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ABSTRACT

The next generation seismic migration and inversion tech-
nology considers multiple scattering as vital information, al-
lowing the industry to derive significantly better reservoir
models — with more detail and less uncertainty — while
requiring a minimum of user intervention. Three new insights
have been uncovered with respect to this fundamental transi-
tion. Unblended or blended multiple scattering can be included
in the seismic migration process, and it has been proposed to
formulate the imaging principle as a minimization problem.
The resulting process yields angle-dependent reflectivity and
is referred to as recursive full wavefield migration (WFM).
The full waveform inversion process for velocity estimation
can be extended to a recursive, optionally blended, anisotropic
multiple-scattering algorithm. The resulting process yields an-
gle-dependent velocity and is referred to as recursive full wave-
form inversion (WFI). The mathematical equations of WFM
and WFI have an identical structure, but the physical meaning
behind the expressions is fundamentally different. In WFM the
reflection process is central, and the aim is to estimate reflec-

tion operators of the subsurface, using the up- and downgoing
incident wavefields (including the codas) in each gridpoint. In
WFI, however, the propagation process is central and the aim is
to estimate velocity operators of the subsurface, using the total
incident wavefield (sum of up- and downgoing) in each grid-
point. Angle-dependent reflectivity in WFM corresponds with
angle-dependent velocity (anisotropy) in WFI. The algorithms
of WFM and WFI could be joined into one automated joint
migration-inversion process. In the resulting hybrid algorithm,
being referred to as recursive joint migration inversion
(JMI), the elaborate volume integral solution was replaced
by an efficient alternative: WFM and WFI are alternately ap-
plied at each depth level, where WFM extrapolates the incident
wavefields and WFI updates the velocities without any user
interaction. The output of the JMI process offers an integrated
picture of the subsurface in terms of angle-dependent reflectiv-
ity as well as anisotropic velocity. This two-fold output, reflec-
tivity image and velocity model, offers new opportunities to
extract accurate rock and pore properties at a fine reservoir
scale.

INTRODUCTION

Until today, migration and inversion have been two different
schools in analyzing seismic data. Both have a rich history in re-
vealing subsurface information from seismic measurements, but
they have different views on the problem and they use distinctly
different theoretical concepts (Berkhout, 1984; Stolt and Weglein,
1985; Symes, 2008).
In seismic migration the reflectivity of geological boundaries

is estimated, resulting in a structural image of the subsurface
(Claerbout, 1976). This is accomplished by extrapolating source
and reflected wavefields into the subsurface— using a prespecified

velocity model — followed by computing, at each subsurface grid-
point, the ratio between reflected and incident wavefields. Option-
ally, in a next step the estimated reflectivity is transformed to elastic
properties (velocity and density) of the layers between the imaged
boundaries.
In seismic inversion, the elastic properties of geological layers are

directly estimated, resulting in a property image of the subsurface.
This is accomplished by minimizing the difference between the si-
mulated and the recorded seismic data. Hence, forward modeling of
the seismic response is central in inversion and the residue drives
the iterative estimation process. Optionally, multiple scattering is
included in the simulated and recorded data (Tarantola, 1987).
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Note that, in the standard practice of seismic migration, forward
modeling of reflections does not take place and residues are not
computed (the loop between structural image and recorded mea-
surements is not closed). Note also that it is standard practice in
migration to address primary scattering only.
In this paper, the theory of migration is extended to possibly-

blended multiple-scattering wavefields, being referred to as recur-
sive full wavefield migration (WFM). Similarly, the theory of full
waveform inversion for velocity estimation is extended to recursive,
optionally-blended, anisotropic, multiple scattering, being referred
to as recursive full waveform inversion (WFI). New insight is given
in the similarities and differences between the concepts of migration
and inversion. In addition, a glimpse in the future is given by show-
ing how the two processes can be integrated. The result is an auton-
omous and efficient migration-inversion process, being referred to
as recursive joint migration inversion (JMI), that uses surface-
related and internal multiple scattering.

EXTENDING THE MIGRATION PROCESS
TO MULTIPLE SCATTERING

Standard seismic migration packages require primary reflection
data as input, i.e., wavefields with a single bounce in the subsurface
and thus being linear in reflectivity. This means that multiple scat-
tering is considered as noise and need be removed prior to migration
(Figure 1). WFM is proposed as the next generation migration tech-
nology. In WFM surface-related and internal multiples are included
in the migration process, meaning that the wavefields in migration
become nonlinear in reflectivity. It is important to realize that WFM
differs fundamentally from solutions where these multiples are se-
parately available by using a multiple prediction algorithm first
(Berkhout and Verschuur, 1994; Whitmore et al. 2010) or where
these multiples are “hardwired” in the process by specifying reflect-
ing transitions in the velocity model (as can be done in reverse time
migration). In WFM the input consists of a true physical dataset, the
total data, and multiple handling is an integral part of the migration
process.
The WFM process recursively moves down in the subsurface by

downward extrapolating the incident and reflected wavefields —

including multiple scattering — to each depth level zm
(m ¼ 1; 2; : : :M). The double reflectivity (representing operators
for upward and downward reflection) at depth level zm is obtained
by minimizing the residue between the reflected wavefields and the
weighted incident wavefields at zm. For the next recursion (from zm
to zmþ1) the upward scattering generated by depth level zm
(primaryþmultiple tail) is subtracted from the reflection response,
and the downward scattering generated by depth level zm is added to
the incident wavefields. Hence, while moving down in the subsur-
face, the upgoing reflected wavefield is recursively decreased and
the downgoing reflected wavefield is recursively increased with
higher-order reflectivity terms. When arriving at the maximum
depth level (z ¼ zM), the reflection response contains the minimum
number of terms (from z ≥ zM) and the illuminating wavefield con-
tains the maximum number of terms: the direct sourcewavefieldþ
the downward scattering of the entire overburden (z < zM). In terms
of mathematical equations, using the vector-matrix formulation
(Berkhout, 1982), the forward WFM model for the upgoing wave-
fields is given by (m ¼ 0; 1; : : :M − 1):

P⃗−
j ðzm; z0Þ ¼

XM

n¼mþ1

W−ðzm; znÞδP⃗jðzn; z0Þ (1a)

and for the downgoing wavefields (m ¼ 1; 2; : : :M):

P⃗þ
j ðzm; z0Þ ¼ Wþðzm; z0ÞS⃗þj ðz0Þ

þ
Xm−1

n¼0

Wþðzm; znÞδP⃗jðzn; z0Þ; (1b)

where δP⃗jðzn; z0Þ equals the two-way scattered wavefield generated
by the gridpoints at depth level zn, being represented by a linear
combination of the up- and downgoing incident wavefields (double
scattering):

δP⃗jðzn; z0Þ ¼ R∪ðzn; znÞP⃗þ
j ðzn; z0Þ

þ R∩ðzn; znÞP⃗−
j ðzn; z0Þ

¼
X

k

½R⃗∪
k ðzn; znÞPþ

kjðzn; z0Þ

þ R⃗∩
k ðzn; znÞP−

kjðzn; z0Þ�: (1c)

In equation 1c, scalars Pþ
kj and P−

kj are respec-
tively the downgoing and upgoing incident wa-
vefield at gridpoint k, vectors R⃗∪

k and R⃗∩
k are the

kth column of reflectivity matrices R∪ and R∩

respectively (representing angle-dependent re-
flection at gridpoint k) and local vector
(R⃗∪

kP
þ
kj þ R⃗∩

kP−
kj) being the scattered wavefield

generated by gridpoint k. In equations 1a and
1b, matrices Wþ and W− define the propagation
operators between two depth levels, z0 indicates
that the primary sources (S⃗þj ) — the cause
of all wavefields — are situated at the surface
and j labels the source array. Hence, scalar
Pþ
kjðzn; z0Þ represents the downgoing wavefield

at gridpoint k of depth level zn that was generated
by source j at depth level z0. Note that vector S⃗

þ
j
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Figure 1. The feedback model, showing the up- and downgoing wavefields (P⃗−
j and

Q⃗þ
j ) at the surface (z0). In current migration practice, the surface-related multiples have

been removed from the input by preprocessing (Q⃗þ
j ¼ S⃗þj ). In addition, internal multi-

ples are neglected (P⃗þ
j ¼ WþS⃗þj ), making X0 linear in reflectivity.
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may represent a blended source array (Beasley et al., 1998), gen-
erating blended primaries and multiples.
Equation 1a, 1b, 1c shows how each gridpoint is illuminated from

two sides: from above by Pþ
kj and from below by P−

kj, meaning that
the total incident wavefield at gridpoint k equals Pkj ¼ Pþ

kj þ P−
kj.

Equation 1a, 1b, and 1c also shows that the incident wavefields at
gridpoint k (Pþ

kj; P
−
kj) are weighted by the reflectivities (R⃗∪

k ; R⃗
∩
k ) to

generate the scattered wavefield ðR⃗∪
kP

þ
kj þ R⃗∩

kP−
kjÞ. Note that this

local vector defines a two-way wavefield (upþ down) that quanti-
fies double scattering, representing reflection and transmission ef-
fects at that gridpoint (see Figure 2). Note also that reflection and
transmission are elastic processes.
Equation 1a shows that the data of a seismic shot record repre-

sents an interference pattern of upward travelling gridpoint
responses (“seismic GPRs”) at zm, each GPR consisting of two
components: W−R⃗∪

kP
þ
kj and W−R⃗∩

kP−
kj, where Pþ

kj and P−
kj are

the incident wavefields from above and below respectively. We will
see that in WFM both wavefield components are used to estimate
the reflection operators at gridpoint k.
In equation 1b the first term WþS⃗þj represents illumination at zm

by the direct wavefield from the primary source distribution at z0. In
the second term, the expressionsWþR⃗∩

kP−
kj andW

þR⃗∪
kP

þ
kj represent

the extra illumination by the downward scattering from each sec-
ondary source k at depth level zn, where n ¼ 0; 1; 2; : : : m − 1.
Again, we will see that in WFM all three wavefield components
are taken into account to obtain the full illuminating wavefield
at gridpoint k.
In summary, equation 1a, 1b, and 1c shows that wavefield pro-

pagation in an inhomogeneous medium can be described by a linear
superposition (weighted sum) of direct and scattered wavefields that
travel in an inhomogeneous smooth (optionally scatter-free) med-
ium, the propagation operators of this medium being given by Wþ

(down) and W− (up). The direct wavefield is generated by primary
sources at the acquisition surface (WþS⃗þj ) and the scattered wave-
fields are generated by secondary sources in the subsurface at the
inhomogeneous gridpoints given by

P
WþδP⃗j (down) andP

W−δP⃗j (up). Note that P−
kj and Pþ

kj, and thus δP⃗j, are nonlinear
in reflectivity.
Forward modeling equation 1a, 1b, and 1c can be applied in an

iterative way, alternately updating Pþ
kj and P

−
kj, starting with the lin-

ear solution P⃗þ
j ¼ WþS⃗þj and P⃗−

j ¼ ½W−R∪Wþ�S⃗þj , until the high-
est required order of multiple scattering is obtained. In this paper,
we are not interested in modeling but we focus on migration and
inversion, meaning that measurements are given and the subsurface
is unknown. In the standard practice of current migration the multi-
ple scattering process is neglected, meaning that in the wavefield
model the second term in equation 1b and 1c is neglected (no multi-
ple reflection and no transmission effects) and gridpoint reflectivity
vector R⃗∪

k is estimated only (Figure 1). In WFM, however, both
terms in equation 1b and c are used and both gridpoint reflectivity
vectors R⃗∪

k and R⃗∩
k are estimated. Note that if we neglect angle de-

pendence, then R∪ and R∩ become diagonal matrices and the re-
flectivity vectors simplify to the scaled unity vectors R⃗∪

kk and
R⃗∩
kk, containing angle-averaged reflection coefficients R∪

kk and
R∩
kk only.
In WFM, the unknown reflectivities (R⃗∪

k and R⃗∩
k ) are found

by the following constrained minimization process at the
surface (z0):

P⃗−
j ðz0; z0Þ −

XM

m¼1

W−ðz0; zmÞδP⃗jðzm; z0Þ

¼ minimum for all j; (2a)

where

δP⃗jðzm; z0Þ ¼ R∪ðzm; zmÞP⃗þ
j ðzm; z0Þ

þ R∩ðzm; zmÞP⃗−
j ðzm; z0Þ

¼
X

k

½R⃗∪
k ðzm; zmÞPþ

kjðzm; z0Þ

þ R⃗∩
k ðzm; zmÞP−

kjðzm; z0Þ�; (2b)

the constraint imposing that the reflectivities are not allowed to con-
tain traveltimes.
To avoid dealing with a complex iterative problem, solving a vo-

lume integral equation of the second kind, we follow today’s mi-
gration technology and make recursive downward extrapolation
part of the solution:

Q⃗−
j ðzm; z0Þ ¼ W�ðzm; zm−1ÞP⃗−

j ðzm−1; z0Þ; (3a)

P⃗þ
j ðzm; z0Þ ¼ Wþðzm; zm−1ÞQ⃗þ

j ðzm−1; z0Þ; (3b)

where W�ðzm; zm−1Þ is the conjugate complex version of propaga-
tion operatorWþðzm; zm−1Þ. Note the difference between the wave-
fields P⃗ and Q⃗: P⃗ refers to the incident wavefield at depth level zm
and Q⃗ includes the response of depth level zm. Next, constrained
minimization is applied at depth level zm for all shot records (all j):

Q−ðzm; z0Þ − R∪ðzm; zmÞPþðzm; z0Þ − R∩ðzm; zmÞP−ðzm; z0Þ
¼ minimum (4a)

or, applying the linear Radon transform to the receiver coordinates
at zm (Berkhout, 1997):

Q̃−ðzm; z0Þ − R̃∪ðzm; zmÞPþðzm; z0Þ − R̃∩ðzm; zmÞP−ðzm; z0Þ
¼ minimum; (4b)

each column of R̃∪ and R̃∩ representing the angle-dependent reflec-
tion coefficients at gridpoint k. Equation 4a and 4b show that the

Rk Pkj + Rk Pkj
+

Gridpoint k

Pkj
+

Pkj

R
k

R
k

R
k

Rk Pkj
+ + Rk Pkj

P
j

= R[ ]k
P

kj
+

k

+ R
k

P
kjR

k

Figure 2. The scattered wavefield at gridpoint k equals a linear
combination of the incident wavefields (P⃗−

j ; P⃗
þ
j ), quantifying re-

flection and transmission. Note that any scattered wavefield is
two-way and spatially continuous.
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complex 3D problem in equation 2a has been reduced to M rela-
tively simple 2D problems!
Equation 4a and 4b means that the scattered wavefields generated

at zm, denoted by δP⃗j, are removed from the total upgoing wavefield
(Q⃗−

j ) at zm in a data-adaptive manner in all shot records (all j). The
residue equals the upgoing wavefield without the scattered wave-
field at zm, leading to incident upgoing wavefield P⃗−

j :

P⃗−
j ðzm; z0Þ ¼ Q⃗−

j ðzm; z0Þ − δP⃗jðzm; z0Þ
for m ¼ 1; 2; :::M:

(5a)

Next, the scattered wavefield (δP⃗j) is added to the downgoing wa-
vefield (P⃗þ

j ) at zm, leading to extended illumination (typical for
WFM):

Q⃗þ
j ðzm; z0Þ ¼ P⃗þ

j ðzm; z0Þ þ δP⃗jðzm; z0Þ
for m ¼ 1; 2; : : :M:

(5b)

Figure 3 shows the computational diagram.
Note that it is standard practice in migration to ignore R∩, mean-

ing that P⃗þ
j ¼ WþS⃗þj and δP⃗j ¼ R∪P⃗þ

j only (multiple scattering is
considered to be shot generated noise). Note also that in the struc-
tural version of WFM minimization 4b is carried out for the scalars
R̃∪
kk and R̃∩

kk only (normal incidence), and physics tells us
that we may write R̃∩

kk ¼ −R̃∪
kk. This fundamental condition is in-

cluded as an extra constraint in minimization process 4b:
R̃∪
kk þ R̃∩

kk ¼ minimum. Note that in the acoustic situation (no
mode conversion), the condition may be extended to R⃗∩

k ¼ −R⃗∪
k ,

meaning that in the acoustic version of WFM:

δP⃗j ¼ R∪ðP⃗þ
j − P⃗−

j Þ ¼ R∩ðP⃗−
j − P⃗þ

j Þ: (6)

If operators Wþ and W− address the propagation of P-waves
only, R∪ and R∪ represent P-P reflection (of course in a full elastic
sense). This means that the WFM residue contains converted waves
that may be addressed in a second minimization step, etc.
While moving down in the subsurface (m ¼ 1; 2; : : :M), it is

well known that primary reflections become weaker, but it is not
always realized that the energy of the coda will increase. In today’s
migration algorithms, codas are not addressed and this may be the
reason that deep data — particularly below highly reflective over-
burdens — cannot be properly imaged, even with perfect veloci-
ties. In WFM, however, codas generated by reflectors in the
overburden (z ≤ zm) are included in the wavefield model, creating
two major advantages. First, codas are subtracted from the response
(Q⃗−

j ) of the deeper reflectors, decreasing the interference effects in
the deep data (equation 5a). Second, codas are not only removed
from Q⃗−

j ; they are also included in P⃗þ
j to enhance the illuminating

wavefield, allowing better estimates of the reflectivity (equation 5b),
particularly for deep horizons in shadow zones.

EXTENDING FULL WAVEFORM INVERSION
TO THE FULL SEISMIC BANDWIDTH

In the last few years we have seen the development of full wave-
form inversion (FWI) algorithms to estimate low wave-number
velocity models for migration purposes. In these algorithms, the
low-frequency seismic response is numerically simulated by acous-
tic finite difference modeling (typically up to 15–20 Hz) and
compared with the low-frequency version of the recorded measure-
ments. By updating the velocity model, using some gradient-driven
optimization algorithm, the simulated data is updated until it
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Figure 3. In the recursive process of WFM, reflectivity matrices R∪ and R∩ are computed by adaptively subtracting scattered wavefield δP⃗j
from response Q⃗−

j for each depth level (constrained minimization), yielding residue P⃗−
j . In addition, the illuminating wavefield is updated by

adding δP⃗j to P⃗þ
j , yielding Q⃗þ

j . In practice, minimization is simultaneously carried out for several depth levels around zm.
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matches the recorded measurements (see overview Virieux and
Operto, 2009). As expected, large offsets play an important role
in the updating process. We observe that these iterative, low-
frequency FWI algorithms increasingly compliment the traditional
migration-velocity analysis packages.
Today, we see a new development at the horizon: FWI algorithms

are being extended to the high end of the seismic bandwidth (say
100 Hz) by abandoning the time consuming finite difference simu-
lation of wavefields. Instead, an elastic background model is intro-
duced, and the difference between the known elastic background
properties and the unknown real medium properties, called the spa-
tial contrast function, is inverted for. There is already a wealth of
publications on this approach in the seismic and electromagnetic
literature. See for instance Zhdanov, 2002; Abubakar et al.,
2009; Gisolf and Verschuur, 2010. At each gridpoint, the contrast
acts as a point scatterer in the background medium, generally re-
ferred to as a “contrast source” (see above references). Note that
if we invert for P-wave velocity only and we ignore anisotropy, then
this contrast source represents a monopole. The total wavefield in
the true medium equals the sum of the wavefields of the primary
sources in the background (background wavefield) and the wave-
field of all point scatterers in the background (differential wave-
field). Hence, by choosing a simple background the subsurface
detail is not hardwired in the solution and the wavefield simulation
process is relatively simple and very efficient. For instance, in a
smooth background medium, the background wavefield equals
the direct source wavefield only. In FWI, the contrasts and the total
wavefield are alternately updated until the total simulated wavefield
matches the recorded wavefield at the detector positions. In terms of
mathematical equations, using again the vector-matrix formulation,
the forward model of FWI is given by (m ¼ 0; 1; 2; : : :M):

P⃗jðzm; z0Þ ¼ G0ðzm; z0ÞS⃗jðz0Þ þ
XM

n¼1

G0ðzm; znÞδP⃗jðzn; z0Þ;

(7a)

where

δP⃗jðzn; z0Þ ¼
X

k

χ⃗kkðzn; znÞPkjðzn; z0Þ (7b)

represents the contrast sources at depth level zn.
In equation 7a, vector S⃗jðz0Þ represents a distribution of primary

sources in terms of monopoles at the reflection-free acquisition sur-
face z0, vector P⃗j represents the total incident wavefield at depth
level zm, (P⃗

þ
j þ P⃗−

j ), matrix G0 represents the simple background
Green’s function between two depth levels, and vector δP⃗jðzn; z0Þ
is the scattered wavefield at depth level zn. In equation 7b, vector
χ⃗kk equals a scaled unity vector with element χkk, and scalar χkk
represents the contrast property at gridpoint k. If inversion occurs
for P-wave velocities only (the focus of this paper), we may write:
χkk ¼ ðω2∕c2k − ω2∕c20;kÞ, where c0;k equals the background velo-
city in gridpoint k. It is important to realize that if we neglect
the second term in equation 7a, then P⃗j ¼ P⃗þ

j equals the downgoing
source wavefield only and in equation 7b, δP⃗j ¼ δP⃗−

j equals the
upgoing scattered wavefield that is linear in χkk (Born approxima-
tion). For details the reader is referred to Zhdanov (2002).
In the following, basic equation 7a and 7b is extended to the si-

tuation with a reflective surface, meaning that surface-related
multiples are included:

P⃗jðzm; z0Þ ¼ W0ðzm; z0ÞQ⃗þ
j ðz0Þ

þ
XM

n¼1

G0ðzm; znÞ
X

k

χ⃗kkðzn; znÞPkjðzn; z0Þ; (8a)

where (see again Figure 1)

Q⃗þ
j ðz0; z0Þ ¼ S⃗ðz0Þ þ R∩ðz0; z0ÞP⃗−

j ðz0; z0Þ: (8b)

In equation 8a, matrixW0 represents the background propagation
operator between two depth levels (W0 ¼ ∂z0G0), vectorW0Q⃗

þ
j re-

presents the background wavefield (generated by the primary and
secondary sources at z0) and the sum of seismic GPRs from all
depth levels,

P
nG0δP⃗j, equals the differential wavefield (δP⃗j

(being generated by the contrast sources χ⃗kkPkj at depth level
zn). In equation 8b vector S⃗þj represents a distribution of primary
sources in terms of dipoles and R∩P⃗−

j equals the distribution of sec-
ondary sources, again in terms of dipoles, at the reflective acquisi-
tion surface z0. Equation 8b shows that for a reflective surface the
subsurface is illuminated by two wavefields (double illumination),
where the primary sources may be arranged in a blended array.
In the FWI process for velocity estimation, measurements are gi-

ven and the velocity contrast function is estimated in an iterative
manner. This is done by (a) applying an inversion step at acquisition
surface z0:

P⃗jðz0; z0Þ −
XM

m¼1

G0ðz0; zmÞδP⃗jðzm; z0Þ ¼ minimum for all j

(9a)

with

δP⃗jðzm; z0Þ ¼
X

k

χ⃗kkðzm; zmÞPkjðzm; z0Þ; (9b)

yielding an update of scalar χkk at each subsurface gridpoint, and (b)
by applying an iterative modeling step (double sum of the seismic
GPRs):

ΔP⃗jðzm; z0Þ ¼
XM

n¼1

G0ðzm; znÞδP⃗jðzn; z0Þ

¼
XM

n¼1

G0ðzm; znÞ
X

k

χ⃗kkðzn; znÞPkjðzn; z0Þ

form ¼ 0; 1; : : : : : : : : :M − 1; (10a)

yielding an update of the total incident wavefield:

P⃗jðzm; z0Þ ¼ W0ðzm; z0ÞQ⃗þ
j ðz0Þ þ ΔP⃗jðzm; z0Þ (10b)

at each depth level. Note that the iterative process starts by taking
P⃗j ¼ W0Q⃗

þ
j in inversion step 9a, meaning that we start with a zero

differential wavefield (ΔP⃗j ¼ 0). This Born inversion step leads to
the first estimate of scalar χkk in each gridpoint, followed by updat-
ing P⃗j, etc. (Figure 4). It is important to realize that this inversion
process is very elaborate as it solves a volume integral equation of
the second kind (Zhdanov, 2002; Abubakar et al., 2009). Later in
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this paper, I will propose a recursive alternative, referred to as WFI,
that is based on solving the integral equation per depth layer.

COMPARING FWM WITH FWI

In WFM, seismic reflection measurements are described by the
combined responses of secondary sources (GPRs). These sources
are situated in the gridpoints of a user-specified medium, the velo-
city distribution of this medium defining an accurate estimate of the
actual propagation operators Wþ and W−. Each gridpoint source
has a signature that is given by the incident wavefields (Pþ

kj,
P−
kj) and its directional strength is determined by the angle-depen-

dent reflectivities at that gridpoint (R⃗∪
k , R⃗

∩
k ), yielding the scattered

wavefield generated by that gridpoint: R⃗∪
kP

þ
kj þ R⃗∩

kP−
kj. Incident wa-

vefields (Pþ
kj, P

−
kj) are computed by recursive downward extrapo-

lation.
In FWI seismic reflection measurements are also described by

responses of secondary sources (GPRs). But unlike migration,
the point sources are now situated in the gridpoints of a background
medium with a prespecified — preferably smooth — velocity
distribution. In addition, the signature of each gridpoint source
(or contrast source) is given by the total incident wavefield
(Pþ

kj þ P−
kj) and its omnidirectional strength is determined by the

difference between the true and the background velocity distribu-
tion (χ⃗kk) at that gridpoint, yielding the scattered wavefield gener-
ated by that gridpoint: χ⃗kkðPþ

kj þ P−
kjÞ. In FWI, the true subsurface

(in terms of velocity) is found by estimating the total incident wave-
field at each gridpoint (Pkj) with the aid of forward modeling, fol-
lowed by determining the contrasts (χ⃗k) by minimizing the
difference between the combined GPRs — representing the mod-
eled measurements — and the true measurements at the acquisition
surface. Because the total incident wavefield at each gridpoint is
also determined by the GPRs of the other gridpoints — represent-
ing internal multiple scattering — the total procedure, modeling
and minimization, must be carried out in an iterative way (Figure 4).
In summary, WFM and FWI use multiple scattering, and they

both close the loop between output and input. However, in
WFM the subsurface is described in terms of gridpoint reflectivities,
and in FWI the subsurface is described in terms of gridpoint con-
trasts. Moreover, in WFM wavefields (up, down) are computed by
recursive wavefield extrapolation, and in FWI wavefields
(upþ down) are computed by a nonrecursive, iterative wavefield
modeling process. Last but not least, in WFM the gridpoint sources
define physical scatterers at all locations where reflecting bound-
aries occur. I refer to these physical scatterers as “A-
scatterers”; they address the difference in amplitude between the
incident and reflected wavefields. Errors in the traveltimes (caused

by erroneous velocities) are not corrected for and, therefore, they
cause errors in the reflectivity. In FWI, the gridpoint sources define
virtual scatterers at all locations where background and true med-
ium are different. I refer to these mathematical scatterers as “B-
scatterers”; they are able to address the difference in traveltime
between the wavefields in the background and the true medium.
Hence, WFM and FWI are complementary processes that use
the amplitude and phase information in the seismic data respec-
tively.
To illustrate the above, let us consider a constant velocity medium

with one reflector due to a density change (note that there is no
physical multiple scattering in this example). In the forward model
of WFM, this medium is represented by propagation operators
(Wþ, W−) and scatterers are only positioned at the gridpoints of
the reflector to represent a physical scattering process at those grid-
points. In the forward model of FWI, the situation is very different:
the medium is represented by background operators (W0,G0) and
scatterers are positioned at every gridpoint of the medium to repre-
sent a complex virtual scattering process everywhere in the homo-
geneous layer.

A GLIMPSE IN THE FUTURE
OF SEISMIC IMAGING

A major problem in migration is the specification of a velocity
distribution that yields an accurate representation of propagation
operators Wþ and W− used in the wavefield extrapolation pro-
cesses. If we consider the migration velocity distribution as a back-
ground velocity model, thenWFM and the recursive version of FWI
can be combined into one automated joint migration-inversion pro-
cess. This combination, recursive, joint migration-inversion (JMI),
yields an accurate reflectivity image as well as an accurate velocity
model without any user interaction. With reference to equations 2a
and 9a, we may write for the two combined minimization processes
of JMI at depth level zm (single level formulation):

Q−ðzm; z0Þ − ½Uðzm; zmÞPþðzm; z0Þ þ Vðzm; zmÞP−ðzm; z0Þ�
¼ minimum; (11a)

where the input wavefields for the minimization are obtained by
recursive downward extrapolation (see equation 3a and 3b) and
where matrices U and V are the unknowns at zm. In the WFM
process, the matrices U and V represent the reflectivity
vectors:

Uðzm; zmÞ ¼ ðR⃗∪
1 ; R⃗

∪
1 ; : : : : : : R⃗

∪
k : : : : : : Þ and

Vðzm; zmÞ ¼ ðR⃗∩
1 ; R⃗

∩
1 ; : : : : : : R⃗

∩
k : : : : : : Þ;

(11b)

and in the WFI process for velocity estimation,
the matrices U and V are equal, representing
the contrast vectors:

Uðzm; zmÞ ¼ Vðzm; zmÞ
¼ ðχ⃗1; χ⃗2; : : : : : : : : : χ⃗k; : : : : : : : : : Þ:

(11c)

Note that equation 11a states that multiple
scattering is linear in the incident wavefields,
meaning that the physical and virtual multiple

Figure 4. In the broadband implementation of FWI, a complex volume integral equation
is iteratively solved. Total wavefield Pkj and contrast scalar χkk are alternately updated
until the simulated wavefield matches the recorded wavefield at the detector positions.
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scattering wavefields obey the wave equation for any inhomoge-
neous subsurface (no prior assumptions). In equation 11c, therefore,
single-element contrast vector χ⃗kk (containing scalar χkk only) can
be generalized by the multi-element contrast vector χ⃗k. Similar to
the well-known representation of reflectivity (Berkhout, 1982) —
where single-element vector R⃗kk (containing scalar Rkk only) repre-
sents angle-averaged reflection and multi-element vector R⃗k repre-
sents angle-dependent reflection at gridpoint k — single-element
vector χ⃗kk represents angle-averaged velocity and multi-element
vector χ⃗k represents the angle-dependent velocity at gridpoint k.
In the JMI process full wavefield extrapolation is applied from

zm−1 to zm first, using the wavefields Q⃗þ
j and P⃗−

j at depth level zm−1
according to extrapolation equation 3a and 3b. This extrapolation
step yields an estimate of the total wavefield, being denoted
by < P⃗j >, at intermediate depth levels zn (zm−1 < zn ≤ zm):

< P⃗jðzn; z0Þ > ¼ W0ðzn; zm−1ÞQ⃗þ
j ðzm−1; z0Þ

þW�
0ðzn; zm−1ÞP⃗−

j ðzm−1; z0Þ:

Next, a full waveform inversion step is applied: the estimated
wavefields at zn are used to compute the exact total wavefields
P⃗j as well as the contrast vectors χ⃗k by using equation 8a:

P⃗jðzn; z0Þ ¼< P⃗jðzn; z0Þ > þΔP⃗jðzn; z0Þ with

ΔP⃗jðzn; z0Þ ¼
Xm

l¼m−1
G0ðzn; zlÞ

X

k

χ⃗kðzl; zlÞPkjðzl; z0Þ; (12)

yielding an update of the velocities (including anisotropy) in each
gridpoint of layer (zm−1, zm) and an update of the wavefields at zm:

P⃗þ
j ðzm; z0Þ ¼ W0ðzm; zm−1ÞQ⃗þ

j ðzm−1; z0Þ þ ΔP⃗jðzm; z0Þ
Q⃗−

j ðzm; z0Þ ¼ W�
0ðzm; zm−1ÞP⃗−

j ðzm−1; z0Þ − ΔP⃗jðzm−1; z0Þ.
(13)

After completion, the updated velocities in layer (zm−1, zm) as
well as the reflectivities and updated wavefields at depth level
zm are known, and we are ready to move down by applying the
following full wavefield extrapolation step (from zm to zmþ1)
and the following full waveform inversion step (between zm and
zmþ1), etc. Note that the JMI process works with two different
scales: In the order of tens of meters, say 50 m, in the migration
step (WFM) and in the order of meters, say 5 m, in the inversion
step (WFI), meaning that depth layer (zm−1, zm) is subdivided in a
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Figure 5. JMI combines WFM and WFI into a recursive joint migration-inversion process. WFM estimates the wavefields by full wavefield
extrapolation, and WFI updates the wavefields and computes the velocities by full waveform inversion. The output yields reflectivity and
velocity, optionally at different scales.
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set of mini-layers with thickness δzm. The double scale JMI process
will be of particular interest in reservoir areas, where detail in the
order of meters is required. Including broadband interbed multiples
is considered to be essential in providing that degree of detail.
Figure 5 illustrates the computational diagram of JMI, being a

combination of Figures 3 and 4, and showing the alternate applica-
tion of the WFM and WFI process at each depth level. The output
equals angle-dependent reflection coefficients (Radon transform of
R⃗k) and angle-dependent velocities (Radon transform of χ⃗k) at each
gridpoint. Note also that in the simplest implementation, the WFM
step is applied with current migration technology, meaning that in
the computation of the wavefields primary reflections are addressed
only (R∩ is ignored). Of course, the WFI step always involves the
multiple scattering process in layer (zm−1, zm) because velocity is
very nonlinear in the seismic data.

CONCLUSIONS

Current seismic migration has been extended to the concept of
WFM, allowing the utilization of surface and interbed multiple scat-
tering without user involvement. In addition, in WFM the familiar
imaging principle is replaced by a constrained minimization process
at each depth level.
Similarly, current seismic inversion has been extended to the con-

cept of WFI, allowing also the utilization of surface and interbed
multiple scattering without user involvement. In addition, in WFI
the familiar minimization process at the surface is replaced by a
minimization process at each depth level.
It is shown that the underlying mathematical equations of WFM

and WFI have an equal mathematical structure, but the physical
meaning of these equations is very different.
In WFM, the equations describe a physical scattering process

(A-scattering). The difference in amplitude between reflected and
incident wavefields determines the reflectivity in each scatter point.
In WFI, the equations describe a virtual scattering process

(B-scattering). The difference in traveltime between simulated
and true wavefields determines the velocity in each scatter point.
By analogywithwhat has already been introduced inmigration —

extending the migration result to angle-depended reflectivity in each
gridpoint — the theory of full waveform inversion has been
extended to angle-dependent velocity in each gridpoint. With this
extension, WFI can extract anisotropy from seismic data in a
data-driven manner.
I propose that we use WFM and WFI in one recursive joint mi-

gration-inversion process, being referred to as JMI. In this recursive
process the elaborate volume integral solution is replaced by an ef-
ficient alternative: WFM and WFI are alternately applied at each
depth level, where WFM estimates the incident wavefields by full

wavefield extrapolation and WFI updates the incident wavefields
and computes the velocities by full waveform inversion. The output
is two-fold, consisting of an angle-dependent reflectivity image and
an anisotropic velocity model, optionally at different scales.
The amount of seismic data that we acquire increases exponen-

tially and follows Moore’s law. This means that if we want to keep
the number of experts in the seismic value chain the same, then the
working hours per megabyte must be decreased. This productivity
challenge can be met if user-intensive processes in processing and
interpretation are automated to a large extent. In this respect, we may
expect that the proposed joint migration-inversion process— where
velocity models are determined and multiples are used without user
interaction — will have a large strategic value for the industry.
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