
Combining Gaussian Processes and Neural Networks in Surrogate Modeling

for Covariance Matrix Adaptation Evolution Strategy

Jan Koza1, Jiří Tumpach2, Zbyněk Pitra3, and Martin Holeňa4

1 Czech Technical University, Faculty of Information Technology, Prague, kozajan@fit.cvut.cz
2 Charles University, Faculty of Mathematics and Physics, Prague, tumpach@cs.cas.cz

3 Czech Technical University, Faculty of Nuclear Sciences and Physical Engineering, Prague, z.pitra@gmail.com
4 Academy of Sciences, Institute of Computer Science, Prague, martin@cs.cas.cz

Abstract: This paper focuses on surrogate models for Co-

variance Matrix Adaptation Evolution Strategy (CMA-ES)

in continuous black-box optimization. Surrogate modeling

has proven to be able to decrease the number of evalua-

tions of the objective function, which is an important re-

quirement in some real-world applications where the eval-

uation can be costly or time-demanding. Surrogate models

achieve this by providing an approximation instead of the

evaluation of the true objective function. One of the state-

of-the-art models for this task is the Gaussian process. We

present an approach to combining Gaussian processes with

artificial neural networks, which was previously success-

fully applied to other machine learning domains.

The experimental part employs data recorded from

previous CMA-ES runs, allowing us to assess different

settings of surrogate models without running the whole

CMA-ES algorithm. The data were collected using 24

noiseless benchmark functions of the platform for com-

paring continuous optimizers COCO in 5 different dimen-

sions. Overall, we used data samples from over 2.8 million

generations of CMA-ES runs. The results examine and

statistically compare six covariance functions of Gaussian

processes with the neural network extension. So far, the

combined model did not show up to outperform the Gaus-

sian process alone. Therefore, in conclusion, we discuss

possible reasons for this and ideas for future research.

Keywords: black-box optimization, surrogate modeling,

artificial neural networks, Gaussian processes, covariance

functions

1 Introduction

In evolutionary black-box optimization, an increasing at-

tention is paid to tasks with expensive evaluation of the

black-box objective function. It is immaterial whether

that expensiveness is due to time-consuming computa-

tion like in long simulations [17], or due to evaluation

through costly experiments like in some areas of science

[3]. To deal with such expensive evaluations, black-box

optimization has in the late 1990s and early 2000s adopted

an approach called surrogate modeling or metamodeling

[7, 13, 15, 34, 42, 45, 48].

Copyright ©2021 for this paper by its authors. Use permitted under

Creative Commons License Attribution 4.0 International (CC BY 4.0).

Basically, a surrogate model in continuous black-box

optimization is any regression model that with a sufficient

fidelity approximates the true black-box objective function

and replaces it in some of its evaluations. Among the re-

gression models most frequently used to this end, we are

most interested in Gaussian processes (GPs) [47], due to

the fact that they estimate not only the expected value of

the true objective function, but the whole distribution of its

values. Apart from regression, they are also encountered

in classification, and play a key role in Bayesian optimiza-

tion [22, 28], where the distribution of values provides se-

lection criteria that are alternatives to the objective func-

tion value, such as the probability of improvement or the

expected improvement.

The importance of GPs in machine learning incited at-

tempts to integrate them with the leading learning para-

digm of the last decades – neural learning, including deep

learning. The attractiveness of this research direction is

further supported by recent theoretical results concerning

relationships of asymptotic properties of important kinds

of artificial neural networks (ANNs) to properties of GPs

[35,39,41]. The integration of GP with neural learning has

been proposed on two different levels:

(i) Proper integration of an ANN with a GP, in which the

GP forms the final output layer of the ANN [9, 52].

(ii) Only a transfer of the layered structure, which is a

crucial feature, to the GP context, leading to the con-

cept of deep GPs (DGPs) [8, 12, 22, 23].

The recalled research into the integration of GPs with

neural learning has used regression data [8, 9, 12, 23, 52],

mostly from the UCI Machine Learning Repository [50],

but also data concerning locomotion of walking bipedal

robots [9], and face patches and hadwritten digits [52].

In [12,23], also classification data were used. However, we

are aware of only one application of such an integration, in

particular of DGPs, to two very easy 1- and 2-dimensional

optimization problems [22]. Hence, there is a gap between

the importance of GPs in Bayesian optimization and miss-

ing investigations of the suitability of integrated GP-ANN

models for surrogate modeling in black-box optimization.

That gap motivated the research reported in this paper.

We have performed this novel kind of investigation of

GP-ANN integration using data from more than 5000 runs

of using GPs as Bayesian optimizers in black-box opti-

mization, i.e. optimization of pointwise observable func-

tions for which no analytic expression is available and
the function values have to be obtained either empirically,
e.g. through measuring or experiments, or through numer-
ical simulations. Based on that data, our investigation ad-
dressed two research questions:

1. Does the integration of a GP with neural learning has
an added value compared with employing a GP alone
or an ANN alone?

2. What is the impact of each of the considered GP co-
variance functions on the result of GP-ANN integra-
tion?

The next section introduces the principles of surro-
gate modeling as well as of the evolutionary optimization
method Covariance Matrix Adaptation Evolution Strategy

(CMA-ES), in the context of which our research has been
performed. In Section 3, the fundamentals of GPs are re-
called and the method we have used for their integration
with neural networks is explained. The core part of the pa-
per is Section 4, which attempts to provide experimental
answers to the above research questions.

2 Surrogate modeling in Black-Box

Optimization

Basically, the purpose of surrogate modeling – to approxi-
mate an unknown functional dependence – coincides with
the purpose of response surface modeling in the design of
experiments [24, 40]. Therefore, it is not surprising that
typical response surface models, i.e., low order polynomi-

als, belong also to the most traditional and most success-
ful surrogate models [1, 2, 20, 29, 45]. Other frequently
used kinds of surrogate models are artificial neural net-

works of the kind multilayer perceptron (MLP) or radial
basis function network [18, 25–27, 42, 53], and Gaussian
processes, in surrogate modeling also known as kriging

[6, 7, 13–15, 33, 34, 37, 49, 51]. Occasinally encountered
are support vector regression [10, 36] and random forests

[5, 44].

2.1 CMA-ES and Its Surrogate-Assisted Variant

DTS-CMA-ES

The CMA-ES algorithm performs unconstrained opti-
mization on R

d , by means of iterative sampling of pop-
ulations sized λ from a d-dimensional Gaussian distribu-
tion N(m,σ2C), and uses a given parent number µ among
the sampled points corresponding to the lowest objective
function values, to update the parameters of that distribu-
tion. Hence, it updates the expected value m, which is used
as the current point estimate of the function optimum, the
matrix C and the step-size σ . The CMA-ES is invariant
with respect to strictly increasing transformations of the
objective function. Hence, to make use of the evaluations
of the objective function in a set of points, it needs to know

only the ordering of those evaluations. Details of the algo-
rithm can be found in [19, 21].

During the more than 20 years of CMA-ES existence,
a number of surrogate-assisted variants of this algorithm
have been proposed, a survey can be found in [6, 43].
Here, we pay attention only to the most recent GP-based
among them, the Doubly Trained Surrogate CMA-ES
(DTS-CMA-ES) [6], surrogate-assisted variant of CMA-
ES. It employs two GPs f1 and f2, trained consecutively,
to find an evaluation of the population x1, . . . ,xλ , with f1

used for active learning of training data for f2. Due to
the CMA-ES invariance with respect to strictly increas-
ing transformations, it evaluates the difference between
predictions only according to the difference in the order-
ing of those predictions, using the ranking difference error
(RDE). The RDE of y ∈ R

λ with respect to y′ ∈ R
λ con-

sidering k best components is defined:

RDE
≤k

(y,y′) =
∑i,(ρ(y′))i≤k(|ρ(y′))i − (ρ(y))i|

maxπ∈Π(λ) ∑
k
i=1 |i−π−1(i)|

, (1)

where Π(λ) denotes the set of permutaions of {1, . . . ,λ}
and ρ(y) denotes the ordering of the components of y, i.e.,
(∀y ∈ R

λ) ρ(y) ∈ Π(λ) & (ρ(y))i < (ρ(y)) j ⇒ yi ≤ y j.
Because the CMA-ES algorithm uses the surrogate model
to select the most promising candidates for true evaluation,
the metric considers only k best samples. The range of
RDE metric is [0,1], it equals 0 for the exact ordering and
1 for thereverse order.

The algorithm DTS-CMA-ES is described in Algo-
rithm 1, using the following notation:

• A for an archive – a set of points that have already
been evaluated by the true black-box objective func-
tion BB;

• dσ2C for the Mahalanobis distance given by σ2C:

dσ2C(x,x
′) =

√

(x− x′)⊤σ−2C−1(x− x′); (2)

• Nk(x;A) for the set of k of dσ2C-nearest neighbours of
x ∈ R

d with respect to the archive A;

• fi(x1, . . . ,xλ) = (fi(x1), . . . , fi(xλ)), for i = 1,2;

• Th for the training set selection:

Th =
λ
⋃

j=1

{x ∈ Nh(x j;A)|dσ2C(x,x j)< rmax} (3)

with rmax > 0 for h = 1, . . . , |A|;
• k(A) = max{h||Th| ≤ Nmax}, with Nmax ∈ N;

• ρPoI for decreasing ordering of f1(x1), . . . , f1(xλ) ac-
cording to the probability of improvement with re-
spect to the lowest BB value found so far,

i < j ⇒ PoI(ρPoI(f1(x1, . . . ,xλ)))i;V)≥
≥ PoI(ρPoI(f1(x1, . . . ,xλ))) j;V), (4)

where V = minx∈A BB(x).

Algorithm 1 Algorithm DTS-CMA-ES

Require: x1, . . . ,xλ ∈ R
d , µ , A, σ and C – step

size and matrix from the CMA-ES distribu-
tion, Nmax ∈ N such that Nmax ≥ λ , rmax > 0,
β ,εmin,εmax,εinitial,αmin,αmax,αinitial ∈ (0,1)

1: if this is the 1st call of the algorithm in the current
CMA-ES run then

2: α = αinitial,ε = εinitial

3: else

4: take over the returned values of α,ε from its pre-
vious call in the run

5: end if

6: Train a Gaussian process f1 on Tk(A), estimating mGP,
σn,σ f , ℓ through maximization of the likelihood (7)

7: Evaluate BB(x j) for x j not yet BB-evaluated and such
that (ρPoI(f1(x1, . . . ,xλ))) j ≤ ⌈αλ⌉

8: Update A to A ∪ {(x j|(ρPoI(f1(x1), . . . , f1(xλ))) j ≤
⌈αλ⌉}

9: Train a Gaussian process f2 on Tk(A), estimating mGP,
σn, σ f , ℓ through maximization of the likelihood (7)

10: For x j such that (ρPoI(f1(x1, . . . ,xλ))) j ≤ ⌈αλ⌉, up-
date f2(x j) = BB(x j)

11: Update ε to β RDEµ(f1(x1, . . . ,xλ),(f2(x1, . . . ,xλ))+

(1−β)ε and α to αmin +max(0,min(1, ε−εmin
εmax−εmin

))

12: For j fulfilling (ρPoI(f1(x1, . . . ,xλ)) j > ⌈αλ⌉, update
f2(x j) to f2(x j)−min{ f2(x j′)|(ρPoI(f1(x1, . . . ,xλ)) j′ >

⌈αλ⌉}+min{ f2(x j′)|(ρPoI(f1(x1, . . . ,xλ)) j′ ≤⌈αλ⌉}
13: Return f2(x1), . . . , f2(xλ),ε,α

3 Gaussian Processes and Their

Integration with Neural Networks

3.1 Gaussian processes

A Gaussian process on a set X ⊂ R
d ,d ∈ N is a collection

of random variables (f (x))x∈X , any finite number of which
has a joint Gaussian distribution [47]. It is completely
specified by a mean function µ : X →R, typically assumed
constant, and by a covariance function κ : X ×X →R such
that for x,x′ ∈ X ,

E f (x) = µ,cov(f (x), f (x′)) = κ(x,x′). (5)

Therefore, a GP is often denoted GP(µ,κ(x,x′)) or
GP(µ,κ).

The value of f (x) is typically accessible only as a noisy

observation y = f (x)+ ε , where ε is a zero-mean Gauss-
sian noise with a variance σn > 0. Then

cov(y,y′) = κ(x,x′)+σ2
n I(x = x′), (6)

where I(proposition) equals for a true proposition 1, for a
false proposition 0.

Consider now the prediction of the random variable
f (x⋆) in a point x⋆ ∈ X if we already know the ob-
servations y1, . . . ,yn in points x1, . . . ,xn. Introduce the

vectors x = (x1, . . . ,xn)
⊤, y = (y1, . . . ,yn)

⊤ = (f (x1) +
ε, . . . f (xn)+ ε)⊤, k⋆ = (κ(x1,x⋆), . . . ,κ(xn,x⋆))

⊤ and the
matrix K ∈ R

n×n such that (K)i, j = κ(xi,x j)+σ2
n I(i = j).

Then the probability density of the vector y of observations
is

p(y; µ,κ,σ2
n) =

exp
(

− 1
2 (y−µ)⊤K−1(y−µ)

)

√

(2π)2 det(K +σ2
n In)

, (7)

where det(M) denotes the determinant of a matrix M. Fur-
thermore, as a consequence of the assumption of Gaussian
joint distribution, also the conditional distribution of f (x⋆)
conditioned on y is Gaussian, namely

N(µ(x⋆)+ k⋆K−1(y−µ),κ(x⋆,x⋆)− k⊤⋆ K−1k⋆). (8)

According to (6), the relationship between the observa-
tions y and y′ is determined by the covariance function κ .
In the reported research, we have considered 6 kinds of
covariance functions, listed below. In their definitions, the
notation r = ‖x′ − x‖ is used, and among the parameters
of κ , aka hyperparameters of the GP, frequently encoun-
tered are σ2

f , ℓ > 0, called signal variance and character-

istic length scale, respectively. Other parameters are intro-
duced for each covariance function separately.
(i) Linear: κLIN(x,x

′) = σ2
0 + x⊤x′, with a bias σ2

0 .
(ii) Quadratic is the square of the linear covariance:

κQ(x,x
′) = (σ2

0 + x⊤x′)2.

(iii) Rational quadratic: κRQ(x,x
′) = σ2

f

(

1+ r2

2αℓ2

)−α
,

with α > 0.
(iv) Squared exponential: κSE(x,x

′) = σ2
f exp

(

− r2

2ℓ2

)

.

(v) Matérn 5
2 :

κ
5
2

Matérn(x,x
′) = σ2

f

(

1+
√

5r
ℓ

+ 5r2

3ℓ2

)

exp
(

−
√

5r
ℓ

)

.

(vi) One composite covariance function, namely the sum
of κSE and κQ:
κSE+Q(x,x

′) = κSE(x,x
′)+κQ(x,x

′).

3.2 GP as the Output Layer of a Neural Network

The approach integrating a GP into an ANN as its output
layer has been independently proposed in [9] and [52]. It
relies on the following two assumptions:

1. If nI denotes the number of the ANN input neu-
rons, then the ANN computes a mapping net of nI-dimen-

sional input values into the set X on which is the GP.
Consequently, the number of neurons in the last hidden
layer equals the dimension d, and the ANN maps an in-
put v into a point x = net(v) ∈ X , corresponding to an
observation f (x+ ε) governed by GP (Figure 1). From
the point of view of the ANN inputs, the GP is now
GP(µ(net(v)),κ(net(v),net(v′))).

2. The GP mean µ is assumed to be a known constant,
thus not contributing to the GP hyperparameters and inde-
pendent of net.

Due to the assumption 2., the only hyperparameters of
the GP are the parameters θ κ of the covariance function.

Figure 1: Schema of the integration of a GP into an ANN
as its output layer. Taken over from [32].

As to the ANN, it depends on the one hand on the vector
θW of its weights and biases, on the other hand on the
parameters θ A of its architecture (such as the number of
hidden layers, the numbers of neurons in each of them, the
activation functions). Altogether, the integrated GP-ANN
model depends on the vector (θ κ ,θW ,θ A), which we in
accordance with [9,52] and with the terminology common
for GPs also call hyperparameters, although in the context
of ANNs, this term is typically used only for θ A.

Consider now n inputs to the neural network, v1, . . . ,vn,
mapped to the inputs x1 = net(v1), . . . ,xn = net(vn) of the
GP, corresponding to the observations y = (y1, . . . ,yn)

⊤.
Then the log-likelihood of θ is

L(θ) = ln p(y; µ,κ,σ2
n), (9)

where µ is the constant assumed in Assumption 2., and

(K)i, j = κ(net(vi),net(v j)). (10)

To find the combination of values of θ with the maxi-
mal likelihood, methods for smooth optimization can be
applied only with respect to θ κ and θW , with respect to
which is L continuous. With respect to θ A, we have two
possibilities. First, to fix θ A in advance, thus effectively
restricting the hyperparameters of the integrated model to

(θ κ ,θW). Second, to perform the optimization with re-
spect to θ A in an outer loop (using, e.g. grid search com-
bined with cross-validation) and for each considered com-
bination of values of θ A perform the optimization with re-
spect to (θ κ ,θW) in an inner loop.

Finally, let the smooth optimization be performed in
the most simple but, in the context of neural networks,
also most frequent way – as gradient descent. The partial
derivatives forming ∇(θ κ ,θW)L can be computed as:

∂L

∂θ κ
ℓ

=
n

∑
i, j=1

∂L

∂Ki, j

∂Ki, j

∂θ κ
ℓ

,
∂L

∂θW
ℓ

=

=
n

∑
i, j,k=1

∂L

∂Ki, j

∂Ki, j

∂xk

∂ net(vk)

∂θW
ℓ

.

(11)

In (11), the partial derivatives ∂L
∂Ki, j

, i, j = 1, . . . ,n, are com-

ponents of the matrix derivative ∂L
∂K

, for which the calcula-
tions of matrix differential calculus [38] together with (7)
and (9) yield

∂L

∂K
=

1

2

(

K−1yy⊤K−1 −K−1
)

. (12)

4 Experiments

For the evaluation of the aforementioned models, we used
the open-source Python library GPytorch and our imple-
mentation is available at [31].

4.1 Employed Data

As a dataset to compare different configurations of the
combined GP-ANN model, we used recorded DTS-CMA-
ES runs from previous experiments. This allowed us to
effectively evaluate the surrogate model on its own with-
out having to perform the whole optimization. The open-
source Matlab implementation of DTS-CMA-ES, used to
obtain the data, is available at [4]. The underlying surro-
gate models were Gaussian process with 8 different co-
variance functions implemented using the GPML Tool-
box [46]. The optimization runs were collected on the plat-
form for comparing continuous optimizers COCO. The
employed black-box optimization benchmark set contains
24 noiseless functions scalable to any input dimension. We
used dimensions 2, 3, 5, 10, and 20 in 5 different instances,
which consist in random rotation and translation in the in-
put space. Therefore, for each combination of benchmark
function and dimension, 40 runs are available. More im-
portant than the number of runs, however, is the number of
their generations because data from each generation apart
from the first can be used for testing all those surrogate
models that could be trained with data from the previous
generations. The number of generations in a particular run
of CMA-ES algorithm is unknown before the run and de-
pends on the objective function and its particular instance.

Table 1: Noiseless benchmark functions of the platform comparing continuous optimizers (COCO) [11, 16] and the
number of available generations of DTS-CMA-ES runs for each of them in each considered dimension

Benchmark Available generations
function in dimension

name 2 3 5 10 20
Separable

1. Sphere 4689 6910 11463 17385 25296
2. Separable Ellipsoid 6609 9613 15171 25994 55714
3. Separable Rastrigin 7688 11308 17382 27482 42660
4. Büche-Rastrigin 8855 13447 22203 31483 49673

Moderately Ill-Conditioned

6. Attractive Sector 16577 25200 38150 45119 72795
7. Step Ellipsoid 7103 9816 24112 34090 56340
8. Rosenbrock 7306 11916 21191 32730 71754
9. Rotated Rosenbrock 7687 12716 24084 35299 71017

Highly Ill-Conditioned

10. Ellipsoid with High Conditioning 6691 9548 15867 25327 59469
11. Discus 6999 9657 15877 25478 45181
12. Bent Cigar 10369 18059 28651 34605 56528
13. Sharp Ridge 7760 11129 20346 30581 48154
14. Different Powers 6653 10273 17693 31590 61960

Multi-modal with Global Structure

15. Non-separable Rastrigin 7855 11476 19374 28986 44446
16. Weierstrass 9294 13617 24158 27628 40969
17. Schaffers F7 9031 13960 24244 34514 56247
18. Ill-Conditioned Schaffers F7 9598 13404 25802 31609 53836
19. Composite Griewank-Rosenbrock 9147 16268 24456 34171 53536

Multi-modal Weakly Structured

20. Schwefel 9081 13676 24219 33753 53104
21. Gallagher’s Gaussian 101-me Points 7645 12199 18208 25366 43186
22. Gallagher’s Gaussian 21-hi Points 7629 11086 17881 26626 44971
23. Katsuura 8751 11233 17435 25030 37366
24. Lunacek bi-Rastrigin 8983 13966 19405 29762 44420

The benchmarks and their total numbers of available gen-
erations for individual dimensions are listed in Table 1.
We skipped the linear function (benchmark function num-
ber 5), which is easy to optimize, and the recorded runs
did not provide enough data samples to train and evaluate
the surrogate models.

4.2 Experimental Setup

We compare the combinations of neural networks with
Gaussian processes using six different covariance func-
tions listed in Subsection 3.1. All models were trained on
the same set of training data Tk(A) as was used in steps 6
and 9 of Algorithm 1. Due to the condition (3), this set is
rather restricted and allows training only a restricted ANN
to prevent overfitting. Therefore, we decided to use a mul-
tilayer perceptron with a single hidden layer, thus a topol-
ogy (nI ,nH ,nO), where nI is the dimension of the training
data, i.e. nI ∈ {2,3,5,10,20}, and

nH = nO =











2 if nI = 2,

3 if nI = 3,5,

5 if nI = 10,20.

(13)

As the activation function for both the hidden and out-
put layer, we chose the logistic sigmoid. We trained the
weights and biases of the neural network together with the

parameters of the Gaussian process as proposed in [52]
and outlined in Subsection 3.2. As a loss function, we used
the Gaussian log-likelihood and optimized the parameters
with Adam [30] for a maximum of 1000 iterations. We
also kept a 10 % validation set out of the training data to
monitor overfitting, and we selected the model with the
lowest L2 validation error during the training.

4.3 Results

To evaluate different covariance functions, we used the
recorded data in a similar way as it would be used by DTS-
CMA-ES algorithm. We took each generation of points
except the first one and we used it as testing data. Every
point evaluated by the true objective function in all previ-
ous generations is then available as a training sample. We
filter these samples using the training set selection method
Tk(A) and trained the surrogate model on it.

This way, we evaluated six different models on every
generation of samples listed in Table 1. The results are
presented first in a function-method view in Table 4, then
in a dimension-method view in Table 5. The metric used
in both tables is RDE, which shows how precise the model
is in ordering of the predicted values, therefore the lower
is the error value, the better. The first table contains re-
sults for every benchmark function separately, averaged
over every input dimension, function instance and DTS-
CMA-ES generation as well as the average over the whole

group of functions. The second table provides a view on
how the dimension of the input space affects the approxi-
mation error. The results for a particular dimension are av-
eraged over all functions in a specific group, instances, and
generations. We also visualized with boxplots the summa-
rized RDE values for the function groups in Figure 2.

Moreover, we verified the results by performing multi-
ple comparison tests. A Non-parametric Friedman test was
conducted on RDEs across all results for particular func-
tions and function types in Table 4, and for a particular
combination of dimensions and function types in Table 5.
If the null hypothesis of the equality of all six considered
methods was declined, the Wilcoxon signed-rank test was
performed for all pairs of covariance functions, and its re-
sults were corrected for multiple hypotheses testing using
the Holm method. We summarized the results of statistical
testing in Tables 2 and 3.

Table 2: Statistical comparison of six covariance functions
from the function-method view in Table 4. It shows for
how many functions (23 in total) was the kernel in a row
significantly better than the one in a column.

κLIN κQ κRQ κSE κMat κSE+Q Σ

κLIN – 20 19 21 20 20 100
κQ 0 – 3 2 3 16 24
κRQ 1 5 – 1 1 13 21
κSE 2 6 1 – 1 14 24
κMat 2 6 2 0 – 13 23
κSE+Q 2 1 2 0 1 – 6

Table 3: Statistical comparison of six covariance functions
from the dimension-method view in Table 5. It shows for
how many combinations of input dimension and a specific
function group (25 in total) was the kernel in a row signif-
icantly better than the one in a column.

κLIN κQ κRQ κSE κMat κSE+Q Σ

κLIN – 25 23 21 20 24 113
κQ 0 – 4 0 3 16 23
κRQ 0 4 – 2 1 13 20
κSE 0 4 5 – 5 13 27
κMat 0 2 3 1 – 9 15
κSE+Q 0 0 0 0 0 – 0

4.4 Discussion and Further Research

The results show that the combined model performs best
with the simplest linear kernel. We compared the GP-
ANN with a linear kernel with pure Gaussian processes in
paper [32]. We found out that if we compare the combined
GP-ANN with GP both with linear kernels, the neural ex-
tensions can bring better results in some cases. However,
using more complex covariance functions with GP is still
better. Therefore, we tried to apply it also to the GP-ANN

combination. Unfortunately, the results with other kernels
ended up much worse.

In our future research, we would like to try to overcome
this. We want to systematically investigate different ANN
topologies, including the direction of deep Gaussian pro-
cesses [8, 12, 22, 23], in which only the topology is used
from an ANN, but all neurons are replaced by GPs. More-
over, in addition to the selection of the training set used
in DTS-CMA-ES and described in Algorithm 1, we want
to consider also alternative ways of training set selection,
allowing to train larger networks. Finally, we intend to
perform research into transfer learning of surrogate mod-
els: An ANN-GP model with a deep neural network will
be trained on data from many optimization runs, such as
those employed in this paper, and then the model used in
a new run of the same optimizer will be obtained through
additional fine tuning restricted only to the GP and last 1-2
layers of the ANN.

We would also like to try to change the way how the
model is trained. In paper [52] the parameters of Gaus-
sian process are learned together with the parameters of
the neural network. We think that this might not work
well in the domain of surrogate modeling in black-box op-
timization. Therefore, we will try to train the network and
Gaussian process separately.

5 Conclusion

In this paper, we examined an extension of Gaussian pro-
cesses used in surrogate modeling. At the beginning,
we described the CMA-ES algorithm for black-box opti-
mization and its surrogate-assisted variant DTS-CMA-ES.
Then we outlined Gaussian processes, various covariance
functions, and their neural network extension. The pre-
sented research is our first attempt in the application of the
combination of Gaussian processes with neural networks
as a surrogate model in black-box optimization. We imple-
mented the combined model and compared the results ob-
tained with six different covariance functions. By looking
at the results presented in the previous section, we can con-
clude that the combined model yields the best results with
the simplest linear kernel. The other covariance functions
produce much larger errors and the worst performing one
seems to be the composite kernel κSE+Q. Unfortunatelly
the results showed up to be worse than using Gaussian pro-
cesses alone, therefore we discuss possible ideas of further
improvements at the end of the paper.

Acknowledgement

The research reported in this paper has been supported
by SVV project number 260 575 and was also partially
supported by Czech Science Foundation (GAČR) grant
18-18080S. Computational resources were supplied by
the project "e-Infrastruktura CZ" (e-INFRA LM2018140)
provided within the program Projects of Large Research,
Development and Innovations Infrastructures.

Table 4: Comparison of average RDE values for six different covariance func-
tions depending on a particular benchmark function. The values are averaged
over different dimensions and instances.

❍
❍
❍

❍❍
f

κ
κLIN κQ κRQ κSE κMat κSE+Q

S
ep

ar
ab

le

F
un

ct
io

ns

1 0.242 0.528 0.486 0.469 0.476 0.591
2 0.128 0.386 0.475 0.486 0.503 0.491
3 0.300 0.452 0.449 0.462 0.443 0.546
4 0.352 0.480 0.459 0.462 0.462 0.548
all 0.255 0.461 0.467 0.469 0.471 0.544

M
od

er
at

e
co

nd
it

io
ni

ng

6 0.351 0.446 0.410 0.451 0.451 0.421
7 0.202 0.461 0.485 0.476 0.499 0.529
8 0.330 0.463 0.410 0.406 0.460 0.527
9 0.326 0.465 0.463 0.435 0.430 0.530
all 0.302 0.458 0.441 0.442 0.459 0.501

H
ig

h
co

nd
it

io
ni

ng

an
d

un
im

od
al

10 0.142 0.458 0.505 0.457 0.484 0.487
11 0.147 0.417 0.537 0.527 0.525 0.488
12 0.284 0.436 0.506 0.498 0.510 0.451
13 0.216 0.434 0.455 0.418 0.433 0.532
14 0.289 0.498 0.452 0.405 0.416 0.551
all 0.215 0.448 0.491 0.461 0.473 0.501

M
ul

ti
-m

od
al

ad
eq

ua
te

gl
ob

al
st

ru
ct

ur
e

15 0.321 0.462 0.467 0.446 0.427 0.545
16 0.551 0.530 0.516 0.486 0.489 0.504
17 0.391 0.450 0.487 0.474 0.483 0.550
18 0.380 0.486 0.489 0.472 0.480 0.553
19 0.400 0.540 0.524 0.521 0.526 0.536
all 0.408 0.493 0.496 0.479 0.480 0.537

M
ul

ti
-m

od
al

w
ea

k
gl

ob
al

st
ru

ct
ur

e

20 0.213 0.508 0.467 0.456 0.472 0.547
21 0.387 0.470 0.467 0.476 0.468 0.532
22 0.347 0.480 0.484 0.467 0.475 0.532
23 0.589 0.589 0.537 0.544 0.547 0.549
24 0.448 0.492 0.509 0.516 0.506 0.506
all 0.396 0.507 0.492 0.491 0.493 0.533

Table 5: Comparison of average RDE values for six different covariance func-
tions depending on the type of benchmark function and the input space di-
mension. The values are averaged over different functions in particular group
and instances.

❍
❍
❍
❍❍

f

κ
κLIN κQ κRQ κSE κMat κSE+Q

D
im

en
si

on
2

SEP 0.252 0.452 0.448 0.445 0.418 0.581
MOD 0.341 0.450 0.450 0.483 0.455 0.471
HC 0.204 0.449 0.459 0.474 0.441 0.502

MMA 0.416 0.485 0.472 0.475 0.484 0.550
MMW 0.443 0.517 0.419 0.471 0.431 0.522

all 0.334 0.473 0.450 0.470 0.447 0.525

D
im

en
si

on
3

SEP 0.194 0.439 0.414 0.455 0.447 0.527
MOD 0.262 0.449 0.383 0.407 0.429 0.512
HC 0.174 0.425 0.425 0.451 0.464 0.489

MMA 0.353 0.486 0.449 0.461 0.453 0.536
MMW 0.387 0.512 0.467 0.485 0.464 0.527

all 0.278 0.464 0.430 0.454 0.453 0.518

D
im

en
si

on
5

SEP 0.227 0.445 0.473 0.479 0.478 0.526
MOD 0.260 0.458 0.444 0.458 0.468 0.502
HC 0.202 0.439 0.513 0.489 0.486 0.492

MMA 0.373 0.481 0.491 0.500 0.482 0.517
MMW 0.363 0.513 0.496 0.504 0.499 0.532

all 0.289 0.468 0.486 0.487 0.484 0.514

D
im

en
si

on
10

SEP 0.278 0.479 0.476 0.500 0.494 0.536
MOD 0.285 0.460 0.453 0.417 0.443 0.502
HC 0.206 0.464 0.515 0.438 0.478 0.507

MMA 0.422 0.498 0.525 0.499 0.478 0.549
MMW 0.363 0.500 0.530 0.525 0.530 0.549

all 0.313 0.481 0.503 0.477 0.486 0.529

D
im

en
si

on
20

SEP 0.327 0.493 0.525 0.469 0.518 0.551
MOD 0.362 0.475 0.479 0.447 0.504 0.522
HC 0.293 0.467 0.543 0.454 0.500 0.519

MMA 0.478 0.518 0.546 0.464 0.508 0.537
MMW 0.429 0.496 0.551 0.475 0.544 0.536

all 0.381 0.490 0.531 0.462 0.515 0.533

κLIN κQ κRQ κSE κMat κSE+Q

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Separable

κLIN κQ κRQ κSE κMat κSE+Q

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Moderately Ill-Conditioned

κLIN κQ κRQ κSE κMat κSE+Q

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Highly Ill-Conditioned

κLIN κQ κRQ κSE κMat κSE+Q

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Multi-modal with Global Structure

κLIN κQ κRQ κSE κMat κSE+Q

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Multi-modal Weakly Structured

Figure 2: Visualization of the distribution of RDE values for a specific group of functions. Each boxplot corresponds to
the aggregated mean value in the grey rows in Table 4.

References

[1] A. Auger, D. Brockhoff, and N. Hansen. Benchmarking the
local metamodel cma-es on the noiseless BBOB’2013 test
bed. In GECCO’13, pages 1225–1232, 2013.

[2] A. Auger, M. Schoenauer, and N. Vanhaecke. LS-CMA-
ES: A second-order algorithm for covariance matrix adap-
tation. In Parallel Problem Solving from Nature - PPSN

VIII, pages 182–191, 2004.

[3] M. Baerns and M. Holeňa. Combinatorial Development of

Solid Catalytic Materials. Design of High-Throughput Ex-

periments, Data Analysis, Data Mining. Imperial College
Press / World Scientific, London, 2009.

[4] L. Bajer and Z. Pitra. Surrogate CMA-ES. https://

github.com/bajeluk/surrogate-cmaes, 2021.

[5] L. Bajer, Z. Pitra, and M. Holeňa. Benchmarking Gaus-
sian processes and random forests surrogate models on the
BBOB noiseless testbed. In GECCO’15 Companion, pages
1143–1150, 2015.

[6] L. Bajer, Z. Pitra, J. Repický, and M. Holeňa. Gaussian
process surrogate models for the CMA evolution strategy.
Evolutionary Computation, 27:665–697, 2019.

[7] A.J. Booker, J. Dennis, P.D. Frank, D.B. Serafini, Torczon
V., and M. Trosset. A rigorous framework for optimization
by surrogates. Structural and Multidisciplinary Optimiza-

tion, 17:1–13, 1999.

[8] T. Bui, D. Hernandez-Lobato, J. Hernandez-Lobato, Y. Li,
and R. Turner. Deep Gaussian processes for regression us-
ing approximate expectation propagation. In ICML, pages
1472–1481, 2016.

[9] R. Calandra, J. Peters, C.E. Rasmussen, and M.P. Deisen-
roth. Manifold Gaussian processes for regression. In
IJCNN, pages 3338–3345, 2016.

[10] S.M. Clarke, J.H. Griebisch, and T.W. Simpson. Analy-
sis of support vector regression for approximation of com-
plex engineering analyses. Journal of Mechanical Design,
127:1077–1087, 2005.

[11] The COCO platform, 2016. http://coco.gforge.inria.fr.

[12] K. Cutajar, E.V. Bonilla, P. Michiardi, and M. Filippone.
Random feature expansions for deep Gaussian processes.
In ICML, pages 884–893, 2017.

[13] M.A. El-Beltagy, P.B. Nair, and A.J. Keane. Metamodeling
techniques for evolutionary optimization of computaiton-
ally expensive problems: Promises and limitations. In
Proceedings of the Genetic and Evolutionary Computation

Conference, pages 196–203. Morgan Kaufmann Publish-
ers, 1999.

[14] M. Emmerich, K. Giannakoglou, and B. Naujoks. Single-
and multi-objective evolutionary optimization assisted by
Gaussian random field metamodels,. IEEE Transactions

on Evolutionary Computation, 10:421–439, 2006.

[15] M. Emmerich, A. Giotis, M. Özdemir, T. Bäck, and K. Gi-
annakoglou. Metamodel-assisted evolution strategies. In
PPSN VII, pages 361–370. ACM, 2002.

[16] S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter
black-box optimization benchmarking 2010: Presentation
of the noisy functions. Technical report, INRIA, Paris
Saclay, 2010.

[17] A. Forrester, A. Sobester, and A. Keane. Engineering De-

sign via Surrogate Modelling: A Practical Guide. John
Wiley and Sons, New York, 2008.

[18] H.M. Gutmann. A radial basis function method for global
optimization. Journal of Global Optimization, 19:201–227,
2001.

[19] N. Hansen. The CMA evolution strategy: A comparing re-
view. In Towards a New Evolutionary Computation, pages
75–102. Springer, 2006.

[20] N. Hansen. A global surrogate assisted CMA-ES. In
GECCO’19, pages 664–672, 2019.

[21] N. Hansen and A. Ostermaier. Completely derandomized
self-adaptation in evolution strategies. Evolutionary Com-

putation, 9:159–195, 2001.

[22] A. Hebbal, L. Brevault, M. Balesdent, E.G. Talbi, and
N. Melab. Efficient global optimization using deep Gaus-
sian processes. In IEEE CEC, pages 1–12, 2018.

[23] G. Hernández-Muñoz, C. Villacampa-Calvo, and D. Her-
nández Lobato. Deep Gaussian processes using expectation
propagation and Monte Carlo methods. In ECML PKDD,
pages 1–17, paper no. 128, 2020.

[24] S. Hosder, L. Watson, and B. Grossman. Polynomial re-
sponse surface approximations for the multidisciplinary de-
sign optimization of a high speed civil transport. Optimiza-

tion and Engineering, 2:431–452, 2001.

[25] Y. Jin, M. Hüsken, M. Olhofer, and Sendhoff B. Neural net-
works for fitness approximation in evolutionary optimiza-
tion. In Y. Jin, editor, Knowledge Incorporation in Evolu-

tionary Computation, pages 281–306. Springer, 2005.

[26] Y. Jin, M. Olhofer, and B. Sendhoff. Managing approxi-
mate models in evolutionary aerodynamic design optimiza-
tion. In CEC 2001, pages 592–599, 2001.

[27] Y. Jin, M. Olhofer, and B. Sendhoff. A framework for evo-
lutionary optimization with approximate fitness functions.
IEEE Transactions on Evolutionary Computation, 6:481–
494, 2002.

[28] D.R. Jones, M. Schonlau, and W.J. Welch. Efficient global
optimization of expensive black-box functions. Journal of

Global Optimization, 13:455–492, 1998.

[29] S. Kern, N. Hansen, and P. Koumoutsakos. Local metamod-
els for optimization using evolution strategies. In PPSN IX,
pages 939–948, 2006.

[30] D.P. Kingma and J. Ba. Adam: A method for stochastic
optimization. Preprint arXiv:1412.6980, 2014.

[31] J. Koza and J. Tumpach. Surrogate networks. https://

github.com/c0zzy/surrogate-networks, 2021.

[32] J. Koza, J. Tumpach, Z. Pitra, and M. Holeňa. Using
past experience for configuration of Gaussian processes in
black-box optimization. In 15th Learning and Intelligent

Optimization Conference, page accepted for publication,
2021.

[33] J.W. Kruisselbrink, M.T.M. Emmerich, A.H. Deutz, and
T. Bäck. A robust optimization approach using kriging
metamodels for robustness approximation in the CMA-ES.
In IEEE CEC, pages 1–8, 2010.

[34] S.J. Leary, A. Bhaskar, and A.J. Keane. A derivative based
surrogate model for approximating and optimizing the out-
put of an expensive computer simulation. Journal of Global

Optimization, 30:39–58, 2004.

https://github.com/bajeluk/surrogate-cmaes
https://github.com/bajeluk/surrogate-cmaes
https://github.com/c0zzy/surrogate-networks
https://github.com/c0zzy/surrogate-networks

[35] J. Lee, Y. Bahri, R. Novak, S.S. Schoenholz, J. Penning-
ton, et al. Deep neural networks as Gaussian processes. In
ICLR, pages 1–17, 2018.

[36] I. Loshchilov, M. Schoenauer, and M. Sebag. Intensive
surrogate model exploitation in self-adaptive surrogate-
assisted CMA-ES (saACM-ES). In GECCO’13, pages
439–446, 2013.

[37] J. Lu, B. Li, and Y. Jin. An evolution strategy assisted by an
ensemble of local Gaussian process models. In GECCO’13,
pages 447–454, 2013.

[38] J.R. Magnus and H. Neudecker. Matrix Differential Calcu-

lus with Applications in Statistics and Econometrics. John
Wiley and Sons, Chichester, 2007.

[39] A.G.G. Matthews, J. Hron, M. Rowland, and R.E. Turner.
Gaussian process behaviour in wide deep neural networks.
In ICLR, pages 1–15, 2019.

[40] R.H. Myers, D.C. Montgomery, and C.M. Anderson-Cook.
Response Surface Methodology: Proces and Product Op-

timization Using Designed Experiments. John Wiley and
Sons, Hoboken, 2009.

[41] R. Novak, L. Xiao, J. Lee, Y. Bahri, G. Yang, et al.
Bayesian deep convolutional networks with many channels
are Gaussian processes. In ICLR, pages 1–35, 2019.

[42] Y.S. Ong, P.B. Nair, A.J. Keane, and K.W. Wong. Sur-
rogate-assisted evolutionary optimization frameworks for
high-fidelity engineering design problems. In Y. Jin, ed-
itor, Knowledge Incorporation in Evolutionary Computa-

tion, pages 307–331. Springer, 2005.

[43] Z. Pitra, M. Hanuš, J. Koza, J. Tumpach, and M. Holeňa.
Interaction between model and its evolution control in
surrogate-assisted CMA evolution strategy. In GECCO’21,
page paper no. 358, 2021.

[44] Z. Pitra, J. Repický, and M. Holeňa. Boosted regression
forest for the doubly trained surrogate covariance matrix
adaptation evolution strategy. In ITAT 2018, pages 72–79,
2018.

[45] K. Rasheed, X. Ni, and S. Vattam. Methods for using sur-
rogate modesl to speed up genetic algorithm oprimization:
Informed operators and genetic engineering. In Y. Jin, ed-
itor, Knowledge Incorporation in Evolutionary Computa-

tion, pages 103–123. Springer, 2005.

[46] C.E Rasmussen and N. Hansen. GPML 4.0. matlab tool-
box. http://www.gaussianprocess.org/gpml/code/
matlab/doc/.

[47] E. Rasmussen and C. Williams. Gaussian Processes for

Machine Learning. MIT Press, Cambridge, 2006.

[48] A. Ratle. Kriging as a surrogate fitness landscape in evolu-
tionary optimization. Artificial Intelligence for Engineering

Design, Analysis and Manufacturing, 15:37–49, 2001.

[49] H. Ulmer, F. Streichert, and A. Zell. Evolution strategies
assisted by Gaussian processes with improved pre-selection
criterion. In IEEE CEC, pages 692–699, 2003.

[50] University of California in Irvine. Repository of machine
learning databases. http://www.ics.uci.edu/∼mlearn, 2016.

[51] V. Volz, G. Rudolph, and B. Naujoks. Investigating uncer-
tainty propagation in surrogate-assisted evolutionary algo-
rithms. In GECCO’17, pages 881–888, 2017.

[52] A.G. Wilson, Z. Hu, R. Salakhutdinov, and E.P. Xing. Deep
kernel learning. In ICAIS, pages 370–378, 2016.

[53] Z.Z. Zhou, Y.S. Ong, P.B. Nair, A.J. Keane, and K.Y. Lum.
Combining global and local surrogate models to accellerate
evolutionary optimization. IEEE Transactions on Systems,

Man and Cybernetics. Part C: Applications and Reviews,
37:66–76, 2007.

http://www.gaussianprocess.org/gpml/code/matlab/doc/
http://www.gaussianprocess.org/gpml/code/matlab/doc/

	 Introduction
	 Surrogate modeling in Black-Box Optimization
	 CMA-ES and Its Surrogate-Assisted Variant DTS-CMA-ES

	 Gaussian Processes and Their Integration with Neural Networks
	 Gaussian processes
	 GP as the Output Layer of a Neural Network

	 Experiments
	 Employed Data
	 Experimental Setup
	 Results
	Discussion and Further Research

	Conclusion

