
Combining Frequency and Spatial Domain Information for Fast Interactive
Image Noise Removal

Anil N. Hirani, Takashi Totsuka

Sony Corporation

Abstract

Scratches on old films must be removed since these are more notice-
able on higher definition and digital televisions. Wires that suspend
actors or cars must be carefully erased during post production of
special effects shots. Both of these are time consuming tasks but
can be addressed by the following image restoration process: given
the locations of noisy pixels to be replaced and a prototype image,
restore those noisy pixels in a natural way. We call it image noise
removal and this paper describes its fast iterative algorithm. Most
existing algorithms for removing image noise use either frequency
domain information (e.g low pass filtering) or spatial domain infor-
mation (e.g median filtering or stochastic texture generation). The
few that do combine the two domains place the limitation that the
image be band limited and the band limits be known.

Our algorithm works in both spatial and frequency domains
without placing the limitations about band limits, making it pos-
sible to fully exploit advantages from each domain. While global
features and large textures are captured in frequency domain, local
continuity and sharpness are maintained in spatial domain. With
a judicious choice of operations and domains in which they work,
our dual-domain approach can reconstruct many contiguous noisy
pixels in areas with large patterns while maintaining continuity of
features such as lines. In addition, the image intensity does not
have to be uniform. These are significant advantages over exist-
ing algorithms. Our algorithm is based on a general framework of
projection onto convex sets (POCS). Any image analysis technique
that can be described as a closed convex set can be cleanly plugged
into the iteration loop of our algorithm. This is another important
advantage of our algorithm.
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1 INTRODUCTION

The proliferation of television channels and increasing use of mul-
timedia viewing platforms means that older films are likely to see
increased use. In addition, higher definition and digital television
formats mean that imperfections in old film stock are going to be-
come more noticeable. Removal of scratches from old films and
photographs is one motivation for this paper.

Another motivation comes from needs of film and video post
production. In some special effects scenes in films, actors or objects
are suspended from wires. These wires are later removed in post
production either by using an optical process or by processing the
digitized film. The digital process is much more commonly used
now. As a result, increasing the efficiency of tools for digital wire
removal has become important. All these factors indicate the need
for efficient and accurate tools for removing scratch, wire and other
unwanted noise from images.

All these problems can be addressed by the following image
restoration process.

Given (i) the locations of noisy pixels and(ii) a proto-
type (sample) image, restore those noisy pixels in anat-
ural way.

By natural, we mean that the continuity of intensity and features
(e.g., textures, lines) with the surrounding area is maintained. For
the scratch removal and the wire removal applications described
above, pixels to be restored are those under a scratch or a wire, and
the sample image is usually taken from a nearby region. In this
paper, we refer to this image restoration process as “image noise
removal”.

Although image restoration is not a new concept, existing noise
removal algorithms have difficulty with noise which(i) consists of
many contiguous pixels and(ii) is in a textured area of image or
areas with prominent lines. Note that bytexturewe mean not only
small stochastic texture but also small patterns like fabric texture
as shown in Fig. 10(b). In addition there can be prominent system-
atic lines or lines placed randomly in the image. The brick wall in
Fig. 10(a) and the stone wall in Fig. 10(c) are examples. Our algo-
rithm for removal of noise is based on the theory of projections onto
convex sets. Ours is a fast iterative algorithm that uses the available
information from both frequency and spatial domain.

The pixels determined by the algorithm to replace the noise are
(a) as sharp as the surrounding area(b) maintain continuity of
prominent lines running across the noise pixels and(c) have a tex-
ture matching the surrounding texture. While some previous algo-
rithms were able to remove such noise from images with stochastic
texture or small regularly patterned textures, ours works on those
as well as the more difficult cases of systematic or randomly placed
prominent lines. To our knowledge it is the first application of
POCS for interactive image noise removal. Ours is also the first
image noise removal algorithm that combines frequency and spa-
tial domain information in an extendible way. It does this by using
the clean and well understood formalism of POCS and without re-
quiring that the images be band limited. In addition it works even
when the noisy pixels are contiguous and numerous. Another key
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Figure 1:Problems with copying from another area of image. (a) Image with noise (noise is the black diagonal line). (b) The areas1 has been copied into
the arear1 in an attempt to cover up the noise. Note the alignment and shading mismatch. The horizontal “cement” line appears broken inr1 now and the area
is darker than surrounding. (c) Using a cloning brush the areas2 has been sampled and copied carefully intor2 to maintain alignment of the horizontal cement
line. But such a tool cannot solve the problems of mismatched intensity. The cloning source is darker than the destination area. Results of order statistics non
linear filters like median and results of low pass filters are not shown here. But they do not work on images and types of noise shown here. See text for detail.

advantage of our algorithm is that the image intensity does not have
to be uniform across the image.

The rest of the paper is organized as follows. Section 2 summa-
rizes related previous works. Following a brief overview of POCS
in section 3, our algorithm is described in section 4. Section 5
shows results of our algorithm and section 6 gives conclusions and
possible future directions.

2 PREVIOUS WORK

Previous work on image noise removal can be divided into intra-
frame and inter-frame techniques depending on where the informa-
tion needed for removal comes from. Inter-frame algorithms copy
needed pixels from preceding or succeeding frames. They may
compensate for motion of object or camera by tracking key points
of an image. Inter-frame methods fail when scratches run across
many frames (such scratches are common because of the vertical
motion of the film through projectors) or when there is too much
camera activity. In either of these cases, the needed pixels cannot
be found easily in the preceding or succeeding frames.

This paper describes an intra-frame algorithm assuming that
other frames do not have the needed pixels. Previous intra-frame
methods can be further classified as follows based on which infor-
mation they use.

1. Use frequency domain information only (e.g low pass filter).
2. Use spatial domain information only

(a) Median and similar order statistics filters.
(b) Spatial statistical texture synthesis.
(c) Cloning by copying pixels.

3. Use spatial and frequency domain information

(a) Projections onto convex sets for band limited images.
(b) Matrix algorithms for band limited images.
(c) Spatial and frequency based statistical texture synthesis.

2.1 Frequency Domain Only
Frequency domain algorithms such as low pass filtering can capture
global structure of the image but lose local control (line continu-
ity, sharpness). As a result lines and other details become blurred.
Since human visual system is very sensitive to details of an image
like those conveyed by the lines, the result is unacceptable for re-
moving noise that consists of many contiguous pixels. We have not
shown results of low pass filtering here because such filters per-
form very poorly for the kind of noise and images shown in Fig. 10
(many contiguous noisy pixels in textured areas or in textured areas
with prominent lines).

2.2 Spatial Domain Only
One problem shared by all spatial-only methods is that they have lo-
cal control and information but do not have any information about
the global structure of the image. The limitation to local neighbor-
hood is due to practical computational constraints in some cases.
In addition, some of these methods like median filtering etc. are
inherently incapable of using the global information meaningfully.

Cloning tools of popular commercial image manipulation pro-
grams allow copying from another area of the image using brush
like strokes. However, aligning reconstructed lines with existing
lines by this method is time consuming and error prone. An even
bigger problem is when the image has uneven intensity due to light-
ing conditions or inter reflections. In such cases, finding the same
intensity source area can be difficult.

Fig. 1 demonstrates these problems with copying from another
area of the image. Fig. 1(b) shows how the shading as well as the
alignment can be different between source (s1) and destination (r1)
areas. Fig. 1(c) shows how careful use of a manual cloning tool
can somewhat ameliorate the alignment problem in this case. But
without using the frequency domain information, such a tool can do
nothing about shading mismatch as shown in the figure.

A recent survey of median and similar non-linear order statis-
tics filters describes the advantages and shortcomings of these [7].
The problem with order statistics filters is when not enough cor-
rect information is available for meaningful order statistics. This is
typically the case when numerous contiguous pixels are noisy.

Spatial domain texture synthesis algorithms [5] have shown re-
markable results for stochastic type or small regular texture. How-
ever, these methods fail when the image has long range structure
as in the image of brick wall in Fig. 10(a). The computational cost
increases prohibitively for long range image structure because such
algorithms use second order statistics.

2.3 Spatial And Frequency Domains
In the case of texture synthesis it is possible to use multi-resolution
directional filters and then work with only single order statistics
(histograms) as in [4]. This could be considered a spatial and fre-
quency domain algorithm. However this method works only for
stochastic texture or small regular texture. In addition [4] is not a
noise removal algorithm. It is designed for generating large texture
areas from sample images. It cannot be used to generate pixels that
maintain continuity of prominent lines crossing noise pixels while
retaining the noise free pixels.

Gerchberg-Papoulis and related algorithms [6, 2] are POCS
based algorithms that use frequency and spatial domain informa-
tion. However, they work only for band limited images and the
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Figure 2:Pictorial representation of POCS. See section 3 for details.

band limits must be known. In addition, recent extensions like [10]
require expensive calculations of lines that intersect noise pixels.
In other recent work [1] shows how to reduce band-limited inter-
polation and extrapolation problems for finite-dimensional signals
to solution of a set of linear equations. Further, they show that the
corresponding matrix is positive-definite with a spectral radius less
than 1. The authors then derive properties of convergence of algo-
rithms for different types of noises. Another matrix based method
is [9]. These methods require that the image be band limited and
the limits be known.

3 PROJECTIONS ONTO CONVEX SETS

Papoulis [6] introduced an algorithm for reconstructing band lim-
ited signals by alternating between signal and transform domains
and applying the constraints of each domain. The constraints are
preservation of known pixel values and enforcement of band limits.
This approach was later generalized and given a geometric interpre-
tation. A further generalization [11, 8] has come to be known as the
method of projections onto convex sets (POCS). It allows the use of
any information about the image (or any other signal) as long as the
information can be represented as a closed convex set. Although
the POCS theory was developed in the context of Hilbert spaces,
for digital image restoration, it is convenient to restrict our atten-
tion to finite dimensional spaces. This space might be, for example,
the space of allM ×N complex matrices where the image hasM
rows andN columns.

Given a setC in such a space,x, y ∈ C, we say theC is con-
vex iff for any 0 ≤ µ ≤ 1, µx + (1 − µ)y ∈ C. C is closed
if it contains all its limit points. See [11] for details. We’ll use
the wordsclosed convex setandconstraintsinterchangeably since
the only constraints we’ll be working with will select closed con-
vex sets from a larger set. Projection onto a convex set consists of
finding an image satisfying the constraint and “closest” to the im-
age being projected. Intuitively, this can be thought of as making
the least possible change to satisfy the constraints. See Fig. 2 for a
pictorial representation of POCS.

Repeated projection onto all the convex sets is guaranteed to find
an image that satisfies all the constraints if at least one such image
exists. See the classic Youla and Webb paper [11] for more details.
The advantages of POCS come from the fact that finding a direct
projection onto the desired intersection is usually very difficult and
expensive, while an efficient projection onto each set is more likely
to be found. This is why formulating and solving a problem as
POCS can be quite attractive computationally. Note that POCS is a
general algorithm, with potential applications in many areas besides
image restoration.

4 OUR ALGORITHM

The Fourier transform is an integration over the entire signal. Af-
ter a transform, many of the essential global features of an image

Image with noise User paints mask
on noise

Binary noise mask 
passed to algorithm

Figure 3:The creation of noise mask for algorithm A1. Left image shows
the actual noise (the dark uneven line running diagonally). Middle image
shows the image with a binary mask that user has painted over the noise,
to cover the noise. This does not have to be a straight line or rectangle,
although it happens to be so in this case. The right most image shows the
binary mask that will be passed to the algorithm. The middle image will
become ther0 input of the algorithm. See section 4 and Fig. 4 for details.

become localized, i.e come closer in the spectrum. These can in-
clude repeating patterns, overall image intensity, slow variation in
intensity due to inter reflection or shading etc. On the other hand,
rapidly varying stochastic texture or sharpness of lines and edges
appear scattered in the spectrum. These are features that are local-
ized in the spatial domain.

Clearly there is a need to combine these two for noise removal
and texture synthesis. As we will show, POCS is a way of doing this
in a clean and extendible fashion. In this section we first describe
our basic algorithm A1, which combines the frequency and spatial
domains in a POCS framework. Then we show how the use of
POCS allows us to easily and cleanly extend A1 to solve important
practical problems. The efficiency of the algorithm comes from the
fact that each iteration requires fast operations on small subimages,
not on the entire image.

4.1 Information Needed
No algorithm can restore an image or generate new texture without
information, every algorithm needs some hint. Existing algorithms
take a sample subimage (can be the entire image in some cases),
which is usually taken from nearby pixels, analyze it, and extract
hint information.

Our algorithm is no exception. It also needs some hint. In our
case, a neighborhood of the noise (called repair subimage) is se-
lected by the user to provide hint about the local spatial informa-
tion. A nearby or similar subimage (called sample subimage) is
selected by the user to provide a hint for the frequency information.
The noise is located by the user creating a binary mask that covers
it completely (the mask can be larger than the actual noise). Ex-
ample of binary noise mask can be seen in Fig. 3. The black line
in the noisy images in Fig. 10 can also be thought of as the noise
mask covering the actual noise underneath. The algorithm starts
with these images as the noisy image input.

This does not necessarily mean we need more information. We
use two subimages, one for extracting global features, and one for
maintaining local continuity. The algorithm does not place any re-
striction on choosing the location of the sample subimage. If these
pieces of information can be obtained from one place, the sam-
ple and the repair subimages can overlap as in several subimages
shown in Fig. 6 and 7. Or they can be far apart as in the case of
some subimages in the brick wall, the first image in Fig. 6.

4.2 Base Algorithm (A1)
Fig. 4 gives a flowchart of the base algorithm A1. First, the global
features are restored. This is best done in frequency domain by cor-
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Figure 4:Details of our base algorithm A1. See section 4 for details.

recting the spectrum magnitude. The first step is to Fourier trans-
form the repair and sample subimages. Since the repair-spectrum is
corrupted due to noise, the sample-spectrum is used as a template
for improving the repair-spectrum. It is very important to use this
sample information correctly and this is where the theory of convex
projections is important. The information must be represented as a
convex set and an orthogonal projection to this set must be used. In
addition this must be an efficient projection.

Several “obvious” ways of using the sample-spectrum are actu-
ally incorrect, in that they will yield algorithms that diverge because
of non convexity. For example, one may think of using the sample
spectrum to replace the repair spectrum completely. The practical
objection to this is that good information is thrown away along with
the bad. Theoretically too, this is unworkable because replacing the
spectrum magnitude is not a projection onto a convex set.

Another plausible improvement might be to use a mixture of the
two spectra, perhaps weighted by anα and1−α respectively, where
α is chosen by the user. This too leads to a diverging algorithm
which is incapable of noise removal. Again the reason is non con-
vexity of the underlying set. Other plausible choices like using the
high peaks of the sample spectrum etc. are also incorrect due to the
same reason.

Before we start the description of our projections and convex
sets, a note about notation. In the following equationsr0 is the
starting repair subimage multiplied by the binary noise mask and
s is the sample subimage (thus these are real matrices).r is an
arbitrary complex matrix.r0, s andr all have the same dimension.
R andS are the Fourier transforms ofr ands respectively i.e in
a typical implementationR = FFT(r), S = FFT(s) where FFT
stands for the Fast Fourier Transform operation. IFFT is the inverse
FFT.

 a  b  c
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Figure 5: Part of one iteration of A1 in spatial and frequency domains.
(a)-(c) in first row show magnitudes of the Fourier transforms; (a) Repair
subimage with binary noise mask ; (b) Sample subimage ; (c) Minimum of
the first two, except at DC (center of FT) where the value from first one is
used. The high energy in (a) due to the noise mask is seen as a diagonal
white brightness. This has been considerably reduced in (c). Note that (a)
and (b) are similar, except for the high energy due to the noise mask. This
is because the repair and sample subimages are approximately translated
versions of each other. (d)-(f) in second row show corresponding spatial
domain data. See section 4.2.1 for details.

4.2.1 Using Global Frequency Information

The first projection operation that we use

Pmin-dc(r) = IFFT(MSe
i phase(R)). (1)

involvesMS which is nearly a MIN operation, hence the name
Pmin-dc. TheMS in the above equation is

MS(r) =

{
min(|R(u, v)|, |S(u, v)|) if (u, v) 6= (0, 0)
|R(0, 0)| if u = 0, v = 0

(2)
Noise in general adds magnitude to the spectrum. Taking MIN ef-
fectively reshapes the repair spectrum into the sample spectrum.
Our projection,Pmin-dc has this nice property, and it is a projec-
tion onto a closed convex set (see below).MS defined in Eq.2 is a
kind of minimum taking operation on|R(u, v)| and|S(u, v)|. The
only exception is at DC,u = 0, v = 0 where the value of|R(0, 0)|
is retained. The motivation for not modifying the DC value of the
repair-spectrum is that it contains the value of the overall repair
subimage intensity.

Also note that the phase is retained in Eq. 1, i.e while reshap-
ing spectrum magnitude we leave the phase of the repair spectrum
untouched. It turns out that the phase is reconstructed automat-
ically over several iterations as in the phase reconstruction algo-
rithms used in astronomy and other fields [3]. Phase reconstruction
results in the automatic alignment of global features, e.g the align-
ment of the “cement” line in subimagera in Fig. 6. Doing this in
frequency domain is easy. In spatial domain, an alignment would
have required expensive block matching.

The underlying set

Cmin-dc = {r : |R(u, v)| ≤ |S(u, v)|, (u, v) 6= (0, 0)}. (3)

is closed and convex and this can be proved similarly to proof on
pp. 86 of [11] after making straightforward adjustments to go to
the discrete case. In that proof, setM(ω1, ω2) = S and ∆ =
{(ω1, ω2) 6= (0, 0)}. Note thatPmin-dc is a projection because it
makes the least change possible to make its input satisfyCmin-dc.
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Figure 6:Repair and sample subimages used for examples in Fig. 10(a)-
(c) with algorithm A1. Black line is scratch, sample and repair subimages
are shown as dark patches. outlines. Prominent lines in sample and repair
subimage don’t have to be aligned. See e.g the thick horizontal line between
bricks insa andra.

Thus the complete operationPmin-dc(r) consists of(i) taking an
FFT of r (ii) creating a new spectrum magnitude by taking a mini-
mum of|R| and|S| at all frequencies except DC where|R(0, 0)| is
retained and and retaining the phase ofR and,(iii) taking an IFFT
using the new magnitude and the phase ofR unchanged. See Fig. 4.

As described above, this projectionPmin-dc thus has two pur-
poses – to reshape the spectrum magnitude to match the prototype
in order to get the global information correct and to align the promi-
nent global features like prominent lines correctly. See Fig. 5 to see
effect of one application ofPmin-dc in frequency and spatial do-
mains (for the purpose of displaying, Fig. 5(f) is actually shown
after clipping the output ofPmin-dc to real values between 0 and
255).

4.2.2 Using Local Spatial Information

At the end ofPmin-dc (Fig. 4) we are back in spatial domain. The
result is now closer to the answer. But since we modified the spec-
trum magnitude it is possible that after IFFT we now have imag-
inary component in the image matrix. Some values may also be
outside the feasible range of[0, 255]. To bring the values back into
the feasible range, the values of the spatial domain matrix are made
real and clipped to[0, 255]. In addition, since the operationPmin-dc
was in frequency domain it affects even the pixels outside of the
scratch. These must now be corrected in spatial domain. This is

sb

rb

Figure 7:Repair and sample subimages used for examples in Fig. 10 (d)
and (e) for algorithm A2 and A3 respectively. Black line is scratch, sample
and repair subimages are shown as white or black outlines. For A3 (and to a
lesser extent, for all algorithms), the repair and sample subimages can have
very different shading. See for examplesb andrb.

done simply by copying the known pixel values around the noise
from the original repair subimage. These two rather simple projec-
tions are given below as equations, along with the closed convex
sets. Proof of their convexity is simple and can be found in [11].

The convex set corresponding to the clipping to real values in
[0, 255] is

Creal = {r : r(j, k) ∈ <, 0 ≤ r(j, k) ≤ 255}. (4)

The corresponding projectionPreal(q) clips the input to a real value
between 0 and 255.

LetW be the set of coordinate pairs where the binary noise mask
is 0, i.eW is the set of locations under the noise mask pixels. The
convex set corresponding to known pixel replacement is

Crep = {r : r(j, k) = r0(j, k), (j, k) 6∈W}. (5)

Let w be the binary mask which is0 at noise pixel locations and
1 otherwise. Then the appropriate projection corresponding to the
convex setCrep is

Prep(r) = r(1− w) + r0w. (6)

4.2.3 Iterations

After applyingPmin-dc,Preal andPrep we come to the end of the
first iteration of A1. This process is then repeated. Thus the algo-
rithm A1 can be written as

r0 = initial repair subimage× noise mask (7)

rn+1 = PrepPrealPmin-dc rn. (8)

In the current implementation, the user sets the number of itera-
tions. It is easy to implement other termination criteria. The algo-
rithm is fast because it usually converges in under 10 iterations and
each iteration requires 1 FFT, 1 IFFT and copying, all performed
on a small neighborhood of the noise andnot on the entire image.
Results of A1 are shown in Fig. 10(a)-(c).
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4.3 Soft Scratch Algorithm (A2)
In this and Sec. 4.4 we present two extensions to the basic algorithm
A1. Our purpose in doing this is twofold. First, these two exten-
sions solve some practical shortcomings of algorithm A1. Equally
important, we show that by working in a POCS framework and us-
ing a dual-domain approach, important and substantial extensions
can be made fairly easily. Hopefully, these extensions will also
serve as guides for someone trying to extend the basic algorithm
A1 in other ways.

The continuity of large prominent lines crossing the binary noise
mask is generated byPmin-dc. But a transition in the local high
frequency texture near the noise mask edge might be noticeable to
human eye since the mask is sharp edged. It would be useful to use
a soft edged mask for the noise to fix this potential problem.

This is easy to do with a slight modification in A1. In the final
projectionPrep in each iteration of A1, use a soft edged noise mask
instead of a binary mask. This new projection that we will call
Psoft-repcan be written as

Psoft-rep(r) = r(1− wsoft) + r0wsoft (9)

wherewsoft is a soft edged noise mask. The underlying convex set
Csoft-repcan be written as

Csoft-rep= {r(j, k) : r0(j, k) = p(j, k)wα + q(j, k)(1− wα)}
(10)

whereq is an arbitrary image andwα is 1 outside binary noise mask,
0 inside binary noise mask andα(d) in soft noise mask edge region,
and0 <= α(d) <= 1 is a nice smoothly rising function like 1 -
gaussian, depending on the distanced from the binary noise mask
edge. Thus the algorithm can be now written similar to A1 us-
ing Psoft-rep instead ofPrep. Showing thatCsoft-rep is convex is
straightforward using simple algebra. The results of using A2 on a
color image by applying it to the r, g, b channels is shown in Fig. 10
(d). More explanation of results is in section 5.

4.4 Split Frequency Algorithm (A3)
Notice that the example images used for A1 and A2 have had nearly
uniform shading across the image, as in Fig. 10 (a)-(d). The next
extension we describe removes this restriction of uniform shading.

The resulting algorithm is A3, shown in Fig. 8. The results of this
algorithm A3 are shown in Fig. 10 (e). A comparison between A1
and A3 on a very unevenly shaded image is shown in Fig. 9. Al-
though it may not be visible in the final printed paper, the circled
area shows remnants of noise in the left image on which A1 has
been applied. This problem is absent in the result of A3 on right in
Fig. 9.

Note that overall variation in shading of an image is a global
feature and so we choose the frequency domain to attack this prob-
lem. The basic idea is very simple – ignore the shading (which is
a very large, global feature) by ignoring the low frequency com-
ponents. Then, to the high frequency image, apply the projections
similar to A2 followed by merging the effect of the shading. Now
we go through the algorithm step by step. As shown in Fig. 8, the
algorithm can be written as

r0 = initial repair subimage× noise mask (11)

rn+1 = Psoft-repPrealPmergePsoft-repPminPsplit rn.(12)

The main new projections arePsplit andPmerge. The first of
these splits the input imager into two images, a high pass filtered
hpf(r) and a low pass filteredr − hpf(r). We use a gaussian fil-
ter to create hpf(r) and r − hpf(r). Pmergedoes the reverse of
Psplit by simply adding the output of previous projections, which is
theprocessedhigh pass filtered component of the repair subimage,
with theunprocessedlow pass filtered repair subimage as shown in
Fig. 8.

Note that since the lower frequencies are being ignored during
processing we can simplifyPmin-dc to Pmin by simplifying MS

(2) of algorithm A1 toMS(r) = min(|R(u, v)|, |S(u, v)|). Thus
now we are taking MIN across the entire spectrum, including the
DC unlike A1.

After this, a replace operation will be performed. Since we are
using a high pass filtered repair subimage, the effect of the noise
will be seen outside the noise mask afterPsplit. Therefore when
we replace the known pixel values, we should use a better estimate
in each iteration. This is done by using the latest hpf(rn) instead
of hpf(r0) as input forPsoft-rep. Thus the firstPsoft-repof A3 is
similar to equation 9 of A2 except that hpf(rn) is used instead of
r0 in equation 9. After merging the result with the low frequency
image usingPmerge, Preal is applied which is the same as in A1 or
A2. Finally the known values are replaced using the originalr0 just
as in A1 or A2. It is easy to show convexity of the underlying sets
for PmergeandPsplit using linearity of the Fourier transform.

Figure 9:Comparison of A1 and A3 on an image with intensity variation.
In the circled area some leftover noise is visible in the A1 result on the left
whereas the A3 result on the right is cleaner [the difference may not be
obvious in the final printed version]. See section 4.4 for details.

5 RESULTS

Fig. 10 shows noise removal using our algorithms A1, A2 and A3.
The images shown have stochastic and regular textures and promi-
nent systematic and random lines. The black line running across



the first image of each group of images in Fig. 10 is the noise. (a)-
(c) show the result of algorithm A1, (d) shows result of A2 and (e)
shows result of A3.

The first four images, shown as group (a) are – clockwise from
top left – image with noise, image after 1, 2 and 10 iterations of
our algorithm A1. The other groups shown in (b)-(e) show only the
noisy image and the image after 10 iterations of our algorithms.

The sample and repair subimages used for (a)-(c) are shown in
Fig. 6 as darkened patches. It is important to note that the formu-
lation of the algorithm makes the selection of subimages easy. No
manual alignment of features is necessary during subimage selec-
tion. This can be seen in the Fig. 6. Note for example that the
subimagera has the cement line running towards the bottom of it
while that horizontal line is nearly in the middle in the correspond-
ing sample subimagesa.

The next improvement to A1 is the algorithm A2 which uses a
soft edged mask instead of a binary mask. Fig. 10 (d) shows noise
removal from a color image using our algorithm A2. A2 is applied
to r, g and b channels separately. The subimage selection is shown
in Fig. 7.

Our last and most powerful algorithm is A3 which is able to han-
dle images with varying intensity which might have been caused by
shading or inter-reflection etc. The result is shown in Fig. 10 (e) and
the subimage selection is shown in Fig. 7. Note that for example,
in Fig. 7,sb andrb are two subimages with very different intensity,
one is darker than the other. To some extent variation in intensity
is tolerated by all three algorithms, though A3 is best able to deal
with that.

See sections 4.2, 4.3 and 4.4 for algorithms A1, A2 and A3 re-
spectively. Although not shown here, removing non-straight con-
tiguous noise, or noise removal from synthetic images with pre-
cisely repeating patterns (and no stochastic texture) requires no ex-
tra work for our algorithm. In fact synthetic images with exactly
repeating patterns are reconstructed perfectly.

The limitations of our approach are that the contents of sample
and repair subimages must be approximately translated versions of
each other. The can be seen in the subimage selections in Fig. 6
and Fig. 7. If the prominent lines and texture in repair and sample
subimages are rotated versions of each other or there is perspec-
tive or other distortion between the two, then the algorithm will not
work. Thus for example, we can’t use a vertical feature as insb of
Fig. 7 to fix the noise in an area which has a horizontal feature.

6 CONCLUSIONS AND FUTURE WORK

A fast iterative algorithm for image noise removal has been de-
scribed. While most existing algorithms have worked solely in spa-
tial or frequency domain, our algorithm works in both domains,
making it possible to fully exploit the advantages from each do-
main. Although a few previous algorithms combine frequency and
spatial domain information [6, 2], they required the image to be
band limited, required that the band limits be known. Our algo-
rithm does not place this limitation.

As shown in the results, with a judicious choice of operations (in
terms of constraints and projections) and domains in which the op-
erations work, our dual-domain approach can (1) reconstruct many
contiguous noisy pixels, (2) reconstruct textures even when they
are large featured, (3) maintain sharpness, (4) maintain continuity
of features (e.g., lines) across the noisy region. These advantages
make the algorithm very useful in many areas.

Important applications of this algorithm are in the field of film
and video post production: for removing wires used in special ef-
fects scenes and for restoring old films and photographs that have
become scratched.

Our algorithm is based on a general framework of POCS and
can be extended in a clean way. Besides the constraints and the

projections described in this paper, any image analysis and/or fea-
ture extraction techniques that are described in a closed convex set
can be plugged into the iteration loop. Also, the choice of domain is
not limited to the spatial and frequency domains. For example, one
could choose the Wavelet transform if multiresolutional analysis is
desired.

One of our motivations for presenting this work was to increase
awareness about the general and powerful method of Projections
Onto Convex Sets in the graphics community. To us, it appears to
be an interesting way of thinking about various problems and until
now it has been popular only amongst the image processing com-
munity. It is possible to imagine other uses for POCS besides image
restoration, by using appropriate convex sets. Examples related to
our work could be : restoring missing 3D geometry data acquired
by range data acquisition systems, filling occluded information dur-
ing image based rendering etc.

In the context of image restoration there are a few areas that need
attention. An interactive brush implementation in which the sam-
ple and the repair subimages are automatically selected based on
a brush stroke, would be useful. A multi-frame extension which
allows better inter-frame continuity is another important extension.
We have found that when we restore multiple frames of a still image
in which the wire noise is moving some kind of moving noise is vis-
ible when the images are observed in sequence. But when the movie
is stopped, the restorations seems good and the noise disappears. A
straightforward extension by using 3D Fourier transform using a
few frames at a time has not worked. Our color image processing is
also rather naive and needs more attention. A study of how the vari-
ation in binary noise mask size affects the performance would also
be desirable. Finally, what to do about rotation of features or per-
spective distortion between sample and repair subimages are other
areas that need attention. We are currently working on these issues.
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Figure 10:Results of algorithms A1, A2, A3. (a)-(c) Show removal of noise using A1 from textured images with (a) systematic long distance structure
(cement lines in brick wall) (b) small regular texture (fabric) and (c) randomly placed prominent lines (stone wall). Images are377× 176, scratches approx. 9,
4 and 8 pixels wide. (d) Shows a simple application of A2 to a color image by applying A2 to each channel. (e) Shows results of A3 on an image with intensity
varying across the image. See section 5 for more details and Fig. 6 and Fig. 7 for sample and repair subimages.


