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Abstract

Learning models for detecting and classifying object cate-

gories is a challenging problem in machine vision. While

discriminative approaches to learning and classification

have, in principle, superior performance, generative ap-

proaches provide many useful features, one of which is

the ability to naturally establish explicit correspondence

between model components and scene features – this, in

turn, allows for the handling of missing data and unsu-

pervised learning in clutter. We explore a hybrid gen-

erative/discriminative approach using ‘Fisher kernels’ [1]

which retains most of the desirable properties of generative

methods, while increasing the classification performance

through a discriminative setting. Furthermore, we demon-

strate how this kernel framework can be used to combine

different types of features and models into a single classi-

fier. Our experiments, conducted on a number of popular

benchmarks, show strong performance improvements over

the corresponding generative approach and are competitive

with the best results reported in the literature.

1 Introduction

Automatically detecting and classifying objects and object

categories in images is currently one of the most interesting,

useful, and difficult challenges for machine vision. Much

progress has been made during the past decade: most signif-

icantly in our ability to formulate models that capture the vi-

sual and geometrical statistics of natural objects, algorithms

that can quickly match these models to images, and learning

techniques that can estimate these models from training im-

ages with minimal supervision [2, 3, 4, 5, 6, 7, 8]. However,

significant challenges remain before we can match human

ability

One may divide all learning/classification methods into

two broad categories. Call y the label of the class and x the

data associated with that class which we can measure: gen-

erative approaches will estimate the joint probability den-

sity function p(x, y) (or, equivalently, p(x|y) and p(y)) and

Figure 1: Schematic comparison of the generative and hybrid

approaches to learning discussed in this paper.

will classify using p(y|x) which is obtained using Bayes’

rule. Conversely, discriminative approaches will estimate

p(y|x) (or, equivalently, a classification function y = f(x))
directly from the data.

The prevailing wisdom amongst machine learning re-

searchers is that the discriminative approach is superior:

why bother learning the details of the models of different

classes if one can learn directly a simpler criterion for dis-

crimination [9]? Indeed, it has been shown that the asymp-

totic (in the number of training examples) error of discrim-

inative methods is lower than for generative ones [10]. Yet,

amongst machine vision researchers generative models re-

main popular [3, 4, 5, 6, 11, 12].

Generative approaches have a number of attractive prop-

erties. First, visual object recognition should be robust to

occlusion and missing features. Generative methods pro-

vide an intuitive solution to both of these problems by al-

lowing one to establish ‘correspondence’ between parts of

the model and features in the image. This can be accom-

plished by marginalizing p(x|y) over the missing features

and multiplying by the probability of the given pattern of

occlusion one may calculate a new pdf p(x′|y) for the ob-

served features x′ and generate a new classifier [4]. Second,
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collecting training examples is expensive in vision. Ng and

Jordan [10] demonstrated both analytically and experimen-

tally that in a 2-class setting the generative approach often

has better performance for small numbers of training exam-

ples, despite the asymptotic performance being worse. Fur-

thermore, there is some evidence that prior knowledge can

be useful [14] within a generative object recognition set-

ting, and generative models tend to easily allow for the in-

corporation of prior information. In addition, we ultimately

envision systems which can learn thousands of categories;

in this regime it is unlikely that we will be able to learn

discriminative classifiers by considering simultaneously all

the training data. It is therefore highly desirable to design

classifiers that can learn one category at a time: this is easy

in the generative setting and difficult in the discriminative

setting. Lastly, very few discriminative approaches have

been demonstrated that can learn from examples that con-

tain clutter and occlusion, while this is possible with gener-

ative approaches that make explicit hypotheses on the loca-

tion and structure of the ‘signal’ in the training examples.

Is it possible to develop hybrid approaches with the flex-

ibility of generative learning and the performance of dis-

criminative methods? Jaakkola and Haussler have recently

shown that one can transform a generative approach into

a discriminative one by using ‘Fisher kernels’ [1]. In this

paper we show that one can calculate Fisher kernels that

are applicable to visual recognition of object categories

and explore experimentally their properties on a number

of popular and challenging data-sets. Several other kernel-

based approaches have been suggested for object recogni-

tion [15, 16, 17], including Vasconcelos et al. [17] who

exploit a similar paradigm, using a Kullback-Leibler based

kernel and test on the COIL data-set.

In section 2 we review the idea of Fisher kernels. In

section 3 we develop our generative model and show how

Fisher kernels can be applied to these. In section 4 we

present experiments. We conclude with a discussion in sec-

tion 5.

2 Kernel Methods

For supervised learning problems such as regression and

classification, kernel methods have proven to be a very suc-

cessful methodology. As argued in the introduction, our

interest is in combining generative models with these pow-

erful discriminative tools for the purpose of object recogni-

tion. Recognizing that this is a classification task in essence,

we have chosen to use support vector machines (SVM) [9]

as our kernel machine.

The SVM (like all kernel methods) process the data in

the form of a kernel matrix (or Gram matrix) which rep-

resents a symmetric and positive definite n × n matrix of
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Figure 2: Performance comparison of various kernels on several

data-sets. The parameters used to train and test these models are

described in the experimental section. The polynomial kernel was

of degree 2. The y-axis indicates the classification performance,

note that the scale starts at 90%. These results were averaged over

5 experiments. 100 train/test examples used.

similarities between all data-items. A simple way to con-

struct a valid kernel matrix is by defining a set of features,

φ(xi), and to define the kernel matrix as,

K(xi, xj) = φT (xi)φ(xj) (1)

The generative model will have its impact on the classi-

fier through the definition of these features. In particular,

we will follow [1] in using “Fisher scores” as our features.

Given a generative probabilistic model they can be extracted

as follows,

φ(xi) =
∂

∂θ
log p(xi|θ

MLE) (2)

where θMLE is the maximum likelihood estimate of the pa-

rameters θ. The value of θMLE is determined by balancing

the Fisher scores,

∑

i

∂

∂θ
log p(xi|θ

MLE) =
∑

i

φ(xi) = 0 (3)

Hence, data-items compete to determine the MLE value of

the parameters. Two data-items that exert similar forces on

all parameters have their feature vectors aligned resulting in

a large positive entry in the kernel matrix.

Since it is not a priori evident that the data can be sepa-

rated using a hyperplane in this feature space it can be ben-

eficial to increase the flexibility of the separating surface

(making sure the the problem is properly regularized). This

is easily achieved by applying non-linear kernels such as

the RBF kernel or the polynomial kernel in this new feature

space, i.e. K(φ(xi),φ(xj)) with,

KRBF(xi, xj) = exp

(

−
1

2σ2
||φ(xi) − φ(xj)||

2

)

(4)

KPOLp
(xi, xj) = (R + φ(xi)

T φ(xj))
p (5)
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We mention that from a mathematical point of view it is

more elegant to define inner products relative to the inverse

Fisher information matrix [1], but we did not see significant

performance gains for these classification tasks using the

Fisher information matrix.

Given a kernel matrix and a set of labels {yi} for each

data-item, the SVM proceeds to learn a classifier of the

form,

y(x) = sign

(

∑

i

αiyiK(xi, x)

)

(6)

where the coefficients {αi} are determined by solving a

constrained quadratic program which aims to maximize

the margin between the classes. In our experiments we

have used the LIBSVM package freely downloadable from

http://www.csie.ntu.edu.tw/∼cjlin/libsvm/.

Typically, there are a number of design parameters in the

problem. These are the free parameters in the definition of

the kernel (i.e. σ in the RBF kernel and R, p in the poly-

nomial kernel) and some regularization parameters in the

optimization procedure of the {αi}. For an SVM the regu-

larization parameter is a constant C determining the toler-

ance to misclassified data-items in the training set. Values

for all design parameters were obtained by cross-validation.

In Figure 2 we compare the performance of the vari-

ous kernels defined above on two data-sets. In general the

performances are similar, although the choice seems to be

somewhat dependent on the data-set used. We used RBF

kernels for all experiments unless otherwise noted.

2.1 Combining Kernels

There are several situations where we have access to multi-

ple generative models and therefore multiple Fisher scores.

For example we may train models with different interest

point detectors, varying numbers of parts, describing dif-

ferent aspects of the data (e.g. shape versus appearance)

and so on. The question naturally arises how to combine

this information into one kernel matrix. The simplest solu-

tion is to simply append the Fisher scores into one tall fea-

ture vector. Although this is certainly valid, it may not be

the optimal choice. For instance, appearance could provide

more valuable information for the classification task at hand

than shape (or vice versa). A more general approach would

be to weight the Fisher scores from the various components

differently which translates into linearly combining (with

positive coefficients) the corresponding Fisher kernels. De-

termining these weights is however non-trivial which is the

reason we have restricted ourselves to a simple sum of

Fisher kernels (with unit weights corresponding to append-

ing Fisher scores) in the experiments reported in sections

4.4 and 4.5.

Figure 3: Examples of scaled features found by the KB (left)

and multi-scale DoG (right) detectors on images from the ’per-

sons’ data-set. Approximately the top 50 most salient detections

are shown for both.

3 Generative Models

In this section we briefly describe the generative models

which will be used in conjunction with the discriminative

methods described above. In principle any differentiable

generative model can be used along with the Fisher Kernel.

We chose to experiment with a simplified probabilistic Con-

stellation model [4]. We do not explicitly model occlusion

or relative scale as done in [5]. Although it is potentially ad-

vantageous to include these terms, excluding them allows us

to use more features than would be possible in a full model.

3.1 Interest-Point Detection

The constellation model requires the detection of interest

points within an image. Numerous algorithms exist for ex-

tracting and representing these interest points. We chose

to experiment with several popular detectors: the entropy

based Kadir and Brady (KB) [18] detector, the multi-scale

Difference of Gaussian (DoG) detector [19], the multi-scale

hessian detector (mHes), and the multi-scale harris detec-

tor(mHar). Figure 3 shows typical interest points found

within images. All detectors indicate the saliency of in-

terest points, and only the most salient interest points are

used. The locations of the interest points were used to ex-

tract 11x11 normalized patches at the scale indicated by the

detectors. We typically reduce the dimensionality of the

patches to 20 by constructing a PCA basis using features

from only the training images and projecting onto that ba-

sis. KB was used in all experiments below unless specifi-

cally noted.

3.2 The Constellation Model

The constellation model is a generative framework which

constructs probabilistic models of object classes by repre-

senting the appearance and relative position of several ob-
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ject parts. Our goal is to find a set of model parameters θMLE

which maximizes the model. In our model, θ = {θa, θs}
represents the means and diagonal variance components of

both the appearance and shape models. Consider a set of

images belonging to a particular class ranging from 1..N

and indexed by i. We have extracted both appearance, Ai,

and shape, Xi, information from each image Ii using the

feature detectors described above. We assume that the shape

and appearance models are independent of one another and

that the images are I.I.D. The log likelihood of the training

images given a particular parameter set θ is:

∑

i

log (p(Ii)) =
∑

i

log (p(Ai|θa) · p(Xi|θs)) (7)

Next we describe how we solve the correspondence prob-

lem, namely the mapping of interest points to model parts.

For each Ii we obtain a set of F interest points and their

descriptors. We would like to assign a unique interest point

to every model component Mj . Since we do not a priori

know which interest point belongs to which model com-

ponent, we introduce a hypothesis variable h which maps

interest points to model parts. We order the interest points

in ascending order of x-position. We enforce that the po-

sitions of all interest points are relative to the left-most in-

terest point, thereby allowing for translational invariance.

Note that although we model only the diagonal components

of the Gaussian, the model parts are not independent as we

enforce that each part is mapped to a unique feature, implic-

itly introducing dependencies. The result is a total of
(

F

M

)

unique hypotheses, where each h assigns a unique interest

point to each model part. We marginalize over the hypoth-

esis variable to obtain the following expression for the log

likelihood for a particular class:

∑

i

log (p(Ii)) =
∑

i

log

(

∑

h

p(Ai, h|θa)p(Xi, h|θs)

)

(8)

3.3 Generative Model Optimization

We trained our generative models using the EM algo-

rithm [21]. The algorithm involves iteratively calculating

the expected values of the parameters of the model and then

maximizing the parameters. The algorithm was terminated

after 50 iterations or after the log likelihood stopped in-

creasing. We found empirically that the discriminative per-

formance of the kernel benefitted from keeping the models

relatively loose. A 3-part, 25 Feature model took on the or-

der of 20 min to optimize using a combination of optimized

Matlab and C (mex) code.

3.4 Fisher Scores for the Constellation Model

In order to train an SVM we require the computation of the

Fisher Score for a model. Recall that the Fisher Score is the

derivative of log likelihood of the parameters for the model.

It is not hard to show that one can compute these derivatives

using the following expressions1,

∂

∂θs

log (p(Ii|θ)) =
∑

h

p(h|Ii, θ)
∂

∂θs

log p(Xi, h|θs) (9)

∂

∂θa

log (p(Ii|θ)) =
∑

h

p(h|Ii, θ)
∂

∂θa

log p(Ai, h|θa)(10)

where both {θa, θs} consist of mean and variance parame-

ters of Gaussian appearance and shape models. Despite

a potentially variable number of detections in each image

Ii its Fisher score has a fixed length. This is because the

hypothesis h maps features to a pre-specified number of

parts and hence there is a fixed number of parameters in

the model.

Most of the execution time of the algorithm occurs dur-

ing the computation of the Fisher kernels as well as the

training of the generative models ( 20 min for 200 images in

a 3-part, 25 Feature model). The SVM training, even with

extensive cross-validation, is quite short in comparison due

to the relatively small number of training images – on the

order of 5 minutes for a set of 200 training images.

4 Experiments

We have performed numerous experiments to determine the

efficacy of our technique which we list here: (1) Exper-

iments with the ‘Caltech-6’ (see, for instance, Fergus et

al. [5]). (2) Experiments with few training examples. (3)

Experiments training with one background set and testing

with another. (4) Experiments using combinations of ker-

nels. (5) Experiments on the Caltech 101 Object Category

data-set used by [13, 14]

Some details of the SVM training. Fisher scores were

normalized to be within the range [-1,1]. We performed 10x

cross-validation to obtain estimates for the optimal values

of C. When the RBF kernel was utilized we performed an

addition cross-validation to find the optimal value of σ. We

varied the cross-validation search space for both parameters

on a log base 2 scale from -7,9 in steps of 1 and for C and

-8,0 in steps of 2 for σ.

1Note that these derivatives are readily available from the EM algorithm

at convergence.
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Figure 4: Localization of objects within images using the gener-

ative constellation model. Each unique colored circle represents

a different part of the model. This is a 4-part model. The posi-

tions of the circles represent the hypothesis, h, with the highest

likelihood.

Category Perf Shape App ML Prev

Faces 91 77.7 88.9 83 91.7 [5]

Motorbikes 95.1 74.5 91.2 74.2 90.5 [5]

Airplanes 93.8 95.3 84.2 72.4 90.8 [5]

Leopards 93 71.8 91.3 68.1 91 [5]

Table 1: Performance comparison for Caltech Data-sets. We used

100 training and test images for each class (note that [5] uses far

more training images). The background class was the same used

by [5]. All scores quoted are the total number correct for both the

target class and the background over the total number of examples

from both classes. The second column shows the performance of

the discriminative algorithm. The third and fourth columns show

performance using only the Shape and Appearance Fisher Scores.

The Fifth column is the performance using a likelihood ratio on

the underlying generative models. The final column shows previ-

ous performances on the same data-sets. The underlying genera-

tive model contained 3 parts and used a maximum of 30 detected

interest points per image. Results were averaged over 5 experi-

ments.

True Class ⇒ Motor Leopards Faces Airplanes

Motorcycles 96.7 7.3 1.3 .3

Leopards 1.3 90.7 .7 0

Faces 1.3 0 97 .3

Airplanes .7 2 1 99.3

Table 2: Confusion table for 4 Caltech data-sets. The main di-

agonal contains the percent correct for each category. Perfect per-

formance would be indicated by 100s along the main diagonal.

The classes used in the confusion table are the same used in the

generative approach of [5] which achieved performances of 92.5,

90.0, 96.4, and 90.2 across the main diagonal. Using only Fisher

scores from the shape and appearance results in 72.6 and 94.8 per-

formance along the main diagonal respectively. 100 training and

testing images used. Averaged over 3 experiments.

4.1 Caltech Data-Sets

Table 1 illustrates the performance on the Caltech data-

sets2. All images were normalized to be the same size. The

images contain objects in standardized poses and the cate-

gories are visually quite different. In these experiments a

single generative model was created of the foreground class

from which Fisher scores were extracted for both the fore-

ground and background classes for training. The SVM was

trained with the fisher scores from the foreground and back-

ground class. Testing was performed using an independent

set of images from the foreground and background class by

extracting their Fisher scores from the foreground genera-

tive model and classifying them using the SVM. We will

refer to these experiments as ‘class vs. background’ ex-

periments henceforth as they involve discrimination tasks

between one foreground class and one background class.

There are several interesting points of note: (1) We no-

tice high performance with all classification tasks exhibiting

performances above 90%. This high performance is in part

due to the stereotyped nature of the image sets which con-

tain very little variation in pose, lighting, and occlusions.

Furthermore, the foreground and background classes are vi-

sually very dissimilar (see Figures 4 and 6). One caveat

to the discriminative approach is that the classifier explic-

itly utilizes statistical information of the background class.

If the background training set is not sufficiently represen-

tative of the general class of background images this may

lead to overfitting and poor generalization performance. We

address this point below in section 4.3. (2) The underly-

ing generative model was relatively weak and hence per-

formed poorly (see the ML column in Table 1). (3) Ex-

periments conducted using only the Shape and Appearance

Fisher Scores mostly indicate that the combination of the

two is more powerful than either in isolation. Furthermore,

these results suggest that the importance of the shape and

appearance varies between different classification tasks.

It is not clear how to use the discriminative classifiers in

Figure 1 to localize the objects within an image. However, a

similar generative approach has been shown to localize ob-

jects [5] and we show examples using our generative models

in Figure 4.

In addition to class vs. background experiments, we con-

ducted classification experiments using multiple object cat-

egories. First a generative model was constructed for all

classes of interest. Fisher Scores for both train and test im-

ages were obtained. Only the train images were used to

create both the SVM classifier and the generative distrib-

ution. Since an SVM is inherently a two-class classifier

we train the multi-class SVM classifier in a ‘one-vs-one’

manner. For each pair of classes a distinct classifier was

2The data-sets, including the background data-set used here, can

be found at: http://www.vision.caltech.edu/html-files/archive.html. The

Leopards data-set is from the Corel Data-Base
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Figure 5: Performance using small numbers of training examples.

The x-axis is the number of training examples used for both the

foreground and background classes. The y-axis represents the per-

formance. Each unique line represents a different experiment: the

black line illustrates the performance of the 4-class experiments,

the other lines are for the ‘class vs. background’ experiments. The

variances are represented by the straight perpendicular lines. Note

the relatively high initial variances, and the good performance of

most models after only 10 training examples (85%+). An RBF

kernel was used to train the SVM.

trained. A test image was assigned to the category contain-

ing the largest number of votes among the trained classi-

fiers. All other parameters for training were kept the same

as above. Table 2 illustrates a confusion table for 4 Caltech

Data-Sets. The discriminative method again outperforms

its generative counterpart [5] despite using a much simpler

underlying generative model.

4.2 Training with Few Examples

Large numbers of training images are difficult to obtain. For

this reason it is useful to explore the performance of recog-

nition algorithms using only small numbers of training im-

ages. We constructed a (loose) generative model for the

foreground classes using few training examples. Training

and testing then proceeded in the same manner as described

above. Figure 5 illustrates results on several data-sets. The

algorithm seems to performs well in the presence of limited

training data.

4.3 Background Classes

Discriminative training for object detection, as employed

by [6, 20, 22] among others, implicitly allows the learning

algorithm to access the statistics of background data-sets.

This differs from generative approaches such as [4] which

only minimally utilize the information from the background

class during classification. Discriminative algorithms there-

fore run the risk of over-committing to the statistics of the

particular background training images, and hence not gen-

eralizing well to arbitrary background images.

We performed several experiments to determine how

Trained BG ⇒ Caltech1 Caltech2 Graz

Caltech1 93 86.5 82

Caltech2 83 90.5 78

Graz 83.5 88 91

Caltech1 92 82 83.5

Caltech2 83 92.5 87

Graz 85 85 91.5

Table 3: Generalization of different background statistics: Top,

Airplane vs. BG experiments. Bottom, Leopards vs. BG experi-

ments. The top row indicates the background data-set trained with.

The rows indicate the test set used. The columns indicate the per-

formance of the algorithms. The bold scores indicate the perfor-

mance on the test examples from the same background class which

was trained on, these tend to be the highest performing test sets.

We trained and tested with 100 images for each foreground and

background category. Results were averaged over 2 experiments.

The mHar detector was used.

well different sets of background images generalized to new

sets of background images. We considered 3 standard sets

of background images: (1) the Caltech background data-

set used in [5] (Caltech1), (2) the Caltech background data-

set used [14] (Caltech2), (3) the Graz data-set used in [20]

(Graz). Images from all three sets are shown in Figure 6.

We performed experiments by first generating a model for

one foreground class. This generative model was then used

to create Fisher scores for the foreground class and a par-

ticular background class and an SVM classifier was trained

using these scores. We tested the classifier on images from

all three background classes.

Results for these experiments are summarized in Table 3.

This table illustrates that the statistics of a particular back-

ground data-set can influence the ability of the classifier to

generalize to new sets. These results should be seen as a

caveat to using discriminative learning for detection tasks:

the statistics of the background images play a crucial role in

generalization, especially when relatively few background

examples are used.

4.4 Combining Models

We tested the performance of combining multiple kernels

using the more challenging Graz data-sets3, in particular

the ‘persons’ and ‘bikes’ sets (Figure 7 shows examples

from these sets). It is imperative to have large numbers of

features when learning on these sets due to the large vari-

ability of the objects within the images. We first experi-

mented with combining multiple generative models, with

each model containing a different number of parts (2 and 3

parts). Both models were trained on the same data. Fisher

3These can be obtained from http://www.emt.tugraz.at/∼pinz/data/
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Figure 6: Examples of background images from (top) Caltech

1, (middle) Caltech 2, (bottom) Graz. There are noticeable differ-

ences in the image statistics from the different background classes.

Figure 7: Example images from the Graz persons (top) and bikes

(bottom) data-sets. Note the large variations in pose, lighting, oc-

clusion, and scale.

scores were extracted from the foreground generative mod-

els on a training set of data for both the foreground and

background classes on both 2 and 3 part models and com-

bined into one large vector for SVM training. Test scores

were extracted in the same way. Table 4 illustrates results

combining simple 2 and 3-part constellation models. The

performance training an SVM classifier on Fisher scores for

each individual model was less than the combined perfor-

mance. We anticipate using more features would result in

higher performance on the Graz sets and this is an active

research area.

In addition we combined models trained using different

interest point detectors. Each generative model was trained

using different interest points detected on the same set of

images. Table 5 shows the results on the same data-sets.

There are many more possible combinations of models to

explore, and combining models using different kernels is an

exciting avenue of future research.

Gen. Model ⇒ Comb 2-Part 3-Part Prev

persons 78.5 75.2 76.4 80.8 [20]

bikes 75.3 74.5 74.9 86.5 [20]

Table 4: Effects of combining multiple generative models using

the Fisher kernel. Results shown for the Graz ’persons’ and ’bikes’

sets. 200 images used for training. Note that the combined models

outperform individual models. The 2-part and 3-part models used

a maximum of 100 and 30 interest points respectively.

Gen. Model ⇒ Comb KB DoG Prev

persons 73.1 65.3 77.5 80.8 [20]

bikes 79.0 73.3 76.5 86.5 [20]

Table 5: Effects of combining generative models trained using

different feature detectors. We used a polynomial degree 2 kernel

for experiments.

4.5 Caltech 101

The Caltech 1014 consists of 101 object categories with

varying numbers of examples in each category (from about

30-1000). The challenge of this data-set is to learn rep-

resentations for many different object classes using a lim-

ited number of training examples. However, the depicted

objects are mostly well behaved, generally exhibiting rel-

atively small variations in pose, little background clutter,

and favorable lighting conditions. Our approach seems well

suited for this data-set due both to its strong performance

using small numbers of training examples, and the ability to

combine different types of information using models from

different interest point detectors. In our experiments we cre-

ated underlying generative models from the categories ‘Air-

planes’ and ‘Faces’. We used this to generate Fisher scores

for all classes. The SVM was trained using these Fisher

scores in a ‘one vs one’ methodology as described above.

For each class we used 20 examples for training and a max-

imum of 50 for testing. Images were normalized to be the

same size for the mHar and mHes detectors.

A reasonable baseline performance was calculated

by [13], who found an average performance of 17% using

texton histograms. Berg et al. achieve a performance of

45% [13]. The approach of Fei Fei et al. uses an underlying

generative model, similar to ours, contained 3 parts, which

did not explicitly model occlusion or scale. The algorithm

of Fei Fei et al. performs at about 16% on this data-set.

Our discriminative (2-part) formulation combining models

using the KB, mHar, and mHes detectors results in a per-

formance of 40.1% (classification performance was about

27.1%, 25%, and 29% for the KB, mHar, and mHes detec-

tors individually). A confusion table illustrating our results

is shown in Figure 8. We found slightly higher performance

4Available at http://www.vision.caltech.edu/html-files/archive.html
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Confusion Table: 101 Categories
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Figure 8: Confusion table for 101 categories. Perfect perfor-

mance would be indicated by a diagonal line with no-off diago-

nal colorations. Color-bar shown on right. Performance here was

40.1%. The category labels are the same is in [14]. An RBF kernel

was used for training.

using 2-part 100 interest point models compared to 3-part

30 interest point models. 30 PCA coefficients were used.

We speculate that the lower performance relative to Berg et

al. is, in part, due to the small number of parts and interest

points used in our models.

5 Discussion

In this paper we have successfully combined generative

models with Fisher kernels to realize performance gains on

standard object recognition data-sets. We stress that the for-

mulation can be used with any underlying generative model.

Future research includes more rigorous methods for com-

bining kernels and extensions to richer generative models

which allow for both more parts and interest point detec-

tions.

References
[1] T.S. Jaakkola, D. Haussler. Exploiting generative models in

discriminative classifiers. NIPS, 1999. 487-493.

[2] Recognition of Planar Object Classes M.C. Burl, P. Perona

CVPR (1996). p. 223

[3] S. Ullman, M. Vidal-Naquet, E. Sali. Visual Features of In-

termediate Complexity and their Use in Classification. Nature

Neuroscience 5 682-7, 2002.

[4] M. Weber. M. Welling. and P. Perona. Towards automatic dis-

covery of object categories. CVPR, 2000. p. 2101.

[5] R. Fergus, P. Perona, A. Zisserman. Object Class Recogni-

tion by Unsupervised Scale-Invariant Learning. IJCV (2005,

submitted).

[6] G. Dorko, C. Schmid. Object class recognition using discrim-

inative local features. Submitted to IEEE Transactions on Pat-

tern Analysis and Machine Intelligence.

[7] A. Torralba, K.P. Murphy, W.T. Freeman. Sharing visual fea-

tures for multiclass and multiview object detection. CVPR,

2004.

[8] A.D. Holub, P. Perona. A Discriminative Framework for

Modeling Object Classes. CVPR, 2005.

[9] V. Vapnik. The Nature of Statistical Learning Theory.

Springer, N.Y., 1995.

[10] A.Y. Ng, M. Jordan. On Discriminative vs. Generative Clas-

sifiers. NIPS 14, 2002.

[11] B. Leibe, B Schiele. Scale-Invariant Object Categoriza-

tion Using a Scale-Adaptive Mean-Shift Search. DAGM-

Symposium 2004: 145-153.

[12] H.Schneiderman. Learning a Restricted Bayesian Network

for Object Detection. CVPR, 2004. 639-646

[13] AC. Berg, TL. Berg, J. Malik. Shape Matching and Object

Recognition using Low Distortion Correspondences. CVPR

(2005).

[14] L. Fei-Fei, R. Fergus. P. Perona. Learning Generative Vi-

sual Models from Few Training Examples. CVPR Workshop

GMBV, 2004.

[15] C. Wallraven, B. Caputo and A.B.A. Graf. Recognition with

Local Features: the Kernel Recipe. ICCV 2003 Proceedings

2, (2003) 257-264

[16] S.Z. Li, Q. Fu, B. Shoelkopf, Y. Cheng, H. Zhang. Ker-

nel machine based learning for multi-view face detection and

pose estimation. Proc ICCV, (2001).

[17] N. Vasconcelos, P. Ho, and P. Moreno. The Kullback-Leibler

Kernel as a Framework for Discriminant and Localized Rep-

resentations for Visual Recognition ECCV, 2004. 430-441

[18] T. Kadir, M. Brady. Scale, saliency and image description.

IJCV 30(2), 1998. 83-105

[19] J. L. Crowley, A Representation for Shape Based on Peaks

and Ridges in the Difference of Low Pass Transform, A. C.

Parker, PAMI 6 (2), March 1984.

[20] A. Opelt, M. Fussenegger, A. Pinz and P. Auer. Weak Hy-

potheses and Boosting for Generic Object Detection and

Recognition. ECCV 2004. 71-84

[21] A. Dempster, N. Laird, D. Rubin. Maximum Likelihood

from incomplete data via the em algorithm. JRSS B, 39:1-38,

1976.

[22] P. Viola, M. Jones. Robust Real-time Object Detection.

ICCV (2001).

8


