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Abstract

A framework is presented that enables reliable estimation of the articulated pose of the human body

or human hand, given a single image. Pose estimation is formulated as a statistical inference problem,

where the goal is to find a posterior probability distribution over poses. The framework combines two

modeling approaches, one discriminative and the other generative. The discriminative model consists of

a set of several mapping functions that are estimated automatically from a labeled training set of body

poses and their respective image features. A key advantage of the discriminative formulation is that it

can model ambiguous, one-to-many mappings that may yield multiple valid articulated pose hypotheses.

The generative model is defined in terms of a computer graphics rendering of poses. While this gener-

ative model offers an accurate way to relate observed (image features) and hidden (body pose) random

variables, it is difficult to use it directly in pose estimation, since inference is intractable. In contrast,

inference with the discriminative model is tractable, but considerably less accurate for the problem of

interest. A combined discriminative/generative formulation is derived that leverages the complimentary

strengths of both models in a principled framework for articulated pose inference. Two efficient pose

inference algorithms are derived from this formulation; the first is deterministic and the second non-

deterministic. Performance of the framework is quantitatively evaluated in estimating articulated pose of

both the human hand and human body.
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1 Introduction

An essential task for vision systems is to infer the state of the world given some form of visual observations.

From a computational perspective, this typically involves facing an ill-posed problem; relevant information

is lost via projection of the three-dimensional world into a two-dimensional image. In this paper, the focus

is on inferring the pose of an articulated object in an image, in particular the pose of a human body or human

hand. Humans can often solve such pose inference problems, even when given only a relatively poor-quality,

low-resolution, monocular image. It is believed that humans employ extensive prior knowledge about human

body structure and motion in solving this ill-posed task [21]. In this paper, we consider how a computer

vision system might learn such knowledge in the form of probabilistic models, and how to employ such

models in an algorithm for reliable pose inference.

For purposes of computation, the inference task can be defi ned as follows: given an observation vector

x ∈ ℜc that was extracted from an image of a person, infer the parameterized articulated pose as a vector

h ∈ ℜt. The vector spaces ℜc and ℜt are continuous. In a generic machine learning framework, pose

inference might be regarded as a function ϕ : ℜc → ℜt that maps an input vector of visual observations to

an output vector describing the most likely articulated pose. More generally, the mapping function could

produce a posterior probability distribution, ϕ : ℜc → P, where P is a family of probability density

functions on ℜt. A number of general questions arise. What type or form should the mapping function ϕ

take? How can the mapping function be estimated from training data? How can the approach incorporate

prior knowledge about the problem structure? How can inference be performed effi ciently or approximately

if exact inference is intractable? These questions are fundamental and common in statistical learning, and

only in certain basic problem instances [30] are the answers immediately clear.

Several perspectives or viewpoints could be taken to approach learning tasks. However, often it is not

clear which seems more suitable for the problem at hand. It will be useful for the purpose of this paper

to distinguish two major viewpoints: the generative and the discriminative viewpoints (e.g., see [27]). In

the case of learning generative models, a joint distribution p(x,h) over the random variables of the model

(here simply h and x) is estimated from data. Then, given an observation, e.g., x, a posterior probability

p(h|x) over the unobserved random variables could, in theory1, be calculated by invoking Bayes’ rule. In

contrast, using discriminative models the posterior distribution q(h|x) is directly learned or estimated (see

e.g., [25, 36, 27] for further comparisons between these viewpoints). In this paper, we favor the idea that for

pose estimation, the advantages of each of these viewpoints could be exploited in a single framework.

1However, in practice this task can be intractable or lack analytic solutions. This is an important open problem in statistics.
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Figure 1: Example ambiguity in mapping body silhouette cues in ℜc to articulated body poses in ℜt. Given silhouette

x, poses a–h are all valid hypotheses. In general, entire regions in ℜt may contain valid poses.

If we try to learn a mapping directly, let us say by estimating the parameters of a parameterized function

φ : ℜc → ℜt as in a discriminative approach, we encounter several problems. The form required for φ may

not be simple, because the mapping from observations to articulated poses is generally ambiguous (one-to-

many), and therefore no single function can perform this mapping. An example is illustrated in Fig. 1. The

arm locations cannot be uniquely inferred given the silhouette x and therefore, a–h are all plausible pose

confi gurations. The hands and arms can move in such a way that the silhouette does not change. Note also

that pose c is the reflection of a: the camera looks at the back rather than at the front of the body. There may

be different regions in ℜt that correspond to ranges of valid poses, and these regions may not be connected,

e.g., some viewed from the front and others from behind.

Let us now consider the inverse problem: given an articulated pose vector a, generate its silhouette x.

With a good computer graphics model of the human body, one can easily render the silhouette x. Thus, we

can defi ne a very accurate generative model of what we refer to as the inverse mapping of pose parameters to

image features ζ : ℜt → ℜc. This is a key part of our problem defi nition and it will play an important role in

developing the framework presented in this paper. The inverse mapping ζ provides very useful information

about the structure of the problem; however, it cannot be incorporated straightforwardly in a discriminative

approach. Despite the simplicity of ζ , its inverse may still be complex or not even exist.

In summary, the one-to-may nature of the problem of mapping image features to body poses precludes

the use of discriminative supervised learning methods that fi t a single (or fi nite number of) functions to the

data, e.g., most neural networks, support vector machines, simple least-squares, boosting, etc. On the other

hand, we have access to the inverse ζ : ℜt → ℜc that given a body pose can produce the corresponding

image features, which can be used to defi ne a very accurate generative model. However, as will be shown
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Figure 2: Simplified schematic illustration behind our method for the case of inferring body pose: (a) Given an

input vector x, we generate a set of hypotheses. (b) The inverse mapping function ζ is employed in evaluating each

hypothesis.

later, this accurate generative model is challenging to use directly in body pose inference. The view taken in

this paper is that it can be effective to use the individual advantages of these two complimentary approaches

(discriminative and generative) to formulate an effi cient solution to the pose inference/learning problem.

2 Related Work

In computer vision, recovery of articulated body pose from images is often formulated as a tracking problem.

Usually, link-joint models comprised of 2D or 3D geometric primitives are designed beforehand to roughly

match the specifi c morphology of the target in question [6, 10, 13, 28, 31, 37, 11, 39]. Mesh models have

also been used as an alternative to link-joint models [15]. At each frame, these geometric models are fi tted

to the image to minimize some cost function that favors the overlap of the model and associated image

regions (or motion). Although usually not stated, the fi tting or cost function in many cases implicitly defi nes

(or can be used to defi ne) a generative model of the observed image. Despite their descriptive power, this

family of approaches has a number of critical drawbacks. Generally, a non-linear optimization problem

must be solved at every frame (sometimes equivalent to inference in a complex generative model). Careful

manual placement of the model on the fi rst frame in a video sequence is also required. Moreover, tracking

in subsequent frames tends to be sensitive to errors in initialization and numerical drift; as a result, these

systems cannot recover from tracking errors in the middle of a sequence.

To address these weaknesses, specialized dynamical models have been proposed [20, 28, 29]. These

methods learn a prior distribution over some specifi c motion class, such as walking. This prior is used to

predict and hopefully improve the pose estimates in future frames. However, this strong prior substantially

limits the generality of the motions that can be tracked; a prior for a given class of motions is generally

useless when used for tracking objects undergoing a different class of motion, e.g., walking vs. dancing.

4



Other methods for constrained tracking include [4], where a subspace of allowable motions is learned

from a set of examples. These examples and the model (usually linear) are hoped to be suffi cient to span the

set of possible motions to be seen during tracking. Thus, pose inference involves fi nding a linear projection

of the observed data onto the motion subspace. This subspace approach enforces a strong prior; as mentioned

previously, this limits the generalization of the model to classes of motions not seen in the training set.

Furthermore, articulated motion is generally non-linear, and cannot be easily explained as a linear projection.

In our approach we avoid matching image features (e.g., image regions, points, or articulated models)

from frame to frame. Therefore, we do not refer to our approach as tracking, per se. This is in direct contrast

with the techniques mentioned above. A number of other approaches also depart from the aforementioned

tracking paradigm. We summarize these next.

In [18] a statistical approach is employed in reconstructing the 3D motions of a human fi gure. The

approach employs a Gaussian probability model for short human motion sequences. It is assumed that

2D tracking of the joint positions in the image is given; therefore, this assumption implicitly incurs the

restrictions found in all tracking approaches.

In [40] dynamic programming is used to calculate the best global matching of image points to predefi ned

body joints, given a learned probability density function of the position and velocity of body features. Al-

though not explicitly mentioned by the authors, the probability function is defi ned by a triangulated acyclic

graph. Thus, inference is feasible due to the running intersection property [22, 30]. Still, in this approach,

the image points and model initialization must be provided by hand or through some other method.

In [5], the manifold of human body dynamics is modeled via a hidden Markov model with an entropic

prior. Once the states are inferred from observations, a quadratic cost function is used to generate a contin-

uous path in confi guration space, i.e., body pose space.

In all of the non-tracking approaches just referred, models of motion were estimated from data. Al-

though the approach presented in this paper can be used to model dynamics, we argue that when general

human motion dynamics are to be learned, the amount of training data, model complexity, and computa-

tional resources required are impractical. As a consequence, models with unacceptably large priors towards

specifi c motions are generated. Although by not modeling the dynamics we may be ignoring information

that could be used to further constrain the inference process, there are some benefi ts. For instance, a model

for inferring body pose that does not consider dynamics provides invariance with respect to speed (i.e., sam-

pling differences) and direction in which motions are performed. This happens simply because this model

treats confi gurations as temporally independent of each other. Other approaches that use a single image

include [3, 14, 41]; however, most of these methods also require that projected joint locations be given as
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number of training examples N

training set Z = {z1, ..., zN}

training example (input,output) pair zi = (υi, ψi)

input (feature) training vector υi ∈ ℜc

output (pose) training vector ψi ∈ ℜt

generative and discriminative models probability distributions p,q (respectively)

observation random variable (e.g., image moments) x ∈ ℜc

hidden random variable of pose parameters h ∈ ℜt

feedback (rendering) function (for generative model) ζ : ℜt → ℜc

number of samples during inference S

a particular observation or input image feature x∗

output (pose) hypothesis ( a sample from q(h|x∗)) hk

estimate of most likely output hypothesis ĥ

discrete set of labels for mixture components C = {1, . . . ,M}

hidden random variables assigning mixture component to training samples y = (y1, . . . , yN ), yi ∈ C

prior probability that mixture component k will be used λk = Q(y = k)

mapping function parameter vector θk

discriminative model parameters (to be learned) θ = (θ1, . . . , θM , λ1, . . . , λM )

posterior probability of k-th mixture component for zi during EM Q̃(yi = k) = Q(yi = k|ψi, υi, θ)

Table 1: Some mathematical symbols used in this paper.

input. In our approach this is not necessary.

Our approach can be thought of mapping visual features to likely body confi gurations. Following a ma-

chine learning paradigm, stochastic functions that map visual features to pose parameters are approximated

from training data. A unique aspect of our approach is the combined use of (1) these mapping functions

(defi ning a discriminative model) with (2) the inverse mapping function ζ (defi ning a generative model).

Generally speaking, after multiple poses have been inferred from just the visual cues, ζ transforms these

pose confi gurations back to the visual cue (observation) space. In this space, we can then automatically

choose among a set of reconstruction hypotheses. This is a fully probabilistic inference process. Our ap-

proach avoids the need for manual initialization or tracking; it thereby avoids the consequent disadvantages

of tracking. Remarkably, relatively few computations are required for inference. We will now formalize and

explain our approach in detail.

3 Probabilistic Models

We propose to a probabilistic, nonlinear framework for combining generative and discriminative models for

articulated pose estimation. The framework employs a set of M functions φk : ℜc → ℜt, each associated

to a mixture component in a mixture distribution. Each function maps certain sub-domains of the input
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space (cues) onto the output space (poses). These functions are estimated automatically from training data

via a variant of the Expectation-Maximization algorithm. The learned conditional distribution is then used

as an approximation to an accurate (generative model) distribution defi ned using the inverse function ζ , for

which inference is intractable. This basic idea is shown in a schematic way in Fig. 1. The approximation is

employed in a similar way as a proposal distribution is used to approximate sampling from a more complex

distribution.

We begin by formally defi ning both the discriminative and generative models to be employed. The

discriminative model will be estimated from training data and the generative model will be defi ned by a

rendering function ζ . These models represent two views of the same problem and will be used together in

our framework.

3.1 The Discriminative Model

Let Z = {z1, ..., zN} be an observed training set of input-output pairs zi = (υi, ψi). Each υi ∈ ℜc

is an input (feature) vector, and each ψi ∈ ℜt is its corresponding output (pose) vector. A summary of

mathematical symbols used in this formulation is provided in Table 1.

We will approach our discriminative problem as one of hidden variable density estimation. We begin

by introducing the unobserved random variable y = (y1, . . . , yN ). In our model any yi has as its domain

the discrete set C = {1, . . . ,M} of labels for the specialized mapping functions, and can be thought of as

the function number used to map the i-th training pair, zi. Thus M is the number of specialized mapping

functions. Our model uses parameters θ = (θ1, . . . , θM , λ1, . . . , λM ), where θk represents the parameters

of the k-th mapping function, and is the prior probability that the k-th mapping function will be used to map

an input-output pair.

Using a maximum-likelihood criterion, we are interested in fi nding the optimal parameter settings for

our model; thus, we seek to maximize the joint log-probability:

θ∗ = arg max
θ

log q(Z|θ). (1)

Assuming independence of observations given θ, we obtain:

θ∗ = arg max
θ

∑

i

log q(zi|θ) (2)

= arg max
θ

∑

i

log
∑

k

q(ψi|υi, yi = k, θ)Q(yi = k|θ)q(υi), (3)

where we used the independence assumption q(υ|θ) = q(υ). The term q(υi) describes how input patterns

occur. For solving Eq. 3, this term is approximated by the empirical distribution implied by our training data;
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as a consequence, patterns that occur more often will have a larger effect in the maximization of Eq. 3. Due to

the sum of terms inside the logarithm of Eq. 3, this optimization is generally intractable. However, a variety

of practical approximate optimization methods exist, for example, methods that are based on alternating

minimizations [8]. Expectation Maximization (EM) [9, 26] updates are described in Sec. 4.

3.1.1 Choice of a Likelihood Function

Note that the above formulation is general. In particular, the form of the probability q(ψ|υ, yθ) was not

specifi ed. A key question in instantiating our approach is: what form should be used for q(ψ|υ, y, θ)? This

is the probability that output ψ was generated by the mapping function y, given the input υ and model

parameters θ. In this work we analyze the following possible cases:

1. A Gaussian joint distribution of input-output vectors: q(υ, ψ|y, θ) = N ((υ, ψ);µy ,Σy).

2. A Gaussian distribution, whose mean is the output of the y-th mapping function: q(ψ|υ, y, θ) =

N (ψ;φy(υ, θ),Σy).

3.2 The Generative Model

Our approach also involves the use of a generative model of images (or image features). In the problem of

human body pose estimation from a single image this generative model can be defi ned in a simple way. We

will assume that an image or image features are generated by sampling a pose from a prior distribution p(h)

and an image is then generated using the rendering function ζ such that:

p(x|h) = N (x; ζ(h),Σζ). (4)

It is important to notice that despite the fact that the generative model can be defi ned in a simple manner, the

function ζ is of a complex form. In our case, this makes probabilistic inference intractable as will be further

explained later.

4 Learning

An approximation method will be used in learning the discriminative model parameters. We will employ

an Expectation Maximization (EM) approach. EM provides a general framework for solving the maximum

likelihood parameter estimation problem in statistical models with hidden variables, like Eq. 3. Since the

EM algorithm is well known [9, 2, 26], we will only provide derivations specifi c to our formulation.
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Note that the unobserved random variables yi are independent given zi. Thus, the E-step reduces to

computing the posterior probabilities for each yi given the model parameters and observed data. We will

denote this posterior Q(yi = k|ψi, υi, θ) using the shortcut notation Q̃(t)(yi = k). We then have:

Q̃(t)(yi = k) = λkq(ψi|υi, yi = k, θ(t−1))/
∑

j∈C

λjq(ψi|υi, yi = j, θ(t−1)). (5)

Stated differently, this step estimates the responsibility of each mapping function, φk for each data point,

zi. Q̃(t)(yi = k) represents the so called responsibility of function k for data pair i. Also recall that

λk = Q(yi = k) is the prior probability that function k be used.

The M-step consists of fi nding θ(t) = arg maxθ EQ̃(t) [log q(Z,y|θ)]. In both of our cases we can show

that this is equivalent to fi nding:

θ(t) = arg max
θ

∑

i

∑

k∈C

Q̃(t)(yi = k)[log q(zi|yi = k, θ) + logQ(yi = k|θ)]. (6)

It is important to mention that this is valid if q(zi|θ) depends on yi and not on yj , for any j 6= i. Note

that for the distributions discussed above, this is true. We now present solutions for the cases described

above.

4.1 Case (1)

In this case we have:

q(υ, ψ|y, θ) = N (υ, ψ;µy ,Σy) = N (

[

υ

ψ

]

;

[

µυ

µψ

]

,

[

ΣυυΣυψ

Σ⊤
υψΣψψ

]

)y, (7)

where the subscript y is simply the mapping function number. We can show that the parameter learning

problem is reduced to a mixture of Gaussian estimation, for which it is straightforward to estimate θ using

EM. Moreover, the Bayesian estimate of ψ given an observed υ is also Gaussian: q(ψ|υ, y, θ) = N (ψ;µψ+

Σ⊤
υψΣ−1

υυ (υ − µυ),Σψψ − Σ⊤
υψΣ−1

υυΣυψ)y. Therefore in case (1), each function φk is just the mean of the

conditional distribution

φk(υ, θ) = (µψ + Σ⊤
υψΣ−1

υυ (υ − µυ))y=k. (8)

The confi dence of the estimate is given by the covariance Σk = (Σψψ − Σ⊤
υψΣ−1

υυΣυψ)y=k. However, this

expression does not depend on the input, a sometimes undesirable consequence of the given model. Thus,

each function φk is linear in the input vector from ℜc.
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4.2 Case (2)

In this case we have:

∂E

∂λk
=

∑

i

Q̃(t)(yi = k)
∂

∂λk
logQ(yi = k|θ) (9)

∂E

∂Σk

=
∑

i

Q̃(t)(yi = k)
∂

∂Σk

log q(ψi|yi = k, υi, θk) (10)

∂E

∂θk
=

∑

i

Q̃(t)(yi = k)[(
∂

∂θk
φk(υi, θk))

⊤Σ−1
k (ψi − φk(υi, θk))], (11)

where E is the cost function that we would like to maximize in Eq. 6.

This gives the following update rules for λk and Σk, where Lagrange multipliers were used to incorpo-

rate the constraint that the sum of the λk’s is 1:

λ
(t)
k =

1

N

∑

i

Q̃(t)(yi = k) (12)

Σ
(t)
k =

∑

i

Q̃(t)(yi = k)(ψi − φk(υi, θk))(ψi − φk(υi, θk))
⊤/

∑

i

Q̃(t)(yi = k) (13)

To keep the formulation general, we have not yet defi ned the form of the mapping functions φk. Whether

or not we can fi nd a closed form solution for the update of θk depends on the form of φk. For example if φk

is a non-linear function, we may have to use iterative optimization to fi nd θ
(t)
k . If φk yields a quadratic form,

then a closed form update exists.

Regarding our generative model, there is is very little learning involved. If ζ is very accurate, then we

could also tell very accurately the image that will be generated given a body pose h. In practice ζ can be

defi ned only approximately. We account for this by properly setting Σζ depending of how much noise is

expected to be present in the observations. This can also account for inaccuracies in the geometric model.

5 Inference

In this section, we refer to probabilistic inference as fi nding a full probability distribution for h given that

x = x∗ once an observation x∗ has been made (e.g., some image features were observed).

5.1 Inference using the Discriminative Model Alone

A valid approach to inference is to use the discriminative model alone. In order to understand how this differs

from our proposed solution (where we combine both, generative and discriminative models), we will now
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show what inference involves in terms of maximum a posteriori (MAP) estimation using the discriminative

model.

In a general sense inference involves fi nding a full probability distribution for h given x∗; the discrimina-

tive model directly provides this expression. In MAP estimation we just have to maximize it (i.e., we want to

fi nd the most likely output hypothesis h ∈ ℜt for a given observation x∗ ∈ ℜc): ĥ = arg maxh q(h|x∗) =

arg maxh

∑

y q(h|x∗, y)Q(y), where q(h|x∗) is a shorthand for q(h|x = x∗). Any further treatment de-

pends on the properties of the probability distributions involved.

In both Cases (1) and (2) considered in previous sections, we can write q(h|x, y) = N (h;φy(x),Σy).

Thus, in either case we have that q(h|x∗) is a mixture of Gaussians and if we want to fi nd the MAP estimate

we need to solve: ĥ = arg maxh

∑

yN (h;φy(x
∗),Σy)Q(y).

This result was obtained from performing (MAP) inference using our learned discriminative model

alone, where we learned q(h|x) as an approximation to the true distribution defi ned by p(h|x), using the

training data. Even though we could simply adopt this as a solution, it should not be surprising that we could

improve upon this by using our knowledge of p, the generative model.

5.2 Inference Using the Generative Model Alone

Using the generative model, inference involves fi nding the posterior p(h|x = x∗) (p(h|x∗) as a shorthand):

p(h|x∗) =
p(x∗|h)

p(x∗)
p(h) =

1

Zp
N (x∗; ζ(h),Σζ)p(h) (14)

Zp =

∫

N (x∗; ζ(h),Σζ)p(h)dh. (15)

There are however at least two diffi cult obstacles for achieving this:(1) The integral in Eq. 15 cannot be

solved easily and moreover, (2) we do not have an expression for p(h).

In MAP estimation, the goal is to fi ndĥ such that: ĥ = arg maxh p(h|x) = arg maxh N (x; ζ(h),Σζ)p(h),

needless to say that in the case of body pose estimation, this is in general, a highly complex non-linear opti-

mization problem (tracking) as we have seen before.

A key idea in this paper is that both obstacles would become much simpler if, somehow, we could

accurately obtain samples from p(h|x). Those samples could be used to (1) approximate this posterior and

(2) fi nd the most likely sample for MAP estimation. However sampling accurately from a given distribution,

in particular p(h|x), is in general an open problem [24].
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5.3 Inference and Importance Sampling. Combining Generative and Discriminative Mod-

els

In general, sampling can be used to estimate expectations of a given function I(w) with respect to some

probability density π(w) that we can evaluate at any point, but that we cannot sample from. Let us say

we need to calculate the integral I =
∫

π(w)I(w)dw, by approximating I employing R samples: Î =

1
R

∑R
r=1 I(w

(r)).

The question is how to appropriately generate the samples to obtain the best estimate for I . Sampling

can be used in more general tasks. Usually it is only necessary to evaluate π⋆(w) which is equal to π(w) to

within a multiplicative factor, π(w) = π⋆(w)/Z.

Since we cannot usually generate samples accurately, we need to account for our sampling inaccuracies.

Importance sampling is a method that accounts for this as follows: fi rst we come up with a proposal distri-

bution π′(w), which we can also evaluate (within a multiplicative factor) but from which it is possible to

sample; then we sample from π′(w), but also correct for the bias introduced when sampling, obtaining:

Î =
1

R

R
∑

r=1

π⋆(w(r))

π′(w(r))
I(w(r)). (16)

It can be shown that when R → ∞,
√
R(Î − I) ∼ N (0, σ2

π′), with: σ2
π′ =

∫

(π
⋆(w)
π′(w) I(w) − I)2π′(w)dw.

Thus, the expected variance of our estimate is proportional to σ2
π′ and inversely proportional to R [24].

We would like to know what the optimal proposal distribution is in order to maximize the accuracy of

our estimator ( minimize σ2
π′). The optimal proposal distribution to approximate I is given by a result in

[35, 7]:

π′(w) = π⋆(w)/

∫

π⋆(w)dw, (17)

the normalized function π⋆(w). Since, on purpose, we introduced π⋆(w) fi rst as a unnormalized distribution

originating from π(w), we know that upon normalization we will get back the original distribution π(w). A

similar justifi cation was used in [7], but their way of building a proposal distribution is different from ours.

Thus, in fi nding a posterior distribution p(h|x) for body poses given observed image features the parti-

tion function in Eq. 15 can be computed as follows:

Zp =

∫

p(x∗,h)dh ≈ 1

S

S
∑

s=1

p(x∗,h(s))/p(h(s)|x∗), (18)

using importance sampling to obtain the samplesh(s), taken from p(h|x∗). We have shown that the best

proposal distribution is p(h|x∗); unfortunately this is the distribution we are after, and of course we cannot

just sample from it.
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The main reason behind using generative and discriminative models together is to tackle this particular

problem of sampling from a good distribution. We will use the learned distribution q(h|x) (the discrim-

inative model) to approximate p(h|x), but just at x = x∗. This approximation is in terms of maximum

likelihood estimation and can also be seen as minimizing the KL divergence between the empirical distribu-

tion pe, given by the training data, and the model distributions q, parameterized by θ:

KL(pe(x,h)||q(x,h)) =

∫

pe(x,h) log[pe(x,h)/q(x,h)]dhdx, (19)

which can be proven to be equivalent to:

arg min
θ
Epe(x)[KL(pe(h|x)||q(h|x))], (20)

where θ parameterizes q. In practice, the expectation becomes a sum over the training data pairs, and we

obtain Eq. 1. Thus, the optimal distribution in this sense is the one that results from solving Eq. 1, to obtain

q(h|x). Of course, we assume that the data is composed by representative examples from p, so that the

empirical distribution pe is at all useful. Eq. 17 justifi es this choice since it tells us that in order to fi nd a

good approximation for the posterior p(h|x) we should fi nd a proposal distribution that is similar to it, as

intuitively expected. We may then ask if we could use this proposal distribution alone. The reason why this

is not a good idea is that, since we cannot usually fi nd a proposal distribution that matches the true posterior

perfectly, using this proposal distribution alone is expected to perform worse than when combined with our

accurate generative model. This is mainly because in regions where the proposal distribution q is bad at

approximating p, we can always evaluate p and note the error or discrepancy.

The distribution q(h|x) is an approximation to p(h|x) in the space of all distributions with the structure

specifi ed by the discriminative model (a mixture model in our case). For Gaussian mixture models, it is

know that this approximation can be made as accurate as we wish in the limit of infi nite data and mixture

components. Interestingly, we do not need to know explicitly what p(h) is in our generative model. Of

course, this is implicitly specifi ed by the training data. Thus, even if we use a not so good assumption for

p(h), still we know what we need to do in order to achieve a good estimate of the posterior. This is helpful

since we do not really know accurately what p(h) is (given that we may not have enough data to estimate it

accurately). In the following we simply use an uniform distribution (in a reasonable fi nite domain).

To summarize, in order to compute the posterior distribution of body poses h, given an observation of

image or image features x∗, we calculate and estimate for p(h|x∗) as follows:

p̂(h|x∗) =
1

Ẑp
N (x∗; ζ(h),Σζ)p(h), (21)

with Ẑp given by Eq. 18, but substituting p(h|x∗) by q(h|x∗) and using samples from q(h|x∗).
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5.4 Non-deterministic MAP Estimation: Multiple Samples (MS)

We are usually interested in providing likely samples from the posterior distribution, in particular we might

be interested in the most likely h. This is the idea behind MAP estimation, where we are interested in fi nding

ĥ = arg maxh p(h|x∗) = arg maxh p(x|h∗)p(h).

We know that the discriminative model distribution q(h|x) tries to approximate p(h|x), and therefore

it is good at minimizing the variance of the estimator. Due to this, we will use the discriminative model

distribution to provide samples for MAP estimation. In MAP estimation, we sample HSpl = {hs}s=1...S

using the proposal distribution q(h|x∗). Given the samples, the problem the becomes a discrete optimization

problem that can be solved easily:

ŝ = arg max
s
p(x∗|hs) = arg min

s
(x∗ − ζ(hs))

⊤Σζ(x
∗ − ζ(hs)), (22)

by using the Gaussian form of p(x|h) as given in Eq. 4. We remark that after using the samples HSpl as

a starting point, other more sophisticated methods could be employed. For example we could use Markov

chain Monte Carlo (MCMC) sampling [24, 44] to search for regions of higher probability. Also, instead of

stochastic methods, we could employ standard gradient descent methods to locally search for more likely

poses h (as in tracking). These methods may be helpful for some distributions but in general have several

drawbacks: (1) They are usually very slow in high dimensions and (2) given fi nite time, they are not very

useful/accurate if the posterior probability is very complex. Some methods have been proposed to alleviate

these problems, but this goes beyond our current contribution. Keeping this extension in mind, in this paper

we simply use the original samples HSpl to search for a MAP estimate. These estimates proved to be

suffi ciently accurate during our experiments.

5.5 Deterministic MAP Estimation: Mean Output (MO)

In certain applications, it might be advantageous to count with a very fast method for computing MAP

estimates. Two examples are: when working with multiple articulated bodies and in dynamic settings where

it is necessary to provide estimates at a high rate. Even though the time complexity of MS scales linearly

with the number of samples, this might not be fast enough. Motivated by speed constraints, here we propose

a very fast MAP estimation algorithm that still performs well in experiments. Unlike MS, this algorithm is

deterministic.

The structure of the problem, as well as the form of the discriminative distribution components (i.e.,

conditioned on the mixture label) q(h|x, y) employed (Gaussian), make it possible to construct this deter-

ministic approximation. The basic intuition is straightforward. For a given x = x∗, we ask each mapping
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function φk to give its most likely estimate for h. We then evaluate the probability of each function’s es-

timate via the generative model distribution p(x∗|h). This approximation is good in practice, as will be

demonstrated in the experiments.

To justify this deterministic approximation, we note that due to its concavity properties, the probability of

the mean is maximal in a Gaussian distribution; i.e., it is the most-likely value. Formally, in both Case (1) and

Case (2) described earlier, q(E[h|x∗, y, θ]) ≥ q(h′|x∗, y, θ), for any h′. Consider again the set of samples

HSpl = {hs}s=1...S generated in the MS approximation. We can build a set of samples Hφ = {hφk}k=1...M

that has the property ∀y,maxk q(h
φ
k |x∗, y) ≥ maxs q(hs|x∗, y), simply by setting h

φ
k = φk(x

∗, θ).

This insight leads to a deterministic approximation for inference, the Mean Output solution (MO). This

approximate solution relies on the observation that by considering the means φs(x
∗), we would be consid-

ering the most likely output of each mapping function (i.e., each mixture component in the discriminative

model), given the input. Obviously we expect the discriminative model provides a good approximation of

our generative model posterior distribution as discussed above. Also, the smaller the overlap among the

distributions associated with each function, the better the accuracy of this approximation.

In MO approximate inference, the expression to be minimized is the same as that used in Eq. 22, except

for the use of the M means instead of the S samples:

k̂ = arg max
k∈C

p(x∗|hφk) = arg min
k∈C

(x∗ − ζ(hφk))
⊤Σζ(x

∗ − ζ(hφk)). (23)

This generally requires substantially less computation than would be required in the MS approach.

6 Example Application: Articulated Pose from Visual Features

The formulation presented in this paper is rather general, and could be applied in a number of supervised

learning problems for which the output-to-input (feedback) map is relatively easy to compute; thus allowing

us to specify an accurate generative model. To demonstrate and test our framework, we have developed a

system that uses the our approach to infer articulated pose from low-level visual features. In particular, we

focused on pose estimation of the human hand and body from an image silhouette. In this class of computer

vision applications, ground truth datasets for training can be obtained via motion capture gloves or body

suits, and computer graphics rendering can be used to generate the input-output pairs used in supervised

learning. We will now give details of this demonstration system.
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Figure 3: Example of the 86 silhouettes obtained via computer graphics rendering for a given a 3D hand pose. Views

are distributed approximately uniformly over the view sphere.

6.1 3D Hand Pose Estimation

The goal is to recover detailed 3D hand pose from silhouette features computed from a single color image.

Hand pose is defi ned in terms of the hand joint angles. In general, we are also interested in global orientation

of the hand. We explore two applications: estimation of the internal joint angles only, and later, estimation

of both internal joint angles and global orientation of the hand.

6.1.1 Hand Model

We utilize the hand model provided in the VirtualHand programming library [42]. The model parameters are

22 joint angles. For the index, middle, ring and pinky fi nger, there is an angle for each of the distal, proximal

and metacarpophalangeal joints. For the thumb, there is an inner joint angle, an outer joint angle and two

angles for the trapeziometacarpal joint. There are also abduction angles between the following pairs of

successive fi ngers: index/middle, middle/ring and ring/pinky. Finally, there is an angle for the palm arch, an

angle measuring wrist flexion and an angle measuring the wrist bending towards the pinky fi nger. However,

because the former two wrist angles also encode global orientation, we decided not to model them in our

application. Hence, ignoring these two angles, our model has 20 DOF for the internal hand confi guration.

All of these 20 angles are relative to two global orientation angles. These two angles will encode the

camera viewpoint (or alternatively hand 3D rotation). Imagine a sphere surrounding the hand model, i.e., a

fi xed hand center point is at the center of the sphere. For ease of reference, we will employ the widely used

latitude and longitude notions. The fi rst angle β1 represents the latitude from which we are looking at the

hand, the second angle β2 represents the longitude. We have defi ned β1 ∈ [0, π], with zero and π being the

poles of the sphere and β2 ∈ [0, 2π). Thus, in summary our full hand model has 22 DOF.
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6.1.2 3D Hand Motion Datasets

Using a CyberGlove, we collected approximately 9,000 examples of 3D hand poses. This data included

hand confi gurations from American Sign Language (ASL) and other confi gurations informally performed

by several subjects. Using computer graphics and an artifi cial hand model, we then rendered each captured

hand pose from multiple viewpoints on the view sphere. We defi ned a set of 86 viewpoint angle pairs

(β1, β2) so that the sphere surface is sampled approximately uniformly. Thus we obtained a full dataset of

9, 000 × 86 views. Each view has an associated binary image mask (silhouette), and a 22 DOF pose vector.

Fig. 3 shows the 86 viewpoints used in the dataset for a particular confi guration.

From these silhouettes, we extract the visual features that will be used for further processing. In our

implementation, we used two classes of features (these features are not used together): Hu moments and

Alt moments. Alt moments [1] are translation and scale invariant, but not rotation invariant. Hu moments

[19] are invariant to translation and scaling, but also invariant to rotation in the image plane. These moment

features were used in our implementation because they are relatively easy to compute, and they provide

invariants that are appropriate for our demonstration application. However, our general formulation can

be used with other visual feature representations if desired. Detailed examination of the feature selection

problem is outside the scope of this paper, and remains a topic for future research.

We defi ne two experimental datasets:

1. Hand-Single-View: In this dataset, the hand is viewed from only one viewpoint (β1 = π/2, β2 = 0),

generally making the palm of the hand visible. Silhouette features are computed using Alt moments.

This yields approximately 9,000 input-output pairs.

2. Hand-All-Views: In this dataset, the hand is viewed from all 86 viewpoints. Silhouette features are

computed using Hu moments. This yields approximately 750,000 input-output pairs.

6.1.3 Hand Detection and Segmentation

For live video input, we will use video sequences collected with a color digital camera. It will be assumed

that these sequences have a static background and only one person is present. In this implementation, we

are not considering hand occlusion analysis, which by itself is a diffi cult task. Our system tracks both hands

of the user automatically using a skin color tracker [38, 34].
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6.2 2D Human Body Pose Estimation

In this application, our goal is to recover the articulated pose of a human body observed in a single image.

The methodology followed is very similar to that used in the estimation of hand pose. However, instead of

joint angles, body pose will be specifi ed in terms of marker positions at a predetermined set of joints. We

will estimate the 2D positions of these body markers in the image plane.

6.2.1 Human Body Model

The human body model is defi ned in terms of 20 3D marker positions (60 DOF). The 20 markers are

distributed as follows: three markers for the head, three markers for the hip/back bone articulation, plus one

marker for each shoulder, elbow, wrist, hand, knee, ankle, and foot. For computer graphics rendering, the

body model is composed of cylinders of equal width. The cylinders connect the markers to form the standard

human body structure. The thorax is modeled using a wider cylinder. Because we are only interested in the

shape of the projected model, we do not include texture or illumination in our rendering.

6.2.2 Human Body Pose Dataset

Human body motion capture data was obtained from several sources: http://www.biovision.com, Matt

Brand’s dataset [5], and several demo sequences in the software package Character Studio. In total there

are 32 captured sequences that depict variations of different activities: dancing, walking, kicking, wav-

ing, throwing, jumping, signaling, crouching down. The total number of frames collected is approximately

7,000, mostly at 30 frames/second. Using computer graphics and our artifi cial body model, we then rendered

each frame from 16 equally-spaced viewpoints on the equator of the view sphere centered at the hip of the

body model. For each view, we also used the camera model to obtain the 2D marker positions in the image

plane. Thus we obtained a full dataset of approximately 7, 000 × 16 views. Each view has an associated

binary image mask (silhouette) and a 40 DOF projected marker vector. From the silhouettes, we extract the

visual features that will be used as input. We have chosen Alt moments [1] as our visual features, mainly

due to their ease of computation and invariance to translation and scaling. We call this the Body-All-Views

dataset.

6.2.3 Detection and Segmentation

For live video input, we use sequences collected with a color digital camera. It is assumed that these se-

quences have a static background, only one person is present, and the person is fully-visible. We use a simple
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and widely-used human body segmentation scheme [17, 43]. The technique employs statistical learning to

acquire a model of the background appearance, where each pixel’s color (luminance) is represented by a

Gaussian distribution. Segmentation is then approached using maximum-likelihood, where each pixel is

classifi ed as belonging to the background or the foreground (human body).

6.3 Common Implementation Details

We know briefly discuss implementation details common to both applications.

6.3.1 Mapping Functions

In Sec. 3, it was not specifi ed what class of (deterministic) mapping functions φk were to be used. Our

framework is practically independent of this choice. However, from Eq. 11 we can notice that there are clear

advantages in the M-step if these functions are differentiable with respect to their parameters. In the case of

quadratic or linear functions, the M-step can be performed exactly in one step. However, the power of these

functions is limited. In our implementation each function is a multi-layer perceptron with one hidden layer

(MLP). For this non-linear function there does not exist a closed-form solution for Eq. 11. We used four to

fi ve iterations of the conjugate gradient descent method per M-step.

6.3.2 Generative Model Details: Feedback Functions

There are at least two ways to defi ne this function. On the one hand, ζ could be a computer graphics

rendering function. On the other hand, we could estimate an approximate ζ̂ given a set of output-input

training examples. In our implementation, we experimented with both ideas. For ζ , we used computer

graphics renderings of our hand and body models obtained via OpenGL. For ζ̂, we used a one hidden-

layer perceptron, with twenty hidden nodes. In our experience, this provides an adequate and effi cient

approximation.

The approximate feedback function is useful primarily because it is faster to compute than a graphical

rendering followed by visual feature computation. The key issue to keep in mind is that the feedback

mapping is assumed to be simple (one-to-one or even many-to-one) or that it has a known form, otherwise

if we assume too simple functional forms, we would only introduce more estimation errors. Of course, this

is just a practical issue. If the feedback mapping is too complex to approximate easily, we could always rely

on the available feedback function ζ .
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6.3.3 Computational Performance

For an Athlon 1400 PC with 2GB memory, running unoptimized Matlab 6.0 code, it takes approximately

fi ve hours to train a model with 10 dimensions (input) and 10 dimensions (output), using 4500 patterns,

and 40 single hidden layer perceptrons with fi ve hidden nodes each. The system can infer body poses

at approximately 11 frames per second, using the Mean Output (MO) algorithm. This approach’s related

computations take approximately 70% of this time. This time includes OpenGL-based rendering of body

poses in ζ . The rest is spent in segmentation and feature calculations. The Multiple Sample (MS) algorithm

takes time proportional to the number of samples used. Of course, segmentation and feature computation for

the segmented image is done only once. We noticed that for our implementation, if we use the approximate

feedback function, ζ̂ , the rendering time is reduced to approximately one-fourth.

6.3.4 Early Stopping During Training

During model training, we used cross-validation for early stopping and to avoid over-fi tting as follows:

• Training data: Stop if the log-likelihood changes less than 0.5% averaged over the last ten iterations.

• Held out data: Stop if the held out data log-likelihood average change is negative over the last ten

iterations. Held out data was chosen in the same way as the training and test data.

• Number of iterations: Stop if a maximum of 200 iterations is reached.

7 Experimental Results

We now present experimental results obtained using our approach in estimating the pose of the human hand

and body. For many additional performance experiments not included due to space limitations, the reader is

referred to [33] and for several MO estimation videos to http://www.psi.toronto.edu/∼romer/SMAHandVideos.htm.

The SMA application independent Matlab code can be found at http://www.psi.toronto.edu/∼romer/SMACode.htm.

7.1 Hand Pose Estimation Given a Fixed Camera Viewpoint

In our fi rst experiments, our approach is tested in the task of recovering 3D human hand pose given a fi xed

camera viewpoint: a view towards the palm of the hand. For training, we used the Hand-Single-View dataset,

which contains a total of approximately 9,000 examples. Of these, 3,000 were used for training and the rest

for testing. All experiments were performed on a test set that shared no common poses with the training set.
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MO-MAP (ζ̂) MS-MAP (ζ̂) MS-20 (ζ̂) MO-MAP (ζ) MS-MAP (ζ) MS-20 (ζ) Rand/train Range

Ê 0.1322 0.1667 0.1465 0.1651 0.1769 0.1785 0.4294 1.55
σ2
Ê

0.0317 0.0415 0.0371 0.0425 0.0452 0.0547 0.1630 -

Table 2: Mean absolute error Ê and variance σ2

Ê
. Inference performance using different rendering functions (ζ and ζ̂)

and inference algorithms (MO-MAP and MS-MAP). Also shown, the accuracy of the most probable reconstructions

given by MS (MS-20). As a point of comparison, results are presented for an algorithm that randomly chooses one of

the training examples as result (Rand/train). The average range of the data is also shown as a reference point. All units

are in radians.

The input-output pairs were then defi ned as follows. The input consisted of 10 Alt moments computed from

the silhouette of the hand, as described in Sec. 6.1. The output consisted of 20 joint angles of a human hand

linearly encoded by nine values using Principal Component Analysis (PCA).

The number of mixture components for the discriminative model (mapping functions) was set to 20.

This number was found to be optimal in the sense of the Minimum Description Length (MDL) principle

[32]; we found this number via a rough model search (testing MDL and getting the score for the optimized

model with 10,12,...,24 functions). Each mapping function (for each of the Gaussians in the mixture) was a

MLP with seven hidden neurons.

7.1.1 Quantitative Results

We randomly selected approximately 4,000 frames not included in the training set. Since ground-truth is

available, we used the average absolute difference per joint angle (between ground-truth and estimate) as

error measure. Table 2 summarizes our results (see caption).

These experiments quantitatively confi rmed that MO inference provides a reasonable approximation, at

least for this dataset. Recall from Sec. 5.5 that MO inference was based on the premise that the most-likely

reconstruction given by each discriminative mixture component provides a good approximation to the best

solution given by the full probability distribution.

Fig. 4 shows example reconstructions obtained via the MO approach. In many cases, the reconstruction

is close to the ground truth. In other cases, the silhouette is highly ambiguous, and the reconstruction

does not match ground truth. A good example is shown in image pair number 34 (the last row-pair, fourth

column), where the camera’s image plane is perpendicular with the axis of the pinky fi nger. Note that the

estimated hand pose disagrees with the ground-truth in the several joint angles associated with this fi nger.

Similar effects with other joint angles can be seen in example pairs 8, 16, 27, etc.

Ambiguous confi gurations are indeed very common with a binary image representation. Note that in

other ambiguous cases shown in Fig. 4 reconstruction is closer to ground truth, e.g., pairs 19, 20, etc.
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Figure 4: 40 examples of estimated hand poses chosen uniformly at random. Reconstruction found using the Mean

Output (MO) approach. The feedback function used was estimated from data. Each example consists of a pair of

images: ground-truth (top), and estimate obtained using the mean output algorithm (bottom).

Possible reasons for this agreement are diverse:

1. The input is not really ambiguous (probabilistically speaking) in the observation space. The other

possible outputs (geometrically speaking) associated with this input may be very unlikely given the

training set. This depends on the underlying structure of the confi guration manifold. One of the main

goals of a learning algorithm is to fi nd this structure. Indeed these results show that our algorithm is

fi nding this structure, since in most cases, MO fi nds a valid sample from the manifold.

2. The learned discriminative model was accurate at modeling the given input using a single mixture

component(i.e., few mapping functions were trained to map this input, therefore the rest of the func-

tions produced irrelevant (bad) outputs).

3. By chance, among many very similarly probable solutions, the right one was chosen. Of course,

even with the help of chance in this case, the discriminative model needed to be accurate enough at

approximating the true posterior so that samples were relevant at all.
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7.1.2 Experiments with Real Images

We now test our approach using uncalibrated video sequences, where the camera is pointing towards the

palm of a person’s hand. On average, the hand occupied an area of approximately 200 × 200 pixels. Seg-

mentation was obtained as described in Sec. 6.1.3. In the fi rst experiment, we use the MO approach to obtain

a single best estimate for each segmented hand. Estimates for 40 frames, taken 0.9 seconds apart, are shown

in Fig. 5. Visually we can notice that in most cases the estimate is a plausible explanation of the segmented

silhouette. However, there are also a few inaccurate reconstructions.

In general, it is expected that the model cannot perform well in all confi gurations (this is true for almost

any machine learning model) due to the following reasons:

1. The proposal distribution q(h|x) does not resemble the true posterior distribution p(h|x) at the par-

ticular x = x∗: learning is the result of optimizing an expected or average error.

2. The real hand and synthetic hand model features are similar but not the same. Anthropometric differ-

ences can influence inference accuracy.

3. Even the best model could fail in some confi gurations. Information theory tells us that this is always

the case except when the information in the features is equal to the entropy of the body pose confi g-

urations; in other words, when features tell us everything needed about the confi guration. Otherwise,

there might be multiple explanations for a given visual feature vector.

In order to test the ability of the system to provide these multiple explanations, we tested the Multiple

Samples (MS) approach. Fig. 6 shows the estimates found using MS. These estimates can be interpreted as

possible hypotheses of hand confi gurations given the silhouettes. Note that MS tends to bias the hypotheses

towards samples from the distribution q(h|x∗), but we can account for this when building a full probability

distribution, as explained in Sec. 5.3

7.2 3D Hand Pose Reconstruction Given an Unrestricted Camera Viewpoint

Our approach is now tested in the task of recovering 3D human hand pose from an unknown camera view-

point. For training, we used the Hand-All-Views dataset, which contains a total of approximately 750,000

examples. Of these, 18,000 were used for training and the rest for testing. The input-output pairs were then

defi ned as follows. The input consisted of seven Hu moments computed from the silhouette of the hand,

as described in Sec. 6.1. The output consisted of 20 internal joint angles of the hand and two orientation

angles. This 22 DOF representation was linearly encoded by nine values using PCA.
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Figure 5: 40 examples of estimated hand poses captured every 0.9 secs from real video (RV). Reconstruction found

using the Mean Output (MO) approach. The feedback function was computed using computer graphics rendering.

The number of mixture components (mapping functions) was set to 45. This number was determined

via the MDL criterion, as before (testing for the best MDL score using a model with 35,37,...,51 functions).

Each function was a MLP with seven hidden nodes.

7.2.1 Quantitative Results

As before, we computed the absolute error in estimating hand pose, and quantitatively compared this mea-

sure across views. Fig. 7 shows the error of the most likely estimate found using the MO approach. From

the graphs we see that views towards the palm of the hand (90◦) are slightly easier to reconstruct on average,

while the variance seems similar across views. As expected, the average error is higher than that obtained

for the fi xed view hand pose reconstruction experiments. It seems that for unrestricted hand views it is a bit

advantageous to use the computer graphics feedback function ζ . This is probably because estimating this

inverse mapping ζ̂ (to defi ne the generative model) over unrestricted viewpoint is more complicated than for

only frontal hand views (and the mapping is likely to be more complex also).

Fig. 8 shows the results using the MS approach. Fig. 8(a) shows the error associated with the best

sample. This error behaves very similarly to the MO error. Fig. 8(b) shows the average error computed

using the best 20 samples. This error is higher than that of the best sample. Note that this is not an obvious
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Figure 6: Example estimated hand poses obtained using the Multiple Sample (MS) approach using real video (RV).

The feedback function was estimated from data.

result given that the best sample is determined without having knowledge of ground-truth. In fact, if the

average error of the best 20 samples were lower than that of the best sample, then we could infer that our

algorithm is very inaccurate at determining what samples are better. Thus this result positively endorses our

MS algorithm.

For comparison, we used the ground-truth to select the best sample, based on minimum error. In other

words, we have an oracle that picks the sample closest to the ground-truth. The resulting performance graph

is shown in Fig. 8(c). This represents the lower-bound on the reconstruction error using the learned forward
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Figure 7: Mean Output (MO) inference performance for unrestricted view tests at given viewpoint latitudes (averaging

over longitude). The feedback function is (a) the estimated ζ̂ (b) the computer graphics rendering ζ. A frontal view of

the hand palm is at latitude β1 = π/2 , longitude β2 = 0. For reference, the performance of an algorithm that chooses

the estimate at random from the training data is shown. The angle range is in average 1.87 radians.
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Figure 8: Multiple Samples (MS) inference for unrestricted view tests at given viewpoint latitudes (averaging over

longitude). Feedback functions is the estimated ζ̂. A frontal view to the hand palm is at latitude β1 = π/2 , longitude

β2 = 0. (a) Most probable sample. (b) Average over all samples (20 most probable samples taken). (c) Best sample

(determined using ground-truth information for comparison). For reference, the performance of an algorithm that

chooses the estimate at random from the training data is shown. The angle range is in average 1.87 radians.

model. The graph is interesting in the sense that it separates the errors from the forward and feedback

models.

7.2.2 Experiments with Real Images

We test our approach using video of hands (in any orientation) collected from a single uncalibrated camera.

Pose estimates from 40 frames (taken every 0.9 secs apart) obtained via the MO approach are shown in

Fig. 9. Note that there are incorrectly-segmented hands in this sequence. We decided to leave these in to

avoid frame rearrangements (losing the uniform frame sampling), to show that segmentation does not always

work correctly, and to show that this approach is inherently robust to extreme segmentation errors. In this

experiment, there was usually visual agreement between reconstruction and estimate as seen in the fi gure.

Note that even for a human observer, looking at the segmented silhouettes in the fi gure, reconstruction is

sometimes ambiguous. There are also some confi gurations for which the system did not perform correctly.

Fig. 10 shows the estimates obtained via the MS approach. The frames shown were taken approximately
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every 0.9 seconds. In the second row, we can see some limitations of the Hu moment feature space: some-

times, different hand orientations are very similar in the feature space. These apparently different hypotheses

are close to each other in terms of their probability, given the features. The same effect repeats clearly in

the third and sixth row. This problem might be alleviated by using a different input feature space. At an

extreme one might consider the full silhouette as a feature. Of course there are important trade-offs to take

into account when considering different features; e.g., invariants, and dimensionality.

RV

MO

RV

MO

RV

MO

Figure 9: 40 examples of estimated hand poses captured every 0.9 secs from real video (RV). Reconstruction found

using the Mean Output (MO) approach. The feedback function was computed using computer graphics rendering.

7.3 2D Human Body Pose Reconstruction

In order to show that our approach can be employed, with no change, to perform other similar tasks (possibly

with a different representation), here we now conduct performance tests in the task of estimating human

body pose from a single image. The goal is to estimate the 2D locations of body markers in the image,

given visual features computed from the person’s silhouette. In this experiment, we use the Body-All-Views

dataset, which contains a total of of over 100,000 samples. Of these, 8,000 were used for training and the

rest for testing. The input-output pairs were defi ned as follows. The input consisted of the 10 Alt moments

computed from the silhouette. The output consisted of 20 2D marker positions (40 DOF), which were then

linearly encoded by nine values using PCA.
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RV MO S1 S2 S3 S4 S12

Figure 10: Example estimated hand poses obtained using the Multiple Sample (MS) approach and real video (RV).

The feedback function was computed using computer graphics rendering.

The number of mixture components in the discriminative model was set to 15. This number was deter-

mined via the MDL criterion, exactly as before. Each function is a MLP with seven hidden nodes.
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Figure 11: Example reconstruction of frames from test sequences with computer graphics-generated silhouettes.
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Figure 12: Root mean-square-error (divided by number of markers) and variance per camera viewpoint (every 2π/32
rads.). Units are percentage of body height. Approx. 110,000 test poses were used.

7.3.1 Quantitative Results

Fig. 11 shows the reconstruction obtained with the MO approach for frames taken from three synthetic

sequences excluded from the training set. The agreement between reconstruction and observation is easy to

perceive for all frames. Also, for self-occluding confi gurations, the estimate is still similar to ground-truth.

Fig. 12 shows the average marker error and variance per body orientation in percentage of body height.

Note that the error is bigger for orientations closer to 0 and π radians. This intuitively agrees with the notion

that at those angles (side-views), there is less visibility of the body parts. We consider this performance

promising, given the complexity of the task and the simplicity of the approach. Just as a reference point,

by choosing poses at random from those in the training set, the RMSE was 10.35% of body height (with a

standard deviation of 4.4%). In related work, quantitative performance has usually been ignored, in part due

to the lack of ground-truth and standard evaluation datasets.
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7.3.2 Experiments with Real Images

We now test the approach using real video sequences of human body motion. We use the basic segmenta-

tion approach described in Sec. 6.2.3 to obtain silhouettes. Fig. 13 shows examples of system performance

obtained via the MO approach for several relatively complex motion sequences. Even though the character-

istics of the segmented body differ from the ones used for training, good performance is still achieved. Most

reconstructions are visually close to what can be thought of as the right pose reconstruction. Body orienta-

tion is also accurate. In the Figure, we can see two particularly diffi cult confi gurations at the second row of

real video (RV) images, fourth-sixth columns; the arm confi guration is diffi cult to estimate. This could be

due to the lack of relevant training data, as a consequence the discriminative model q may not approximate

the generative model p very well around the input vector. In general, an important issue to keep in mind

is that the visual differences between the rendered model and the real body observed could become critical

and thus accurate rendering may be desirable. This varies from application to application; however in any

case the general inference approach presented here remains the same.

In this work, we did not pursue use of a more realistic human body renderer. Due to differences in shape

and width of body components observed in training versus testing, the visual features may differ. This is a

relevant point since in almost all learnig models, it is expected that the training data be a good approximation

to the real test data. Improving the match between visual features used in training and testing, and thus

potentially the overall performance, is an area that we plan to investigate in future research. Despite the

fact that we have ignored differences in anthropometric characteristics between CG and real silhouettes,

the performance observed for both articulated objects (hands - human bodies) is excellent given that only a

single image is assumed available.
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Figure 13: Reconstruction obtained from observing a human subject (every 10th frame).
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8 Conclusions

In this paper, we have described a novel method that allows us to infer 3D and 2D articulated body pose

from observed visual features in a single image, a problem usually regarded as ill-posed. This was done by

combining generative and discriminative models to solve the complex probabilistic inference problem. This

approach is most useful when the generative model is accurate (e.g., we have an inverse mapping function)

but it is diffi cult to perform inference using this model alone.

In order to solve the inference problem (and also perform MAP estimation), we have shown that a

mathematically sound approach is to use a discriminative model and learn its parameters using relevant

training data. The probability distribution implied by the discriminative model can be used as a proposal

distribution to generate samples and fi nd a posterior probability distribution (perform approximate inference)

under the (accurate but complex) generative model.

When comparing it to other relevant methods, we can fi nd alternative (dual) interpretations of this frame-

work. The use of a generative model (through ζ) affords an alternative to complex discriminative models;

for example, it is an alternative to the gating networks of the Mixture of Experts paradigm [23]. In general,

instead of learning increasingly complex discriminative models such as [16, 12], we can exploit an accu-

rate generative model and learn a simpler discriminative model. A clear advantage of using a generative

model in this way is that it can provide useful information on the structure of the problem, a structure that

discriminative models try to blindly uncover.

Our approach was demonstrated in a computer vision system that can estimate the articulated pose

parameters of a human body or human hands, given features computed from a single image. This is a

particularly diffi cult problem because this mapping is highly ambiguous, complex and it is infeasible to

perform inference using the discriminative model. We have obtained promising results even using a very

simple set of image features, such as moment invariants of the body silhouette. Choosing the best subset of

image features for this application is by itself a complex problem, and a topic of ongoing research.

This approach offers several advantages over many previous methods for articulated pose estimation.

These have tried in numerous ways to use camera geometry and/or model registration to perform pose esti-

mation, resulting in iterative procedures that require careful choice of initial conditions (model placement).

We have shown how in some cases these alternative approaches could be seen as inferring a posterior distri-

bution using the generative model only. We have used camera geometry for defi ning our generative model

but have not tried to solve the resulting optimization problem directly, instead we have had the help of the

proposed discriminative model. In our approach no iterative minimization methods are used in pose infer-
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ence. Moreover, inference is fully automatic – no manual initialization of the articulated model is required.

Another set of previous approaches attempt to learn articulated model dynamics [5, 18, 40]; however, learn-

ing dynamics requires substantially more training data, and tends to produce systems that are biased towards

specifi c motions. Our framework avoids this and infer pose from a single image only. However it is clear

that in highly constrained environments, models of dynamics can provide an enormous advantage. In this

paper we have chosen not to restrict the application domain yet, but we have proposed a general method that

could be extended in different directions, one of them could involve taking into account the dynamics if the

application domain thus allows.

Several interesting problems remain for future work. Within the context of articulated pose estimation.

For example, (1) adapt the system to a specifi c body morphology, one of the major issues affecting per-

formance and (2) integration of pose estimation with image segmentation for potentially greater robustness

to occlusion and noise. Methods for incorporating knowledge of dynamics in the same framework should

be investigated, as discussed in [33]. Another general problem is how to learn what the best (e.g., visual)

features are for specifi c problems or datasets. While promising advances have been made, extension of our

framework to incorporate such concepts remains a topic for future investigation.
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