of 

coefficients . This constitutes a significant memory requirement for high-speed 

electronic hardware. In Fig 7.2 the weight factors 

12114 1010)( −≈NO

),,,( θmlkw  are obtained with a simple interpolation kernel, 

something which is much more amenable to fast computation.  

Let us now take Fig.7.2 b) and reverse the arrows to obtain the ray-driven projections in Fig 7.3 a). Here, the 
projection rays are running vertically retrieving contributions from neighboring pixels located in the crossings 
between horizontal and vertical lines. These contributions are computed by linear interpolation, which is 
equivalent to convolve the sampled image with a triangle function. Let all grid points carry the same pixel 
value = 1. Evidently, regardless of its horizontal displacement, for each vertical unit distance xy ∆=∆ any 

projection ray running in the vertical direction will obtain the contribution 1 (= unity). In Fig. 7.3 b) the 
situation is different. Here we obtain the following contributions per unit distance along the rays.  

For    :1p 12132.11121
2

3

2
1

2
1 =−=⎟

⎠
⎞

⎜
⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ −+       (7.5)  

For    :2p 914221.0212
2
1

22
1

2
1 =−=⎟

⎠
⎞

⎜
⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ −        (7.6) 

Evidently, the projection in the -direction is modulated by a false and unwanted signal with a basic period 

of 

045

x∆
2

1  and an amplitude of about 10 % of the DC-component. We will refer to this effect as DC-aliasing 

and in subsequent sections we will notify its existence in the Fourier domain.  
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Figure 7.3  Ray-driven back-projection using the same interpolation as in Fig. 7.2 b)  

 

8. Basis and window functions 

To generalize and analyze the effect of interpolation in projection and back-projection we must understand 
that line integrals along rays in a digital (sampled) image ( )yxf s ,  can only be defined as line integrations in 

the underlying continuous function . The sampled and the continuous functions are related via the basis 

function  as 

),( yxf

),( yxb
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( )yxfyxbyxf s ,),(),( ∗=       (8.1) 

where ( )111 ,),(),( −−− ∆∆ΙΙΙ∆= xxxs yxyxfyxf  

We now need the following Lemma on convolution and projection. 

Lemma: The two operators convolution and projection ( = line integration perpendicular to the angle ( )∗ θR

θ ) commute in the following sense. Given two functions  and , the following equality holds 

for their projections  and . 

),(1 yxb ),(2 yxb

1bθR 2bθR

      [ ] 2121 bbbb θθθ RRR ∗=∗       (8.2) 

Proof: The Fourier slice theorem tells us that projection of an image is to extract a radial slice of the Fourier 
transform of the image. Hence, we have two 1-1-correspondences between the two domains, namely that the 
projection operator (  corresponds to the slicing operator )θR ( )θS , and that the convolution operator 

corresponds to multiplication. Therefore, the Fourier transform of the left hand side of (8.2) yields 
 while the right hand side yields [ 21 BB ⋅θS ] 21 BB θθ SS ⋅ . Therefore, since it is obvious that 

[ ] 2121 BBBB θθθ SSS ⋅≡⋅       (8.3) 

we also have (8.2).   End of proof 

Following Lewitt’s notation [3], let us define the window function ) corresponding to the basis function 

 as the Radon transform  

(tw

),( yxb

      ),()( yxbtw θθ R≡        (8.4) 

where the window function in the general case is different for different angles θ . We notice that for 
rotationally symmetric basis functions, the Radon transform can be replaced by the Abel transform. In the 
literature, this function goes under various other names, like profile, footprint, etc. Applying Lemma (8.2) and 
(8.4) to (8.1) yields  

    ( ) ( )yxftwyxfyxbyxf ss ,)(,),(),( 1
FSFRRR θθθθθ

−∗=∗=    (8.5) 

Hence, we express and define the projection in the direction θ  of the digital image as the projection of the 

underlying continuous image  according to the given definition. However, via the Lemma we find 

that we may also express this as a convolution with the basis function , or rather, as a 1D-convolution 

with the window function  along the detector axis 

),( yxf

),( yxb

)(twθ t . The other component of the convolution is the 

projection of the sampled image , which can only be defined as , i.e. the 1D inverse 

Fourier transform of a slice through the 2D Fourier transform of . From (8.5), in the Fourier domain 

),( yxf s sfFSF θ
1−

),( yxf s

( )yxf s ,F  of the given digital image ( )yxf s ,  we then have  

     ( )yxfWyxf s ,)(),( FSRF θθθ τ ⋅=       (8.6) 

where )(τθW  is the 1D-Fourier transform of the window function. A more detailed Fourier domain modeling 

of the projection operator is given in the following section.  

Many forward projection methods for digital images have been proposed in the literature, some of them by 
defining a certain basis function , some of them by defining the corresponding window function , 

and some of them defined operationally only.  A subset of these is portrayed in Fig. 8.1. In upper row. left, we 
recognize the circular symmetric basis function with a triangle shaped window function that we used in Fig 
7.2 and Fig.7.3 without defining the basis function itself. Clearly, however, this basis function is found by 

applying the inverse Abel function to the triangle function 

),( yxb )(tw

( )1−∆Λ xt  which yields the rotationally symmetric 

function  

( )11111 2/)(cosh −−−−− ∆Π∆∆ xxx rrπ      (8.7) 
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A number of 3D forward projection methods, including Joseph’s, are briefly described in the thesis by Turbell 
[13]. One of these is due to Siddon [14] who is calculating the weight ),,,( θmlkw  of a pixel value as the 

length the ray ),( θi  intersects the basis function , which is constant over a square-shaped area 

around the sample point . The window function  that arises as the projection of the given 

basis function is highly dependent on the angle

),( yxbSiddon

),( lk yx )(twSiddon

θ . Joseph’s method [9] was originally described as a quick and 

easy technique to compute the line integrals as follows. If the angle θ  is in the interval 
44
ππ θ ≤≤− , as is the 

case in Fig.8.1, the ray sum is computed as follows. For each horizontal grid-line, a new contribution is found 
by linear interpolation between the two sampling points nearest to the ray. The width (= half of the total base) 
of the triangular interpolation kernel measured perpendicular to the ray, i.e. laid out along the detector axis, is 

θcosxw ∆=∆  where θ  is the smaller of the two difference angles between the detector axis and the x- and 

y-axes, respectively. The final ray-sum is multiplied with ( ) 1cos −θ  to compensate for varying step-lengths 

between two consecutive contributions along the ray, which results in the window function  

( ) ( )[ ]111 coscos)( −−− ∆Λ= θθθ xttw        (8.8) 

where stands for triangle function. The window function (8.8) is implicit in Joseph’s original procedural 

description. The underlying basis function exists as 

Λ
[ ])(1 tw-

θR  but is never used explicitly. 
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Another method presented in [13], [15] is the KTG-method, see also A sample from the underlying continuous 
function is obtained by bi-linear interpolation in the sampled 2D-image (tri-linear in the 3D-case of [13], 
[15]). Hence, in the 2D-case the basis function in Fig.8.1 lower left is defined as the product of two triangle 
functions. From this follows a window function ),,,( θmlkw  by computing the line integral of the projection 

ray ),( θm  through this basis function centered at . In [13], [15], however, it is suggested that this line 

integral is either approximated by sampling and summing the basis function itself repeatedly and not too 
sparsely at equidistant points along the ray, or preferably, using the Simpson rule of integration. The KTG-
method is similar to the Joseph’s method in the sense that the underlying 2D-basis function is not rotationally 
symmetric but symmetric with respect to the Cartesian grid. The experiments in [13], [15] show that Joseph’s 
method generate projections with slightly less errors (less aliasing) than the KTG-method, while Siddon’s 
method is significantly inferior to the other two.  

),( lk yx

Fig. 8.1 Basis and window functions proposed for computing projections from

d l
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Two of the basis-window-function pairs in the lower row of Fig.8.1 are due to Lewitt [3] and Magnusson 
Seger [10], [11], [12]. Both are carefully designed to yield a window function, which is limited in the signal 
domain as well as in the frequency domain, although the latter limitation is not absolute. Typically, the 
window functions are such that in ray-driven modes, there are between four and six pixel contributions to be 
accumulated/delivered from/to each ray-value. Like-wise, in pixel-driven modes there are four to six detector 
contributions to be accumulated/delivered from/to each ray value. In the Fourier domain these window 
functions are designed to be strongly attenuating outside the Nyquist limits of the sampled image signal, 
especially outside the double Nyquist limits, where the attenuation typically is -60 DB or less. These window 
functions will be studied in more detail in subsequent sections.  

To the far right is a pictorial description of the traditional basis-window function employed in traditional 
ART, Fig.7.1. This projection operator is always defined operationally. Therefore, the interpretation in Fig.8.1 
and the analytical formulation to be given here might be hard to find in the literature. The operational tells that 
the window function coefficient  is portion of the actual square-shaped pixel area that is covered by 

a swath of the actual detector, the width of which is the detector aperture 

)(twARTθ

t∆ . This can be expressed by the 

following two-step procedure.  

1) Compute the same angular dependent and trapezoid window-function as in Siddon.  )(tw Sθ

2) Convolve this result with a rectangle function ( )tt ∆Π /  to get the window function as  

  ( ) ( )( )[ ] [ ]),(//)()( 1 yxbtbttwtw ARTtSiddontSART θθθθ RRR =∆Π∗=∆Π∗= −    (8.9) 

where we have employed the above lemma. Thus, from (8.9) we identify can also extract the basis function 
for traditional art as  

    ( ) ( ) ( )
2
1

2
2

2
///),(

−
∆

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎠
⎞⎜

⎝
⎛∆Π∗∆Π∆Π= rryxyxb x

txxART    (8.10) 

where the last part of this expression is rotationally symmetric but not identical to the disk ( tr )∆Π / . The 

window and basis and basis functions of (8.9) and (8.10) are unique in that they depend on the sampling 
densities of the image as well as of the detector.  

 

9. Fourier modeling of projection and back-projection 

In this section we will only deal with 2D-functions of finite extent, an arbitrary continuous version of which 
we denote . In mathematic notation a complete set of forward projections of  applied in all 

directions 

),( yxf ),( yxf

θ  yields the Radon transform of , which we may write as ),( yxf

( )

22maxmin ,

sincos(),(),(,

ππ θ

θ

≤<−≤≤

−+== ∫ ∫
∞

∞−

∞

∞−

ttt

,dxdyt)θyθxδyxfyxftp R
     (9.3) 

For a single projection in theθ -direction we will use the notation 

,

,)sincos(),()()(

maxmin ttt

dxdytyxyxftftp

≤≤

−+== ∫ ∫
∞

∞−

∞

∞−
θθδθθ R

   (9.4) 

where  is the (forward) projection operator. The Radon transform is defined for continuous functions. 

Hence, to treat sampled images analytically we must find an underlying continuous function for which a 
sampled image is a representation. First, define a sampled version of the continuous  as  

θR

),( yxf

( ) ( ) ( ) ( ) (∑∑
∞

−∞=

∞

−∞=
∆∆

− ∆−∆−=∆=
l

x
k

x
yx

xs lykxyxfyxfIIIIIIyxf
xx

δδ),(),(, 2 )    (9.5) 



Combining Fourier and iterative …                                                                                24  (50)  
 
where the two one-dimensional functions III are sampling operators, and x∆  is the sampling distance in both 

x- and y-direction. To produce projections of the sampled image, we must interpret each sample 
value  as a coefficient to be multiplied with a 2D basis function ) . Then, a continuous 

function 

( lks yxf , ) ,( yxb

),(
~

yxf  from the given samples is obtained as  

( ) ( ) ( ) ),(),(,),(),(
~ 2 yxfIIIIIIyxbyxfyxbyxf

xx

yx
xs ∆∆
−∆∗=∗=    (9.6) 

The discrepancies between  and ),( yxf ),(
~

yxf  are due to the unavoidably non-perfect nature of the basis 

function . In any case, given the basis function , from (9.6) we obtain the projection of the 

sampled image  just as in (9.4) as 

),( yxb ),( yxb

( lks yxf , )

     (9.7) maxmin,)sincos(),(
~

)(
~

)( tttdxdytyxyxftftp ≤≤−+== ∫ ∫
∞

∞−

∞

∞−
θθδθθ R

In the sequel we will use the alternative notation  

[ ] ( )[ ] 222),(,),()(),(
~

)( yxttyxfyxbtyxftp s +=∗== θθθ RR   

 (9.8) 

Using the above in Lemma (8.2) we obtain 

[ ] ( )[ ]yxfyxbtp s ,),()( θθθ RR ∗=       (9.9) 

Replacing  in (9.9) with the expression in (9.6) yields ),( yxf s

[ ] 2222 ,),(),()( yxtyxfIIIIIIyxbtp
xx

yx
xθ +=⎥⎦

⎤
⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛∆∗= ∆∆

−
θθ RR    (9.10) 

by which we obtain the Fourier domain expression 

     ( ) ( )[ ] 222 ,arctan  ,),(),(),(),()( vuvuFvIIIuIIIvuBvuFvuBP
u
v

xxs +==∗∆∆=⋅= τθτθ        (9.11) 

A simplistic Fourier spectrum is shown in Figure 9.1. Repeated copies of , the Fourier transform of the 

underlying continuous image function , are indicated by sets of concentric circles. The basis 

(interpolation) function  will modulate these copies so that in  and its projection slices, only 

the central copy will appear with full strength while the amplitude of the other copies decrease gradually with 
increasing distance to the origin. We will study the details of this effect in the sequel. Fig 9.1 is a follow-up of 
the above Lemma (8.2), which we have found to be an indispensable tool to visualize and analyze projection, 
(ramp)filtering and back-projection in the same domain.   

),( vuF

),( yxf

),( vuB ),( vuFs

In back-projection the initial Fourier domain of the sampled image is an empty space waiting to be filled in 
by band-limited projection data. See Fig.9.2. The grid-points are the Fourier transform of the image sampling 
grid. The sampled and ramp-filtered projection indicated in red consists of repeated copies of the Fourier 

components inside the Nyquist boundaries. The repetition pitch equals the detector sampling density  in 

all directions

1−∆t

θ .  

To see the complementary symmetry between projection and back-projection, let us note that in Fig.9.1 the 
contributions from a slice in to a projection ),( vuF )(τθP  were modulated by the basis function , or 

rather by the window function

),( vuB

)(τW . In Fig.9.2 the contributions to a slice in  from a projection ),( vuF

)(τθP  will be modulated by the same window function )(τW  while building up a continuous and non-band-

limited function. All contributions outside the central Nyquist circle are aliasing. The final sampled  is 

obtained by convolving the total accumulated result with the Shah-function in Fig.9.2 represented by the grid-
points. The advantage of modeling projection in this seemingly complicated manner is that we can actually 
visualize the aliasing contributions along each slice and at which spatial frequency position they will appear. 

),( vuFs
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Fig. 9.1. Projection. The Fourier domain  of the sampled image  from which projections 

will be extracted by interpolation in the image 

),( vuFs ),( yxf s

),(),(),(
~

yxfyxbyxf s∗= . In the Fourier domain this 

process correspond to slicing the Fourier domain along radial lines while multiplying with the window 

function )(τW .Three directions of special interest are indicated, namely 
42

1   and   ,arctan,0 πθθθ === .  
v

 

Fig. 9.2. Back-projection  

portrayed in the Fourier 

domain with a sampled 

band-limited ramp-filtered 

projection )(
4
τπR  in red 
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In subsequent chapters various forms of aliasing, especially so called DC-aliasing, will be discussed and 
analyzed. The ramp-filtering that precedes the back-projection has almost but not completely eliminated the 
DC-component in Fig.9.2. Hence, we may expect the danger of DC-aliasing to be alleviated but not 
eliminated. In fact, practical experiments have shown, however, that DC-aliasing is a problem also in back-
projection. Fortunately, the solution is simple, namely to use a window function the Fourier transform of 

which is zero-valued for . A common window function is the triangle function (linear interpolation). 

By choosing a width 

1−∆= tkτ

tw ∆=∆  the suppressing of DC-aliasing is guaranteed.  

As we will see, DC-aliasing for back-projection stems from a mismatch between the width w∆  of the 

interpolation filter and the detector sampling distance t∆ . In projection, on the other hand, DC-aliasing stems 

from a mismatch between w∆  and certain periods xxx ∆∆∆
5

1
2

1 ,,  which are linked to the basic image 

sampling distance distance t∆ .  

 

10. Projection aliasing. General formulas 

From Fig.9.1 follows that projections in the four directions 
4

3
42

, and  ,,0 πππθ =  are unique in the sense that 

the corresponding slices in the Fourier domain exhibit a perfect periodicity with periods  and 1−∆ x
12 −∆ x , 

respectively. In certain other directions periodicity with larger periods may also arise, e.g. in the direction 

2
1arctan=θ  with the period 15 −∆ x , 1

3
1 10 period,arctan −∆== xθ , and 1

3
2 13 period,arctan −∆== xθ . 

All these cases are unique in that the slice-line strikes a DC-component copy not too far from the origin. The 
longer from origin such a first hit (or near hit) occurs, the smaller is the potential for aliasing.  For most 
directions such an event happens so far from origin that the decay any sensible interpolation function has 

nullified the aliasing effect. Therefore, in the sequel we will concentrate our investigation to the two cases 

)(tw

0=θ  and 
4
πθ = , i.e. one main and one diagonal direction. Aliasing effects in directions 

2
πθ =  and 

4
3πθ = , 

respectively, are obviously the same. We will specifically point out cases of DC-aliasing and Conjugated 

aliasing, both of which appear at two specific frequencies 0τ±  and  02
1

1 ττ =± , respectively.  

The case 
4
πθ =  is illustrated in Fig.10.1, where input data from the image appears in the top row, the non-

sampled projected result in the middle row, and one of several aliasing contributions appears in the bottom 

row. We have chosen a detector sampling distance , which seems to rhyme well with the 672 

detector channels in Siemens’ Sensation machine since 

11 3.1 −− ∆≈∆ xt

3125.1
512
672 = . However, the formulas to be developed 

below do not depend on this relation. Both  and  appear as free parameters. Likewise, the linear 

interpolation function, which in the Fourier domain in Fig.10.1 is the function , just one 

function of many that can be plugged into the formulas below.  

1−∆ x
1−∆ t

( τwx ∆∆ 2sinc )

Let ⎥⎦
⎤

⎢⎣
⎡= )()(

44

τππ Ptp 1-
F  stand for the projection of the under-lying continuous band-limited image. The 

Fourier transform of the projection of the sampled image is a repeated version of )(
4
τπP  that we prefer to 

denote )(
4
τπS  shown at the top of Fig.10.1. Clearly, we have 

       ( )∑
+∞

−∞=

−∆+=
n

xnPS 12)(
44

ττ ππ       (10.1) 
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     Fig.10.1. Aliasing in the -projection of a sampled image 
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FF . Let )(

4

τπT  be the Fourier transform 

of the sampled version thereof that yields 
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−−−
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−− ∆+∆+∆+=∆+∆+=
k n

txt

k

tt knPkWkSkWT 11111 2)(
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For any  except  an aliasing contribution is likely to appear in the Nyquist interval k 0=k 1
2
1|| −∆< xτ . The 

bottom row of Fig.1.1 shows the following contribution for the term )1,1(),( −=nk . 

( ) ( )111
)1,1(

2)(
44

−−−
− ∆−∆+∆−= txt PWT τττ ππ      (10.3) 

Correspondingly, for )1,1(),( −=nk  we get an equal and symmetrically located contribution  

( ) ( )111
)1,1(

2)(
44

−−−
− ∆+∆−∆+= txt PWT τττ ππ      (10.4) 

For normal interpolation functions )(τW these two contributions are the most prominent ones. They give rise 

to DC-aliasing in )(
4

τπT  for 

( )11
0 2 −− ∆−∆±≡±= txττ ,       (10.5)  

each of which amounts to 

( ) ( ) )0(22)2(
444

111
)1,1(

11
)1,1( πππ PWTT xtxtx

−−−
−

−−
− ∆=∆+∆−=∆−∆    (10.6) 

 

Conjugated aliasing, defined as the case when )()(
)1,1()1,1(

44

ττ ππ −= ∗
−TT , occurs at  

( )11
2
1

02
1

1 2 −− ∆−∆≡≡= txτττ        (10.7) 

since 
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and because the projections are real in the signal domain, while the interpolation function  is not only real 

but even as well. Therefore 

)(tw

)(
4

τπP  and )(
4

τπ −P  are conjugated, i.e. )()(
44

ττ ππ −= ∗PP , while )()( ττ −=WW .  

In the complete aliased result above in eq. (10.2) the center lobe contribution  and the first two 

side lobe contributions 

)0,0(),( =nk

)1,1(),( −=nk  and )1,1(),( −=nk  to the frequency component at 1τ yields  
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111
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2 τττττ ππππ PPWPPW tx     (10.9) 

 

Conjugated aliasing as in (10.11) is a potential problem for the stability of the main loop because the 

imaginary part of the frequency components )(
4
τπP  and )(

4

τπ −P  will experience a positive instead of a 

negative feedback.  
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Fig.10.2. Aliasing in the 00-projection of a sampled image 

 

For projection in the direction 0=θ  the aliasing situation is illustrated in Fig.10.2. Eq. (10.3) and (10.4) will 
now take the following forms.  

( ) ( )11
0

1
)1,1(0 )( −−−

− ∆−∆+∆−= txt PWT τττ      (10.10) 

and  

     ( ) ( )11
0

1
)1,1(0 )( −−−

− ∆+∆−∆+= txt PWT τττ      (10.11)  

respectively. Here, DC-aliasing occurs at  

( )11
0

−− ∆+∆−±=± txτ        (10.12) 
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for which  

    ( ) ( ) ( )1
0

11
)1,1(0

11
)1,1(0 )0( −−−

−
−−

− ∆=∆−∆=∆+∆− xtxtx WPTT    (10.13)  

Conjugated aliasing occurs for the frequencies  

( )11
2
1

1
−− ∆−∆±≡±= txττ        (10.14) 

for which 

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) )()(

)()(

0
11

2
1

10
11

2
1

11,10

0
11

2
1

10
11

2
1

11,10

τττ

τττ

−∆+∆=∆+∆−=−

∆+∆=−∆+∆=

∗−−−−
−

∗−−−−
−

PWPWT

PWPWT

txtx

txtx
   (10.15) 

 

11. Back-projection aliasing. General formulas 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 11.1 Aliasing in -back-projection 045
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Input data in Fig.11.1 is a ramp-filtered projection )(
4
τπQ , the repeated version of which is called )(

4
τπR . 

Contrary to forward projection, input data for back-projection are not dominated by a large DC-component. 

Hence, DC-aliasing should not be a major problem in back-projection. In fact, it is common to use tw ∆=∆  

in which case the sinc2-function is zero at 1−∆= tτ . Then, the DC-aliasing effect in Fig.11.1 would be 

perfectly suppressed, which is probably the reason why this phenomenon is not mentioned in the literature. 

However, as indicated in Fig.11.1, when , a small but not quite negligible aliased DC-component 

will appear in 

11 −− ∆≠∆ tw

( ) )(
1,1

4
τπ −T  at 11

0 2 −− ∆−∆== txττ  together with other aliased frequency components.  In full 

correspondence to (10.2), the information that is transferred from the projection to the image is given as  

      ( ) ( ) ( ) ( )∑ ∑∑
∞

−∞=

+∞

−∞=

−−−
∞

−∞=

−− ∆+∆+∆+=∆+∆+=
k n

txx

k

xx knRnWnRnWT 11111 2222)(
444

τττττ πππ     (11.1) 
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In the same manner as for projection we find that conjugated aliasing in back-projection appears for the very 
same frequency  

( )11
2
1

1 2 −− ∆−∆±≡= txττ       (11.2) 

In the direction 0=θ  the formula (11.1) modifies to  

( ) ( ) ( ) ( )∑ ∑∑
∞

−∞=

+∞

−∞=

−−−
∞

−∞=

−− ∆+∆+∆+=∆+∆+=
k n

txx

k

xx knRnWnRnWT 11111

444

)( τττττ πππ    (11.3) 

so that conjugated aliasing occurs for  

( )11
2
1

1
−− ∆−∆±≡= txττ        (11.4)  

which is identical to the formula (10.14). 

 

12. Aliasing in linear interpolation. Joseph’s method 

 In this chapter we will only use linear interpolation. In general we are then employing the window 
function  

           ( )
ww

x ttw ∆∆
∆ Λ=)(  

Assume that we employ the window function ( )
x

ttw ∆Λ=)( , i.e. the width xw ∆=∆  as in Fig.7.2. From 

(10.12) we gather that there will be no DC-aliasing in the forward projection. The zero points of the 
sinc

00=θ
2-function coincides perfectly with the repeated versions of the DC-component. Unfortunately, this is not 

true for the direction 
4
πθ = ,where the situation is similar to what was demonstrated in Fig.10.1. The DC-

aliasing effect is strong enough to completely ruin any attempt to utilize the projections for reconstruction as 
shown by the simple experiment in Fig. 13.4, top row. A rather strong unwanted frequency component 

appears in the sinogram at  . We count manually to find 9 periods over 22 pixel distances 045±=θ x∆  which 

is a period of and a frequency of  . Inserting x∆4444.2 14091.0 −∆ x xt ∆=∆  in formula (10.5) yields the 

prediction that the period of this checkered band should have a frequency of  ( ) 11 4142.012 −− ∆=∆− xx , 

which seems to be close enough to confirm the DC-aliasing theory. Furthermore, the relative amplitude of this 
frequency component can be estimated from (10.6) to yield  

( ) ( )
094.0

2

2sin
22sinc2)0(22

2

2
21

4

===∆−
π

π
πPW x , 

which is not far from the amplitude estimate ( ) 1035.0212
1 =− pp  we get from (7.5 and (7.6).   

Joseph’s method [9] computes projections as illustrated in Fig.12.1. In the direction interval 
4

3
4

ππ θ ≤< , for 

each vertical line of grid points crossed by the projection ray, the two nearest grid 

points  contribute to the projection with the linearly interpolated value ( ) ( xyxyx ∆+, and  , )

    ( ) ( )[ xss yxfayxfa ∆++−− ,,)1(sin 1θ ],      (12.1) 

where  is the intercept distance between the projection ray and the point a ( )yx, . For 
44
ππ θ <≤−  a similar 

definition holds so that the interpolated value shall be computed as  

( ) ( )[ yxfayxfa xss ,,)1(cos 1 ∆++−− θ ]      (12.2)  
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Thus, the window functions  ,corresponding to (12.1) and (12.2) are  Jw

    
coscos

1
    and    

sinsin

1
)( ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∆

Λ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆

Λ=
θθθθ xx

J

tt
tw     (12.3) 

respectively, which are triangle functions, the width of which varies from x∆  in the direction 0=θ  and 

2
πθ = to x∆

2
1 along the diagonals, while the height at the same time varies from ( ) 1

2    to1
−

. As a 

consequence, the zero crossings for the Fourier transform  

( )θττ cossinc)( 2
xxJW ∆∆=       (12.4) 

are not found along circles as in Fig.9.1 but along concentric squares as illustrated in Fig 12.2. DC-aliasing 
will then be perfectly suppressed for all directions. This is most beneficial for the diagonally oriented 

projection 
4
πθ =  shown in Fig.12.3. The remaining aliasing is due to second order shoulders emanating from 

the first two copies of )(
4

τπP . From our experiments, see Fig. 13.4, we have found that although these 

contributions are much subdued by the sinc2-function they are still afflicting the result.   
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In Fig.12.3 the projection employs a detector sampling interval xt ∆=∆
3
2 . To decrease this quantity means 

that the distance  increases in the Fourier domain, which will diminish the aliasing contributions in the 

bottom line of Fig.12.3. As an example, the shoulder aliasing in Fig. 12.3 will be entirely withdrawn from the 

Nyquist interval if we make 

1−∆ t

( ) 1
2
111 92.12 −−− ∆≈+∆≥∆ xxt .  

Accepting this remedy, remaining aliasing stems from the second and higher order lobes of the sinc2-function. 
The sum of these is of the same order as the second one that we just got rid of which means that the aliasing 

contributions are halved, which is  in power reduction. Another doubling of brings about another 

halving of the aliasing etc. Undoubtedly, sufficient aliasing reduction is possible to obtain in this manner.  

DB6− 1−∆ t

 

  1
2
31 −− ∆=∆ xt  
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Fig. 12.3. Projection with Joseph’s method and xt ∆=∆
3
2 , 

4
πθ =   

 

Let us make a rough estimate of these aliasing contributions in more absolute terms. The second side lobe of a 

sinc2-function has a peak amplitude of ( ) 04503.0
2

3
2 ≈π . This peak appears in “no mans land”, i.e. between 

the Nyquist lobes of the signal in Fig.12.3, which is to say that the dominating DC- and lower frequency 
components are safely suppressed.  Let us do some guess-work. Assume that the maximum effective aliasing 

amplitude for remaining aliased frequencies is about 16 times smaller than ( )2
3
2
π , say,  or 0032.0 DB50− . 

To bring this amplitude down to  or 0002.0 DB74− , which we aim to do in the following section, would 

require no less than a 16-tupling of the detector density  which would raise the computation cost 

with a factor of 16 in the present 2D-case, and 64 in the 3D-case.  

11 −− ∆=∆ xt

It maybe noted that the scheme of Fig.1.1 requires that projection data   produced from the digitized result 

must conform to the given input format for p . If we increase the detector density of  the projections  

must follow pace. However, and fortunately, since an increase in is equivalent to do zero-padding of  

before Fourier transformation, the subtraction 

ip

ip p

1−∆ t p

ipp −  in the Fourier domain becomes almost effortless.   
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An interesting extension and improvement of Joseph’s method was employed by Nuyts et al in [1]. 

According to [3], in this implementation both the interpolation function width w∆  and the detector sampling 

distance  varies as  t∆

4
3

4

44

for       sin

for     cos

ππ

ππ

θθ

θθ

≤≤∆=∆=∆

≤≤−∆=∆=∆

xwt

xwt
      (12.5) 

Fig. 12.4, bottom row, shows that for projections in the diagonal directions (as well as for the main directions 
along the x-and y-axes), not only is the DC-component suppressed, but the remaining aliasing contributions 
from the two nearest side lobes sum up in a perfect symmetric pattern. Furthermore, these contributions fall in 
place inside the Nyquist limits exactly in the proper positions without producing any false frequency 

contributions whatsoever. For other directions θ  the benefit of the variable sampling density θcosx∆ , 

alternatively θsinx∆ ,  is less obvious. 
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 Fig 12.4. Projection with extended Joseph’s method  
4

,cos πθθ =∆=∆=∆ xwt  proposed by Nyuts [3] 

It was also pointed out by Nyuts [3] that this method is really designed for speed. The set of parallel projection 
rays in a projection will intercept the vertical (or horizontal) grid lines at same horizontal (vertical) position. 
Hence in projection and backprojection the same two interpolation coefficients can be employed repeatedly in 

different interpolation steps.  )(NO

Normally, the detector density is given by the physical design of the tomograph rather than being a free 
parameter that can be tampered with in the reconstruction algorithm. However, it is not uncommon that the 
first step in the reconstruction is rebinning which immediately opens the possibility to introduce variable 
detector density in this step to be used thereafter. Such is the case for most non-exact helical cone beam 
reconstructions methods, which are the main target for the present enhancement approach.  

Finally, it should be mentioned that the linogram [27],[11] also carries the same feature as the extended 
Joseph method of being tuned to the Cartesian sampling pattern. The linogram is a data set obtained from a 
parallel projection sinogram by resampling to the sampling densities given by (12.5). On top of this, the 
linogram also requires resampling in the angular direction. In a linogram the angular sampling density should 

vary from , for projection angles aligned with the Cartesian image grid, to  
0θ∆

( 0
2cos

0
θθθ −∆ ) , alternatively ( )0

2sin
0

θθθ −∆     for an arbitrary projection angle θ .   
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13. Anti-aliasing using advanced window functions  

In this section we will describe and apply alternative rotation-invariant window functions  that are zero, or 

at least for our purposes have “negligible amplitudes”, for frequencies outside the double Nyquist interval 

. From experiments we have adopted a rule-of-thumb that “negligible amplitudes” means  

tw

1|| −∆< xτ

amplitudes < 0.0002,     i.e. power < - .      (13.1) DB74

We are going to compute projections from a digital image given in a Cartesian uniform grid with density 

.. As illustrated in Fig.13.1, if input data are band-limited so that frequencies are zero outside the Nyquist 

interval 

1−∆ x

1
2
1|| −∆< xτ  in any direction a detector density  

1
2
31 −− ∆≥∆ xt           (13.2) 

will then be sufficient to eradicate all aliasing in the projection operation. Thus, there is no need to apply 
Joseph’s technique to combat DC-aliasing in the critical 450-directions. All is taken care of by the nearly 
perfectly band-limited and rotation-invariant window function )(τW .  

Note that the projection result  )()( ττ PW ⋅  in the middle row of Fig.13.1 contains high frequency components 

(in red), picked up from the first left and right hand copies of  )(τP  in the first row. These components 

constitute potential shoulder aliasing. The bottom row shows that the sampled projection carries aliased 

frequency components within its own Nyquist band 1
2
1 −∆± t , but also that these can be eliminated, whenever 

we want to. If not done beforehand, the band limitation from 1
2
1 −∆± t to 1

2
1 −∆± x  will take place during 

subsequent ramp-filtering.   
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Fig. 13.1. A  window function )()( τWtw ⇔  that suppresses all frequencies above the double Nyquist limits 

 eliminates all aliasing inside the single Nyquist limits
1−∆±> xτ 1

2
1 −∆±≤ xτ , provided that the detector density 

 

 
1

2
31 −− ∆≥∆ xt . The case 0=θ (to the left)  is the worst case. Other directions, for instance 

4
πθ = , have wider 

margins. 

 

 

Spline-functions can be seen as generalizations of the rectangle function employed in nearest neighbor 
interpolation and the triangle function employed in linear interpolation. In the terminology of Unser [25] the 
rectangle and the triangle functions are B-spline functions of order 0 and 1, respectibely. B-spline functions of 
any order can be generated by successive convolutions of the rectangle function by itself. We are only 
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interested in functions of odd orders, which make positive functions in the Fourier domain. The triangle 
function convolved with itself makes a B-spline of order 3, having a total width that is twice the triangle 
function. The triangle function is a 2-point interpolator, the B-spline of order three is a 4-point interpolator, 
the B-spline of order five is a 6-point interpolator, etc. In the Fourier domain these B-splines make sinc2, sinc4, 
and sinc6-functions, respectively. The second side-lobe of these three functions, the one that we want to be 
negligible in Fig.13.1, amounts to numbers given in Table 13.1. 

Only the B-spline of order 5, the six-point interpolator satisfies the criterion (13.1) Compared to linear 
interpolation the computation cost increases three-fold. Unfortunately, the aliasing suppression comes with a 

rather strong and unwanted smoothing effect (see Appendix). At the Nyquist limits 1
2
1 −∆± x , the sinc6-

function, which is a six-point window function in the signal domain, has melted down to a trickle, namely to 

( ) 0666.0
62 ≈π . To compensate for this smoothing Unser [23] advocates preprocessing with approximate 

inverse filters. To lift the response from 0.0666 to  at the Nyquist limit, such a filter should magnify 7.5 

times for 

5.0
1

2
1 −∆±= xτ  while tapering off to unity for 0=τ  and .  1−∆±= xτ

 

Sinc2 Sinc4 Sinc6

( )   0451.0
2

3
2 =π  ( )   00203.0

4

3
2 =π  ( )   000091.0

6

3
2 =π

DB27−  DB54−  DB81−  

 

Table 13.1 Amplitudes and power attenuation of the second side-lobe for window functions of type B-spline 

     

From the literature we can find at least two other candidates for the wanted window functions in Fig. 13.1. 
Rotationally symmetric two-dimensional basis functions called Blobs were proposed by Lewitt [10] to yield a 
window function that is a generalized Kaiser-Bessel function. There are two versions that we think are 
worthwhile to consider. For simplicity we call them here Blob1 and Blob 2. The corresponding window 
functions and  are shown in Fig.13.2. In the Fourier domain )(1 twb )(2 twb )(1 τbW  tapers off to zero already at 

the Nyquist limits 1
2
1 −∆±= xτ . Thus, shoulder aliasing is suppressed by the mere design of the filter at 

the cost of strong smoothing and low-pass filtering. Furthermore, from the power spectra (see Appendix) we 
notice that the suppression of frequencies outside the double Nyquist limits is not sufficient for , according 

of our rule-of-thumb (13.1). 

)(1 twb

1bW

)(2 τbW , on the other hand, tapers off to zero at  and has an attenuation 

for higher frequencies that meets the above requirement (13.1). In principle this filter, which also has a 
parameter that can change some of its characteristics, would be possible to use as described in Fig.13.1.  

1−∆±= xτ

The SinCot-filter was first presented in [11] and [12]. A main parameter of this filter is denoted)(twSCM M , 

which is an even integer that defines the width x
M

x
M t ∆≤≤∆−

22
 of the filter. We will call such a filter an 

M-point filter since one interpolation result makes use of M input points. The filter function is 

 elsewhere     0)(

for       cotsincos)1()(
22

21

=

∆≤≤∆−⎟
⎠
⎞⎜

⎝
⎛ −+= ∆∆∆∆

tw

taatw

SCM

x
M

x
M

M

tt

M

t

MSCM
xxxx

πππ
     (13.3) 

The parameter changes the shape in both domains. When a 4=M , to obtain maximum flatness in the inner 

part of the Nyquist interval of  we set 4SCW 605.0=a . As can be seen from Figures 13.2 and 13.3, outside 

the double Nyquist limit, for 4=M  the suppression of side-lobes is strong ( DB60−≤ ). The attenuation 
increases somewhat, but not so signficanly by using a six-point filter. i.e. to set 6=M  in (13.3). 
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The formula (13.3) contains the factor 
xM

t
aa ∆−+ π2

cos)1(  which is called the Hamming window. An extended 

version of the SinCot filter comprises two Hamming windows which then yields 

  cotsincos)1(cos)1()(
221

2
xxxxx M

tt

M

t

M

t

MSCM bbaatw ∆∆∆∆∆ ⎟
⎠
⎞⎜

⎝
⎛ −+⎟
⎠
⎞⎜

⎝
⎛ −+= ππππ

   (13.4)  

We have found that using , , and 6=M 75.0=a 53.0=b  the corresponding Fourier transform )(2 τSCMW  

is less low-pass filtering inside the Nyquist interval 1
2
1 −∆< xτ  while attenuating strongly for 1−∆> xτ . A 

presentation of SinCot- filter design is found in the Appendix.  

 

      
 

        
 

 Fig. 13.2 A comparison of five interpolation (window) functions 
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A definitive advantage of SinCot filters over the Blob filters is less low-pass filtering in the Nyquist interval 

. A further potential advantage is that the 4-point Sin-Cot filter has zero-crossings in the Fourier domain 

for   etc. just like the sinc

5.0±

,3,2, 111 −−− ∆∆∆ www
2-function. Therefore, this filter can possibly be employed with 

some advantage in the rotation-variant style of Joseph, having a width that matches the repeated copies of 
 in Fig. 9.1 to obtain absolute suppression of DC-components in both zero and 45-degree directions.  ),( vuF

Fig. 13.3 demonstrates the importance of minimizing aliasing in forward projection by a simple experiment, 
which is nothing but an attempt to reconstruct an image from projections taken from an already digitized 
image. This original is not quite but almost identical to the middle image in the bottom row. 

The result in the middle, top row of Fig. 13.3 is subjected to heavy DC-aliasing of the type explained by 
Fig.10.1 and already touched upon in Fig. 7.3. The speckled band at 450 in the sinogram (left, top row) is a 
clear visual indication that this effect in forward projections is detrimental and must be avoided.  

The result in the middle, second row of Fig.13.3 demonstrates that Joseph’s technique with parameters as in 
Fig.12.3 works rather well although not perfectly. The DC-aliasing in the 450 is certainly gone but some other 

remaining aliasing is still there. The detector density 1
2
31 −− ∆=∆ xt  is still not sufficient to suppress aliasing 

from the shoulder of the first sinc2-lobe and various parts from second one.  

The experiment in the third row of Fig. 13.3 is congruent with Fig.13.1 since it uses a 4-point SinCot-filter 
 in the projection step and produces a seemingly spotless result. The back-projection in this last 

experiment was done using the simpler window function used in the top row experiment. Replacing this by 
 had no visible effects in this specific case.  

4SCW

4SCW

                                                 Part of sinogram            Reconstruction            Enlarged part 

  

 

Fig.13.3 Reconstruction via projections of a digital image using different window functions in forward 

projections but the same 

)(tw

( )tt ∆Λ /  in back-projection. The quantity  x∆ is denoted ∆ in this figure. 
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14. Proposals for alias-free and stable iterative reconstruction 

Considering the theoretical discussions and the experimental verifications of aliasing problems in projection 
and back-projection we propose the following solutions. 

Alternative 1. In the projection employ Joseph’s technique as in Fig.12.3, but replace the linear interpolation 
window function with a SinCot-function. To avoid shoulder aliasing for all directions, increase the detector 

sampling density to 

                                                         ( ) 11
2
11 92,12 −−− ∆=∆+=∆ xxt       

In the back-projection (see previous Figures 9.2 and 11.1 and Fig. 14.1 below),  the repeated copies of the 

filtered projections in the top row will be moved apart leaving an empty space of   in between as 

shown in Fig. 14.1. This space nullifies most but not all shoulder aliasing. However, thanks to the SinCot-
filter the projection (bottom half of Fig.14.1) is now completely alias-free just as in Fig.13.1. Furthermore, 
sincethe SinCot filter has less low-pass character than the linear interpolator, all frequency components in 
incoming data are quite faithfully reconstructed.  
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Fig. 14.1. Back-projection with linear interpolation and , followed by projection using SinCot filter 

and Joseph’s principle.  Detector sampling density: 
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Alternative 2. Employ detector sampling density 1
2
31 −− ∆=∆ xx  and the same SinCot function having the fixed 

width  in the Fourier domain for both projection and back-projection. The back-projection and the forward 

projection operations in Fig.14.2 will not produce any aliasing what so ever since the extra free space between 
the input copies eliminates potential shoulder contributions and the sampling density is large enough to avoid 
overlaps.  
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Fig. 14.2. Aliasing-free reconstruction of the -image from projection data b  with ramp-filtering and 1f

back-projection followed by alias-free projection using Sin-Cot filter with 
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15. Experiments 

15.1 Convergence experiments with truncated rampfilter.  

November 2003 (Maria Magnusson Seger) 

The following statement is a corner-stone of the basic scheme in Fig.1.1. Even if the reconstruction operator Q 
differs from P-1, the final result will converge to P-1

p0 if we have modeled the forward projection operator P 
correctly. To find out if the basic scheme works in a 2D-reconstruction case we could then deliberately make 
the FBP reconstruction defect. In the present experiments we have accomplished this by truncating the ramp-
filter convolution kernel so that its support is no longer twice the image size but various percentages thereof. 
The following parameters are common to all three experiments in this series of experiments. 

Image size    ,    Image sampling density   in both x-and y 128128x x∆

Number of views    128180
2
π≈=vN   Detector sample distance 

7.1
x

t

∆
=∆  

w∆  

Phantoms     Mathematical Shepp-Logan 

Projections somewhat smoothed and band-limited to ( ) 12 −∆ x  

Reconstruction parameters  

Back-projection: Linear interp.      Forward projection: 4-point SinCot tw ∆=∆ θcosxw ∆=∆  (Joseph) 

Ramp-filter : Truncated in signal domain, cos-weighted in Fourier domain  

 

Experiment 1       Gain 1=α        Rampfilter truncated to 0.47 of nominal width 
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                         Experiment 2       Gain 1=α       Rampfilter truncated to 0.37 of nominal width  

             

 

      Experiment 3       Rampfilter truncated to 0.37 of nominal width 

                     Gain   1=α                Gain  8.0=α               Gain 0.8   
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15.2  Ailiasing artefacts for various interpolation techniques 

 

February 2004 (Johan Sunnegårdh) and May 2004 (Maria Magnusson Seger) 

 

Most of the basic parameters for this series are identical to the ones in 15.1. They are repeated here for the 
sake of completeness.  

Image size    ,    Image sampling density   in both x-and y 128128x x∆

Number of views    128180
2
π≈=vN   Detector sample distance 

5.1
x

t
∆

=∆  

w∆  

Phantoms     Mathematical Shepp-Logan 

Projections somewhat smoothed and band-limited to ( ) 12 −∆ x  

Reconstruction parameters  

Back-projection interpolation  Linear, 4-point or 6-point SinCot. Width xw ∆=∆  

Forward projection interpolation 6-point SinCot filter xw ∆=∆   

Ramp-filter      Truncated in signal domain, cos-weighted in Fourier domain  

 

 
 

Experiment 1. 

 

    1=∆
∆

t

x  

 
Linear interp.  
 
No Joseph 
 
Catastrophy  

due to DC-alaising.  

 

Note, however,  that the 

sinogram differences are 

decreasing 
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Experiment 2. 

 

92.1=∆
∆

t

x  

 
Linear interp. 
 
No Joseph 

 
Shoulder aliasing is 

diminshed but DC-

aliasing is still very 

serious.  

 

Experiments1 and 2 

proves that linear 

interpolation without 

Joseph’s or some related 

technique will never 

work in iterative 

reconstruction 

 

 

 

 

 

 

 

 

Experiment 3. 

 

92.1=∆
∆

t

x  

 
Linear interp.  
 

Joseph: θcosxw ∆=∆  

 
DC- aliasing is 

eliminated.  

Some aliasing still 

remains  
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Experiment  4 

 

      1=∆
∆

t

x  

Linear interp. 

Joseph: θcosxw ∆=∆  

 
Surprise: This case 

seems less prone to 

aliasing than Exp. 3. 

Additional shoulder 

aliasing should degrade 

the result. 

 

This is the common 

version of Joseph’s 

method, employed by 

Turbell in TAKE and  

Bruno de Mann in his 

talk in St Malo. Works 

well for high contrast 

objects but is not 

satisfactory in our case. 

 

 

 

 

 
 

 

 

 

Experiment  5.  
 
 

92.1=∆
∆

t

x  

 
4p-SinCot  

 
No Joseph  
 
Probably the best image 
quality using 4p-SinCot  
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Experiment 6  

 

 

5.1=∆
∆

t

x   

 
4p-SinCot  
 
No Joseph 

 
Image quality is not 

quite as good as in 

Exp.1.5. Note that a 

slight DC-aliasing 

occurs in 45-degree 

directions. 

 

 

 

 

 

 

 
 

 

 

 

Experiment 7 

 

  3.1=∆
∆

t

x   

 
4p-SinCot 
 
No Joseph 
 
Degraded image quality 

due to  shoulder 

aliasing.  
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Experiment 8 

 

1=∆
∆

t

x  

 
4p-SinCot  
 
No Joseph 

 
Degraded image quality. 

Full shoulder aliasing 

 

 

 

 

 

 

 

 

Experiment 9 

  

5.1=∆
∆

t

x  

6p-SinCot  
 
No Joseph 
 
Compare  Exp. 5 and 6.  

 

Conclusion: In some 

circumstances, Image 

quality can be preserved 

by trading filter size for 

detector resolution. 
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Experiment 10 

 

92.1=∆
∆

t

x  

 
4p-Sincot  
 

Joseph: θcosxw ∆=∆  

 
Joseph with 4p-SinCot 

should be overkill.  

 

Is image quality really 

better than in Exp. 5 ? 

 

 

 

 

Experiment  11 

 

Inverse filtering 

 

92.1=∆
∆

t

x  

 
4p-SinCot interp. 
and   

(SinCot 4p)-1-filtering of 
the projection results 
 
No Joseph 
 
Slightly better result than 
in Exp.1.5 
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 14. Discussions and conclusions  

Although this report only includes 2D-experiments, we believe that we have verified that the Fig.1.1 iteration 
scheme works. It might be a way to get exact reconstruction when only approximate reconstruction algorithms 
are available. Exact and efficient reconstruction algorithms have been published, for instance by Schaller et al 
[19],  by Katsevich [20], and by Zou and Pan [21].However, just as for the PI-method [13],[18], to fully utilize 
the given detector, these methods require either a fixed translation speed of the patient, or alternatively, that 
the relation between the gantry rotation and table feed velocities are kept constant. The last alternative is not 
technically feasible. Still, we want to arbitrarily slow down the table feed translation to gain higher photon 
flux and better signal-to-noise ratio. Unfortunately, none of the above-mentioned methods allows for this. 
Cutting the speed to 60% of the maximum also means that only 60% of the available detector area will be 
utilized.  

In the AMPR method, see Stierstorfer et al [22] and Flohr et al [23], employed by Siemens, and in the 
“Wedge” method, see Tuy [24], employed by Philips, the dose utilization is 90 % or better within a wide 
range of translation speeds. Obviously, non-exact reconstruction methods such as these could benefit of the 
iterative scheme proposed in this report. Iterative methods are as old as CT itself, which is around 35 years. 
Still, iterative methods of today are mostly employed for other imaging modalities and hardly at all for CT. It 
may then seem pretentious to nourish a hope that a different fate for the scheme of Fig.1.1. The reasons to be 
hopeful can be found in the following list of achievements. 

1. The proposal of Fig.1.1 has never been tested, at least not publicized before. Our guess is that unpublicized 
experiments have turned out to be very discouraging, maybe as discouraging as the simultaneous ART 
experiments found in the well-known textbook by Kak and Slaney [17], pp285-295.  

2. The matrix representation of the recursive loop is possible to analyze. It lends itself to define the 

convergence rate in terms of the largest point-spread function error as in (3.16). 

QP

3. For the benevolent case, when the matrix QP embeds one single space-invariant point-spread function 

 the eigenvalues of are nothing but the frequency components of . Although our goal is to 

handle the space-variant cases as well, we assume that filtered back-projection is delivering a good 
approximation of the final result. Therefore, our modeling of the projection-rampfiltering-back-projection 
loop in terms of frequencies should bear enough similarity to the eigenvalues of  to analyze potential 

breaks with the convergence condition (3.4) and finding optimal gain using (3.15) and (3.18).  

QPh QP QPh

QP

4. We have indeed managed to construct a consistent Fourier model for the -loop, based on a thorough 

understanding of the relation between basis-functions, window functions, and the sampling processes during 
projection and back-projection.  

QP

5. Aliasing is constant threat to high image quality, a threat that becomes more obvious for each additional 
iteration step. In [17], p 292, the authors suspect that the problems are due to “inconsistencies in the model 
used for the forward projection process”. We believe we have come to terms with these “inconsistencies” in 
both forward and back-projection up to a point where we can make both operations “aliasing-free".  

6. Better understanding of aliasing gives better chances to avoid unnecessary low-pass filtering in the 
reconstruction process.  

Among the shortcomings of this paper, postponed to a second report on the same subject, are the following. 

1. More 2D-experiments using different phantoms   

2. 2D-experiments with fewer projections 

3. 2D-experiments with noisy input projection data 

4. Experiments with 3D phantoms and helical cone beam algorithms 
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