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Abstract. We present cosmological constraints from a joint analysis of the pre- and post-
reconstruction galaxy power spectrum multipoles from the final data release of the Baryon
Oscillation Spectroscopic Survey (BOSS). Geometric constraints are obtained from the po-
sitions of BAO peaks in reconstructed spectra, which are analyzed in combination with the
unreconstructed spectra in a full-shape (FS) likelihood using a joint covariance matrix, giv-
ing stronger parameter constraints than FS-only or BAO-only analyses. We introduce a new
method for obtaining constraints from reconstructed spectra based on a correlated theoretical
error, which is shown to be simple, robust, and applicable to any flavor of density-field re-
construction. Assuming ΛCDM with massive neutrinos, we analyze clustering data from two
redshift bins zeff = 0.38, 0.61 and obtain 1.6% constraints on the Hubble constant H0, using
only a single prior on the current baryon density ωb from Big Bang Nucleosynthesis (BBN)
and no knowledge of the power spectrum slope ns. This gives H0 = 68.6± 1.1 km s−1Mpc−1,
with the inclusion of BAO data sharpening the measurement by 40%, representing one of
the strongest current constraints on H0 independent of cosmic microwave background data,
comparable with recent constraints using BAO data in combination with other data-sets.
Restricting to the best-fit slope ns from Planck (but without additional priors on the spectral
shape), we obtain a 1% H0 measurement of 67.8± 0.7 km s−1Mpc−1. Finally, we find strong
constraints on the cosmological parameters from a joint analysis of the FS, BAO, and Planck
data. This sets new bounds on the sum of neutrino masses

∑
mν < 0.14 eV (at 95% con-

fidence) and the effective number of relativistic degrees of freedom Neff = 2.90+0.15
−0.16, though

contours are not appreciably narrowed by the inclusion of BAO data.

1Corresponding author.
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1 Introduction

Since the dawn of civilization, cultures have striven to understand essential properties of the
Universe; its composition, evolution and structure. In the current cosmological paradigm,
ΛCDM, many of these questions have been reduced to determining a small set of numbers
controlling the relative proportions of cosmological components and the expansion history.
Constraining such parameters, however, is non-trivial and a subject of much debate. Different
data-sets have sometimes yielded inconsistent results, especially for the Hubble parameter H0,
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which encodes the Universe’s expansion rate. In particular, analyses of two of the great pillars
of precision cosmology, the Cosmic Microwave Background (CMB; e.g. [1]) and the distances
to Type Ia Supernovae (SNe) calibrated from local distance ladders (e.g. [2, 3]), are not in
agreement, leading some to claim the existence of a ‘tension’ between the early- and late-
Universe, prompting a swathe of new physics to be invented (see Ref. [4] for a review).

To resolve such controversy, independent probes are required, and a particularly promis-
ing one lies within the analysis of Large Scale Structure (LSS) information, through redshift-
space galaxy surveys. Current surveys provide measurements of the angular positions and
redshifts of galaxies across large cosmological volumes, and with upcoming surveys such as the
Large Synoptic Sky Telescope (LSST) [5], SPHEREx [6], Euclid [7] and the Dark Energy Spec-
troscopic Instrument (DESI) [8] the volume of data will only continue to grow. Constraints
on cosmology are most commonly obtained by considering the two-point clustering statistics
of the galaxies, either in configuration [9, 10] or Fourier [11–13] space, though recent papers
have begun to explore inclusion of the three-point bispectrum [14–16]. Through these statis-
tics, a number of features can be probed, including the Alcock-Pacyznski effect [17], allowing
measurement of angular and radial distance scales, and redshift-space distortions (RSD) [18],
from the non-linear conversion between configuration- and redshift-space, allowing constraints
to be placed on the amplitude of velocity fluctuations fσ8 [11] and cosmological-scale tests
of General Relatively [19], for example.

Historical analyses of galaxy power spectra have focused around the signature of Baryon
Acoustic Oscillations (BAO); an imprint of sound waves in the pre-recombination Universe [20,
21], which create a ‘standard-ruler’, allowing determination of the distance-redshift relation
at the effective sample redshift (e.g. [22–24]). This reduces the analysis to simply measuring
the positions of BAO harmonics in the observed spectrum, though this is complicated by
various non-linear effects (e.g. [25–28]). Such constraints are significantly sharpened by the
process of density-field reconstruction [29–33], which reduces the information loss afforded by
non-linear effects by displacing galaxies by an estimate of their large scale bulk flow. This
has been applied in a number of cosmological analyses (e.g. [10, 30, 34, 35]).

Going beyond the BAO peak, the broadband power spectrum contains information about
a number of physical effects, yet its analysis is complicated by difficulties in its modelling.
Creating a consistent model has been a subject of much work, but recent advances have
led to the development of the ‘Effective Field Theory of Large Scale Structure’ (hereafter
EFT) [36, 37], with extensions incorporating galaxy bias [38–41], redshift-space distortions
[42, 43] and higher-order corrections [44, 45]. Of particular interest is the description of
long-wavelength modes (bulk flows), which cannot be treated perturbatively. Introduction of
infra-red resummation schemes into the EFT alleviates this problem, allowing for an accurate
theoretical model into the non-linear regime [46–51]. Recently this model has been applied
to current observational data [52–55], allowing constraints to be placed on cosmology using
all the information contained in the power spectrum on quasi-linear scales.

In this work, we aim to produce stronger constraints on cosmology by combining the two
analysis techniques discussed above, utilizing both information from the full-shape (FS) of the
galaxy power spectrum and the sharp location of the BAO peak after density field reconstruc-
tion. The most obvious approach to this would be to model the galaxy power spectrum after

reconstruction; this turns out to be a difficult task since reconstruction significantly modifies
the broadband shape of the power spectrum, leading to complex perturbation theory models,
with strong dependence on the particular reconstruction algorithm and its assumptions [56].
Whilst this is a subject of continuing research, thus far, consistent perturbative models have
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only been computed (assuming the simplest reconstruction framework) for the matter field
in real [57] and redshift [58] space, as well as the galaxy spectrum in a Lagrangian frame-
work [59]. A consistent, and simply computable, EFT for reconstructed spectra is yet to be
derived. Furthermore, it has been recently demonstrated in Ref. [53] that the reconstructed
power spectrum of the BOSS data can only provide geometric information through the posi-
tions of the BAO peaks. It was shown in Ref. [16] that even in the hypothetical case where
the post-reconstruction non-linear damping scale ΣNL is known precisely, the reconstructed
power spectrum shape is only able to improve measurements of the physical baryon density
ωb, which will still be significantly weakly constrained compared to the BBN or the Planck
limits even in the era of future LSS surveys.

Motivated by this, we opt to extract only BAO information from the reconstructed
spectra and use this to inform an FS analysis of the unreconstructed power spectra with a joint
covariance, using the techniques developed in Ivanov et al. [52], and applying the method to
the final data release of the Baryon Oscillation Spectroscopic Survey (BOSS) [60]. This allows
for a full Markov Chain Monte Carlo (MCMC) exploration of the cosmological parameter
space, and in particular, we are able to place strong constraints on the expansion rate H0

from low redshift data (z ∼ 0.5) within ΛCDM, without applying any prior information from
Planck, obtaining a value inconsistent with with SN analyses [2]. Our H0 constraints are of
similar precision to those obtained using BAO data in combination with weak-lensing [61]
and Lyman-α information [62].

This paper has the following structure. We begin by discussing our motivations for the
analysis (Sec. 2.1), before outlining the theoretical model used to analyze reconstructed and
unreconstructed power spectra in Secs. 2.2 & 2.3 respectively. In Sec. 3 we review the data-sets
(both observational and mock) used, and discuss our choice of priors for cosmological and
nuisance parameters. The results of the BAO analysis are presented in Sec. 4, before we discuss
the joint FS+BAO analysis in Sec. 5, including CMB-independent cosmological constraints.
In Sec. 6, we discuss the combination of CMB with galaxy surveys and give the results of
parameter inferences from the combination of all three data-sets (BAO, FS and Planck), before
concluding with a summary in Sec. 7. Appendices A & B contain supplementary material
regarding tests of the pipeline on mock data and analyses of each data chunk separately.

For the casual reader who has less interest in technical details, we recommend a perusal
of Sec. 2.1 to understand our motivations and rough pipeline, before skipping to the main
exposition of results in Secs. 5 and 6. The key cosmological parameters obtained from the
FS+BAO analyses are presented in Tab. 2, and Figs. 6 & 8, with joint constraints with Planck
given in Tab. 3 and Figs. 9& 10.

2 Methodology and Implementation

Here, we discuss both the theoretical underpinnings and practical application of our approach
in detail. We begin with a few words of background concerning power spectrum reconstruc-
tion.

2.1 Motivation and Theoretical Background

When analyzing observational galaxy power spectra, the primary goal has recently been
to measure the position of the prominent BAO peak (e.g. [22–24]). This is usually done
via constraining the Alcock-Paczynski (hereafter AP) parameters α ≡ {α‖, α⊥} [17], which
measure the radial and angular distances by means of geometric distortions induced by an
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incorrectly assumed fiducial cosmology used in co-ordinate conversion.1 The two parameters
separately measure distortions parallel and perpendicular to the line-of-sight (hereafter LoS),
and encode the Hubble parameter H(z), the sound horizon at the redshift of decoupling,
rs(zd), and angular diameter distance DA(z) via

α‖ =
Hfid(z)rfids (zd)

H(z)rs(zd)
, α⊥ =

DA(z)r
fid
s (zd)

Dfid
A (z)rs(zd)

, (2.1)

where the superscript ‘fid’ indicates the values in some (unimportant) fiducial cosmology
and z is the effective redshift of the sample. If our aim is a precise measurement of α, the
precision is greatly improved by reconstructing the galaxy field, first proposed by Eisenstein
et al. [29]. Many variants exist (e.g. [30, 32, 33, 63]), all based on the notion that, by
shifting galaxies closer to their initial (Lagrangian) positions, we are able to reduce the effects
of non-linear structure formation and redshift-space distortions and reduce the information
leakage from the power spectrum to higher-order statistics [64]. In its most basic form,
reconstruction consists of smoothing the late time density field by some (Gaussian) kernel
W (k) = e−k2Σ2

smooth
/2 on scale Σsmooth, then shifting the galaxies and a set of uniformly

distributed particles by their negative Zel’dovich displacements. This has been used in a
number of studies (e.g. [10, 30, 34, 35]), allowing stronger constraints to be placed on α than
with the unreconstructed spectra.

It has recently been shown [52, 54] (and earlier [11, 12, 65]) that the full shape (FS)
of the galaxy power spectrum (in addition to the BAO peak) can be used to place strong
constraints on cosmological parameters, by comparison with accurate theoretical models,
based on the Effective Field Theory of Large Scale Structure (hereafter EFT) [36, 37]. In
previous analyses, this has been applied only to unreconstructed power spectra; one may
naïvely expect stronger cosmological constraints when using the reconstructed power spectra,
which contain information from both the two-point and higher-point correlators. In practice,
this is difficult to achieve, since the process of reconstruction distorts the broadband spectral
shape. Whilst a number of works have attempted to model this in perturbation theory [57–
59], it is laborious even in the simplest of reconstruction schemes. In addition, to fully analyze
the reconstructed power spectrum at one-loop order, we require both resummation of long-
wavelength modes, and an effective treatment of small-scale physics, neither of which have yet
been considered. In addition, implicit assumptions in the reconstruction procedure, such as
the fiducial cosmology and bias, can have non-negligible impacts on the broadband shape [56],
further complicating the analysis, though we note that these are not expected to noticeably
affect the BAO peak position.

To extract maximal information from galaxy power spectra, we propose a joint method,
motivated by the following observations:

• The reconstructed power spectrum can be used to place strong constraints on the AP
parameters, regardless of the precise details of the reconstruction method;

• The constraints on α from the reconstructed spectra are largely independent of non-
linear damping scale ΣNL (defined in Eq. 2.4). Thus a more precise theoretical model
for the reconstructed field will not sharpen our constraints on α;

1We stress that one does not need to generate these distortions on purpose. Even if the fiducial cosmology
exactly matches the true one, the distortions will be contained in the trial theoretical templates that are used
to fit the data during MCMC scans and hence the AP effect will still be effective.
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• The full shape of the unreconstructed power spectrum can be used to place strong
constraints on cosmological parameters, using the mildly non-linear models from EFT;

• The full shape of the reconstructed power spectrum is difficult to model and modified
significantly by the flavor of reconstruction and modeling assumptions.

The main approach of this paper is therefore:

1. Use the reconstructed power spectra to place constraints on the AP parameters α

(hereafter the ‘BAO analysis’), in particular obtaining a best-fit α for the given data-
set.

2. Generate a joint covariance matrix between the unreconstructed spectra and the best-fit
AP parameters. This can be done from mocks or by basic theoretical calculations.

3. Use the full shape (FS) of the unreconstructed spectra, together with the best-fit α and
the joint covariance, to produce tight constraints on cosmological parameters (hereafter
the ‘FS analysis’). Here, α is treated as an additional observable, which constrains the
model alongside the unreconstructed spectra.

By combining both measurements, we can make use of both the sharp BAO peak following
reconstruction, and the undistorted broadband shape, without requiring complex (and com-
putationally intensive) new modeling. In a sense, our methods are analogous to those used
for CMB analysis; the broadband shape of the galaxy power spectrum constrains physical
parameters that define the cosmological sound horizon rs. Geometric information encoded
in the Alcock-Paczynski parameters then set the measurement of H0, in particular from the
BAO peak position.

2.2 BAO Analysis: Extracting Alcock-Paczynski Parameters from Reconstructed

Spectra

Within the reconstructed power spectra, the key information encoding the AP parameters
lies within the wiggly parts of the spectra, which, whilst prominent at small wavenumber,
are hidden by the broadband spectrum at higher k. In order to extract α it is thus critical
to (a) model the full reconstructed spectrum into the quasi-linear regime, (b) separate the
wiggle and no-wiggle parts of the spectrum or (c) marginalize over the unknown broadband
component. Whilst the optimal approach would be (a), modeling this spectrum beyond linear
theory is difficult, as previously discussed. Fortunately, as shown below, such modeling does
not strongly affect the efficacy of our AP constraints, since they are sourced only by the
wiggle part, and the perturbative computations mainly constrain the broadband spectral
shape. In previous works including Refs. [10, 66, 67], approach (c) is adopted, with a number
of free polynomial parameters added to marginalize over the spectral shape. In this work,
we use a somewhat different approach, based on a theoretical error template, as proposed by
Baldauf et al. [68], which effectively marginalizes over the broadband shape by introducing
a large additional covariance with correlation length larger than the BAO scale. This will be
discussed further in Sec. 2.2.2.

In this section, we will require some fiducial cosmology against which the AP pa-
rameters are calibrated. Following [10], we assume a flat ΛCDM universe with {Ωm =
0.31,Ωbh

2 = 0.022, h = 0.676, σ8 = 0.824, ns = 0.96,
∑

mν = 0.06 eV, YHe = 0.2454, zreio =
11.357, rfids (zd) = 147.78Mpc}, where rs(zd) is the sound horizon at decoupling. It is worth
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mentioning that in standard cosmological models, only the isotropic AP parameter αiso =

α
1/3
‖ α

2/3
⊥ is important, which provides a strong distance measurement (useful for H0), but, at

low redshift, only a weak constraint on Ωm [52, 62]. For non-minimal cosmological models
however, anisotropic warping can become important, thus we here include both α‖ and α⊥

for full generality.

2.2.1 Theoretical Model for P rec
ℓ (k)

Before considering any shape marginalization, we require a theoretical model for the recon-
structed power spectra that is accurate in the linear regime (k . 0.1hMpc−1) and correctly
treats the BAO wiggles at higher k. As a starting point, recall the familiar Kaiser power
spectrum [18], which is accurate for (unreconstructed) galaxy redshift-space power spectra on
linear scales;

PKaiser(k, µ; z) =
[
b(z) + f(z)µ2

]2
Plin(k; z), (2.2)

where µ = k̂ · n̂ is the angle between the momentum vector k and the (local) line of sight n̂,
b is the local linear bias (which is a free parameter in the analysis) and f is the logarithmic
growth factor (defined as f = d logD(a)/d log a for linear growth factor D and a = (1+z)−1).
Plin is the linear power spectrum computable via CAMB [69] or CLASS [70]. From this point
forwards, the dependencies on redshift will be left implicit, and quantities assumed to be
evaluated at the effective redshift of the galaxy sample.

Whilst Eq. 2.2 holds for a standard galaxy power spectrum, it is not appropriate to
use for reconstructed fields, due to the density-field smoothing and anisotropic reconstruction
applied therein. A simple calculation along the lines of Refs. [58, 59, 66], then shows that the
relevant tree-level power spectrum is in fact

P rec
tree(k, µ) =

{[
b+ fµ2

]2
Plin(k) "Rec-Sym"[

b+ fµ2 (1−W (k))
]2

Plin(k) "Rec-Iso",
(2.3)

where W (k) is the Gaussian smoothing kernel and "Rec-Sym" and "Rec-Iso", defined in Ref.
[66], correspond to (a) shifting the galaxies and random particles by the same amount or (b)
shifting the galaxies by an additional factor of (1 + f) along the line of sight.2 The latter
scheme is used to remove RSD on large scales, and will be assumed henceforth. As noted
in [71], this may be sub-optimal for BAO analyses, but is chosen here for better comparison
with BOSS. Furthermore, our model is largely insensitive to the broadband shape of the
reconstructed spectra.

Though this model contains the correct linear physics, it is not yet a correct treatment
of the BAO wiggles, from which the AP parameters will be extracted. To do this, we must
carefully consider the long wavelength (infrared; IR) modes that cannot be treated perturba-
tively, with some IR resummation procedure [46–48, 50]. At leading order, this modifies the
linear spectrum to

Plin(k) → PIR res,LO(k, µ) ≡ Pnw(k) + e−k2Σ2(µ)Pw(k), (2.4)

where Pnw and Pw are the no-wiggle (broadband) and wiggly parts of the linear spectrum
respectively.3 The smoothing kernel Σ2 may be written

Σ2(µ) = Σ2
NL

[
1 + fµ2(2 + f)

]
(2.5)

2Note that our ‘Rec-Iso’ result agrees with Ref. [66] (Appen. A) and corrects a minor typographical error
in Ref. [59] (Eq. 4.11).

3Note that we have an additional factor of 1/2 in the exponent compared with Ref. [52], matching Ref. [10].
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[48–50], for logarithmic growth rate f ,4 where the amplitude Σ2
NL may be predicted for

unreconstructed spectra as

Σ2
NL,unrec =

1

6π2

∫ kS

0
dq Pnw(q) [1− j0(qrs(zd)) + 2j2(qrs(zd))] , (2.6)

for sound horizon scale at decoupling rs(zd), spherical Bessel functions jℓ and cut-off mo-
mentum kS . For reconstructed spectra, this is more complex, requiring a self-consistent
IR-resummed theory model. For this work, we allow ΣNL to be a free parameter for the
reconstructed field analysis, noting that, for the purpose of extracting α, the main function
of a better theoretical model is to precisely constrain ΣNL.

Collecting results, we arrive at the model

P rec
fid (k, µ) =

[
b+ fµ2 (1−W (k))

]2
Pnw(k)

[
1 + (Olin(k)− 1) e−k2Σ2(µ)

]
, (2.7)

where

Olin(k) ≡
Plin(k)

Pnw(k)
. (2.8)

In practice, the smooth function Pnw(k) is computed by fitting the fiducial linear power
spectrum Plin(k) to the combination of an Eisenstein & Hu spectrum [72] and five (fixed)
polynomial terms, as in Ref. [10]. This model is similar to that of Refs. [10] & [58] (ignoring
the shape marginalization at this point), though we note that we do not include terms to
account for Finger-of-God (FoG) effects or shot-noise. This is justified since these do not
affect the observed power spectrum at small k, and, at large k, contribute a broadband term
which is degenerate with the theoretical error considered below.

Whilst the above model is appropriate for the reconstructed power spectrum at small k,
it assumes that the observed cosmology matches the fiducial one, and is therefore useless for
cosmological analyses. To ameliorate this, we introduce the AP scaling parameters defined
in Eq. 2.1, which relate the observed wavenumbers parallel and perpendicular to the LoS (k‖,
k⊥) to the true wavenumbers (k′‖, k

′
⊥) via k′‖ = k‖/α‖, k

′
⊥ = k⊥/α⊥, or alternatively

k′ =
k

α⊥

[
1 + µ2

(
1

F 2
− 1

)]1/2
(2.9)

µ′ =
µ

F

[
1 + µ2

(
1

F 2
− 1

)]−1/2

,

where F = α‖/α⊥. This gives the reconstructed power spectrum

P rec
model(k, µ) =

(
rfids
rs

)3
1

α2
⊥α‖

P rec
fid

(
k′(k), µ′(µ)

)
, (2.10)

4We ignore the sub-leading δΣ2 term of Ref. [50] arising from RSD. For reconstructed fields, the full form
may differ somewhat even at linear order, though this will not affect our determination of α.
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where the prefactor accounts for the different volumes of the two cosmologies.5 From this
model, we can define the multipole moments via

P rec
ℓ (k) =

2ℓ+ 1

2

∫ 1

−1
dµP rec

model(k, µ)Lℓ(µ) (2.11)

=

(
rfids
rs

)3
2ℓ+ 1

2α2
⊥α‖

∫ 1

−1
dµP rec

fid

(
k′(k), µ′(µ)

)
Lℓ(µ),

where Lℓ(µ) is the Legendre polynomial of order ℓ. In practice this is computed by summation
over 30 points in µ-space via Gaussian quadrature.

One final ingredient is required to compare the model to observational data; the survey
window function. For the BOSS survey this is highly anisotropic, and we follow the treatment
of Refs. [73] & [9], which transforms the model power spectrum multipoles into correlation
function multipoles (via FFTLog [74]), multiplies by the window function multipoles then
transforms back to harmonic space, practically performing a convolution integral. This gives

ξ̂0 = ξ0W
2
0 +

1

5
ξ2W

2
2 + ... (2.12)

ξ̂2 = ξ0W
2
2 + ξ2

[
W 2

0 +
2

7
W 2

2

]
+ ... ,

where ξ and ξ̂ are the model and convolved-model correlation functions respectively, and Wℓ

are the (publicly available) window function multipoles. Terms beyond the quadrupole were
found to be negligible in Ref. [73]. We do not include the ‘integral constraint’ in our formalism,
as it affects modes only below k < 0.005hMpc−1 which are not used in our analysis [10]. Note
that, since the theory model depends on the AP parameters, the window function convolution
must be re-evaluated every time the AP parameters are sampled in the MCMC chain.

2.2.2 Covariance with Theoretical Error

Though the theoretical model of Sec. 2.2.1 provides an accurate treatment of BAO wiggles
into the quasi-linear regime, we cannot simply fit it to the observed data since our treatment
of the broadband spectrum is not correct. In previous analyses [10, 58, 66], ∼ 5 free polyno-
mial parameters were added to the spectral model in order to marginalize over the unknown
broadband shape; whilst this has been shown to be effective, it is at the expense of sampling
speed and a large increase in the number of parameters. Here, we adopt the theoretical error
method proposed by Baldauf et al. [68], as applied in Ref. [16]. The basic premise of this is
discussed below.

At the center of any cosmological analysis is a theoretical model for P (k), which, in order
to be useful, one needs to trust over some range of wavenumbers. In perturbation theory one
always computes the theoretical model at a given order of the relevant Taylor expansion.
However, as one moves to higher k’s, the neglected higher-order corrections become more
important, and at some point they become bigger than the statistical errors. Whilst most
analyses simply impose a cut-off k up to which the theory is deemed valid, in reality there
is a smooth continuum of error, which, for a model computed to ℓ-loop order, grows as the
size of the (ℓ + 1)-loop contribution. To perform analyses with some degree of rigor, it is

5This is fully degenerate with the bias parameters and theoretical error, thus does not carry cosmological
information.
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thus desirable to include a theoretical error, in addition to the usual observational covariance.
Practically, this error (which represents the difference between our model and the true (as yet
unknown) theory), is not completely undetermined; it must be correlated between neighboring
bins, and can be treated as a smooth envelope with some correlation scale ∆k. Since the error
primarily relates to the broadband spectrum (given that we have allowed the BAO damping
scale to be a free parameter in our model), ∆k must exceed the BAO scale of ∼ 0.05hMpc−1;
we here adopt ∆k = 0.1hMpc−1 as in Ref. [16], noting that our analysis is insensitive to
the precise value of ∆k, providing it exceeds both the BAO and binning scales. That the
correlation length exceeds the BAO scale is a crucial point in our analysis, since by including
the theoretical error we can accurately marginalize over the quasi-linear spectrum yet still
constrain the AP parameters in regimes where the BAO signal is weak compared to the
broadband.

In Ref. [68], it was shown that including the theoretical error with a Gaussian prior was
equivalent to modifying the data covariance matrix C

d;

C
d → C

d + C
e, (2.13)

where C
e is the error covariance, given by

C
e
ij = EiEj exp

[
−(ki − kj)

2

2∆k2

]
(2.14)

in bins i, j, where Ei is the error envelope and we assume a Gaussian correlation matrix. In
our context, the theoretical model is accurate only at linear-order, thus we include an error
kernel which scales as the approximate one-loop power spectrum;

Eℓ(k; z) = 2×
√
2ℓ+ 1

(
D(z)

D(0)

)2( k

0.31hMpc−1

)1.8

P rec
0 (k), (2.15)

where the reconstructed power model is evaluated with the fiducial cosmology. This is based
on Ref. [68], who advocate (D(z)/D(0))2

(
k/0.31hMpc−1

)1.8
Plin(k) as the error kernel for

the linear matter power spectrum, which is simply a fit to the one-loop spectrum. Here,
we use the reconstructed spectral model rather than linear theory (so as to include bias
parameters and damping), and assert that the theoretical error for the ℓ-th multipole should
scale as

√
2ℓ+ 1P0(k), which is the scaling of the data covariance at leading order, making the

conservative assumption that the theoretical errors of different multipoles are uncorrelated.6

We additionally include a safety factor of 2, to ensure the error is not underestimated. Note
that the exact form of the error kernel is not crucial to the analysis; we obtain similar
constraints when the kernel is inflated by a factor of 10. In this paper, we restrict to a k-
space regime where the one-loop error kernel is appropriate, though we note that the analysis
could simply be extended to higher k by simply adding in two-loop errors. This would be
expected to somewhat sharpen our constraints on the AP parameters.

2.2.3 Constraining the AP Parameters

Given the above theoretical model and covariance, it is a simple matter to place constraints
on the AP parameters α. This is done by minimizing the likelihood

−2 logLrec = (Xd −Xm)T (Cd + Ce)
−1 (Xd −Xm) , (2.16)

6This is more stable than using Eℓ ∼ Pℓ(k), since higher multipoles can cross zero at relatively small k.
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where Xd and Xm are vectors containing the data and (window-convolved) model Pℓ(k) as in
Sec. 2.2.1 and Cd and Ce are the data and error covariances, discussed in Sec. 2.2.2. In practice
this is done using Markov Chain Monte Carlo (hereafter MCMC) using montepython v3.0
[75, 76] to optimize for α = {α‖, α⊥}, with the additional nuisance parameters {b,ΣNL} of
Sec. 2.2.1.7

Note that to sample the likelihood, we must place priors on the model parameters; these
are discussed in Sec. 3.3. Convergence of the MCMC chains are assessed via the standard
Brooks-Gelman and Gelman-Rubin criteria [77, 78]. From this, we obtain a best-fit value of α,
which will be used as an additional observable in the FS analysis of unreconstructed spectrum
below. In effect, we condense all BAO information in the reconstructed spectrum into a single
observable, α, which informs the later analysis. Note that since we only require computation
of the best-fit values of two parameters, we do not strictly require an MCMC analysis, and
we expect that gradient descent would yield similar results in reduced computation time.
Furthermore, due to the greatly reduced parameter space compared to the BOSS analyses,
our analysis with theoretical error is significantly faster. We present the results in Sec. 4.

2.3 FS Analysis: Extracting Cosmological Parameters from Unreconstructed

Spectra

Following the determination of the AP parameters in Sec. 2.2, we may proceed to the analysis
of the unreconstructed power spectra, allowing us to place strong constraints on cosmological
parameters. Our methodology in this section is based on that of Ivanov et al. [52] (also
Ref. [53] and similar to Ref. [54]), which we briefly recapitulate below.

2.3.1 Theoretical Model for P unrec
ℓ (k)

Since we are now interested in constraining cosmological parameters beyond α, we require a
power spectrum model that is able to accurately model the entire full-shape (hereafter FS)
of the redshift-space galaxy power spectrum into the quasi-linear regime, including both the
broadband and the BAO wiggles. For this, we employ a model based on one-loop perturbation
theory (presented in detail in Ref. [52], Appen.A.), which has the following schematic form

P unrec
ℓ (k) = P tree

ℓ (k) + P 1−loop
ℓ (k) + P ctr

ℓ (k) + P noise
ℓ (k). (2.17)

Here P tree represents the tree-level (linear) galaxy power spectrum (equal to the familiar
Kaiser spectrum [18]), with the corresponding one-loop corrections appearing in P 1−loop.
These arise from gravitation- and bias-induced non-linearities, in addition to the conversion
from real- to redshift-space, and are discussed in detail in Refs. [43, 79]. Note that we apply
the following basis of bias operators relating the galaxy (δg) and matter (δ) overdensity fields

δg(x) = b1δ(x) +
b2
2
δ2(x) + bG2

G2(x), (2.18)

where G2 is the tidal field operator. Whilst this strictly neglects the additional bias parameter
bΓ3

, this was found to be degenerate with other free parameters in Ref. [52]. The one-loop

7The commonly used fσ8 parameter is not required to be free here; any cosmological dependence is
marginalized over by the theoretical error (for the broadband part) or captured by the free ΣNL parameter
(for the wiggly part). All remaining cosmological dependence is thus encoded in the AP parameters. Ideally,
one may wish to first perform the FS analysis, extract best-fit cosmology, and use it to produce a template
for the BAO measurement. This approach is not adopted here.
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terms are non-trivial to compute, depending on a number of convolution-type integrals of the
linear power spectrum with pre-determined kernels, though this is possible via the FFTLog

procedure [74, 80], implemented in a custom CLASS module.
An important ingredient of our model is the ultraviolet counterterms, P ctr, which encap-

sulate complex short-scale (UV) physics (which cannot be modeled perturbatively) in addition
to contributions from the FoG effect, and other degenerate effects, such as higher-derivative
biases. These counterterms comprise of a fixed scale dependence (predicted by EFT, either
by consideration of the UV divergences of the SPT expressions or by coarse-graining the
equations of motion), in addition to a free amplitude, whose magnitude or sign cannot be
predicted by analytic theory. We refer the reader to canonical EFT references ([36–38, 42, 43])
for further discussion of these effects. In practice, (and considering only the ℓ = 0 monopole
and ℓ = 2 quadrupole), this leads to three counterterms with free amplitudes {c0, c2, c̃}, with
the third parametrizing next-to-leading order effects from FoG (which can affect larger scales
than other non-linearities).

Furthermore, the term P noise includes any stochastic contributions to the galaxy power
spectrum which, to one-loop order, includes only a constant, and direction-independent, Pois-
sonian shot-noise, whose amplitude is a free parameter, Pshot. In addition to the above com-
ponents, infra-red resummation must be included (as in Sec. 2.2.1), which is performed with
the approach of Refs. [49, 50], accurate to one-loop order. Furthermore, the AP parameters
must be included by relating the observed and true momentum vectors (as in Eq. 2.9 & 2.10)
and the survey window is included via window function convolution, as before. In total,
we obtain a model with seven nuisance parameters; {b1, b2, bG2

, Pshot, c0, c2, c̃}. Since this is
based on one-loop perturbation theory, we expect it to be accurate for k . 0.25hMpc−1

(with two-loop corrections subdominant [44, 45]), thus we will only use spectral data in this
wavenumber range.

2.3.2 Joint Likelihood of P unrec
ℓ (k) and AP parameters

In previous analyses [52, 53], the theory model outlined in Sec. 2.3.1 has been directly com-
pared to observational data via MCMC to constrain cosmology, via a simple Gaussian like-
lihood. In this work, we aim to combine constraints from both the BAO and FS analyses,
thus we require a likelihood that will include the constraints on the AP parameters, discussed
in Sec. 2.2. Whilst one may surmise a number of complex ways in which to do this, we here
adopt a simple procedure, considering the joint Gaussian likelihood of P rec

ℓ (k) and α, noting
that these are not independent.8 This yields

−2 logLunrec = (Xd −Xm)T C
−1
d (Xd −Xm) , (2.19)

where the data-vector Xd contains both the observed (pre-reconstruction) redshift-space
galaxy power spectrum multipoles and the best-fit AP parameter vector obtained by fitting
the reconstructed data. The associated model Xm similarly contains the model for P unrec

ℓ (k)
and the current value of the AP parameters α. Note that we allow α to be a free parameter
in the pre-reconstruction analysis; our procedure effectively assigns it a relatively tight prior,
which is covariant with the spectrum itself.

8Note that there are a number of ways to combine data-sets. Possibly the most robust technique would be
to consider the joint likelihood of the reconstructed and unreconstructed spectra using a full theoretical model,
which accurately treats both the broadband and BAO wiggles. However, this requires significant theoretical
work, and, since the reconstructed spectra are mostly useful for BAO information, we do not believe it will
lead to significantly stronger constraints on cosmology.
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In the above likelihood, we require a joint covariance of P unrec
ℓ (k) and α, labelled Cd.

9

Whilst the form of the auto-covariance of P unrec
ℓ can be well predicted theoretically, the cross-

covariance of this with α may seem difficult to estimate, though we show in Sec. 4.2 that it
can be well estimated from a simple theoretical model. In practice, this is complicated by the
survey window function, which has non-trivial, though small, effect on the BAO wiggles and
hence the cross-covariance. For an exact treatment, the power spectrum covariance is usually
estimated from a suite of simulations,10 thus we elect to do the same here for the α covariance
and cross-terms. This is made possible by fast sampling speed of the BAO analysis, allowing
us to estimate α from each of a large number of mocks, as discussed in Sec. 3.2.

With the likelihood of Eq. 2.19 in hand (and the priors of Sec. 3.3), we can constrain de-
sired cosmological parameters (and the seven nuisance parameters of Sec. 2.3.1) using MCMC,
practically achieved via the montepython code, as before. For speed, we vary the nuisance
parameters more often than the cosmological parameters, noting that the full model must be
recomputed each time any cosmological parameter is varied. The results of this analysis will
be discussed in Sec. 5.

3 Data and Priors

In this section, we discuss the aspects of our analysis that are specific to the data-set and
cosmological model tested; the BOSS DR12 data (with its associated covariance), and the
choice of priors.

3.1 The BOSS DR12 data-set

The data-set used in this work is that of the twelfth data release (DR12) [60] of the Baryon
Oscillation Spectroscopic Survey (BOSS), part of SDSS-III [8, 85]. This contains the positions
and redshifts of a sample of 1,198,006 galaxies, spanning 0.2 < z < 0.75, which, for this
analysis, are divided into two disjunct redshift bins with effective redshifts zeff = 0.38 and
0.61. As in [52], these will be referred to as ‘low-z’ and ‘high-z’ respectively. In addition,
the sample is divided into two spatial regions (totalling 10,252 deg2) around the Northern
and Southern Galactic Cap (hereafter NGC and SGC), giving a total of four independent

data-sets. These have effective volumes (in
(
h−1Gpc

)3
assuming h = 0.676) of 0.84, 0.31,

0.93 and 0.34 for low-z NGC, low-z SGC, high-z NGC and high-z SGC respectively. Each
region has a unique survey geometry, which is specified by a set of random particles whose
distribution matches the selection function and unclustered galaxy number density. The
publicly available11 multipoles of these are used to construct the window-convolved theory
estimates for the galaxy power spectra, via Eq. 2.12.

For each chunk, we use the publicly available redshift-space galaxy power spectra (both
pre- and post-reconstruction). These are generated using the (Fast Fourier Transform-based)
estimator of Refs. [86, 87], computing the multipole power from the data-set combined with
a set of random points. The computation of these, and the associated weights, are described
in detail in Refs. [10] and [13] respectively. Density field reconstruction has been applied via
the method of Padmanabhan et al. [30] (based on Ref. [29]), utilizing a random catalog (with
the same selection function and unclustered distribution) and smoothing the observed density

9For a discussion of the covariance of α obtained from different BOSS analyses, see Ref. [81].
10Note that semi-analytic geometry-specific treatments are possible, for example Refs. [82, 83] or Ref. [84]

for the associated correlation function multipoles.
11https://fbeutler.github.io/hub/boss_papers.html
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field with a kernel of width Σsmooth = 15h−1Mpc (chosen to give optimal signal-to-noise). The
displacement field is estimated via linear theory and the method of finite differences, and the
galaxies (but not the randoms) displaced by an additional factor (1+f) along the line-of-sight
to remove RSD at lowest order.12 This process, along with its potential systematic errors, is
discussed in detail in Refs. [10, 28, 30, 88].

Here, we use data from both the monopole (ℓ = 0) and quadrupole (ℓ = 2), in ∆k =
0.005hMpc−1 bins, using k ∈ [0.0025, 0.25] (k ∈ [0.0025, 0.3]) for the unreconstructed (recon-
structed) spectra giving a total of 50 (60) bins for each multipole. Note that we use a larger
kmax for the reconstructed spectra; since our BAO analysis marginalizes over the (non-linear)
broadband spectral shape, moving to larger wavenumber only leads to more BAO wiggles
being observed, whose positions are not affected by the higher-order terms. This is not true
for the unreconstructed data, whose analysis relies on the theoretical model being accurate,
and two-loop terms remaining subdominant.13 We refer the reader to Appendices A and B
of [52] for further discussion of these effects and validation of the FS machinery on Patchy
mocks.

In Fig. 1 we show the power spectrum multipoles for all fields both pre- and post-
reconstruction, which are compared to the results from mocks (Sec. 3.2). The effect of using
a larger observational region is clear; the NGC data, with over double the effective volume,
is far less noisy than SGC data. We note prominent BAO wiggles in the data-sets (mainly
the monopole), whose power is somewhat enhanced after density field reconstruction, which
will strengthen the constraints on α. In all unreconstructed chunks, there is a non-negligible
quadrupole arising from RSD, but the reconstruction is able to significantly reduce this at
low k, with P2 consistent with zero for k . 0.1hMpc−1. This is a consequence of shifting the
galaxies by an additional factor (1 + f) during the reconstruction.

3.2 MultiDark-Patchy Mocks

To estimate the covariance matrix for the BOSS DR12 spectra, we require accurate and nu-
merous mock catalogs. Here, we use the MultiDark-Patchy (hereafter Patchy) [89, 90], which
are generated with approximate Lagrangian perturbation theory techniques, with a stochas-
tic halo bias prescription, calibrated from a high-resolution N-body simulation; BigMultiDark
[91]. Halo abundance matching [92] is used to ensure the simulations have the correct red-
shift evolution and correlation functions, and separate mocks are produced for each of the four
BOSS DR12 chunks (Sec. 3.1) with the relevant selection functions and windows. These use a
fiducial cosmology of {Ωm = 0.307115,Ωb = 0.048206, σ8 = 0.8288, ns = 0.9611, h = 0.6777},
which is slightly different to the BOSS fiducial cosmology, though given that the associated
AP parameters are very close to unity (α = {0.9991, 0.9983} and {0.9998, 0.9987} for low-z
and high-z samples respectively) we do not expect this to affect our analysis.

In this work, we use the set of Nmocks = 999 Patchy mocks for which density-field
reconstruction has been performed, and the corresponding spectra made public. The mean
and 1σ limits of these are shown in Fig.1, and we note fair agreement of mocks and model
across all wavenumbers. From visual inspection, it may seem that the low-z NGC mock
spectra (both pre- and post-reconstruction) exhibit a smaller BAO signature than the data;
this has been already discussed in Ref. [10]. By virtue of this anomaly, the H0 constraints
extracted from the FS analysis of the actual low-z NGC chunk were ∼ 40% better than the

12Note that this is the ‘Rec-Iso’ reconstruction scheme, in the language of Ref. [66] and Sec. 2.2.1.
13In practice, the maximum wavenumber for the reconstruction analysis is set by the Nyquist frequency

kNyq = 0.6hMpc−1 and the limits of the publicly available data.
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Figure 1. Power spectra used in this analysis, from both BOSS DR12 data, and MultiDark-Patchy
mocks. For each separate chunk (at a different sky location and redshift bin), we show both the
monopole (ℓ = 0, upper two spectra) and quadrupole (ℓ = 2, lower two spectra), before (darker colors)
and after (lighter colors) density field reconstruction. Colored lines and shaded regions indicate the
mean and 1σ variations between 999 mock catalogs in each chunk, with the data shown as black
points. Errorbars indicate the square root of the covariance diagonal, estimated from the same set of
mocks. We note that reconstruction sharpens the Fourier-space BAO wiggles, whilst slightly reducing
the overall amplitude and removing most of the large-scale quadrupole power. Further note that the
NGC data appears much smoother, due to the larger effective volumes of these regions.

results based on the analysis of the Patchy mocks [52]. When we combine the BAO and
and FS data from this chunk, the constraints will improve only marginally. This suggests an
explanation of this anomaly as a ‘lucky’ particular realization of the data in this chunk, whose
dark matter displacement field happened to have reduced power. The detailed investigation
of such a phenomenon goes beyond the scope of this paper.

Given the set of all mocks, with the n-th mock consisting of some data vector X
(n) =

{X(n)
a } (for bin label a), we may estimate the covariance of X as

cov (Xa, Xb) ≡ Cab =
1

Nmocks − 1

Nmocks∑

n=1

(
X(n)

a −Xa

)(
X

(n)
b −Xb

)
, (3.1)

where

Xa =
1

Nmocks

Nmocks∑

n=1

X(n)
a (3.2)

is the mean over all mocks. For the BAO analysis (Sec. 2.2, X is simply the vector of
monopole and quadrupole power in each bin, i.e. X = {P rec

0 ,P rec
2 }. As described in Sec. 2.3,
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to place strong constraints on key cosmological parameters using the pre-reconstructed fields,
we require the joint covariance between the power spectra and the AP parameter estimates,
α̂, which come running an MCMC chain on each of the 999 reconstructed mocks. This gives
the data vector X = {P unrec

0 ,P unrec
2 , α̂}.14 For use in Gaussian likelihoods, we require the

precision matrix, Ψd, which, in the limit of zero noise, is the inverse of the covariance matrix.
With a finite Nmocks, this is a biased estimator, thus we apply the rescaling factor of Hartlap
et al. [93], giving

Ψd =
Nmocks −Nbins − 2

Nmocks − 1
C
−1
d , (3.3)

where Nbins is the number of bins; 102 in the pre-reconstructed case. Note that it is not

correct to apply this rescaling factor to the reconstructed data, since, in this case, we must
invert the sum of the (stochastic) data and (smooth) theory covariance, rather than just
the Wishart-distributed sample covariance. The appropriate rescaling factor for the summed
matrix is non-trivial and thus ignored. For simplicity, we do not include the parameter error
bar inflation of Ref. [94], noting that this contributes only a small ∼ 2% error on the derived
parameter errors. For a fully robust treatment, we should allow the covariance matrix to vary
with cosmology, though this is difficult and computationally infeasible for highly anisotropic
surveys such as BOSS, though progress is possible with techniques such as Refs. [95, 96].

3.3 Priors

3.3.1 BAO Analysis

When analyzing the reconstructed power spectrum multipoles we vary two cosmological pa-
rameters and two nuisance parameters

{
α‖, α⊥

}
× {b,ΣNL} , (3.4)

as discussed in Sec. 2.2. Each of the four data-chunks must be analyzed separately (in order
to provide joint covariance of P unrec

ℓ (k) with α), thus b and ΣNL are allowed to vary between
chunks. For the biases, this is appropriate since each region has a different selection function,
though for the non-linear damping, one may presume that this should be the same for chunks
at the same effective redshift. In practice, we allow it to vary since the non-linear damping
encodes a variety of effects including higher-order bias terms and the reconstruction efficacy,
that can vary between chunks.

Given that the AP parameters are expected to equal unity for a universe with fiducial
cosmology, we adopt a uniform prior in (0.8, 1.2) for both α‖ and α⊥, noting that this spans
a wide range of cosmologies. (Recall that the Patchy mocks have a somewhat different
cosmology to fiducial, yet |αi − 1| < 0.002 for αi ∈ {α‖, α⊥}.) For the bias parameter,
which encompasses both the galaxy bias and other (small) constants from reconstruction, we
center the prior around the approximate bias obtained from BOSS of b ≈ 2, but otherwise
keep its amplitude unconstrained.

Finally, the prior on the non-linear damping scale ΣNL is worthy of attention, since unlike
the analysis of Ref. [10] we allow this to vary freely. In this work we adopt a uniform prior
of ΣNL ∈ (1, 6)h−1Mpc, which encompasses the post-reconstruction values found in Ref. [10]
and centers on the values of ΣNL ∼ 3.5h−1Mpc found in initial testing. Furthermore, this

14Note that α̂ is here taken as the best-fit of the MCMC posterior discussed in Sec. 2.2.
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is restricted to be less than the pre-reconstruction value of Eq. 2.6, since any reconstruction
should sharpen the BAO peaks and thus reduce ΣNL. The prior width on ΣNL encodes our
knowledge of the post-linear regime; tightening the prior width around some best-fit value
thus allows us to judge how the error bars on α are modified by better modeling of the
reconstructed spectra, which will be investigated further below.

3.3.2 FS Analysis

Our methodology for the FS analysis closely follows that of Ref. [52], to which we refer the
reader for further details. In the baseline FS analysis, we fit six cosmological parameters of
the minimal ΛCDM model, including massive neutrinos (hereafter denoted νΛCDM),

{
ωb, ωcdm, h, ns, A

1/2,
∑

mν

}
, (3.5)

where
∑

mν is the sum of the neutrino masses, A is the dimensionless ratio of primordial
spectral amplitude to the best-fit value obtained by Planck [1],

A ≡ As

As,Planck
, As,Planck = 2.099× 10−9 , (3.6)

h = H0/
(
100 km s−1Mpc−1

)
and ωb, ωcdm are the physical baryon and cold dark matter

densities, related to Ωb, Ωcdm via ωi ≡ Ωih
2.

In this work, we impose the Gaussian BBN prior on ωb [1, 97–99] (see a discussion in
Ref. [52] for more detail),

ωb = 0.02268± 0.00036 , (3.7)

though we note that, in principle, the FS data can constrain ωb without any external input.
However, this constraint is expected to be much weaker than the measurements from BBN
or Planck, thus, keeping in mind the eventual combination of the FS and Planck data, it is
reasonable to impose this prior. We additionally note that this is 1σ consistent with the value
obtained by Planck, yet a factor of ∼ 3 broader. Use of this prior will allow us to better assess
the information content of the FS data in combination with Planck, whilst ensuring that our
constraints are still independent of the CMB. Note that, since ωcdm is still free, there is no
strong shape prior imposed on our spectra.

Considering the neutrino mass, we will impose the following flat prior

0.06 eV <
∑

mν < 0.18 eV . (3.8)

The motivation behind this is twofold. On one hand, we could fix the neutrino mass to some
fiducial value, analogous to the Planck baseline analysis [1], which fixes it to the lowest mass
allowed by oscillation experiments (

∑
mν = 0.06 eV). Whilst this choice is arbitrary, it allows

the parameter inference to be significantly expedited. On the other hand, given that the sum
of the neutrino masses is currently unknown, we could adopt a loose prior which aims to
measure it directly from the BOSS data. Previous analyses [53, 55] have shown however, that
only weak constraints are possible from BOSS, (

∑
mν . 1 eV), which is significantly worse

than the current limits obtained from the various combinations of the cosmological data (see
Ref. [53] and references therein). In this case, our MCMC chains will spend a lot of time
exploring a range of neutrino masses ruled out by other data-sets, so they are particularly
inefficient. To test our prior, one data chunk (low-z NGC) has been analyzed without placing
an upper bound on the neutrino mass, and we conclude that, for the BOSS data-set,

∑
mν
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is not degenerate with H0, Ωm and σ8 (which represent the main results of our analysis).
Thus, we decide to scan over the neutrino mass only in the realistic range (Eq. 3.8) allowed
by other measurements in our baseline analysis, keeping in mind our eventual intention to
combine the BOSS, BAO and Planck likelihoods. Note that in contrast to Ref. [52], we use
three degenerate neutrinos rather than a single massive state, matching the latest Planck
analyses [1].

For the remaining cosmological parameters {ωcdm, h, ns, A}, we assume no informative
priors, ensuring that our analysis is fully independent of Planck and thus a useful cross-check.

The main difference between the BAO-only and FS analysis is the necessity to model
more complex non-linearities, which affect the broadband power spectrum. To this end, we
use a model for non-linear bias and redshift-space distortions (discussed in Sec. 2.3) that has
seven free parameters;

{b1, b2, bG2
, Pshot, c

2
0, c

2
2, c̃}. (3.9)

Note that the nuisance parameters are allowed to vary separately for each data-chunk, due to
the different sample selection functions and effective redshifts. Performing a joint analysis of
all four chunks thus requires 7×4 = 28 nuisance parameters, in addition to the six cosmological
parameters. We use the following flat priors for the bias parameters,

b1A
1/2 ∈ (1, 4) , b2A

1/2 ∈ (−4, 2) ,

bG2
A1/2 ∈ (−3, 3) , Pshot ∈ (0, 1)× 104 [h−1Mpc]3 ,

(3.10)

and the counterterms,

c0, c2 ∈ (−100, 100) [h−1Mpc]2 ,

c̃ ∈ (−103, 103) [h−1Mpc]4 .
(3.11)

The priors for the bias parameters b2 and bG2
are informed by measurements of biases for dark

matter halos that are typical hosts for the BOSS galaxies [100], and those on the counterterms
are motivated by the requirement that the counterterm contributions be smaller than the
tree-level spectra, i.e. that they do not cause the perturbative description to break down.
Technically, priors on both the counterterms and bias parameters have no impact on the
inferred cosmological parameters for the data cut kmax = 0.25 hMpc−1 used in the FS
analysis. Equivalently, these priors could be waived without changing our main conclusions;
their only purpose is to speed up the convergence of our MCMC chains.

Finally, it should be mentioned that we do not impose a prior on the AP parameters
α, since these are uniquely determined from Eq. 2.1, given the current and fiducial cosmolo-
gies. An effective prior is set on these however from the covariance obtained from the post-
reconstruction BAO analysis.

4 Results of the BAO analysis

Below, we present and discuss the parameter constraints obtained from the analysis outlined
in Sec. 2, as applied to the data of Sec. 3. We will discuss both the intermediate constraints
on the AP parameters from the analysis of reconstructed data, and the final constraints on
cosmology from the joint analysis.
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4.1 AP Parameters from the reconstructed BAO

Before considering the observed AP parameters from the four data-chunks, it is pertinent to
consider the dependence on key model parameters; the scale of the theoretical error covariance
and the prior width on the BAO damping scale ΣNL. To this end, we perform an MCMC
analysis of the reconstructed spectra (as in Sec. 2.2), (a) inflating the theoretical error kernel
Eℓ by a factor of ten, and (b) changing the prior on ΣNL from a loose prior of ΣNL ∈
(1, 6)h−1Mpc to a tight uniform prior in ΣNL ∈ (2.9, 3.1)h−1Mpc. For these tests, we use
only the high-z NGC data chunk, which has the highest volume and is thus expected to be
the most constraining.

The posterior contours for α obtained from these analyses (as well as with the fiducial
set of hyperparameters) are shown in Fig. 2, created with the getdist code [101],15 which
is part of the CosmoMC package [102, 103]. Note that in all cases, we obtain a constraint on
α which is significantly sharper than the uniform prior. When the scale of the theoretical
error is inflated by a factor of five (and hence the covariance by 25), we observe no obvious
bias in α‖, though a slight (− ∼ 0.05σ) bias in the α⊥ parameter, though this is significantly
below the width of the statistical uncertainty, so may be safely ignored. We attribute this
slight shift to the reduction of the BAO information provided by the broadband part of the
spectrum, which is reduced with a large theoretical error.

Notably, we observe no change to the AP parameter contours when imposing a tight
prior on the BAO damping around its best fit value of ΣNL ∼ 3h−1Mpc, despite the fact that
the posterior of ΣNL is not tightly constrained in the fiducial case. This implies that the AP
information arises from knowledge of the positions of the BAO harmonic peaks, irrespective
of knowledge of their amplitudes. We may thus conclude that better knowledge of the BAO
damping will not tighten the constraints on α. Furthermore, given that (a) the majority of
AP information arises from the position of the BAO peaks and not the broadband spectrum,
and (b) better modeling of the reconstructed power spectra will primarily constrain the post-
linear broadband shape and ΣNL, it is true that including a full perturbation-theory model
of the non-linear reconstructed power spectrum will not make a large impact on the AP
parameters. Furthermore, reconstruction’s primary utility is to sharpen BAO wiggles, thus
we do not expect the broadband to carry additional cosmological information. For this reason,
when extracting cosmological information from power spectra, reconstruction should be used
only for the BAO-specific parameters {α‖, α⊥}, and it is not beneficial to use a more complex
theoretical treatment, since it will not give significantly sharper constraints on ΣNL.

Having established the validity of our hyperparameters, we can consider the distributions
of the AP parameters obtained from analyzing the 999 Patchy mocks. For each mock, and
each chunk, the analysis of Sec. 2.2 is performed to obtain a posterior contour on α, allowing
to set a covariance, as in Sec. 3.2. We present the distributions of α from the four chunks in
Fig. 3, plotting the best-fit of the posterior distribution obtained for each chunk and mock. In
each case, the distribution is centered close to the expected value (of α ∼ 1), with the mean
consistent with unity at 1σ, and we observe substantial negative correlations between α‖ and
α⊥, as found in Ref. [10]. Notably, the constraints are tighter for the NGC regions; this is
expected given their larger effective volume. The distributions of AP parameters shown will
be used to create the joint covariance matrix with the observed P unrec

ℓ (k).

Also shown in Fig. 3 are the best-fit values of α obtained from the reconstruction analysis
applied to the true BOSS data, with contours indicating the statistical uncertainty from the

15getdist.rtfd.io/en/latest
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Figure 2. Posterior distribution of the Alcock-Paczynski (AP) parameters α‖, α⊥ (defined in Eq. 2.1)
obtained from analysis of the high-z NGC BOSS DR12 power spectrum, after density-field reconstruc-
tion. Posterior samples are obtained by minimizing a likelihood consisting of a linear model with an
additional theoretical error to account for the poorly-understood post-linear shape of the spectrum,
as described in Sec. 2.2. We show results from three choices of hyperparameters in the analysis; the
fiducial choice (red), adopting a much narrower prior on the non-linear damping scale ΣNL (blue)
and inflating the theoretical error kernel (Eq. 2.15) by a factor of five. These contours were generated
from ∼ 104 posterior samples obtained from running 16 MCMC chains in parallel. We note negligible
difference in the AP parameters from imposing a tight prior on ΣNL, with a slight bias obtained by
inflating the theoretical error.

MCMC chains; these are broadly consistent with the mock results, and are 2σ consistent in all
cases. The latter results are tabulated in Tab. 1. In Fig. 4, we additionally plot the posterior
contours for α in each chunk from all of the analyzed mocks as well as the data. It is clear
that the posterior widths and orientations are consistent between the mocks and the data, as
expected.

Whilst the primary output of this analysis is a set of α parameters for each individual
chunk, it is instructive to consider the joint constraints from a combination of the NGC and
SGC regions, in order to compare with previous results. To estimate these, we assume the α

constraints between NGC and SGC to be Gaussian and independent, allowing the joint mean
and covariance to be simply estimated. (Note that the nuisance parameters are assumed to be
independent between the samples). Our constraints on the AP parameters are consistent with
those from the BOSS DR12 analysis of Ref. [10] (which have α = {1.028±0.030, 0.984±0.016}
for low-z, α = {0.964±0.022, 1.000±0.015} for high-z), within the stated errors. Note that we
do not expect exact consistency between our results and those of Ref. [10] since (a) we use finer
k-space bins, (b) our combined NGC+SGC constraints are simply a Gaussian approximation
of the joint posterior and (c) we use a different methodology to marginalize over the unknown
broadband shape, additionally allowing ΣNL to remain free. The latter point may explain
why our error bars are slightly smaller than the earlier work.
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Figure 3. Distribution of the best-fit AP parameters obtained from applying the BAO analysis
method of Sec. 2.2 to 999 MultiDark-Patchy mock galaxy samples. For each mock, we plot the best-
fit value obtained from an MCMC analysis which fits the corresponding power spectrum against a
theoretical model and outputs a posterior distribution for {α‖, α⊥}. The dotted lines indicate the
expected value for the mock cosmology (Sec. 3.2), with the black cross showing the average and 1σ
deviation across all mocks. Note that the error bar is not normalized by the number of mocks, thus it
represents the expected variation from a single mock. The red cross and dashed lines show the best-fit
obtained (and its 68% and 95% confidence levels (CLs)) from analyzing the true BOSS data-set in
this chunk (as tabulated in Tab. 1). A comparison of the posterior contour shapes for mocks and data
is shown in Fig. 4.

4.2 Cross-Covariance of AP Parameters and Power Spectra

Before considering the simulated covariance of the pre-reconstruction power spectrum with
the AP parameters α, it is useful to perform a simple forecast to obtain an idea of the function
shape. First, note that the cross-covariance can be written

cov (P unrec(k, µ), α̂) ≡ 〈δP unrec(k, µ)δα̂〉 =
〈

∂P unrec(k, µ)

∂α

∣∣∣∣
α=α0

δα̂T δα̂

〉
(4.1)

=
∂P unrec(k, µ)

∂α

∣∣∣∣
α=α0

· cov(α̂),

– 20 –



0.1 0.0 0.1

0.10

0.05

0.00

0.05

0.10

low-z NGC

0.1 0.0 0.1

0.10

0.05

0.00

0.05

0.10

low-z SGC

0.1 0.0 0.1

0.10

0.05

0.00

0.05

0.10

high-z NGC

0.1 0.0 0.1

0.10

0.05

0.00

0.05

0.10

high-z SGC

Figure 4. Posterior distribution shapes for the AP parameter estimates shown in Fig. 3. We overplot
the 68% and 95% CL contours from the BAO analysis of 999 mock galaxy samples in red, shifting the
distribution to have zero mean. The corresponding posterior for the data in each patch is shown in
blue. Note that the data contours are consistent with a random draw from the set of mock contours.

using
〈
δαT δα

〉
= cov(α), with δ indicating the fluctuations around some mean value, e.g.

δα = α−α0. Next, we note that α̂ is only dependent on P unrec through P rec (from which it
is measured) and further, that only the wiggly part P rec

w is sensitive to α, since the broadband
part is degenerate with the bias and hidden by theoretical error. Thus;

cov (P unrec(k, µ), α̂) =
∂P unrec(k, µ)

∂P rec(k, µ)
· ∂P

rec
w (k, µ)

∂α
· cov(α̂). (4.2)

For a simple forecast, we can assume that the derivative of P unrec with respect to P rec is a

unit matrix, and consider only the isotropic AP parameter α ≡ α
1/3
‖ α

2/3
⊥ , related to the power

spectrum by P (k;α) ∝ P (k/α) (with α-dependent prefactors being absorbed into the bias).
We adopt the simple wiggly power spectrum model

Pw(k;α) ≈ 0.05Pnw(k) sin

(
kℓBAO

α

)
e−k2(Σ2

NL+Σ2
Silk), (4.3)

where ΣNL ≈ 3h−1Mpc and ΣSilk ≈ 5h−1Mpc encode non-linear and Silk damping respec-
tively and ℓBAO ≈ 105h−1Mpc is the BAO scale (e.g. [48]). Note that we have inserted α only
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Chunk zeff α‖ α⊥

mean ±1σ best-fit mean ±1σ best-fit

Prior - 1 .0 ± 0 .2 1 .0 ± 0 .2 -

low-z NGC 0.38 1.035± 0.033 1.041 1.001± 0.017 1.000
low-z SGC 0.38 0.971± 0.043 0.974 0.969± 0.036 0.968
high-z NGC 0.61 0.940± 0.021 0.942 1.006± 0.018 1.003
high-z SGC 0.61 1.017± 0.038 1.020 1.020± 0.024 1.019

low-z NGC+SGC 0.38 1.008± 0.026 - 0.997± 0.015 -
high-z NGC+SGC 0.61 0.957± 0.018 - 1.012± 0.014 -

Table 1. Constraints on the AP parameters obtained from the analysis of BOSS DR12 reconstructed
power spectra, obtained from running an MCMC analysis on each of the four data chunks. These
are displayed graphically in red in Fig. 3, and we indicate the best-fit, mean and 1σ error bars of
each sample. For comparison with BOSS results, we additionally estimate the joint contours on the
parameters combining the NGC and SGC data-sets, by assuming the two sets of parameters to follow
independent multivariate Gaussian distributions. Since the joint analysis was not performed in full,
we do not provide best-fit parameters in these cases.

in the sinusoidal part (where our algorithm is sensitive). This yields the estimate

cov(P unrec(k), α̂)

P unrec(k) var(α̂)
=

∂ logP unrec(k)

∂α
≈ −0.05

kℓBAO

α2
cos

(
kℓBAO

α

)
e−k2(Σ2

NL+Σ2
Silk), (4.4)

where we have additionally supposed that Pnw ≫ Pw. We further note that var(α̂) ≈
5/9 var(α̂⊥) (for var(α̂⊥) ≈ var(α̂‖) and α ≈ 1), and will hence divide by the factor 5/9
when comparing to single parameter estimates.

In practice, this is complicated by the hitherto ignored µ-dependence (which is com-
putable via the relations of Eq. 2.9 & 2.10, and may be evaluated at the fiducial value α0 = 1)
and the survey window function which has non-trivial, though small, effect on the BAO
wiggles and hence the α derivative.

In Fig. 5, we show the covariance between the unreconstructed power monopole and
{α‖, α⊥} from 999 Patchy mocks, using the values of α̂ described in Sec. 4.1. For both
parallel and perpendicular parameters we note sinusoidal oscillations which decay at large k,
though with differing behavior at small k, where we expect to be strongly affected by the
window function. Remarkably, our simple back-of-the-envelope theoretical model is able to
capture the functional form well, including both the BAO wiggle and damping, even though
it is computed assuming isotropy, ignoring the window function and the full wiggly power
spectrum model. Given the success of this model, we thus expect a more thorough (yet still
elementary) theoretical treatment to accurately capture this covariance, removing the need to
compute the statistic on a large number of mocks. (We expect that the autocovariance of α̂
can be simply estimated via a Fisher forecast, allowing the full covariance to be computed.)

5 Results of the Joint FS and BAO analysis

We now consider the cosmological constraints obtained from analyzing the pre-reconstruction
redshift-space power spectra, armed with the joint covariances of the spectra and the AP
parameters, which act as an informative prior on α. Before applying the analysis to the real
data, it is important to test that our analysis is working correctly; to this end we perform
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Figure 5. Covariance of the unreconstructed monopole power and the AP parameters for the low-z
NGC chunk, using data from 999 Patchy mocks. Black crosses (red circles) show the covariance of
the parallel (perpendicular) parameter and we normalize by the unreconstructed power measurements
and AP variance in each case. The blue line shows a rough estimate based on a simple model of the
post-reconstruction wiggly power spectrum (Eq. 4.4), and we note that this is capture the functional
form well.

base νΛCDM base νΛCDM + fixed ns

Parameter FS FS+BAO FS FS+BAO

ωcdm 0.1265+0.01
−0.01 0.1259+0.009

−0.0093 0.1113+0.0047
−0.0048 0.1121+0.0041

−0.0041

ns 0.8791+0.081
−0.076 0.9003+0.076

−0.071 − −
H0 68.55+1.5

−1.5 68.55+1.1
−1.1 67.90+1.1

−1.1 67.81+0.68
−0.69

σ8 0.7285+0.055
−0.053 0.7492+0.053

−0.052 0.7215+0.044
−0.044 0.7393+0.04

−0.041

Ωm 0.3203+0.018
−0.019 0.3189+0.015

−0.015 0.2945+0.01
−0.01 0.2962+0.0082

−0.008

Table 2. Mean values and 68% CL minimum credible intervals for the parameters of the base νΛCDM
cosmology from the joint analysis of unreconstructed and reconstructed power spectra from BOSS
DR12, representing the main results of this paper. The left and right columns show the results with
the power spectrum tilt (ns) free and constrained by the Planck prior respectively, which correspond
to the contours in Figs. 6 and 8 respectively. Results are displayed in the format “mean+1σ

−1σ.” (with
H0 in km s−1Mpc−1, displaying only cosmological parameters whose measurements are independent
of the priors. Note that the left column is fully independent of the CMB.

a cosmological analysis of the mean of 999 Patchy mock spectra (which has much reduced
statistical error). The results of this are discussed in Appendix A, and we obtain similar
conclusions to the analysis using the true BOSS data.

5.1 CMB-Independent Constraints on Cosmology

Emboldened by the above success, we can proceed to analyze the full unreconstructed BOSS
power spectra in conjunction with the best-fit AP parameters of Tab. 1. The cosmological
constraints obtained are presented in Tab. 2, with the corresponding contours shown in Fig. 6,
comparing the results of the combined FS and BAO analysis to those obtained from a FS only
analysis [52] and those of the final Planck data release [1], using the TT,TE,EE+lowE+lowl+lensing
data. These represent the main results of this paper.
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Figure 6. CMB-independent cosmological constraints obtained from this work for the baseline
νΛCDM model, as tabulated in Tab. 2. The ‘FS+BAO’ data-set refers to the combination of full-shape
(FS) modelling of unreconstructed power spectra via a one-loop full-shape model and BAO-modelling
of reconstructed power spectra to compute Alcock-Paczynski parameters, incorporating the theoretical
error methodology of Ref. [68], with a joint sample covariance used to unite the two approaches. The
‘FS’ data-set (equivalent to the full-shape analysis of Sec. 2.3) was presented in Ref. [52] and ‘Planck
2018’ refers to Ref. [1]. This plot shows the cosmological constraints obtained from combination of
four BOSS DR12 data chunks, which are displayed separately in Fig. 7. H0 is quoted in km s−1Mpc−1

units.

The FS+BAO analysis is able to obtain strong constraints on Ωm and H0, of comparable
strength the latest results from Planck, which yield H0 = 67.14+1.3

−0.72, Ωm = 0.3188+0.0091
−0.016 for

a similar νΛCDM model [1]. It is thus clear that we can place strong constraints on these key
parameters with no information from the CMB. As anticipated in the forecast of Ref. [53], the
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addition of the BAO data allows one to improve the errorbar on H0 by ∼ 40% compared to
the FS-only analysis, due to the breaking of parameter degeneracies. This shows the utility
of this method in a CMB-independent analyses. Notably, several of the parameters are more
than 1σ away from the fiducial cosmology assumed to create the Patchy mocks, and hence
the sample covariance matrix. Ref. [104] showed this effect to be statistically insignificant for
BOSS, thus it is not expected to bias our analysis.

For other parameters including ns and ωcdm, we obtain optimal parameters that are
consistent with Planck though with much larger errors. In these cases, the improvement
from adding BAO information is marginal, since, due to the theoretical error marginalization,
the BAO analysis is sensitive to only the wiggly part of the power spectrum, where these
parameters have minimal impact. Note that neither the FS or FS+BAO analysis is able to
place strong constraints on the power spectrum slope ns, with values far away from the Planck
prediction (with far from scale-invariant power spectra) allowed by the BOSS data. This is
a result of the paucity of modes in the large-scale regime, which are particularly sensitive to
ns.

In Fig. 7 we show the constraints obtained from analyzing each of the four data chunks
separately, with corresponding parameters given in Tab. 5 of Appendix B. Note that, even in
the FS+BAO analysis of all four chunks simultaneously, the AP parameters are computed
for each chunk independently (via the BAO analysis of 2.2), to allow correct computation of
joint covariance matrices. Comparing Figs. 6 & 7 allows one to conclude that the cosmological
parameters extracted from different BOSS data chunks are strongly compatible with each
other. As expected, constraints from the high-z NGC region are the tightest, since this has
the highest effective volume.

5.2 Fixing the Spectral Tilt

Given the weak constraints on the spectral tilt ns obtained from the FS+BAO analysis above,
it is instructive to check the impact of imposing the Planck prior on ns. Indeed, this prior
is ∼ 20 times tighter than the BOSS measurement itself, thus if one were to combine the
FS+BAO and Planck likelihoods, the ns measurement would be completely dominated by
Planck. Moreover, including this prior can be seen as a result of using a minimal input from
Planck, since it does not completely fix the shape information of BOSS.

The posterior distribution of cosmological parameters and their marginalized limits are
presented in the right panel of Tab. 2 and the left panel of Fig. 8, with the associated results
for each chunk analyzed separately tabulated in Appendix B and shown in the right panel of
Fig. 8. For comparison, we also show the results obtained from a similar analysis of the FS-
only likelihood, without the additional BAO information provided from the AP parameters.
Notably, we obtain sharper constraints on H0 and Ωm by a factor of ∼ 2 for both FS-only
and FS+BAO analyses, due to the removal of ns-induced degeneracies. Furthermore, we
observe that the ∼ 40% improvement on H0 from adding the BAO data holds even with the
fixed spectral tilt, demonstrating that the BAO is still a useful source of information in this
more constrained case. Remarkably, the combined FS+BAO constraint on H0 in this case
is stronger than that found by Planck, representing the strongest constraint on H0 within
ΛCDM, albeit with a single CMB-informed prior.

Given the weak response of the likelihood to changes in ns (Fig. 6), we note that we would
obtain very similar results from instead assuming that ns takes the Harrison-Zeldovich form
ns = 1. Such a scale-invariant power spectrum also carries significant theoretical motivation;
it is a generic prediction of inflationary models that ns should be close to unity, with any
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Figure 7. Cosmological constraints obtained from the joint FS and BAO analysis of four disjunct
BOSS DR12 data chunks, compared to the constraints from the latest Planck analysis [1]. The joint
analyses of all four chunks yields the contours of Fig. 6.

strong departure completely infeasible if one assumes inflation to be correct. Our results can
thus be interpreted as those arising from the imposition of a physically relevant prior on ns;
they are not specific to the CMB.

6 Combining the CMB and Galaxy Surveys: Constraints on Cosmology

from FS+BAO+Planck

In this Section, we discuss cosmological implications of the combination of information pro-
vided from BOSS galaxy clustering with CMB data from Planck. From above it is clear that
these are statistically compatible, and one may thus expect combination of the data-sets to
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Figure 8. Cosmological constraints obtained from this work, using the CMB-independent νΛCDM
model, but imposing Planck priors on the spectral slope ns. The FS+BAO constraints obtained from
analyzing the four data chunks in combination and separately are shown in the left and right plots
respectively, which have the same forms as Figs. 6 & 7, where ns was left unconstrained.

yield tighter constraints on cosmology, allowing bounds to be placed on non-minimal cosmo-
logical models. In Ref. [53], the Planck+FS and Planck+BAO combinations were considered
(also for the BOSS DR12 data-set), and it was observed that the BAO and FS added a very
similar amount of information to the CMB data-set, modulo the low clustering power observed
in BOSS. It was therefore conjectured that the combination of BAO and FS likelihoods (with
some proper covariance matrix) could lead to significant improvement in cosmological con-
straints. In this work, we have developed such a formalism, through AP parameters and
theoretical error, thus it is the goal of this section to test such a claim.

Given the Planck TT,TE,EE+lowE+lowl+lensing data and the FS+BAO likelihood
presented above, we may easily run a joint analysis of Planck+FS+BAO in the same manner
as the Planck+FS and Planck+BAO analyses of Ref. [53], to which we refer the reader for
further details on the methodology and description of the Planck likelihood. In particular,
we focus on two models of significant cosmological interest; the minimal νΛCDM with varied
neutrino masses (and unconstrained ns), and the same model with additional relativistic
degrees of freedom, parametrized by Neff (which has previously been set to Neff = 3.046).
The motivation for the search of light relics (via Neff) can be found in Ref. [105]. See also
Ref. [106] for the attempts to measure this from the BOSS BAO data, and Ref. [107] for
forecasts relevant to current and future LSS and CMB experiments.

Our final results are presented in Tab. 3 and Figs. 9 & 10, showing the one-dimensional
marginalized limits along with the triangle plot for the main cosmological parameters in the
νΛCDM and νΛCDM+Neff models. In the first case, we see only marginal improvement in
the joint Planck+BAO+FS likelihood over the Planck+FS (or Planck+BAO) data, indicating
the the addition of BAO information does not lead to stronger constraints on cosmology. This
additionally applies to the summed neutrino mass, with joint constraints giving Mtot < 0.14
eV at 95% CL (though we note that the Planck+FS+BAO constraint appears to rectify a
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νΛCDM

Parameter Planck Planck + BAO Planck + FS Planck + BAO + FS

100 ωb 2.238+0.016
−0.015 2.245+0.014

−0.014 2.247+0.015
−0.013 2.245+0.014

−0.013

ωcdm 0.1201+0.0013
−0.0014 0.11919+0.00099

−0.00099 0.11893+0.00097
−0.001 0.11916+0.00089

−0.00089

100 θs 1.04187+0.0003
−0.0003 1.04195+0.00029

−0.00029 1.04196+0.00028
−0.00028 1.04194+0.0003

−0.00028

τ 0.0543+0.0074
−0.0079 0.05556+0.007

−0.0076 0.05539+0.0074
−0.0072 0.05453+0.0069

−0.0074

ln(1010As) 3.045+0.014
−0.016 3.045+0.014

−0.015 3.044+0.014
−0.014 3.043+0.014

−0.015

ns 0.9646+0.0045
−0.0045 0.9669+0.0039

−0.0039 0.967+0.0038
−0.004 0.9664+0.0037

−0.0038

Mtot < 0.26 < 0.12 < 0.16 < 0.14

Ωm 0.3188+0.0091
−0.016 0.3078+0.0060

−0.0071 0.3079+0.0065
−0.0085 0.3093+0.0060

−0.0072

H0 67.14+1.3
−0.72 67.97+0.56

−0.49 67.95+0.66
−0.52 67.87+0.58

−0.43

σ8 0.8053+0.019
−0.0091 0.8135+0.01

−0.0073 0.8087+0.012
−0.0072 0.8098+0.012

−0.0069

νΛCDM + Neff

Parameter Planck Planck + BAO Planck + FS Planck + BAO + FS

100 ωb 2.224+0.023
−0.023 2.240+0.019

−0.019 2.233+0.019
−0.019 2.234+0.017

−0.019

ωcdm 0.1181+0.003
−0.0031 0.1182+0.0029

−0.0031 0.1166+0.0026
−0.0028 0.1171+0.0024

−0.0025

100 θs 1.04220+0.00051
−0.00054 1.04210+0.0005

−0.00052 1.04234+0.00049
−0.0005 1.04228+0.00046

−0.00046

τ 0.05341+0.0074
−0.008 0.05516+0.0072

−0.0078 0.05409+0.0073
−0.0075 0.05372+0.0066

−0.0067

ln(1010As) 3.037+0.018
−0.018 3.042+0.017

−0.017 3.035+0.016
−0.017 3.036+0.013

−0.016

ns 0.9588+0.0087
−0.0087 0.9647+0.0073

−0.0074 0.9608+0.0074
−0.0072 0.9615+0.0061

−0.007

Mtot < 0.27 < 0.12 < 0.16 < 0.14

Neff 2.90+0.19
−0.19 2.99+0.17

−0.17 2.88+0.17
−0.17 2.90+0.15

−0.16

Ωm 0.324+0.011
−0.019 0.3090+0.007

−0.0076 0.3127+0.0080
−0.0091 0.3126+0.0067

−0.0072

H0 66.1+1.9
−1.6 67.6+1.2

−1.2 66.8+1.2
−1.2 67.0+1.0

−1.0

σ8 0.798+0.022
−0.013 0.811+0.012

−0.011 0.8015+0.013
−0.011 0.8042+0.01

−0.0092

Table 3. Mean values and 68% CL minimum credible intervals for the parameters of the νΛCDM
(upper table) and νΛCDM + Neff (lower table) models as extracted from the Planck, Planck+BAO,
Planck+FS data, and Planck+FS+BAO data presented as “mean+1σ

−1σ”, as in Tab. 2. For Mtot we
quote the 95% CL upper limit in units of eV. H0 is quoted in km s−1Mpc−1 and Neff is taken as 3.046
in the first analysis.

slight underestimate in the Planck+BAO likelihood). Considering the νΛCDM+Neff model,
which has additional freedom, the improvement from adding BAO information is more size-
able, though the errorbars shrink by only ∼ 20% at maximum (for H0). Furthermore, we
do not observe any significant change to the Neff errorbar from the additional data, with the
mean remaining in the same location as in the Planck+FS measurement.

Given that they are constructed from the same density fields, the BAO and FS data-sets
share the same low-k BAO wiggles (for 0.03 . k/hMpc−1 . 0.15), but differ by additional
geometric and shape information, since the BAO likelihood contains the positions of the
reconstructed BAO wiggles for k & 0.15hMpc−1, whereas the FS data embed the broadband
shape information including the power spectrum peak, but with only suppressed wiggles.
Since our joint FS+BAO likelihood thus contains all the geometric information encoded in

– 28 –



0.1 0.2 0.3 0.4
Mtot

0.12

0.125

cd
m

0.96

0.976

n s

62

64

66

68

70

H
0

0.3

0.35

0.4

m

0.75

0.8

8

2.20 2.25
10 2

b

0.1

0.2

0.3

0.4

M
to
t

0.120 0.125
cdm

0.960 0.976
ns

62 64 66 68 70
H0

0.30 0.35 0.40
m

0.75 0.80
8

Planck
Planck+FS
Planck+BAO
Planck+BAO+FS

Figure 9. Marginalized one-dimensional posterior distribution and two-dimensional probability con-
tours (at the 68% and 95% CL) for the parameters of the νΛCDM model, including varied neutrino
masses, as obtained from analyses of the Planck likelihood separately and in combination with BAO
and FS information from BOSS. Neff is fixed to the standard model value 3.046 and we quote H0 in
km s−1Mpc−1, with Mtot given in eV.

the galaxy power spectrum, one may naïvely expect this to have a substantial improvement
over the Planck+FS or Planck+BAO constraints. In practice, this is not the case, as we
observe from Figs. 9 & 10. This is expected to occur since the sharpening of constraints from
Planck+BAO or Planck+FS is primarily a result of the breaking of geometric degeneracies
that cannot be done with one data-set alone. Both the BAO and FS likelihoods are able to
break this degeneracy equally efficiently, thus following its breaking, including further LSS
information, produces only a minor reduction in the H0 error. We thus conclude that, whilst
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Figure 10. As Fig. 9, but for the cosmological parameters of the νΛCDM+Neff model, additionally
varying the number of relativistic degrees of freedom Neff .

BAO information substantially improves cosmological constraints from LSS analyses alone,
it is of limited use in their combination with CMB surveys.

7 Summary and Conclusion

In this work, we have presented new methods for the analysis of large scale structure surveys,
in particular for the joint analysis of pre- and post-reconstruction galaxy power spectra in
redshift space. In particular, we are able to robustly combine the Alcock-Paczynski (AP)
information in the BAO peaks with the full-shape (FS) information from unreconstructed

– 30 –



spectra by means of a joint covariance, which can be robustly estimated from mocks or
simple theory.

A key outcome of this work is the development of a new technique for extracting infor-
mation from reconstructed power spectra, combining simple theory with a theoretical error
model [16, 68]. This augments the usual sample covariance with an additional covariance
which scales as the neglected one-loop power spectrum, and crucially has a non-zero coherence
length, allowing positions of the correlated BAO peaks to be separated from the unmodeled
(and poorly understood) broadband spectrum. This was shown to be highly robust and car-
ries no free parameters besides the coherence length and amplitude, which can be fixed to
physically motivated values and do not have a noticeable affect on the constraints. For this
reason, the method is far simpler than conventional techniques, which involve marginalization
over a number of polynomial shape parameters [10, 58]. We expect this to be of great use in
future BAO analyses.

Applying the combined FS+BAO likelihood to the BOSS data-set, we were able to place
strong constraints on Ωm and H0 which are fully independent of the CMB (using only BBN
priors on ωb), achieving a 1.6% constraint on the Hubble parameter in a ΛCDM model with
massive neutrinos, with a ∼ 40% improvement found from the addition of BAO data, due to
extra geometric information being provided. In the most minimial extension to the model,
we adopted a Planck prior on the spectral slope ns which is poorly constrained by BOSS; this
yielded a 1% measurement of H0 with a significant improvement found from the inclusion
of BAO data, as before. In this case, the constraints are consistent with, but tighter than,
those obtained from the Planck analysis, though we caution that both measurements assume
the same physical model and would thus be similarly affected by any esoteric new physics
occurring at early times.

In contrary to the above, the improvement found from the addition of BAO data in
a joint analysis of Planck and BOSS is found to be marginal, with only H0 not dominated
by Planck. In combination with the CMB, the main benefit of existing galaxy surveys is to
provide geometric information, and for this purpose, FS and BAO data are equally appro-
priate, though the constraints on non-minimal cosmological models were found to be slightly
tighter using their combination. Whilst it is true that the constraints on H0 are similar
from Planck+FS and Planck+BAO, this does not necessarily imply that the FS is not a
useful source of information; given that BAO reconstruction is a highly computationally in-
tensive procedure for observational data-sets (due to the necessity of generating constrained
field realizations and inverting matrices of size ∼ 109), an FS-only analysis still requires less
computation time than a BAO-only one.

To place these results in context, we consider other contemporary analyses, in partic-
ular the joint analysis of weak-lensing, BAO and BBN by the DES collaboration [61]. This
obtained similar constraints on H0 to our free-ns analysis for a similar cosmological model,
except with the fixed neutrino mass. In both analyses, ωb is fixed by the BBN prior (recalling
that we adopt the BBN prior on ωb as well), whilst Ωm in constrained by weak lensing in
Ref. [61] rather than the full-shape of the galaxy power spectra. This provides the necessary
degeneracy-breaking to obtain a sharp constraint on H0 from the BAO. The effects of com-
bining BBN and BAO information are further shown in Refs. [99] &[62], demonstrating that
the resulting constraints are in tension with strong lensing and supernovae Ia measurements,
but consistent with the CMB. Both analyses fix ωb from BBN, and measure the ratio of H0

and Ωm from the AP parameters, with the latter considering BAO measurements from both
galaxy surveys and the Lyman-α forest. Crucially, it is noted that the AP effect is particularly
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weak in ΛCDM at low redshift (since the AP parameters are very weak functions of Ωm), and
thus the BAO measurements alone are inherently poor at constraining cosmology (note also
the broad BBN+BAO+Pantheon constraints in Fig. 17 of Ref. [1]). At high redshift (traced
by Lyman-α emitters), the Ωm − H0 posterior ellipse extracted from the AP parameters
takes a different orientation such that in combination with the galaxy BAO the degeneracy
between these two parameters is broken and the constraints on them become sharp (Fig. 1
of Ref. [62]), indicating that the combination of low and high redshifts could significantly
improve parameter constraints.

Given the above discussion, it is worth reflecting on the future of BAO reconstruction.
Firstly, it was demonstrated that the AP parameter constraints were not improved by better
modeling of the reconstructed parameter shape (leading to a more accurate estimate of the
BAO damping parameter). Thus, given that the principal goal of reconstruction is to obtain
extract more information from the BAO peak, which is fully encoded in the AP parameters,
we should not be attempting to produce more accurate models of the reconstructed spectrum,
since all relevant broadband information is contained in the pre-reconstruction spectra. If our
goal is to obtain strong constraints on cosmology from galaxy surveys alone, BAO reconstruc-
tion remains an important item in the analyst’s toolkit, shown by the 40% improvements in
parameter constraints in this work, though we expect this to decrease as the survey volume
grows larger. However, if our final aim is the combination with CMB data, it provides little
additional information for the type of analyses presented in this paper, though we note that
sharpening the power spectrum wiggles remains useful when searching for primordial features
which have little signature in the broadband.

Whilst the results in this paper represents the most complete analysis of BOSS DR12
data to date, there are a variety of ways in which they could be improved. In particular, the
analysis could be extended to higher wavenumber, allowing slightly more BAO peaks to be
measured with relative ease (assuming that an appropriate theoretical error kernel is chosen),
though this requires more accurate modeling of the fingers-of-God effect for the full-shape
model. Furthermore, the treatment of the covariance matrix is not exact, especially since it is
based on mocks which are known to differ slightly from observational data. A more thorough
treatment would involve recomputing the covariance matrix for the best-fit cosmology, which,
whilst time-consuming, is possible via the techniques of [95, 96], though we do not expect
this to have a significant impact on parameter constraints. The above notwithstanding, we
see that robust combination of FS and BAO data allows for strong constraints to be placed
on cosmology from galaxy surveys alone, though the utility of BAO is marginal when surveys
are combined with CMB data.
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A Tests on Patchy mocks

Here, we analyze the joint BAO+FS data from the Patchy mocks to ensure that our meth-
ods provide unbiased cosmological parameter constraints. Whilst our BAO analysis remains
identical, in the FS part (Sec. 2.3), our data-vector becomes the power spectrum multipoles
of the unreconstructed Patchy mocks plus the best-fit AP parameters extracted from the
reconstructed spectra of the same mocks. For this test, we use only a single data-chunk,
low-z NGC, and use the mean power spectrum and AP parameters from 2048 and 999 mocks
respectively, to reduce statistical error. It is pertinent to note that this procedure does not
guarantee that the mean of the inferred parameters would exactly match the fiducial values
because the Patchy mocks were generated using an approximate gravity solver and some HOD
model, which were designed to reproduce the real data only within 1σ limits.

When fitting the joint FS+BAO datavector, we fix ωb and ns to the fiducial values used
in the simulations, for a more strict test of our analysis. This is justified since these are not
the principal parameters estimated by our FS+BAO likelihood, and allowing them to vary
freely leads to larger error ellipses in which it is easier to hide potential biases in the crucial
parameters σ8, Ωm and H0. Furthermore, the mocks were created without massive neutrinos,
thus we additionally fix

∑
mν = 0. The remainder of our theory model and parametrization

is identical to the one used in our main analysis.

The results of our analysis are shown in Tab. 4 and in the corner plot of Fig. 11. In full
agreement with both the forecast of Ref. [53], we observe that the inclusion of information
from reconstructed BAO reduces the error on H0 by ∼ 40%, while the constraints on σ8 and
ωcdm remain, essentially, intact. Importantly, we report no bias from the inclusion of BAO
data by our method, and observe that the posterior contours are 1σ consistent with the input
values in all cases (recalling that we do not expect perfect agreement due to the approximate
nature of the mock catalogs). The sharper constraints on H0 also source a somewhat improved
measurement of Ωm, due to the combination of the shape and geometric information. From
this test, it is clear that our FS+BAO likelihood is suitable to apply to observational data.

B Cosmological constraints from individual BOSS data chunks

In Tab. 5 we display the constraints on cosmology obtained from analysis of the four indi-
vidual BOSS data chunks in the FS and FS+BAO analyses, both allowing ns to be free and
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Figure 11. Parameter constraints obtained from analyzing the mean of the Patchy mocks corre-
sponding to the low-z NGC BOSS galaxy sample, with the FS+BAO or FS-only likelihoods. Dashed
lines represent the true values used in the simulations, which are 1σ consistent in all cases. This uses
a slightly simplified cosmological model compared to the main analysis, as described in the text.

base ΛCDM

Parameter FS FS+BAO

Patchy mocks NGC low-z (zeff = 0.38)

ωcdm 0.1099+0.0086
−0.0098 0.1103+0.0088

−0.0099

H0 67.28+2
−2.5 67.18+1.5

−1.6

A1/2 1.019+0.093
−0.11 1.019+0.093

−0.1

Ωm 0.2929+0.019
−0.019 0.2929+0.016

−0.016

σ8 0.7990+0.073
−0.083 0.7987+0.071

−0.07

Table 4. Mean values and 68% CL minimum credible intervals for the parameters of the base ΛCDM
model as extracted from the BOSS FS and BOSS FS+BAO low-z NGC data from the mean of the low-
z Patchy mocks, presented in the same format as before. We show only the cosmological parameters
whose posterior contours lie well within the priors used in the main analysis, i.e. we do not include
parameters whose distributions simply reflect the priors.

constraining it to lie within the Planck prior. Note that the BAO analysis is done separately
for each chunk in all cases to allow a joint covariance to be constructed.

As a comparison, Fig. 12 shows the corner plots for the FS-only and FS+BAO analyses of
the low-z and high-z NGC data in the νΛCDM model with fixed ns, which may be compared
to the previous results on the Patchy mocks (Fig. 11). Somewhat curiously, for the low-z
NGC chunk, the constraints do not improve at all with the addition of BAO information
from reconstructed spectra. In contrast, both the analysis of the Patchy mocks (Appendix
A) and the forecast of Ref. [53] found that a BAO reconstruction with 50% efficacy would be
expected to improve the constrain on H0 by ∼ 40%. This anomaly is not observed in the
high-z NGC chunk however (nor the other chunks), which yields the expected improvement,
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Figure 12. Parameter constraints obtained from analysis of the low-z (left panel) and high-z (right
panel) NGC BOSS data using the νΛCDM model assuming a fixed spectral tilt ns. As discussed
in the text, we observe significant improvements in H0 from the inclusion of BAO data only for the
high-z sample.

as seen in the right panel of Fig. 12.
The absence of improvement in the low-z NGC case can be explained by the known

anomaly in this data chunk, as previously reported by the BOSS collaboration [10]. Seemingly,
the low-z NGC sample exhibits a realization of the dark matter displacement field whose
amplitude is significantly reduced. This results in BAO wiggles with much less suppression
than expected from theory and observed in the Patchy mocks. Because of this reason, the
constraints on H0 extracted from the pre-reconstructed spectra (i.e. FS-only analyses) are
observed to be ∼ 40% better than expected from the analysis of Patchy mocks, cf. Tab. 4
and the low-z NGC section of Tab. 5. Whilst this anomaly reduces the improvements from
including BAO data it does not therefore alter the overall constraints in H0.
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