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Abstract

This thesis addresses the integration of generic programming with vector processing for

machine vision. While generic libraries have been shown to provide near optimal per-

formance without sacrificing flexibility and adaptability, current generic libraries do not

utilise the vector processing unit (VPU), nor can they be vectorised directly. Generic vec-

torised libraries require a mechanism for expressing vectorised algorithms independently

of the VPU. This is a problem since different VPUs can have different instructions and

different limitations; programs written to use one vector technology are not portable to

other vector technologies. Lastly, most existing machine-vision libraries do not provide

image capture from sequence grabbers; the programmer has to use another library to cap-

ture images, and to supply additional code to enable the two libraries to work together.

To allow vectorised, machine-vision algorithms to be portable across different vector

technologies, this thesis proposes the use of an abstract VPU. The abstract VPU represents

a set of real VPUs with a virtual VPU that has an idealised instruction set and constraints

common to the real VPUs being represented. An abstract VPU, named Virtual Vector

Machine (VVM), was developed to support generic programming. Different methods

of implementing VVM were evaluated against hand-coded AltiVec (a vector technology

found in PowerPC G4 and G5 processors) and scalar programs. The implementation

chosen has no significant overheads when processing VVM vectors with a single AltiVec

vector or a single scalar when compiled using Apple GCC 3.1 20021003. VVM vectors

with a single AltiVec vector or scalar cover all byte AltiVec vectors in AltiVec mode

and all types in scalar mode. When processing VVM vectors that use more than one

AltiVec vector, the VVM implementation chosen is within 24% slower than a hand-coded

program.

Vectorised algorithms are difficult to implement, because they handle VPU-specific

issues such as memory alignments, edges and prefetching. Thus, to reduce the number of

algorithms required, a categorisation of image processing operations based on input-to-

output correlation is proposed. This categorisation maps easily to generic programming

and provides implementation hints. The categorisation scheme separates image process-

ing operations into three categories, which this thesis refers to as quantitative, transfor-

mative and convolutive operations. Quantitative operations require one input element to

produce zero or more output elements. Transformative operations require one input el-
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ement to produce one output element. Convolutive operations produce a single output

element from a rectangle of input elements. Each category requires only one general al-

gorithm. Variations of the algorithm to handle differing input and output set combinations

are also required.

The generic, vectorised, machine-vision library, Vectorised Vision (VVIS), developed

in this thesis uses the abstract VPU (VVM) and the three categories to provide cross-

platform, vectorised algorithms. Because the division of duties used by existing generic

libraries is unsuitable for vectorisation, two new divisions of duties are proposed and their

performance is evaluated. Generic, vectorised algorithms for each category were evalu-

ated against hand-coded programs and the speedup gained by using VVIS in AltiVec

mode instead of scalar mode was collated. The VVIS implementation is comparable to

hand-coded AltiVec and scalar programs when operating on single-channel byte images

when processing quantitative and transformative operations. For convolutive operations,

the final VVIS implementation is twice as slow in AltiVec mode when processing single-

channel byte images, because the hand-coded AltiVec program did not need to support

variable kernel sizes. In scalar mode, the final VVIS convolutive algorithm is compara-

ble to hand-coded scalar programs. VVIS was slower than hand-coded programs when

processing non-byte images, because of overheads introduced by VVM. For the transfor-

mative operations tested, VVIS, when executed in AltiVec mode instead of scalar mode,

provides at most a four fold speedup depending on the operation when processing single-

channel byte images. For convolutive operations tested, VVIS provides a speedup of ap-

proximately 1.5 times when processing single-channel byte images, despite using signed

short internally; the VVM implementation used had noticeable overheads when operat-

ing on signed shorts in AltiVec mode.

Results show that a generic, vectorised, machine-vision library generally have compa-

rable performance to hand-coded programs when processing single-channel byte images.

Because of overheads introduced by the VVM implementation, VVIS does not have com-

parable performance for all image types. Most image processing operations however use

either single-channel byte or multi-channel byte images.
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Chapter 1

Introduction

Machine vision refers to the process by which useful information is extracted autonomous-

ly by a machine through the use of vision. Machine vision covers image acquisition, and

the extraction of useful information from the acquired images. Machine vision is used

extensively in many scientific disciplines, such as astronomy, biology and computer sci-

ence. It is used in tasks such as counting the number of stars in the sky, extracting the

DNA sequence from digitised DNA sequencing gel for storage in databases and in colour-

ing images of planets taken by monochrome cameras aboard the Voyager (Parker 1994).

Apart from scientific disciplines, machine vision is also used heavily in industry, in qual-

ity control and manufacturing (Davies 1990).

Images have typically been acquired through the use of specialised hardware image

capture cards. After acquisition, these images are then processed and analysed using

specialised hardware cards. The computer is only responsible for obtaining user input,

and to display the output.

The increasing popularity of key technologies on the desktop computer makes it pos-

sible to undertake more and more sophisticated machine-vision applications on the desk-

top. These key technologies are the vector processing unit (VPU) and FireWire cameras.

VPUs allow more images to be analysed in the same time. FireWire allows a high-quality

real-time feed from cameras into the computer. These two technologies together reduce

the need for specialised hardware cards.

Generic programming was introduced by Musser and Stepanov (Musser & Stepanov

1994, 1989) as a paradigm for structuring flexible libraries. The key idea of generic

programming is the separation of the algorithm from the data that it operates on. With this

separation in place, it is possible for the same algorithm to be used on user-defined data.

Vision with Generic Algorithms (Köthe 2001, 1999, 2000c, 1998, 2000a,b) is a generic,

image processing library that lacks VPU and support for image capture via sequence

grabbers. While it would be possible to add image capture support to VIGRA, adding

VPU support requires structural changes.

Providing the services of the VPU and FireWire cameras in a generic package is the
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focus of this thesis. This thesis investigates the implementation of a generic, vectorised,

machine-vision library. To address the issue of creating generic VPU code, the author

proposes the abstract VPU. To reduce the amount of algorithms that the library will need,

a categorisation scheme based on input-to-output correlation is proposed.

1.1 Problems and proposed solutions

This thesis seeks to address one main problem: the integration of generic programming

with vector processing.

Integration of generic programming with vector processing: Existing generic image-

processing libraries, like VIGRA, do not use the VPU. On the other hand, existing

vectorised image-processing libraries, like VSIPL, are not generic. A generic li-

brary is desirable because generic libraries are able to provide flexibility and perfor-

mance comparable to hand-coded programs. Using the VPU is desirable for image

processing because the VPU can increase the throughput of many image-processing

operations.

Existing generic libraries cannot use the VPU efficiently because iterators do not

provide information about the relative positions of the pixels in memory. With-

out this information, there is no mechanism for deciding whether a vector can be

loaded or stored efficiently. While the iterator could return vectors, because vectors

in desktop computers typically have fixed sizes, only image sizes that are exactly

divisible by the vector size can be processed correctly. Other problems associated

with vector programs, such as alignment, edges and prefetching also have to be

considered. Another important consideration is how the user would be expected to

write functors for such a library, since VPU instructions are not portable between

different architectures.

The proposed solution uses an abstract VPU to allow users to write functors that

are potentially portable to different architectures, a categorisation scheme based on

input-to-output correlation to reduce the number of algorithms that are required,

and a new division of duty for generic, vectorised libraries. Using the abstract

VPU allows the library to use an idealised instruction set. Reducing the number of

algorithms required is desirable because vectorised algorithms are generally more

difficult to implement, especially since the proposed solution uses separate scalar

and vectorised implementations for each algorithm. The new division of duty is the

cornerstone to integrating generic programming with vector processing.

Other problems that were partially addressed as a result of the investigation into the main

problem are the non-portability of vectorised machine-vision algorithms, and the poor

integration of image capture with machine-vision libraries.
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Non-portability of vectorised machine-vision algorithms: Generic programming im-

plies that algorithms and functors should be generic and thus not tied to any partic-

ular hardware. However, vector programs that target different vector technologies

are typically incompatible, due to different instructions and different limitations.

This is illustrated in VSIPL AltiVec implementations from DNA (DNA 2001, Ded

2001), TransTech (Tra 2001), MPI (MPI 1999-2000) and SKY (SKY 1999). While

code for these libraries are not available to the author, their practice of hand-coding

for each processor can be inferred from the vector support of their libraries. All the

libraries, except the one from MPI, support only the AltiVec processor, with other

versions (if any) being slated for a later release.

What is needed to enable generic, vectorised, machine-vision libraries, is a mecha-

nism for expressing vector programs in a generic fashion. Thus the abstract VPU is

proposed. The abstract VPU represents a family of real VPUs with a virtual VPU

that has an idealised instruction set and constraints common to the real VPUs being

represented.

Poor image capture integration with machine-vision libraries: Image capture from se-

quence grabbers is typically not straightforward and not integrated with machine-

vision libraries. A vectorised, machine-vision library performing image capture

should also consider data conversions and processing live video feeds. Time would

be wasted if the image capture component stores data in a vastly different manner

from the library. In addition, the library should allow the programmer to process

frames as they become available. While most machine-vision libraries do not sup-

port image capture, adding image capture to these libraries should not be overly dif-

ficult. Adding VPU support would be more difficult though. LabVIEW (Nat 2005),

a visual programming language developed by National Instruments, provides image

capture routines.

To address this problem, the generic, vectorised, machine-vision library developed

as part of this thesis includes image capture routines. Conversion costs might still be

associated with changing the image from the format provided by the image capture

routines to a form suitable for vector processing.

1.2 Thesis structure

The chapters start with background information, followed by discussions on the abstract

VPU, the categorisation of operations, and the generic, vectorised, machine-vision library.

The chapters are summarised below:

Chapter 2, Machine-Vision and Image-Processing Libraries: In this chapter, some cur-

rently available image-processing libraries are discussed and evaluated.
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Chapter 3, Vector Processor Programs: This chapter describes how to write programs

that use the VPU, what issues a VPU program needs to handle, and currently avail-

able methods of using the VPU. It also includes an empirical investigation into how

different VPU issues affect the performance of a VPU program.

Chapter 4, Implementation Techniques: This chapter presents several uncommon C++

implementation techniques that are used in this thesis.

Chapter 5, Abstract Vector Processor: The abstract VPU is detailed in this chapter.

The intrinsic and desired characteristics of an abstract VPU are discussed. The

differences between an abstract VPU and other methods of programming the VPU

are also presented.

Chapter 6, Vector Virtual Machine’s Design: An abstract VPU, called Virtual Vector

Machine (VVM), is described in this chapter. The specification and the reasons

behind included features are discussed. VVM is designed to enable the creation of

a generic, vectorised, machine-vision library.

Chapter 7, Vector Virtual Machine’s Implementation: This chapter investigates whe-

ther the VVM specification can be implemented using only Standard C++, and what

the overheads of such implementations are.

Chapter 8, Categorisation of Operations based on Input-to-Output Correlation: A

categorisation based on input-to-output correlation is presented in this chapter. Some

of the criteria used to categorise, and the implications of such criteria on a library

based on generic programming are presented. This chapter concludes with a dis-

cussion of the categories to be used in a generic, vectorised, machine-vision library.

Applying this categorisation reduces the number of algorithms required. Since vec-

tor programs are not necessarily easy to write, this eases the implementation of the

generic, vectorised, machine-vision library.

Chapter 9, A Generic, Vectorised, Machine-Vision Library: The design and implemen-

tation of a generic, vectorised, machine-vision library, called Vectorised Vision

(VVIS), is presented in this chapter. Reasons are given for why current generic

programming libraries are unsuitable for vectorisation and viable solutions are pre-

sented.

Chapter 10, Vectorisability of Machine-Vision Algorithms: For each category identi-

fied, this chapter discusses the implementation of a generic, vectorised algorithm

for VVIS, and compares it with hand-coded programs. The functor requirements

and the speedup attained for some functors running in AltiVec mode over scalar

mode are described.
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Chapter 11, Examples: Three examples of how to use VVIS are presented.

Chapter 12, Conclusions: This chapter summarises the main contributions and limita-

tions of the research described in this thesis. Future directions are also suggested.

This thesis contains three appendices, which are described below:

Appendix A, Glossary: A short description of terms used in this thesis is presented.

Appendix B, VVM’s AltiVec Vector-Processor Implementation: This appendix descri-

bes how the AltiVec vector-processor implementation of the VVM implementation

used by the generic, vectorised, machine-vision library maps VVM types to AltiVec

types, and VVM functions to AltiVec functions .

Appendix C, Constant Scalar Count: The reasons why constant scalar count is required

for generic programming are discussed in this appendix. Since VVM’s purpose is

to enable the creation of generic, vectorised libraries, any requirements of generic

programming also apply to VVM.
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Chapter 2

Machine-Vision and Image-Processing

Libraries

Image-processing routines are currently available in many different libraries. These li-

braries differ in programming language support, approach to performing image process-

ing, execution performance, functionality, amongst others.

To help highlight the differences between these libraries, this chapter starts with a

description of the evaluation criteria that were used to analyse each library. After dis-

cussing the criteria, four different libraries are discussed. These libraries are Vector, Sig-

nal and Image Processing Library, Vision with Generic Algorithms, Intel Performance

Primitives and National Instrument’s IMAQ Vision library. These particular libraries are

discussed because they are referred to later in this thesis as a source of inspiration. Of

all these libraries, only Vision with Generic Algorithms is based on generic programming

paradigms.

2.1 Evaluation Criteria

Six criteria are used to analyse the libraries to gain a better understanding the strengths

and weaknesses of each library. Understanding the strengths and weaknesses of each

library provides insight into the repercussions of design decisions.

1. Performance

Performance is important in machine vision because there are many “ideal” oper-

ations that just take too long to complete. Coupled with real-time needs of some

applications, this makes performance essential. This is where the VPU comes in.

The AltiVec VPU should theoretically allow for 4 to 16 fold performance increases.

The VPU does not change the scalability of an algorithm, though it will allow the

same algorithm to handle larger data sets practically.
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There are other techniques available, apart from using the VPU, that can increase

performance. These other techniques include using more than one processor, multi-

threading, and clustering. Most of these other techniques though are only suitable

if the operation runs for extremely long periods.

Typically, libraries based on generic programming provide their benefits with little

performance degradation (Köthe 1999).

2. Ease of use

Difficult to use libraries tend to be used less. In today’s world where hundreds of

computer languages and libraries exist, there is simply too much to learn and too

little time to learn it in. Therefore the ideal library should be as easy to use as

possible.

Libraries that use low-level C interfaces are given the lowest mark for ease of use.

This is followed by libraries based on generic programming and object-oriented

libraries. Languages based on visual programming are given the highest marks

because they should be the easiest to use.

3. Adaptability

The library needs to be easy to adapt or extend to work in the user’s environment.

Adaptability makes the user’s code more legible and maintainable, since it helps

reduce the number of different types that need to be dealt with. It allows the user to

introduce the use of the library to existing applications gradually.

Generic programming libraries are the most adaptable because of the separation of

data from algorithms. This separation allows algorithms to operate on any data,

as long as it satisfies the criteria set by the algorithm. Once the criteria required

have been fulfilled by the user’s data, the algorithm can operate directly on the

user’s data. One advantage generic libraries have over object-oriented libraries is

that the user’s data do not have to inherit from any library-defined classes. While

object-oriented libraries are adaptable through the use of inheritance, the user will

sometimes have to re-implement the algorithms because the algorithms are tied to

the data that they operate on. Low-level C interfaces are not adaptable, because the

data must be provided in the format required by the library. The library cannot use

any user-defined formats. Such libraries typically offset this by accepting a large

number of different formats.

4. Functionality

A machine-vision library should have routines to aid image processing, image anal-

ysis and image acquisition. Image-processing libraries typically have routines for

image processing and analysis, with image capture being the responsibility of other

8



libraries. Some of the libraries discussed here are actually image-processing li-

braries.

Functionality refers the the number of different things that the library can do. For

the purposes of this thesis, for full marks, the library should provide image acquisi-

tion functions in addition to image processing and analysis. Images can be acquired

from a camera or from files.

5. Language Support

This refers to the number of programming languages that can use the library, either

directly or indirectly.

Direct usage means that the library is usable without any need for additional compi-

lation steps. For example, a C library can be called directly in C, C++, Objective-C

(App 2002h), Objective-C++ (App 2002h) and D (Dig 2004). However a C++ li-

brary can only be called directly in two of them: C++ and Objective-C++. Because

of this, a C library will have higher marks than one based on C++.

Indirect usage refers to cases where the library can be used through the use of

additional libraries or compilation steps. For example, Java can call C through JNI.

C is typically callable indirectly by many programming languages. C++ is also

callable indirectly from many programming languages if it exports its functions as

C-style functions. Calling the routines indirectly means that the library cannot be

used as easily.

6. Platform Neutrality

There are two kinds of platform neutrality — hardware and operating system. Li-

braries are usually only concerned with being operating system neutral. Machine-

vision systems are also concerned about hardware neutrality, because different hard-

ware have different features that can impact the algorithms used.

The ideal library should be both hardware and operating system neutral in order to

allow more developers to use it. This however contradicts with the use of the VPU

to increase performance. Currently, VPUs in general are very different from each

other. The library should probably at least consider the issue; perhaps it should be

built in a manner conducive to porting.

2.2 Vector, Signal and Image Processing Library

The aim of the Vector, Signal and Image Processing Library (VSIPL) (VSIPL website

2001, Geo 2001) is to provide an API for vector, signal and image processing that does

not depend on any particular hardware platform. The project was started by the Defence
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Advanced Research Projects Agency (DARPA) for the development of the Tactical Ad-

vanced Signal Processor Common Environment (TASP COE), which required standards

for some of its key Application Programming Interfaces (APIs). The problem was that

the military wished to use commercial products in developing military weapons systems.

However commercial product configurations were not stable over the life cycle of a typi-

cal military weapons system. A standard API, which commercial companies could follow,

was created to reduce the amount of re-coding needed by the military when a new com-

mercial product is available.

VSIPL is currently controlled by a forum of commercial companies and universi-

ties, including Intel, Silicon Graphics, MIT Lincoln Laboratory and Georgia Tech/GTRI

among others. These member organisations meet a few times a year to discuss directions

for the VSIPL API. The VSIPL API is currently in version 1.01, and there is a proposal

pushing VSIPL towards a real object-oriented design.

Specific VSIPL libraries are referred to as “Core” or “Core Lite” profiles. The “Core”

profile includes most of the signal processing and matrix algebra functions, while “Core

Lite” includes a smaller subset, suitable for vector-based signal processing applications.

Apart from these profiles, VSIPL also defines two versions of libraries referred to as

development and performance. Development libraries run slower, but contain extra code

for error reporting. VSIPL-compliant library suppliers may provide either one, or both

versions.

2.2.1 Programming VSIPL

VSIPL consists of a large number of C functions with different versions for different

types and different precision. Even though the API itself does not use an object-oriented

language like C++ or Java, it is designed with an “object-oriented” view. Structs are used

to represent objects. Implementations of VSIPL are allowed to add their own data to these

objects, though they should not be exposed1.

VSIPL functions work with blocks and views. Blocks consist of data arrays, which

is the actual memory used to store the data, and a block object, which stores information

that allows VSIPL to access the data array. Views of data can be created, and these views

consists of a block and a view object, which stores information that allows VSIPL to

access the data of interest stored in the block.

Blocks and views are VSIPL data structures that are opaque to the user. The user

is not allowed to directly access any information inside blocks and views. In addition,

creation and deletion of blocks and views are handled by VSIPL. Data arrays on the other

hand, exist in one of two logical data spaces - the user data space, and the VSIPL data

1This is done in C using incomplete type definitions (see “NOTE TO IMPLEMENTORS” in (Geo

2001)).
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space. Basically, only the user is allowed to change the data array when it is in the user

data space, and vice versa. Moving data arrays between these two logical data spaces may

occur penalties; these penalties, if any, depend on the implementation.

VSIPL provides functions for operations such as block allocation, basic scalar oper-

ations, basic vector operations, random number generation, signal processing and linear

algebra. Since VSIPL tries to provide a hardware-neutral API, functions are defined for

virtually every scalar mathematics operation, excluding basic operations like addition and

subtraction. Vector operations are even more complete than scalar functions, with opera-

tions from basic operation like addition and subtraction to cosine and tangent to selection

operations. The available image-processing functions make no indication of whether they

use vector or scalar implementations. Therefore, it is up to the library supplier to decide

how to process them.

2.2.2 Evaluation

1. Performance (•••••)

VSIPL itself is simply an API and therefore has no standard implementation. How-

ever, because VSIPL is endorsed by many organisations, there are implementations

of VSIPL available that interface with hardware and can therefore provide good per-

formance. The hardware supported by the implementations cover not only VPUs,

but also include specialised image-processing cards. Tra (2001), DNA (2001), MPI

(1999-2000), and SKY (1999) provide VSIPL libraries that use the AltiVec VPU.

2. Ease of use (••◦◦◦)

VSIPL uses the C language because it desires to be as platform neutral as possible.

In using the C language, it sacrifices some of the newer programming paradigms,

such as object-oriented programming, which make programs easier to use. VSIPL

however does try to be easy by using “object-oriented” concepts (Geo 2001). At

the end of the day however, VSIPL is not the easiest library to use. For example,

all VSIPL object creation and deletion is handled by the user exclusively, and there

are many different types.

3. Adaptability (•◦◦◦◦)

VSIPL is not highly adaptable. It does not support any user-defined types.

4. Functionality (•••◦◦)

VSIPL has only image-processing functions. Analytical and acquisition features

are missing. It provides no functions for capturing images from a camera or even

loading from files. It however provides other functions such as vector functions.

11



5. Language Support (•••••)

VSIPL is provided for the C language. The C language is available directly in other

languages like C++ and indirectly in virtually all languages.

6. Platform Neutrality (•••••)

This is VSIPL’s strongest point, because it is one of its primary objectives. VSIPL

was designed to be portable not only to desktop computers, but to embedded com-

puters as well. For example, VSIPL has functions for many “standard” functions

like cosine and sine of scalars.

2.2.3 Image inversion example

The following code example shows how to perform image inversion using VSIPL. The

program also demonstrates how to move data between the VSIPL data space and the user

data space, and how to access elements in a VSIPL vector view.

#include <iostream>

#include <stdio.h>

#include <vsip.h>

using namespace std;

void user_print_i(vsip_scalar_i data[], int count)

{

for(int i = 0; i < count; ++i)

printf("%2x ", data[i]);

}

void vu_vprint_i(vsip_vview_i *p_view)

{

for(vsip_length i = 0; i < vsip_vgetlength_i(p_view); ++i)

printf("%2x ", vsip_vget_i(p_view, i));

}

int main(int argc, char *argv[])

{

// Number of elements

const int COUNT = 16;

// Initialise VSIPL
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vsip_init(static_cast<void *>(0));

// User memory

vsip_scalar_i image[COUNT];

vsip_scalar_i dest[COUNT] = {};

// Bind to VSIPL

vsip_block_i *p_image_blk =

vsip_blockbind_i(image, COUNT, VSIP_MEM_NONE);

vsip_block_i *p_dest_blk =

vsip_blockbind_i(dest, COUNT, VSIP_MEM_NONE);

// Create views

// p_image_view: A view built from p_image_blk

// p_255_view: A view created to store 255s

// p_dest_view: A view built from p_dest_blk

vsip_vview_i *p_image_view =

vsip_vbind_i(p_image_blk, 0, 1, COUNT);

vsip_vview_i *p_255_view =

vsip_vcreate_i(COUNT, VSIP_MEM_NONE);

vsip_vview_i *p_dest_view =

vsip_vbind_i(p_dest_blk, 0, 1, COUNT);

// Put 1 to COUNT into image

// Note that the user_memory variable image is directly edited.

// This is allowed because the block associated with memory is

// not yet under VSIPL control

for(int i = 0; i < COUNT; ++i)

image[i] = i + 1;

// Fill p_255_view with all 255s

vsip_vfill_i(255, p_255_view);

// Output Before

cout < < "< Original Image" < < endl;

cout < < "< 255: "; vu_vprint_i(p_255_view); cout < < endl;

cout < < "< Image: "; user_print_i(image, COUNT); cout < < endl;

cout < < "< Dest: "; user_print_i(dest, COUNT); cout < < endl;
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// Move p_image_blk and p_dest_blk to VSIPL control before

// using them with VSIPL routines

vsip_blockadmit_i(p_image_blk, VSIP_TRUE);

vsip_blockadmit_i(p_dest_blk, VSIP_TRUE);

// Calculate p_dest_view as 255 - image[i]

vsip_vsub_i(p_255_view, p_image_view, p_dest_view);

// Return p_image_blk and p_dest_blk to user control before

// using normal functions to output their values

vsip_blockrelease_i(p_image_blk, VSIP_TRUE);

vsip_blockrelease_i(p_dest_blk, VSIP_TRUE);

// Output After

cout < < "> Inverted Image" < < endl;

cout < < "> 255: "; vu_vprint_i(p_255_view); cout < < endl;

cout < < "> Image: "; user_print_i(image, COUNT); cout < < endl;

cout < < "> Dest: "; user_print_i(dest, COUNT); cout < < endl;

// Destroy p_255_view

// Rest of views do not need to be destroyed with VSIPL

// because they were not created by VSIPL

vsip_valldestroy_i(p_255_view);

// Close VSIPL

vsip_finalize(static_cast<void *>(0));

return 0;

}

The program outputs:

< Original Image

< 255: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

< Image: 1 2 3 4 5 6 7 8 9 a b c d e f 10

< Dest: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

> Inverted Image

> 255: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

> Image: 1 2 3 4 5 6 7 8 9 a b c d e f 10

> Dest: fe fd fc fb fa f9 f8 f7 f6 f5 f4 f3 f2 f1 f0 ef
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The first four lines refer to values of 255, image and dest arrays before the inversion,

while the last four correspond to their respective values after the performing the inversion

dest = 255−image.

2.3 Vision with Generic Algorithms

Vision with Generic Algorithms (VIGRA) (Köthe 2001, 1999, 2000c, 1998, 2000a,b) is a

computer-vision library created by Ullrich Köthe, as part of his Ph.D. thesis “Generische

Programmierung für die Bildverarbeitung”, focused primarily on flexible algorithms and

generic programming. Built using template techniques similar to those used in the Stan-

dard Template Library (STL), VIGRA allows users to easily adapt VIGRA components

to their needs. This flexibility comes almost for free, since the design uses compile-time

polymorphism (templates).

2.3.1 Programming VIGRA

VIGRA brings the world of generic programming to image processing. As dictated by

generic programming, data are separated from algorithms. Iterators allow access to the

data. A variety of iterators are available, some of which provide read-only access. In

general every iterator in VIGRA is two-dimensional, capable of walking of two separate

directions — X and Y. Accessors (Köthe 1998, Kühl & Weihe 1997) provide another

level of indirection. Data are set and read using accessor objects, which can change data

representations between the iterator and user as needed. The Standard Template Library

(STL) on the other hand does not use accessors. Accessors allow VIGRA to support

certain data structures, like multi-band RGB images, easily (Köthe 1998).

Several general algorithms are provided by VIGRA, such as vigra::transformImage

and vigra::inspectImage. These algorithms require functors to be of any use. The al-

gorithms accept a functor, which they use to analyse, or change the data provided through

iterators and accessors.

These algorithms however require a large number of arguments. To reduce the number

of argument required to make each call, VIGRA uses functions like vigra::srcImage-

Range and vigra::destImage to construct tuples of the required arguments. These tu-

ples usually take an image as a parameter, and provide default iterators and accessors to

the algorithm functions.

2.3.2 Evaluation

1. Performance (••••◦)
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VIGRA was built with performance in mind, though one of its other aims is ex-

tensibility through generic programming. According to (Köthe 2000c), VIGRA’s

performance depends on the compiler used. VIGRA aims to be as fast as a hand-

tuned program, and from the results presented in (Köthe 2000c), it comes within

5% of that aim. While VIGRA has good scalar performance, it does not use the

VPU that is available on many desktop computers.

2. Ease of use (••••◦)

VIGRA is quite easy to use by anyone who understands the principles of gene-

ric programming and has experience with generic programming libraries like STL.

Those without any experience of generic libraries might have a bit of culture shock

as they try to understand how it works.

In an effort to be easier to use, VIGRA make extensive use of pairs and tuples to

reduce the number of arguments to function calls.

3. Adaptability (•••••)

Since VIGRA is built on the principles of generic programming, it is highly adapt-

able. It is easy to use VIGRA routines on data structures created by the user.

4. Functionality (••••◦)

VIGRA supports many image-processing and image-analysis routines. While it

lacks routines for capturing images from cameras, it supports loading and writing

of popular image formats, such as TIFF and JPEG, via image libraries like Im-

ageMagick.

5. Language Support (••◦◦◦)

Being written in C++, and requiring templates, VIGRA is only usable fully in C++

(and Objective-C++, assuming the additional keywords of Objective-C++ have not

been used as variable names). Other languages can however call C functions which

would call VIGRA functions indirectly. This means all work must be done in C++.

6. Platform Neutrality (•••••)

VIGRA compiles on many desktop computers, including Oberon, MacOS X, Win-

dows and Linux. While it is not supported by any hardware manufacturer cards,

it supports all the major desktop computer operating systems, and should be easily

portable to other less popular systems like BeOS and Atheos. Therefore in the con-

text of desktop machine vision, VIGRA can be regarded as being just as platform

neutral as VSIPL.
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2.3.3 Image inversion example

The following example shows the same inversion operation as the example in VSIPL.

#include <iostream>

#include <sys/time.h>

#include "vigra/stdimage.hxx"

#include "vigra/stdimagefunctions.hxx"

#include "vigra/impex.hxx"

using namespace std;

using namespace vigra;

void outputFunctor(BImage::PixelType pixel)

{

printf("%2x ", pixel);

}

class linearInit

{

public:

linearInit(int c) { _count = c; }

BImage::PixelType operator()(BImage::PixelType pixel)

{ return _count++; }

private:

int _count;

};

int main(int argc, char *argv[])

{

const int COUNT = 16;

try

{

// Create images of size width COUNT, and height 1

BImage image(COUNT, 1);

BImage dest(COUNT, 1);

// Initialise image with 1 to 16

transformImage(srcImageRange(image), destImage(image),
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linearInit(1));

// Output Before Inversion

cout < < "< Original Image" < < endl;

cout < < "< Image: ";

inspectImage(srcImageRange(image), outputFunctor);

cout < < endl;

cout < < "< Dest: ";

inspectImage(srcImageRange(dest), outputFunctor);

cout < < endl;

// Invert image using transformImage

transformImage(srcImageRange(image), destImage(dest),

linearIntensityTransform(-1, -255));

// Output After Inversion

cout < < "> Inverted Image" < < endl;

cout < < "> Image: ";

inspectImage(srcImageRange(image), outputFunctor);

cout < < endl;

cout < < "> Dest: ";

inspectImage(srcImageRange(dest), outputFunctor);

cout < < endl;

}

catch(StdException &e)

{

cout < < e.what() < < endl;

return 1;

}

return 0;

}

And the output produced by this program is:

< Original Image

< Image: 1 2 3 4 5 6 7 8 9 a b c d e f 10
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< Dest: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

> Inverted Image

> Image: 1 2 3 4 5 6 7 8 9 a b c d e f 10

> Dest: fe fd fc fb fa f9 f8 f7 f6 f5 f4 f3 f2 f1 f0 ef

2.4 Intel Performance Primitives for the Intel Architec-

ture

The Intel Performance Primitives (IPP) for Intel Architecture (Int 2000-2001) library con-

sists of routines for signal processing, image processing, and small matrix operations.

IPP’s functions take advantage of the vector-processor technologies MMX and Streaming

SIMD extensions to provide performance benefits. Like VSIPL, it is a C library, with

requirements on how data are provided. In addition, like VSIPL, it adds suffixes to the

function name to indicate the types of the arguments. This feature is undesirable for tem-

plate programming, because it makes it difficult to write one templated version. Qureshi

(2004) discusses how they implemented templated programs using the IPP library.

IPP functions operate on arrays of primitive types (short, float and so on). They

are one-dimensional for signal processing and two-dimensional for image processing. IPP

provides many functions, including image arithmetic, colour conversions, thresholding,

morphological operations, filtering and statistical information.

2.4.1 Evaluation

1. Performance (•••••)

IPP uses the vector-processor technologies available on the Intel platforms. Ac-

cording to (Performance Benchmarks for Intel R© Integrated Performance Primitives

2003), IPP’s use of the VPU provides about one and a half to four-fold speedup for

most domains, except audio where it manages to attain about an eight-fold speedup.

2. Ease of use (••◦◦◦)

IPP is not easy to use because of its low-level C interface. In addition, many of its

functions expect the user to provide information such as the size of steps.

3. Adaptability (•◦◦◦◦)

While the user always has to provide images as arrays, since the user specifies the

number of bytes per pixel, the user has a little bit of control over how to arrange the

data.

4. Functionality (•••••)
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IPP provides functions for many application domains, including audio, video, im-

age, signal, speech, computer vision, matrix and cryptography (Intel R© Integrated

Performance Primitives Product Features 2004).

5. Language Support (•••••)

As a general rule, it is usually possible to call C routine from other languages. Since

IPP is a C library, it should be possible to call its functions from other languages

with the right bindings.

6. Platform Neutrality (•••◦◦)

IPP is available on computers based on the Intel architecture, running Microsoft

Windows and Linux.

2.5 IMAQ Vision

National Instruments’ IMAQ Vision (Nat 1999) is an image-processing library for use

with the LabVIEW (Nat 2005). Since it is for use with LabVIEW, programming IMAQ is

done visually, and looks like data-flow diagrams. IMAQ provides blocks for processing

and analysing grey-scale, colour and binary images, pattern matching, file input/output

and capture using the FireWire camera among others. In additional, National Instru-

ments provides Vision Builder that provides an interactive prototyping environment that

is able to generate LabVIEW diagrams or builder files, which are detailed step-by-step

descriptions of the operations including their parameters, for LabWindows/CVI, an ANSI

C library, and Visual Basic (Nat 2004).

According to (Nat 1999), IMAQ provides three types of images — grey-level, colour

and complex images. These images can be made up of a number of different types. Gray-

level images, for example, can be 8-bit unsigned integer, 16-bit signed integer or 32-bit

floating point. Colour images are processed by breaking the image into its components

and then processing it like any grey-level image.

IMAQ has a large number of functions. In addition to image loading and storing and

sequence grabbing, IMAQ also has lookup transformations, arithmetic and logic oper-

ators, spatial filters, frequency filters, morphological analysis and quantitative analysis

functions.

2.5.1 Evaluation

1. Performance (•••••)

IMAQ Vision takes advantage of the Intel MMX technology where available. Ac-

cording to (Nat 2002b), many IMAQ Vision functions show a four-fold increase in

performance, when MMX is available.
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2. Ease of use (•••••)

LabVIEW is generally acknowledged to be an easy to use language, because of its

visual nature.

3. Adaptability (◦◦◦◦◦)

Users cannot use their own types for use with the IMAQ library. Users however can

call their own routines in dynamically linked libraries.

4. Functionality (•••••)

IMAQ Vision has a wide range of functions for image processing. It provides blocks

for performing image-processing functions like equalise, arithmetic operators, logic

operator, spatial filters, frequency filters, morphological analysis and quantitative

analysis. In addition, it is able to read and write from and to files, and capture

images from FireWire cameras.

Coupled with LabVIEW’s graphical abilities, it is very easy to also show this output

in a graphical user interface.

5. Language Support (•◦◦◦◦)

IMAQ Vision is usable only in LabVIEW.

6. Platform Neutrality (•••••)

LabVIEW is available on Windows, the Macintosh, Sun Solaris and Linux. How-

ever, IMAQ Vision, which is part of the Vision Development Module, is available

only for LabVIEW 7.0 for Windows currently (Nat 2002a). Older versions were

available for Mac OS 9.

2.6 Summary

Four existing image processing libraries, VSIPL, VIGRA, IPP and IMAQ, were presented

in this chapter. While all the libraries presented can use the VPU, except VIGRA, only

VIGRA is based on generic programming paradigms. The most influential library on this

thesis was VIGRA, because like the main outcome of this thesis, it is a generic library. It

is just missing VPU support.
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Chapter 3

Vector Processor Programs

High-performance programs are required for machine-vision applications. Faster pro-

grams means more analysis and/or decision making can be done. While the desktop

computer’s processing power increases by leaps and bounds every year, poorly written

programs would not see the same speedup. This is because today’s processors use many

different and complex techniques to achieve high speeds. Programs written with little

regard to these techniques typically waste much of the processor’s time. While these in-

efficiencies affect both scalar and vector programs, vector programs are more susceptible

because of their higher memory bandwidth requirements; memory access is typically far

slower that the processor. This chapter discusses how to write high-performance VPU

programs, using AltiVec as an example.

This chapter starts with an introduction to the VPU. After this introduction, this chap-

ter focuses more on AltiVec processors. While the general concepts discussed are ap-

plicable to other vector-processor technologies, like MMX and 3DNow!, implementation

details cover only AltiVec. After describing what a VPU is, how the VPU might be de-

tected is covered. This is followed by a discussion on focusing on throughput instead of

low latency to achieve higher speeds, memory and cache issues. After this, some vector

algorithms, a summary of current methods of programming for the VPU, and finally an

investigation into the effect of different issues on AltiVec programs are presented.

3.1 The vector processor

Scalar processors compute scalars one at a time. A VPU is simply a processor that com-

putes a number of scalars simultaneously (see Figure 3.1). This is different from multi-

threading where the processor still computes one scalar at a time, but runs two or more

separate instruction streams, switching between them constantly.

A desktop VPU usually handles a fixed number of elements at a time. This fixed

number of elements together form a vector. Usually, the number of elements in a vector
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Figure 3.1 A scalar processor adds a pair of numbers together in the same time a vector

processor adds n pairs of numbers.

Scalar Vector

differs across types while the overall size of the vector remains constant. A VPU works

with these vectors in much the same way as the scalar processor. For the purposes of

this thesis, when the term VPU is used, it refers only to a VPU in the desktop computer

unless otherwise stated. It is important to keep this in mind because the VPUs that some

super-computers have can be quite different.

VPUs normally augment scalar processors, because not all algorithms are suitable for

vectorisation. VPUs are suitable for applications where there is a large amount of data

that the same series of instructions are to be applied to — Single Instruction Multiple

Data (SIMD) problems. Examples of applications which should make good use of the

VPU include matrix multiplication, video, image and sound processing. In fact, on the

desktop, VPUs were built primarily for multimedia applications. Examples of vector-

processor technologies include MMX, SSE, and AltiVec.

Desktop VPUs have a number of common restrictions that affect how vectorised pro-

grams function. In general, all VPUs can process only a fixed number of elements per

vector. In addition, they usually have restrictions on where they can fetch and store data

quickly. Data stored in these locations are referred to as being aligned. Unaligned data

typically result in large delays, because of the extra processing required. In fact, one of

the main bottlenecks in vector programs is memory. A VPU requires a much wider mem-

ory bandwidth than an equivalent scalar processor, because of its larger vector sizes and

other popular processor techniques such as pipelining. The final characteristic that may

influence the way programs are written is that vectors of different types are all the same

size and thus they contain different numbers of elements.

This discussion on vectorisability uses AltiVec as the VPU. This is because AltiVec is

the only vector-processing technology currently available on desktops, to have a separate

vector-processing unit. It does not follow technologies like MMX and 3DNow! which use

the floating-point unit as the vector-processing unit. Having a distinct vector-processing

unit gives AltiVec better vector-processing performance, and more vector functions. For

more information about AltiVec programming, please consult Mot (1999), AltiVec.org

(2002), App (2002c), Ollmann (2001), and Lai & McKerrow (2001).
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Algorithm 3.1 Detecting AltiVec using Apple’s Gestalt Manager from (App 2002b)

#include <Gestalt.h>
Boolean IsAltiVecAvailable(void)
{
long cpuAttributes;
Boolean hasAltiVec = false;
OSerr = Gestalt(gestaltPowerPCProcessorFeatures,

&cpuAttributes);
if(noErr == err)

hasAltiVec = (1 < < gestaltPowerPCHasVectorInstructions)
& cpuAttributes;

return hasAltiVec;
}

Algorithm 3.2 Detecting AltiVec without Carbon from (App 2002b)

#include <sys/sysctl.h>
Boolean IsAltiVecAvailable(void)
{
int selectors[2] = {CTL_HW, HW_VECTORUNIT};
int hasVectorUnit = 0;
size_t length = sizeof(hasVectorUnit);
int error = sysctl(selectors, 2, &hasVectorUnit, &length,

NULL, 0);
if(0 == error)

return hasVectorUnit != 0;
return FALSE;

}

3.2 Detecting the vector processor

In C/C++, compilers defines certain preprocessor macros in the presence of different pro-

cessor features. GCC, for example, defines __ALTIVEC__ when AltiVec is available. This

can be a simple and effective technique for detecting the presence of the AltiVec processor.

However, this detection method works only at compile time. Determining the processor

type at compile time means that the program does not have to waste time during execution

trying to decide whether AltiVec is available. However, sometimes programmers wish to

release a single binary to multiple platforms. For AltiVec, Apple provides run-time Al-

tiVec detection for Carbon applications using the Gestalt Manager, or via a sysctl call

for other programs. Algorithms 3.1 and 3.2 show how such run-time detection can be

done using Carbon and without Carbon respectively.

According to App (2002b), with AltiVec, it is not enough to wrap AltiVec specific

code in if{} blocks, because AltiVec code generation usually adds a mfspr vrsave in-

struction in the preamble of any function which uses vector types. Since the vrsave
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Algorithm 3.3 DotProduct() function from (App 2002i)

float DotProduct(float a[3], float b[3])
{

return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}

Algorithm 3.4 DotProduct() in Assembly from (App 2002i)

fmuls temp, a0, b0 // temp = a0 * b0
fmadds temp, a1, b1, temp // temp = a1 * b1 + temp
fmadds result, a2, b2, temp // result = a2 * b2 + temp

register does not exist on non-AltiVec processors, this can lead to problems. Avoiding the

preamble is not recommended because it is required for proper operation on the MacOS.

Therefore the only safe technique for writing a program which determines at run-time

whether to use vector instructions or not is to put AltiVec specific code in its own func-

tion.

3.3 High-throughput computing

Functions are used by many programmers to divide and conquer problems. After con-

quering the problem, programmers then identify the most expensive functions, and try to

make them faster. Since functions are about dividing problems, each function typically

handles only a small amount of data. This approach to optimisation where the program-

mer endeavours to make individual functions faster is known as the low-latency approach

— the aim is to reduce function latency.

Another technique of optimisation is known as high-throughput. With high-throughput,

the emphasis is on crunching as much data as possible in the shortest feasible time. High-

throughput functions are focused on making the best use of the available hardware. How-

ever, in general, high-throughput optimisation produces code that is more difficult to write

and maintain.

High-throughput optimisation usually produces faster programs than low-latency op-

timisation because they tend to result in programs that fill the processor’s pipelines more

efficiently. Taking an example from App (2002i), which assumes a perfect hypothetical

pipeline, the scalar dot-product in Algorithm 3.3, becomes Algorithm 3.4 in assembly.

As illustrated in Figure 3.2, because each instruction depends on the data before it, the

instructions will have to wait for each other to complete before executing. On a PowerPC

7450 and 7455, each instruction in Algorithm 3.4 takes 5 cycles each. This results in 15

cycles for a single dot-product.

Changing the dot-product to multiply five at a time allows the pipelines to fill more
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Figure 3.2 Hypothetical PowerPC 7450/7455 five-stage pipeline executing

DotProduct() (Algorithm 3.3 and 3.4) from (App 2002i)
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Algorithm 3.5 DotFive() from (App 2002i)

void DotFive(float a[5][3], float b[5][3], float result[5][3])
{
result[0] = a[0][0]*b[0][0]+a[0][1]*b[0][1]+a[0][2]*b[0][2];
result[1] = a[1][0]*b[1][0]+a[1][1]*b[1][1]+a[1][2]*b[1][2];
result[2] = a[2][0]*b[2][0]+a[2][1]*b[2][1]+a[2][2]*b[2][2];
result[3] = a[3][0]*b[3][0]+a[3][1]*b[3][1]+a[3][2]*b[3][2];
result[4] = a[4][0]*b[4][0]+a[4][1]*b[4][1]+a[4][2]*b[4][2];

}

completely, because of the reduction in the number of data-dependency stalls. Algorithm

3.5 should execute in the manner depicted by Figure 3.3.

By filling the pipelines completely, five dot-products were computed in 19 cycles as

opposed to 15 cycles for one dot-product. In actuality, the DotFive() in Algorithm 3.5

does not achieve anywhere close its potential speedup, because it requires more loads

and stores. It does however manage to be faster than five DotProduct()s. The point is,

processing a large number of elements at a time can reduce data-dependency stalls. This

allows the processor to make fuller use of its pipeline, increasing the performance of the

program.

3.4 Memory and cache management

VPUs typically have higher data-processing capacities than equivalent scalar processors.

Because both vector and scalar processors use the same bus technology, vector programs

have to be much more careful with how they access and use their memory. A simple

example from Apple (App 2004b) illustrates just how disparate the data capabilities of
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Figure 3.3 Hypothetical PowerPC 7450/7455 five-stage pipeline executing DotFive()
(Algorithm 3.5) from (App 2002i)
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the memory and the VPU are. A simple instruction like vec_add could spend up to 93%

of its time waiting for data to appear, for a 400 MHz PowerPC G4 processor coupled with

a 100 MHz bus. More modern systems use higher processor and bus speeds. A 933 MHz

PowerPC G4 processor could consume 30 gigabytes of data per second (32× 933 MHz),

while a 133 MHz bus will deliver only 1 gigabyte of data per second (8×133 MHz) .

Combining the two together means the vec_add instruction should spend around 96% of

its time waiting. A 2.0 GHz PowerPC G5 would spend about 95% of its time waiting

for data to appear (App 2004b). Operations requiring both reading and writing of vectors

could increase the data consumption by as much as three times. However, even if all the

data are in the L1 data cache, the full throughput is still not possible. A top throughput

of 6.4 gigabytes of data per second is more realistic for a 400 MHz PowerPC G4 (App

2004b).

This section discusses how to use memory more efficiently. Using memory more

efficiently will increase the speed of memory-bound functions, which are functions that

are limited by the speed of memory. A memory-bound program that reduces its memory

usage would increase its speed. Another technique is simply to do more with the data

once you have it. The final technique is prefetching — moving data from memory to the

cache before you even use it, so that when you do want to use it, it is already in the cache.

3.4.1 Doing more with data

Apart from reducing the memory usage of a program, the program can elect to do more

with the data. Once the data are in the processor, the program should endeavour to perform
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as much computation to them as possible. It is therefore better to merge loops that handle

the same data together, so that they are not loading the data into the processor twice.

3.4.2 Reducing memory usage

There are many different ways of reducing the memory usage of a program. A simple

method is to pick an algorithm that uses less memory. Other suggestions for reducing

memory usage from Apple (App 2004b) are described below.

Use AltiVec friendly storage formats: Since loading from memory is slow, programs

requiring high performance should try to minimise the effect of loading memory.

This can be done by avoiding scattered loads, and aligning data correctly. In addi-

tion, arranging the data as uniform vectors makes it easier for a vector program to

process the data.

Reduce memory consuming “optimisations”: Many classic programming techniques

were developed at a time when the CPU was slow and memory was fast (by com-

parison). Such techniques therefore try to use more memory and less CPU to attain

their goals, because it would be faster on such systems. Today, the situation is

reversed. The CPU is far faster than memory. Therefore avoiding these memory

consuming “optimisations” can be beneficial to the program. A popular example of

a memory consuming “optimisation” is the lookup table. Lookup tables can cause

a scalar code bottleneck in a vector program, unless the lookup size is really small.

App (2004b) suggests up to 16 elements, while Ollmann (2001) believes 64 ele-

ments can be looked up up with ease. According to Scales (2000), 256-elements

parallel lookups are also possible.

Code also uses memory: Code also needs to be loaded into memory and the cache be-

fore it can be executed. The L1 cache in PowerPC processors has a portion dedi-

cated to instructions only. For example, the G4 has a 32 KB L1 data cache and a 32

KB L1 instruction cache (App 2004a). The G5 has a larger 64 KB L1 instruction

cache and 32 KB L1 2-way data cache (App 2004a). Code that is larger that the L1

instruction cache will start spilling into the L2 cache. This means that there is less

cache left for data.

Globals and constants: Globals should be avoided because a compiler cannot usually

determine if a global value will change or not (because of the possibility of other

threads changing the global). This means that the code generated would fetch glob-

als from memory every time they are required, instead of loading from memory for

the first time only, and subsequently from the cache. Constants can be generated di-

rectly from instructions rather than being loaded from main memory. (Bettag 2001)

29



contains information on the instructions required to generate 16-bit integer con-

stants for AltiVec. Constants that can not be generated, either automatically by the

compiler or by the programmer, require loading from memory. In some cases, the

use of constants can be avoided by using different instructions. Constant generation

is discussed later in Section 3.5.1.

3.4.3 Prefetching

According to App (2004a), when loading data, the G4 processor checks the L1 data cache

for the data first. If the data are not in the L1, it checks the L2 (and then L3, if there is

an L3 cache). Failing that as well, the processor will look for the data in memory. After

finding the data, the data have to be moved into the L1. The movement of data will cause

some data in the L1 cache to be displaced. The displaced data go into the L2 cache by

default, before memory.

From this scenario, two important optimisation rules can be deduced. It is evident

that for shortest load times, data should always be in the cache by the time the processor

wants to use it. However, in order to be in the cache by the time the processor wants it,

the data will have to be pre-loaded into the cache. The second rule is that because the

default behaviour moves data from L1 to L2 (to L3) before being flushed to memory, it

can displace other valid information in the L2 (and L3). In some cases, it is better to

displace data directly from the L1 to main memory. Doing so will help the rest of the

program run faster. This process of moving data into the caches before it is needed is

called prefetching.

AltiVec provides data stream instructions to allow the programmer to handle these

two issues. They allow the programmer to schedule data for loading into the cache before

the data are actually needed. The G4 processor is able to do this concurrently, without

affecting the execution of code. In addition, it allows the programmer to specify how to

flush the data after use. For data that is used once only, or once in a while, it is better to

displace directly to main memory.

Using the data stream instructions to load data into the caches concurrently might

have no effect on the program speed or can cause the program to run slower if not done

correctly. Some errors, highlighted by App (2004a), which can cause a program to have

no noticeable improvement are listed as follows.

1. Data are not being prefetched early enough.

2. Data are prefetched too early. By the time the processor wants to use it, it has

already been displaced.

3. Too much data are being prefetched, causing more bus traffic than necessary.
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4. The prefetch has stopped prematurely. For example, another program may be trying

to use the same data stream as you are.

5. The data are already in the cache.

6. Cache stalls are not a major bottleneck in the program.

Because of the low cost of starting a prefetch and the difficulty in keeping the program

and the data stream synchronised, App (2004a) recommends the program start prefetching

often. The only problem with this is that because less data are prefetched, there is a higher

chance that the processor will overtake it. If the processor takes longer to compute the

data than to load the data, then the loading of data can occur in parallel and it is easy to

stay synchronised with the data stream.

Not all VPUs require prefetching, or handle prefetching in the same manner. Accord-

ing to App (2003c), the G5 starts prefetching automatically. In addition, the G5 interprets

the AltiVec data stream instructions differently. It cannot execute the Data Stream Touch

instructions speculatively, and therefore causes the execution engine to be drained com-

pletely before execution. This can result in large bubbles (clock cycles during which the

processor is idle). In addition, transient hints are ignored for the G5.

3.5 Vector processor specific algorithms

This section contains discusses VPU specific algorithms. Topics covered are generating

constants, performing unaligned loads and stores, edge handling and type conversion.

3.5.1 Constants

Considerations raised in Section 3.4 suggest it is usually faster to generate constants than

to load them from memory. Bettag (2001) provides a list showing how to generate con-

stants having scalars 0 to 65355 on the AltiVec. Such a list is useful for generating con-

stant vectors whose scalars the programmer knows at program-time. Table 3.1 shows

how to generate __vector unsigned short constants with scalars 0 to 19 without load-

ing data from memory (Bettag 2001).

Sometimes the constant required is not known at program-time. In such cases, Al-

gorithm 3.6, which was adapted from (App 2002g), is useful. This algorithm works by

loading the scalar s into the vector result. The position of s in result actually depends

on the address of s. Since s is passed in as a argument, we can assume that it is naturally

aligned, which means that it is aligned as appropriate for its size. For example, for char

types, the address would be a multiple of 1, for shorts the address would be a multiple of

2, for ints the address would be a multiple of 4 and so on. After loading s into result,

31



Table 3.1 Generating 0-19 AltiVec unsigned short constants using instructions (Bettag

2001)

Instruction

Count Instructions

0 1 vec_splat_u8(0)
1 1 vec_splat_u16(1)
2 1 vec_splat_u16(2)
3 1 vec_splat_u16(3)
4 1 vec_splat_u16(4)
5 1 vec_splat_u16(5)
6 1 vec_splat_u16(6)
7 1 vec_splat_u16(7)
8 1 vec_splat_u16(8)
9 1 vec_splat_u16(9)

10 1 vec_splat_u16(10)
11 1 vec_splat_u16(11)
12 1 vec_splat_u16(12)
13 1 vec_splat_u16(13)
14 1 vec_splat_u16(14)
15 1 vec_splat_u16(15)
16 2 vec_vaddubm(vec_splat_u16(8),vec_splat_u16(8))
17 3 vec_vandc(vec_splat_u16(-9),

vec_vadduhm(vec_splat_u16(-9),vec_splat_u16(-9)))
18 2 vec_vaddubm(vec_splat_u16(9),vec_splat_u16(9))
19 3 vec_vnor(

vec_vadduhm(vec_splat_u16(-10),vec_splat_u16(-10)),
vec_vadduhm(vec_splat_u16(-10),vec_splat_u16(-10)))
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Algorithm 3.6 A function that generates arbitrary constant vectors, adapted from (App

2002g)

// Example Usage:
// typedef unsigned char uchar;
// typedef __vector unsigned char vector_uchar;
// vector_uchar v = splat<vector_uchar, uchar>(10);
template<typename V, typename T> V splat(T s) {
// Load t into the vector.
V result = vec_lde(0, &s);
// Rotate the vector so that t is at position 0
vector unsigned char rotate_mask = vec_lvsl(0, &s);
result = vec_perm(result, result, rotate_mask);
// Fill the result with the scalar at position 0 (which is s)
return vec_splat(result, 0);

}

we then rotate s to a known position, which is 0 in this case. Then we use vec_splat to

fill result with the scalar at 0. We had to perform the rotation instead of calculating the

element to ask vec_splat to fill because vec_splat requires the position to be literal.

App (2002g) also discusses how to create arbitrary constant vectors for 16-byte aligned

scalars and arbitrarily aligned scalars.

3.5.2 Unaligned loads

AltiVec VPUs are able to load memory directly only from aligned memory locations (Lai

& McKerrow 2001, Mot 1999). While SSE and SSE2 are able to load unaligned memory

locations, loading from aligned memory locations is faster (Adv 2002). This section

discusses how to process unaligned memory locations with AltiVec.

App (2002e), Ollmann (2001), and Lai & McKerrow (2001) discuss how to load con-

secutive unaligned vectors efficiently. An unaligned vector can be loaded using something

similar to Algorithm 3.7. To load an unaligned vector, two aligned vectors, starting from

the first aligned address just before the unaligned address that is to be loaded, are loaded.

The unaligned vector that we want to load would now be in these two aligned vectors.

The vec_lvsl instruction generates a vector that specifies where the unaligned vector

is located in the two aligned vectors, which when passed to the vec_perm instruction,

extracts the unaligned vector from the two aligned vectors.

Using the function in Algorithm 3.7 for a contiguous array is inefficient because in

subsequent calls, since low would be high from the previous call, it results in more loads

than necessary. Algorithm 3.8 (App 2002e) shows how four consecutive unaligned vec-

tors would be loaded. Using this technique, only one extra vector load is needed. When

used in a loop, it is sensible to use v0 as vExtra. This results in only one extra vector load
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Algorithm 3.7 Loading an unaligned vector modified from (Ollmann 2001)

// Load a vector from an unaligned location in memory
__vector unsigned char LoadUnaligned(unsigned char *p_v) {

__vector unsigned char permuteVector = vec_lvsl(0, p_v);
__vector unsigned char low = vec_ld(0, p_v);
__vector unsigned char high = vec_ld(16, 0);
return vec_perm(low, high, permuteVector);

}

Algorithm 3.8 Efficient unaligned loads from (App 2002e)

vector float v0, v1, v2, v3, vExtra;
vector unsigned char fixAlignment;

// Load four unaligned vectors as five aligned vectors
v0 = vec_ld(0 * sizeof(vector float), ptr);
v1 = vec_ld(1 * sizeof(vector float), ptr);
v2 = vec_ld(2 * sizeof(vector float), ptr);
v3 = vec_ld(3 * sizeof(vector float), ptr);
vExtra = vec_ld(4 * sizeof(vector float), ptr);

// Use vec_perm to extract out the desired unaligned vectors
fixAlignment = vec_lvsl(0, ptr);
v0 = vec_perm(v0, v1, fixAlignment);
v1 = vec_perm(v1, v2, fixAlignment);
v2 = vec_perm(v2, v3, fixAlignment);
v3 = vec_perm(v3, vExtra, fixAlignment);

for the entire loop. Because the application will crash if the last vExtra includes memory

that does not belong to it, to use this technique safely, there should be an extra vector at

the end of the data.

For small arrays that require no looping, it is possible to load vExtra as the last

element in the array. This allows the program to avoid reading memory that does not

belong to the array and therefore prevent the possibility of access exceptions. This is

presented in Algorithm 3.9, which was reproduced from App (2002e).

3.5.3 Unaligned stores

AltiVec VPUs are not only restricted to loading memory directly from aligned addresses,

they can write memory directly only to aligned addresses (Lai & McKerrow 2001, Mot

1999). While SSE and SSE2 are able to write to unaligned memory addresses, writing

to aligned memory addresses is faster (Adv 2002). This section discusses how to store

vectors to unaligned memory locations with AltiVec.

Unaligned stores basically require writing to two vectors instead of one. The original

34



Algorithm 3.9 Efficient unaligned loads for small arrays requiring no loops from (App

2002e)

vector float v0, v1, v2, v3, vExtra;
vector unsigned char fixAlignment;

// Load four unaligned vectors as five aligned vectors
v0 = vec_ld(0 * sizeof(vector float), ptr);
v1 = vec_ld(1 * sizeof(vector float), ptr);
v2 = vec_ld(2 * sizeof(vector float), ptr);
v3 = vec_ld(3 * sizeof(vector float), ptr);
vExtra = vec_ld(4 * sizeof(vector float) - sizeof(float), ptr);

// Use vec_perm to extract out the desired unaligned vectors
fixAlignment = vec_lvsl(0, ptr);
v0 = vec_perm(v0, v1, fixAlignment);
v1 = vec_perm(v1, v2, fixAlignment);
v2 = vec_perm(v2, v3, fixAlignment);
v3 = vec_perm(v3, vExtra, fixAlignment);

vector needs to be combined with the original two vectors to generate two new vectors,

which have the result vector grafted onto them at the correct places. These two new

vectors are then written back. Because this technique requires writing to locations that are

not used by the vector to be stored, it can lead to problems in threaded programs where

another thread modifies the data in the vector just before the grafted vector is written. In

addition, it is possible to try to read/write to locations that are not owned by the process,

thereby leading to fatal crashes.

An algorithm describing how to perform unaligned stores is shown in Algorithm 3.10,

which was adapted from Ollmann (2001) and published in Lai & McKerrow (2001). Note

that the original used vec_lvsl instead of vec_lvsr. Since the algorithm seemed to fail

when using the vec_lvsl, it was changed to vec_lvsr.

3.5.4 Handling edge conditions

When processing arrays with a VPU, there is a high chance that the data are unaligned,

especially if the program is processing only a part of a larger array. In such cases, the

number of elements in the data to be processed is not usually exactly divisible by the

number of elements in the vector. The elements that fall out of alignment is what the au-

thor refers to as edge conditions. As Figure 3.4 illustrates, a contiguous array in memory

has at most two edges.

App (2002e) suggests using the scalar processor to handle such edge conditions. This

is because the scalar unit and vector unit in the G4 are able to operate independently of

each other. Therefore, the edge conditions could be handled for free. It is also possible to
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Algorithm 3.10 Unaligned store from (Lai & McKerrow 2001)

// Store a vector to an unaligned location in memory
void store(__vector unsigned char v, __vector unsigned char *p)
{

// Load the surrounding areas
__vector unsigned char low = vec_ld(0, p);
__vector unsigned char high = vec_ld(16, p);
// Prepare the constants that we need
__vector unsigned char pv = vec_lvsr(0, (int *)p);
__vector unsigned char oxFF = vec_splat_u8(-1);
__vector unsigned char ox00 = vec_splat_u8(0);
// Make a mask for which parts of
// vector to swap out
__vector unsigned char m = vec_perm(ox00, oxFF, pv);
// Right rotate out input data
v = vec_perm(v, v, pv);
// Insert our data into the low and
// high vectors
low = vec_sel(low, v, m);
high = vec_sel(v, high, m);
// Store the two aligned result
// vectors
vec_st(low, 0, p);
vec_st(high, 16, p);

}
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Figure 3.4 A contiguous one-dimensional array can have at most two edges
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Figure 3.5 AltiVec type conversion functions from (App 2002a)
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handle the edge conditions in the vector unit by copying the edge vector to a temporary

work vector. The operation is then carried out on the temporary work vector, after which

it is grafted back into the original array.

3.5.5 Type conversions

Vectors of different types in the VPU are usually all the same size. In AltiVec for example,

all vectors are 128 bits long. However, the size of the elements in the different vectors is

not constant. This means that the number of elements in vectors of different types is not

consistent across types. AltiVec, for example, can have 16 characters, 8 short integers,

4 long integers or 4 floating-point scalars in a vector. When working with vectors of a

single type, there is no problem. However, when trying to convert from one type to the

other, this becomes an issue. Essentially a single vector conversion could create n vectors

or vice versa. With respect to AltiVec, n is 1, 2, or 4.

AltiVec provides several functions to change the type of its vectors. Figure 3.5 from

(App 2002a) illustrates the functions required for conversion.

3.6 Approaches to programming the vector processor

There are currently several methods of writing programs that utilise the VPU. These other

methods, arranged in order of increasing conceptual level, include using the VPU di-

rectly, using vector-processor wrappers, vector libraries, high-level libraries, vectorising

compilers and parallel languages.

Semantic vectorisation refers to being able to express an algorithm in a manner that

uses vectors to produce the answer. Rizzoli et al. (1986) point out that “in order to fully

exploit the capabilities of a vector hardware, any program architecture must be structured
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accordingly”. Semantic vectorisation allows programmers to structure their program in a

manner that is easy for the VPU to execute.

3.6.1 Vector processor

VPUs can be programmed directly either through the use of assembly or a C interface,

that maps one-to-one to existing vector processing instructions. Programming for the

VPU directly provides the user with the most control. However, its low-level interface

makes it more difficult for programmers to use.

Programming the VPU directly supports semantic vectorisation and results in highly

efficient code that is not portable to other VPUs.

3.6.2 Vector-processor wrappers

Since using the VPU directly can be difficult, there are libraries around that wrap the

VPU commands in a clearer, easier to use syntax. Vector-processor wrappers usually

have a one-to-one correlation between instructions in the wrapper and instructions in the

VPU and have the same constraints as the VPU that they are wrapping. An example of

such wrappers can be found in part of Pixelglow’s MacSTL library (Pix 2003), which

wraps AltiVec commands in C++ style operators.

Programming for vector-processor wrappers is similar to programming for the VPU

directly except the interface is usually simpler and more intuitive. Therefore using vector-

processor wrappers also supports semantic vectorisation and results in code that is not

portable to other VPUs. Since vector-processor wrappers are extremely thin wrappers,

using vector-processor wrappers should produce highly efficient code.

3.6.3 Vector libraries

Vector libraries aim to provide functionality that allows vectors to be manipulated easily.

Examples of such libraries are Blitz++ (Veldhuizen 2001), and C Vector Library (CVL)

(Blelloch et al. 1995, Hardwick 1995, Blelloch et al. 1994). Vector libraries provide

facilities to manipulate vectors in an easy-to-use package and support different vector-

processor technologies through different implementations of the same interface — ports.

Some of these libraries were developed with real VPUs in mind. For example, according

to (Hardwick 1995), CVL was designed so that it can be efficiently implemented on a

wide variety of parallel machines.

Vector libraries support cross-platform development and support semantic vectorisa-

tion. However, not all vector libraries are necessarily easy to vectorise, and so may result

in less than optimal code.
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3.6.4 High-level libraries

High-level libraries refer to libraries that offer facilities that conceptually have little to do

specifically with a VPU. Examples of such libraries include image processing and data

structures. While a lot of these libraries do not use the VPU at all, some use the VPU

behind the scenes to provide speed benefits transparently. Different ports of the library

could support different VPUs. VSIPL (VSIPL website 2001, Geo 2001) and VIGRA

(Köthe 2001) are both image-processing libraries. However VIGRA does not use the

VPU at all. VSIPL on the other hand has an AltiVec port, MMX port and many others. In

fact, according to Jaenicke (1999), VSIPL was designed with AltiVec in mind.

While different implementations of the same library that target different vector-proces-

sor technologies can be created, creating these different ports in this manner means more

work, both development-wise and maintenance-wise. This is because there are now many

different versions of the library.

3.6.5 Vectorising compilers

Vectorising compilers automatically detect code that is suitable for parallel execution and

generate a vectorised implementation. Languages that have constructs to express parallel

operation are easier to vectorise automatically.

Most popular programming languages in use today however do not have such con-

structs. Despite this, there are a number of different vectorising compilers for these lan-

guages. Examples include the Intel C++ compiler (Walls & Fegreus 2002, Optimizing

Applications with Intel C++ and Fortran Compilers for Windows and Linux 2003) and

VAST/AltiVec (Cre 2003), which are vectorising compilers for MMX and AltiVec tech-

nologies respectively. However, to help the compiler, the programmer has to be careful of

how the program is constructed. Bik et al. (2003) discuss how to structure programs so

that they have a higher chance of being vectorised automatically.

3.6.6 Parallel languages

Parallel languages, like Nested Data-Parallel Language (NESL) (Blelloch et al. 1994),

and extensions to C, such as Dataparallel C (Hatcher et al. 1991), CxC (Oberdorfer &

Gutowski 2004), Multimedia C (MMC) (Bulic & Gustin 2003), among others are all

attempts at allowing parallel operations to be specified explicitly by the programmer so

that compilers can produce better vectorised programs automatically.

Some parallel languages, such as CxC, are generally aimed at SPMD (Single Program

Multiple Data) problems (Oberdorfer & Gutowski 2004), while others, such as MMC, are

aimed at providing language support for VPUs (Bulic & Gustin 2003). Parallel languages

typically have the user programming virtual processor(s).
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3.7 Effect of different issues on speedup

This section investigates the effect of alignment, prefetching and function complexity on

the speedup of AltiVec programs. This investigation was published in Lai et al. (2002).

Lai et al. (2002) presented several different AltiVec algorithms. The fastest version

did not handle any edges though. The fastest version presented that could handle edges is

reproduced in Algorithm 3.7. This algorithm aligns the input image to the output image,

thereby reducing the cost of unaligned loading. Because of this alignment, there is only a

right edge. This right edge was computed using the scalar processor. For some operations,

the edges can actually be computed with the VPU.

Algorithm 3.11: AltiVec transform functor

// T is the scalar type. eg. float

// V is the corresponding AltiVec vector type. eg. __vector float

// F is a functor for V

// SF is a functor for T

template<class T, class V, class F, class SF>

void transform(T* start, T* end, T* out, F f, SF sf)

{

const int step = sizeof(V)/sizeof(T);

V ov, iv, iv_xtr;

__vector unsigned char ifix;

int count = end - start;

T *pi = start, *po = out;

#ifdef DST

vec_dst(pi, 0x10010100, 0);

#endif

#ifdef UNALIGNED_LOAD

// Do Initial load

iv_xtr = vec_ld(0, pi);

pi += step;

ifix = vec_lvsl(0, pi);

#endif

for(int i = 0; i < count; i += step)

{

#ifdef DST

vec_dst(pi, 0x10010100, 0);

#endif

#ifdef UNALIGNED_LOAD

// Load unaligned
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iv = iv_xtr;

iv_xtr = vec_ld(0, pi);

pi += step;

iv = vec_perm(iv, iv_xtr, ifix);

#else

iv = vec_ld(0, pi);

pi += step;

#endif

ov = f(iv);

#ifdef UNALIGNED_STORE

// store was discussed in Algorithm 3.10

store((__vector unsigned char)ov, (__vector unsigned char*)po);

po += step;

#else

vec_st(ov, 0, po);

po += step;

#endif

}

#ifdef UNALIGNED_STORE

// Handle right edge with scalar processor

int starti = (count / step) * step;

for(int i = starti; i < count; ++i)

out[i] = sf(pi[i]);

#endif

}

Algorithm 3.12: Optimised AltiVec transform function

// This vector loop will load unaligned data to the alignment of

// the output, so that only unaligned load is needed

// T is the scalar type. eg. float

// V is the corresponding AltiVec vector type. eg. __vector float

// F is a functor for V

// SF is a functor for T

template<class T, class V, class F, class SF>

void transform(T* start, T* end, T* out, F f, SF sf) {

const int step = sizeof(V)/sizeof(T);

V ov, iv, iv_xtr;

__vector unsigned char ifix;
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int count = end - start;

T *pi = start, *po = out;

#ifdef DST

vec_dst(pi, 0x10010100, 0);

#endif

// Load location = input offset +

// (element count - output offset) % step

// % step required because want values from 0 to

// (scalar count - 1)

int ioffset = ((unsigned long)pi & 0xf);

int ooffset = ((unsigned long)po & 0xf);

int roffset = ((step - ooffset) % step);

if(roffset + ioffset > step)

pi += step;

// Do Initial load

iv_xtr = vec_ld(0, pi);

pi += step;

ifix = vec_lvsl(roffset, pi);

// Do front with scalar processor

for(int i = 0; i < roffset; ++i)

out[i] = sf(start[i]);

po += roffset;

// Do middle with vector processor

for(int i = roffset; i < count; i += step) {

#ifdef DST

vec_dst(pi, 0x10010100, 0);

#endif

// Load unaligned

iv = iv_xtr;

iv_xtr = vec_ld(0, pi);

pi += step;

iv = vec_perm(iv, iv_xtr, ifix);

// Do operation

ov = f(iv);

// Write aligned

vec_st(ov, 0, po);

po += step;

}

// Do end with scalar processor
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int starti = (count / step) * step;

for(int i = starti; i < count; ++i)

out[i] = sf(start[i]);

}

Lai et al. (2002) only showed results without optimisation to avoid entangling the

performance of the optimiser with the results. Unfortunately, since the rest of this thesis

requires optimisation to attain sensible results and generally used a constant height of 960

instead of 128, the graphs are not directly comparable. So the figures have been re-timed

with and without optimisations and the height changed to 960 when optimisations are

on. All programs were compiled using Apple GCC 3.1 20021003. Without optimisation

the compiler switch -O0 (no optimisations) was used, while -Os (optimise for size) was

used for the optimised version. All programs were executed 20 times, and the lowest

time collected was used as the representative. The programs were executed several times

because the execution time is affected by factors outside the program’s control. The

program could for example be interrupted by other processes. The lowest time collected

was used as the representative because it is likely to be least affected by these other factors.

Removing these other factors should provide for fairer comparisons between programs.

Figures 3.6, 3.7 and 3.8 show the effect of data alignment, prefetching instructions and

the complexity of the functors on the speedup of on AltiVec programs. These figures show

the speedup of different AltiVec programs compared to a scalar program that performs the

same operation. The height of the images processed was fixed at 128 or 960. Only the

width was varied. Because the image was represented as a one-dimensional array, the

versions shown in the figures do not differentiate between rows and columns. Figures 3.6

and 3.7 used a functor that returns the value passed to it unchanged. Since the destination

and source images were actually the same, the net effect is that the image was copied

to itself. Figure 3.8 used different functors because it evaluates the effect of functor

complexity on AltiVec programs.

The programs in Figure 3.6, which investigates the effect of data alignment, are de-

tailed below:

Aligned Load and Aligned Store: This version assumes the source and destination im-

ages are aligned correctly at both ends. Since it performs only aligned loads and

aligned stores, it does not handle edges and cannot handle all image sizes. This

version is Algorithm 3.7 but without any special macros defined.

Unaligned Load and Aligned Store: This version uses unaligned loads with aligned stores.

This version will load the source image correctly even if it is unaligned. Because

it only performs aligned store, if the number of pixels is not divisible by 16 (since

we were using unsigned char, and there are 16 unsigned chars in a __vector
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unsigned char), then not all the pixels will be loaded. This version is Algorithm

3.7 with UNALIGNED_LOAD defined.

Aligned Load and Unaligned Store: This version performs aligned loading, but uses

the unaligned store function discussed in Section 3.5.3. Since it only does aligned

loading, it does not handle source images that are unaligned. However because

it does unaligned store, the end pointer does not need to be aligned. It processes

the remaining portion (the right edge) using the scalar processor. This version is

Algorithm 3.7 with only UNALIGNED_STORE defined.

Unaligned Load and Unaligned Store: This version performs unaligned loading and

also uses unaligned store. It is able to handle unaligned start and end point-

ers. It processes the remaining portion using the scalar processor. This version is

Algorithm 3.7 with UNALIGNED_LOAD and UNALIGNED_STORE defined.

Unaligned Load and Unaligned Store (Optimised version): This version performs un-

aligned loading and also uses unaligned store. Unlike “Unaligned Load and Un-

aligned Store”, which loads the unaligned source image to the alignment of the

VPU, it loads the unaligned source image to the alignment of the destination im-

age. Because of this, there is no need for an unaligned store. This however results

in two leftover portions, one at the beginning and one at the end. Both of these

portions are processed using the scalar processor. This version is Algorithm 3.7.

The programs in Figure 3.7, which investigates the effect of prefetching, are detailed

below:

No DST (Aligned load and store): This is the same as the “Aligned Load and Aligned

Store” version from Figure 3.6.

DST (Aligned load and store): This is the “Aligned Load and Aligned Store” version

from Figure 3.6, but with prefetching on. This version is Algorithm 3.7 with only

DST defined.

No DST (Optimised version): This is the same as the “Unaligned Load and Unaligned

Store (Optimised version)” version from Figure 3.6.

DST (Optimised version): This is the “Unaligned Load and Unaligned Store (Optimised

version)” version from Figure 3.8, but with prefetching on. This version is Algo-

rithm 3.7 with DST defined.

The programs in Figure 3.8, which investigates the effect of function complexity, are

detailed below. All variants used the “Aligned Load and Aligned Store” algorithm from

Figure 3.6.
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Figure 3.6 Effect of alignment on AltiVec transform functions
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Figure 3.7 Effect of Data Stream Instructions on AltiVec transform functions
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Figure 3.8 Effect of function complexity on AltiVec transform functions
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(b) Optimised for Size

No Operation: In this version, the functor was empty. It therefore returns an unknown

value.

Return Input: In this version, the functor simply returned the input unchanged. This is

the functor that was used in Figures 3.6 and 3.7.

Add Once: In this version, the functor added the input to itself once.

Add Twice: In this version, the functor added the input to itself twice.

Add Thrice: In this version, the functor added the input to itself three times.

Figure 3.6 shows that without optimisation, unaligned load and unaligned store both

reduce the speed of the program. With optimisation however, unaligned load was actually

faster than aligned load, which was unexpected. Unaligned store reduced the speed of the

program, regardless of optimisations. Without optimisation, the optimised version from

Algorithm 3.7 performed as expected — it was only a bit slower than Unaligned Load

and Aligned Store.

Figure 3.7 shows that on the G4, adding prefetching, as suggested in Section 3.4.3,

increases the speed of the AltiVec program, especially when optimisation was turned

on. Without optimisations, prefetching increased the speedup ratio with increased image

sizes. In addition, with optimisations, while aligned load was slower than unaligned load

without prefetching, aligned load was faster than unaligned load when prefetching was
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turned on. This suggests that unaligned load was faster than aligned load in Figure 3.6

because unaligned load waited less for data to be in the caches.

Figure 3.8 clearly shows that, without optimisation, speedup increases to a maximum

and then trails off. With optimisation and a larger problem size, speedup appears to drop

to a minimum. The speedup is lower for large data sizes, probably because the program

becomes more dependent on memory. While increasing function complexity should re-

duce the memory-dependency of the algorithm thereby increasing speedups, Figure 3.8

shows mixed results. The speedup did not seem to be linearly proportional to function

complexity.

In general, speedup never reached the theoretical maximum of 16. Speedups were

less when optimisations were enabled, suggesting that scalar code benefited more from

the optimisations performed by Apple GCC 3.1 20021003 than the AltiVec code. Fur-

thermore, because the problem sizes were larger when optimisations were enabled, the

optimised versions would have been more susceptible to delays in main memory.

3.8 Conclusion

In this chapter, a description of VPUs and issues pertaining to VPUs were presented.

Issues covered were AltiVec detection, high-throughput computing, memory and cache

management, vector processor specific algorithms, and different methods of programming

VPUs were presented. The chapter concluded with a new investigation into the effect of

alignment, prefetching and function complexity on AltiVec programs with Apple GCC

3.1 20021003.

Unlike scalar processors, which compute scalars one at a time, VPUs compute a num-

ber of scalars simultaneously. Desktop VPUs’ vectors typically have fixed sizes. As a

result, while vectors have fixed numbers of scalars, the number of scalars differs from one

vector to another. In addition, desktop VPUs can typically only load and store data effi-

ciently from and to aligned memory locations. Since VPUs have higher data bandwidth

requirements than scalar processors, they are more susceptible to memory bandwidth lim-

itations than scalar processors. To avoid memory being a bottleneck, the programmer can

simply do more with the data currently loaded, or try to reduce memory usage. Ways

to reduce memory usage are to use VPU-friendly data formats, to reduce optimisations

that require lookup tables, to create smaller programs, to avoid globals and to generate

constants through the use of instructions. Prefetching was also discussed as a method for

loading data into the caches before it is used. This reduces the time spent loading data

into the VPU. Six existing methods of programming the VPU were discussed: using the

VPU directly, vector-processor wrappers, vector libraries, high-level libraries, vectorising

compilers and parallel languages. Using the VPU directly, vector-processor wrappers,

vector libraries, and some parallel languages allow for semantic vectorisation. Higher-
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level solutions typically reduce or remove VPU constraints. For example, with vectoris-

ing compilers and high-level libraries, there is typically no need to worry about the size

of vectors or aligned memory.

New to this thesis was an investigation into the effect of alignment, prefetching and

function complexity on AltiVec programs with Apple GCC 3.1 20021003. Results show

that unaligned stores lead to larger performance hits than unaligned loads. With optimi-

sations, unaligned load can actually be faster than aligned load when prefetching was off.

When prefetching, aligned load was clearly faster than unaligned load as expected, re-

gardless of optimisations. Without optimisations, the highest speedup attained was about

11, while with optimisations, the highest speedup attained was about 9. The speedup

attained was higher for smaller problem sizes when optimisations were on.

The VPU is difficult to use directly. Fixed vector sizes and memory requirements

lead to programs that are more complicated. Not only are vector programs more diffi-

cult to write than scalar programs, they are also more susceptible to memory bandwidth

limitations. Arranging data in a manner conducive for vector processing is important in

overcoming memory bandwidth limitations. Since VPUs are difficult to use directly, the

VPU has been wrapped in varying amounts of abstraction.
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Chapter 4

Implementation Techniques

This chapter discusses existing implementation techniques that were used in this thesis.

These implementation techniques affect the runtime performance and flexibility of the

code. Some of the techniques in this section are provided as part of the Boost library (Boo

2003). Features missing were packaged into a utility library, called the CT (Compile-

Time) library.

This chapter starts with a short introduction to generic programming, followed by

techniques that allow for flexible code generation using templates. These techniques are

typelists, tuples, template metaprogramming, tag dispatching, enablers, policies and ex-

pression templates. Details of how these techniques are implemented are generally omit-

ted, because such details are not required for the purposes of this thesis.

4.1 Generic programming

Generic programming was introduced as a programming paradigm by Musser and Ste-

panov (Köthe 1999, Musser & Stepanov 1989, 1994). Generic programming focuses on

obtaining abstract representations of efficient algorithms, data structures, amongst others

(Musser & Stepanov 1989, Vandevoorde & Josuttis 2003). In C++, generic programming

is sometimes defined as “programming with templates” (as opposed to object-oriented

programming, which is “programming with virtual functions”) (Vandevoorde & Josuttis

2003). Generic programming aims to design a framework that supports a multitude of use

combinations (Vandevoorde & Josuttis 2003).

The most well-known library based on generic programming principles is the Stan-

dard Template Library (STL) (Vandevoorde & Josuttis 2003). STL provides a number

of algorithms for a number of containers. Both algorithms and containers are templates.

Algorithms are written in a generic way so that they can be applied to any container,

instead of being a container’s member functions. To enable this, STL introduces the con-

cept of iterators which can be provided for any linear collection. STL groups the different
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requirements into “concepts”. Examples of concepts specified by STL are “Input Iter-

ator” and “Output Iterator”. As mentioned previously, VIGRA is an image-processing

library based on generic programming principles. VIGRA extends the iterator design to

two-dimensions.

According to Köthe (2000c), the generic programming approach overcomes the fol-

lowing limitations of traditional approaches to designing reusable software:

• Programming is more efficient, because algorithms are not repeated for different

types.

• There is only a small performance penalty compared to an optimised algorithm.

• A smooth, incremental transition to generic programming is possible, because ex-

isting code is not broken while new iterators are incrementally implemented and

adopted for existing data structures.

• Implementing reusable algorithms is comparable in difficulty to traditional pro-

gramming. No complex inheritance hierarchies need to be designed.

Because generic programming depends on static polymorphism (Vandevoorde & Josuttis

2003), it is able to provide better performance than object-oriented programming, which

is based on runtime polymorphism.

4.2 Typelists

A typelist is a type that represents a number of types. Czarnecki & Eisenecker (2000) used

a typelist that contained integral constants (which were wrapped in a type) to implement

a switch-statement for template metaprogramming. Alexandrescu (2001) used typelists

in generic components such as Functor, Visitor and Tuple.

Typelists are easy to implement. Consider the following definitions:

template<typename headT, typename tailT>

struct typelist {

typedef headT head;

typedef tailT tail;

};

class null_typelist {};

Using this definition a typelist of char C++ types can easily be defined as follows:

typelist<char, typelist<unsigned char, typelist<signed char,

null_typelist> > >
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Table 4.1 Typelist metafunctions in CT

Expression Return Type Notes

type_at<TL, i>::type Type Returns type at index i in typelist TL.

Compilation fails if not found

type_at_non_strict< Type Returns type at index i in typelist TL.

TL, i, D>::type Return D if not found, or void if D is

not passed in

index_of<TL, X>::value int Returns the index of X in the typelist TL
Returns -1, if not found

find_first<TL, E>::type Type Returns first type in TL where

E<X>::value is true
length<TL>::value int Returns number of types in TL
append<TL, X>::type typelist Result is TL with X at the end

erase<TL, X>::type typelist Result is TL without first X
erase_all<TL, X>::type typelist Result is TL without any X
no_duplicates<TL>::type typelist Result is TL without any duplicates

apply<TL, E>::type typelist Each type in TL is changed to

E<X>::type
keep_only<TL, E>::type typelist Result is TL where all E<X>::value is

true
contains<TL, X>::value bool Returns true if X is in TL
any<TL, E>::value bool Returns true if any E<X>::value is

true
all<TL, E>::value bool Returns true if all E<X>::value is

true

More information about typelist implementation can be found in Alexandrescu (2002).

The Loki library written by Alexandrescu (2001) provides an example of how typelists can

be implemented and some template metafunctions for retrieving types from the typelist.

For this thesis, typelists are provided by the CT library. CT provides several meta-

functions for querying and using typelists. While most of these metafunctions are derived

from the Loki library, apply, keep_only, contains, any and all are new to CT. The

Loki library contains other metafunctions that CT did not provide because this thesis

did not require those functions. The list of template metafunctions for operating on and

querying typelists, provided by CT, is shown in Table 4.1.

4.3 Tuples

A tuple is a fixed-size collection of elements. An example of a tuple in C++ is std::pair.

Some languages, like Perl and Python (van Rossum 2003), support tuples as part of the

language. While C++ does not have native tuple support, tuple implementations are avail-

able from the Loki (Alexandrescu 2001) and Boost libraries. Loki’s tuples are defined
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using a typelist, while Boost tuples have their types passed in as separate arguments. For

example, a tuple of a char and a short is Loki::Tuple<TYPELIST_2(char, short)>

and boost::tuple<char, short> in Loki and the Boost tuple library respectively.

While tuples exist in both Loki and Boost, this thesis used tuples provided by CT. CT’s

tuples use typelists to define their elements, like Loki’s, and also support operators, like

Boost’s. This was to allow CT’s tuples to easily represent multi-channel pixels in the ge-

neric, vectorised, machine-vision library developed as part of this thesis. In the machine-

vision library developed, channel types are represented as a typelist. For example, a

char RGB image would be vvis::base_image<TL> where TL is CT_TYPELIST3(char,

char, char). Since CT’s tuples define their members using a typelist, the pixel for this

image can be represented by ct::tuple<TL>. Operator support is important because it

reduces the number of functors that are needed. For example, the same expression a+b

will also instantiate successfully even if a and b are ct::tuples.

The type ct::tuple inherits from boost::tuple. This gives ct::tuple the clean

boost::tuple syntax for accessing elements and the logical and comparison operators

that are supported by boost::tuple. The type ct::tuple was extended to support

even more operators. Any operator performed on ct::tuple is the same as performing

the operation on each of its elements. In addition, ct::tuple supports dereferencing,

references and pointers. Dereferencing, references and pointers were needed in the gene-

ric, vectorised, machine-vision library to write algorithms that operate on any number of

channels.

The operators in general were implemented using meta::EFOR (see Section 4.4). The

EFOR command was used to generate the appropriate operation on each element of the

tuple. The operators apply their operations orthogonally; each element is computed inde-

pendently.

a() a(v) a(v1, v2 ...)

a = v a = b

*a

++a a++ --a ++a

a += v a += b a + v a + b

a -= v a -= b a - v a - b

a *= v a *= b a * v a * b

a /= v a /= b a / v a / b

a %= v a %= b a % v a % b

The type ct::tuple does not override the logical and comparison operators because they

are provided by boost::tuple. Since tuples contain more than one element, logical and

comparison operators can have more than one meaning. Does a == b return a tuple which

contains the results of whether each members of the tuples a and b are equal, return a
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single boolean indicating if all members of a and b are equal, or return a single boolean

indicating if any corresponding members of a and b are equal? Boost’s tuples’ comparison

and logical operators return a single boolean that indicates if all members of a and b are

equal. For the operation to be meaningful with vectors, returning a vector of booleans is

probably more meaningful. The type ct::tuple returns a single boolean that indicates if

all members of a and b are equal, because it is based on boost::tuple.

4.4 Template metaprogramming

In 1994, Erwin Unruh presented a program that used the compiler to calculate prime

numbers as error messages (Veldhuizen 2000). This program demonstrated that the C++

template mechanism can be used to perform computations at compile time. In fact, ac-

cording to Czarnecki & Eisenecker (2000), C++’s templates when used with a number of

other C++ features form a Turing-complete, compile-time sub-language of C++. Being

Turing-complete, theoretically, any algorithm that is implementable in any other Turing-

complete language like C++, C, and Java is also implementable using this sub-language of

C++. Czarnecki & Eisenecker (2000) actually show how if-statements, switch-statements,

for-loops, while-loops, and linked lists can be implemented in this sub-language. In prac-

tice however, technical limitations such as compile time and compiler limits can restrict

what can be implemented.

The ability to perform computations during compile time is of little use practically,

since the sub-language is not particularly easy to follow and the C++ compiler is not ex-

actly a fast interpreter. This computation can however be used to conditionally generate

code. This use of templates to generate code is referred to as template metaprogramming.

Other methods of code generation during compile time include static metaprogramming

techniques, which includes the use of the preprocessor, or extensions to the compila-

tion process using tools like Open C++ (Chiba 1998b, 1995). Advantages that template

metaprogramming has over the preprocessor are that variables in the program itself can be

used, and more complex code can be generated. Template metaprogramming’s advantage

over extensions to the compilation process is that it is available to anyone with a C++

compiler that supports enough of the Standard C++; it does not require any additional

tools or additional steps.

Veldhuizen (2000), Veldhuizen (1995a), and Czarnecki & Eisenecker (2000) all dis-

cuss template metaprogramming. Czarnecki & Eisenecker (2000) is particularly thor-

ough, discussing the implementation of constructs such as if-statement, for-loop, while-

loop, switch-statement and so on. Czarnecki & Eisenecker (2000)’s metaprogramming

constructs are available in the Meta library. The example below uses the Meta library’s

for-statement, EFOR, to generate code that prints out the numbers from 0 to 2.
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struct print {

template<int i> struct Code {

static void exec() {

std::cout < < i < < std::endl;

}

};

}

meta::EFOR<0, meta::Less, 3, +1, print>::exec();

The meta::EFOR statement expands to:

std::cout < < 0 < < std::endl;

std::cout < < 1 < < std::endl;

std::cout < < 2 < < std::endl;

While this example may seem unremarkable, template metaprogramming is used later to

achieve performance benefits and to manipulate tuples. In addition, because EFOR expands

at compile-time, there are no overheads associated, unlike a for loop. CT contains a copy

of the Meta library, with additional EFORs.

Boost’s MPL library (Gurtovoy & Abrahams 2002, Boo 2003) also provides some

template metaprogramming constructs, namely the IF constructs. Because Boost libraries

were the first preference, the author used the IF constructs from the Boost MPL library

and the EFOR from Meta. IF constructs are used to make decisions at compile-time. They

allow us to, for example, select different implementations using complex boolean logic

with the help of tag dispatching (see Section 4.5) or enablers (see Section 4.6).

Templates that return values are referred to as template metafunctions. These values

are either constant values or types. An example of a template metafunction would be the

IF construct from boost::mpl.

4.4.1 Traits

Traits provide information about types at compile-time. An example of a traits template

in C++ is std::numeric_limits, which provides information such as minimum and

maximum values, and signedness of types. Traits are important when automating the

generation of more complicated generic algorithms (Köthe 1999).

Traits allow a generic function to find other types, and to make decisions based on

the characteristics of the type. For example, VIGRA uses a template called vigra::-

PromoteTraits to decide what a given type should be promoted to. CT provides several

promotion templates which are discussed in Section 4.4.2.

The Boost library includes a type traits library that provides information about types

and includes template metafunctions that add qualifiers such as const, reference or pointer
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to and from types, or remove them. The Mac OS X VecLib framework, which is part of

the Accelerate framework in Mac OS 10.3, clashes with the type traits library because

vecLib.h defines a macro named check which interferes with a check function used in

type_traits.hpp. To solve this, CT includes a boost_type_traits.hpp header file

that undefines the check macro before including the type_traits.hpp header file.

4.4.2 Type promotions

Templated programs sometimes need to promote types. For example, when summing

elements, the sum’s type should be larger than the operands to avoid overflow errors.

Type promotion is required in template programming to prevent data from being trun-

cated too early. VIGRA has its own type promotion template, vigra::PromoteTraits

(Köthe 2001). vigra::PromoteTraits returns the appropriate return type of arithmetic

arguments with two arguments.

CT provides several promotion template metafunctions — promote, promote_signed

and promote_float. These return a larger type with the same characteristics, a larger

signed type and a larger float type respectively. A single promote is inadequate because

sometimes a signed or a float type is required. Saturated subtraction for example requires

a larger signed type.

While vigra::PromoteTraits was specialised for each type, the promotion tem-

plate metafunctions in CT operate by inspecting typelists. They return the first type larger

than the current type in a number of predefined typelists. On failing to find a larger type,

the original type is returned. Algorithm 4.1 shows how promote is implemented for a

single type. priv::find_larger is a template metafunction that returns the first type in

a given typelist with a larger size.

The metafunctions promote_signed and promote_float operate in a similar fash-

ion, except they limit the typelist that they search for types to either signed or real types

respectively. For example, promote_signedwould set result_tl in Algorithm 4.1 to ei-

ther priv::signed_integer_tl or priv::real_tl for integers and floats respectively.

The typelist result_tl would never be set to priv::unsigned_integer_tl.

CT’s promotion template metafunctions also accept typelists as template arguments.

In such situations, the promotion template metafunction first determines the characteris-

tics of the resultant type by inspecting the characteristics of all the types in the typelist. It

then returns the the first type larger than the largest type in the typelist from the appropri-

ate typelist. If there is no type larger than the largest type in the typelist, then it returns

the largest type in the typelist.

Table 4.2 summarises the different promotion template metafunctions available in CT.
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Algorithm 4.1 promote template metafunction for a single type

// List of types
namespace priv {

// Signed integer types
typedef ct::cons_tl<

signed char,
signed short int,
signed int,
signed long int>::type signed_integer_tl;

// Unsigned integer types
typedef ct::cons_tl<

unsigned char,
unsigned short int,
unsigned int,
unsigned long int>::type unsigned_integer_tl;

// Real types
typedef ct::cons_tl<float, double, long double>::type real_tl;

} // End of priv namespace

// promote template metafunction
template<typename T> struct promote {
public:

typedef typename boost::mpl::if_c<
boost::is_integral<T>::value, // Is T an integer?
typename boost::mpl::if_c<
std::numeric_limits<T>::is_signed, // Is T a signed integer?
priv::signed_integer_tl, // T is a signed integer
priv::unsigned_integer_tl // T is an unsigned integer
>::type,

typename boost::mpl::if_c<
boost::is_float<T>::value, // Is T a real?
priv::real_tl, // T is a real
null_type // T is unknown -- cannot promote
>::type

>::type result_tl;
typedef typename priv::find_larger<

result_tl, // Typelist to look for type in
T // Look for first type larger than T
>::type promoted_type;

public:
// Check if larger type found
typedef typename boost::mpl::if_c<

boost::is_same<promoted_type, null_type>::value,
T, // If NOT, then use T
promoted_type // Otherwise use larger_type
>::type type;

};
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Table 4.2 Type promotion metafunctions provided by CT

Expression Return Type Notes

promote<X>::type Type Returns type larger than X.

promote_signed<X>::type Type Returns type larger than X.

The return type is always signed.

promote_float<X>::type Type Returns type larger than X.

The return type is always a float.

Type X can be a typelist.

4.5 Tag dispatching

Tag dispatching is a method of selecting implementations based on conditions at compile

time. Tag dispatching works by specialising class template for different types called tags,

which are usually just empty types. Consider the following example:

struct jump {};

struct crawl {};

template<typename tagT> struct do_move {

static void exec() { ... }

};

template<> struct do_move<jump> {

static void exec() {

// We move by jumping here

}

};

template<> struct do_move<crawl> {

static void exec() {

// We move by crawling here

}

};

template<typename T> void move(T) {

typedef boost::mpl::if_<can_jump<T>::value,

jump, crawl>::type tag;

do_move<tag>::exec();

}
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Calling move(X)will call either do_move<jump>::exec() or do_move<crawl>::exec()

depending on the result of the template metafunction can_jump.

Instead of tag dispatching, enablers (see Section 4.6) can also be used. Tag dispatching

is more verbose, but is currently supported by more C++ compilers. Since tag dispatching

requires an extra function call, if the compiler does not inline the second call, then the

overhead of an additional function call is introduced.

4.6 Enablers

Hinnant et al. (2003) describe a method of enabling or disabling functions and classes

based on computations that can be performed at compile-time. Enablers work because

“erroneous” template definitions do not cause compilation errors. Instead the compiler is

instructed to remove the erroneous prototype from the overload resolution list. Enablers

operate by creating erroneous definitions deliberately to disable functions.

Both enabler and disabler templates are quite simple. Shown below is the enabler

from the CT library.

template<bool B, typename T = void>

struct enable_if {

typedef T type;

};

template<typename T>

struct enable_if<false, T> {};

The type enable_if<false, T>::type is invalid, because there is no type defined in

enable_if<false, T>. The disabler is simply the enable_if template except dis-

able_if<true, T> is undefined. Therefore

typename enable_if<false, void>::type func();

does not actually define the function func(). If however, enable_if was passed true,

the function func() would become defined. For example, in the following example, func

would be defined if the sizeof(T) was 1.

template<typename T>

typename enable_if<sizeof(T) == 1, void>::type func();

The enable_if template can also be used to enable classes conditionally, as shown below.

The
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template<typename T, typename specializedT = void> class A;

template<typename T>

class A<T, typename enable_if<sizeof(T) == 1>::type> {

// This is defined only if sizeof(T) == 1

};

Some compilers have trouble with enablers as is and will require some massaging to com-

pile (Hinnant et al. 2003). Apple GCC 3.1 20021003, which was the main compiler used

in this thesis requires each function that uses an enabler to be in a separate namespace.

There is no need to place different classes in separate namespaces though. For example,

the following will not compile in Apple GCC 3.1 20021003:

template<typename T>

typename ct::enable_if<sizeof(T) == 1, void>::func() {

// Implementation for types that have size of 1

// goes here

}

template<typename T>

typename ct::enable_if<sizeof(T) == 2, void>::func() {

// Implementation for types that have size of 2

// goes here

}

Instead, the user must write:

namespace a {

template<typename T>

typename ct::enable_if<sizeof(T) == 1, void>::func() {

// Implementation for types that have size of 1

// goes here

}

}

namespace b {

template<typename T>

typename ct::enable_if<sizeof(T) == 2, void>::func() {

// Implementation for types that have size of 2

// goes here

}

}

using a::func;
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using b::func;

Combined with typelists, it becomes easy to enable functions for a range of types. This

technique can be used to implement vector-processor implementations for abstract VPUs

(see Chapter 5 for more information about abstract VPUs).

4.7 Policies

Policy-based class design aims to create complex classes through the use of many small

classes (policies) (Alexandrescu 2001). Each policy is responsible only for one specific

behavioural aspect, and it provides this aspect through a well-known interface. A single

class can be composed from many policies. Since policies are usually designed to be

orthogonal, it is possible to mix and match policies and thereby achieve a large number

of behavioural sets using a small number of policies.

In Chapter 1, Policy-Based Class Design of Alexandrescu (2001), the idea of policies

is introduced and different methods of implementation are discussed. Policies in this

thesis are implemented as template parameters to the main class. The policies are usually

inherited, though this is not always the case. When inheriting, the destructor of the policy

class is protected. This is to enable the class to be non-virtual, so that the main class does

not have to have additional cost, while allowing pointers to the base class (policy) to be

handled correctly on deletion.

Take for example the following definition of an image. The image class inherits from

the storage policy storageP. The details of how data in the image is stored is handled

by the storage policy. The template specialisations image<int, contiguous_storage>

and image<int, gworld_storage> would keep their data differently.

template<typename T, template<typename> storageP>

class image : public storageP<T> {

...

};

template<typename T>

class contiguous_storage {

private:

~contiguous_storage() { ... }

public:

const T pixel(const int x, const int y) const { ... }

...

};
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template<typename T>

class gworld_storage {

private:

~gworld_storage() { ... }

public:

const T pixel(const int x, const int y) const { ... }

...

GWorld gworld() { ... }

};

By using inheritance, it is possible to define different functions for different policies. For

example, a storage policy that kept its data in a QuickTime GWorld would have a function

to return a reference to that GWorld.

Instead of inheritance, policies can also be implemented using static functions. Under

this scheme, the policies are structs which have public static functions. The main class

then calls these functions. When using static functions however, the policy class cannot

keep its own data. The image example can also be implemented using static functions, as

illustrated below.

template<typename T, template<typename T> storageP>

class image {

typedef storageP<T> storage_policy;

public:

image(const int width, const int height)

: _width(width), _height(height) {

_data = storage_policy::allocate(width, height);

}

~image() {

storage_policy::deallocate(_data);

}

const T pixel(const int x, const int y) const {

storage_policy::pixel(_data, _width, _height, x, y);

}

data_type gworld() {

return storage_policy::gworld(_data);

}

private:

typename typename storage_policy::data_type _data;

int _width, _height;

};
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template<typename T>

struct contiguous_storage {

typedef T* data_type;

static T* allocate(const int width, const int height) {

return new data_type[width*height];

}

static void deallocate(data_type data) {

delete[] data;

}

static T pixel(data_type data, const int w, const int h,

const int x, const int y) const {

return data[y*w+x];

}

};

template<typename T>

struct gworld_storage {

typedef GWorldPtr data_type;

static GWorldPtr allocate(const int width, const int height) {

...

}

static void deallocate() {

...

}

static T pixel(data_type data, const int w, const int h,

const int x, const int y) {

...

}

static GWorldPtr gworld(data_type data) {

return data;

}

};

While this technique also allows different policies to support different functions, the func-

tion must be defined in the main class. Policies implement only the functions that they

required. If the user tries to use a function that the current policy does not have an im-

plementation for, then the code will fail to compile. In the previous example, if a is of

type image<char, contiguous_storage>, then a.gworld() will cause a compilation

error. If however, a is of type image<char, gworld_storage>, then a.gworld() will
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succeed. Calling only a.pixel(0, 0) in both cases will not result in any compilation

errors.

Policies can be more fine-grained, and they can control specific issues such as memory

allocation. Policies should be orthogonal where possible so that they can be combined in

different ways to produce a large number of possibilities from a small code set.

4.8 Expression templates

It is well known that increasing the number of elements in a vector increases overheads

when function overloading is used (Veldhuizen 1995b, Blinn 2000). Consider the expres-

sion R=A+B+C+D. Using function overloading, the compiler will generate code similar to

the following:

vvm::vector temp1 = A + B;

vvm::vector temp2 = temp1 + C;

vvm::vector temp3 = temp2 + D;

R = temp3;

Two reasons why evaluating expressions in this manner is slower than hand-coded pro-

grams are because more temporaries are used, and each statement contains its own for-

loop (or its unrolled equivalent) (Veldhuizen 1995b, Blinn 2000).

The preferred execution method is to evaluate the entire expression for each element

in the vvm::vector. Hand-coded C++ would look something like the following:

R.scalar(0) = A.scalar(0)+B.scalar(0)+C.scalar(0)+D.scalar(0);

R.scalar(1) = A.scalar(1)+B.scalar(1)+C.scalar(1)+D.scalar(1);

// And so on....

Expression templates is a technique that can help the compiler generate this faster imple-

mentation. It can generate the faster implementation because it delays evaluating expres-

sions until the entire expression is used. With expression templates, A+B+C+D returns an

object that represents the addition of A, B, C and D. When R=<expression object> is

evaluated, the entire expression is evaluated simultaneously and the result is assigned to

R. Since expression templates represent expressions as objects, they allow expressions to

be passed to a function as an argument. This second feature allows users to create functors

directly from expressions when using generic libraries.

More information on expression templates are provided by Veldhuizen (1995b), Blinn

(2000), Becker (2003), and Köthe (2000a). The code involved in expression templates is

discussed in more detail later when it is used.
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4.9 Conclusion

In this chapter, generic programming was discussed briefly followed by uncommon C++

implementation techniques that were used in this thesis. These techniques are typelists,

tuples, template metaprogramming, traits, type promotion, tag dispatching, enablers, poli-

cies and expression templates. While all the techniques were developed by others, the au-

thor introduced a few new template metafunctions for manipulating typelists, more oper-

ations for tuples and a type promotion implementation that uses the compiler to calculate

the promoted type.

New template metafunctions, that were not part of the Loki library, were introduced

for manipulating typelists. These template metafunctions are ct::contains, ct::apply,

ct::keep_only, ct::any and ct::all. These additional template metafunctions were

introduced to facilitate the creation of the generic, vectorised, machine-vision library. The

metafunction ct::contains is just a short-hand for ct::index_of1<TL, T> != -1. The

metafunctions ct::apply and ct::keep_only were used extensively to convert types

when dealing with tuples. In the generic, vectorised library, developed as part of this the-

sis, ct::apply was used to change a typelist of scalars to a typelist of VVM’s vectors.

The metafunction ct::keep_only was used in the implementation of an abstract VPU

to prune a typelist of fundamental types to typelists of unsigned integers, signed integers

and floats. The metafunctions ct::any and ct::all were used to make decisions based

on types in the typelist at compile-time. They made it easier for the generic, vectorised

library to select algorithms based on how pixels are arranged in memory.

The type ct::tuple supports more operators than Loki’s or Boost’s tuple. In the

generic, vectorised, machine-vision library that was developed as part of this thesis,

ct::tuple is used to represent a multi-component pixel. Operators allow the creation

of templated functors that can be instantiated for both single-channel and multi-channel

images.

Typelists and template metaprogramming were used to calculate promoted types.

Template metaprograms select larger appropriate types by iterating through typelists of

possible answers. Using the compiler to calculate the promoted type leads to shorter, less

error-prone code. It also makes it very easy to always return a signed or float promoted

type, and to add more types to consider as candidates for promoted types.

1ct::index_of is derived from Loki’s Loki::IndexOf. See Table 4.1 for more information.
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Chapter 5

Abstract Vector Processor

There are many different desktop vector technologies currently available. These vector

technologies have different instruction sets and associated costs as well as different vector

sizes. Occasionally, different processors that support the same vector technology have

different costs when executing the same instruction. For example, the AltiVec prefetch

instructions are more likely to cause stalls on a G5 than on a G4 (App 2003c). These

differences mean that programs must be written specifically for each vector technology,

and sometimes require tuning for a specific VPU. If the program is to support multiple

vector technologies, then it has to be reimplemented.

To solve this problem, and thus allow generic programming to be applied to low-level

vector programs, we propose the abstract vector processing unit (VPU). The abstract VPU

is a virtual VPU that represents a set of real VPUs, a virtual VPU that has an idealised

instruction set and constraints common to the VPUs that it represents. The idealised

instruction set and common constraints together allow programs that use the abstract VPU

to be portable across the set of real VPUs being represented and to perform efficiently.

The abstract VPU is suitable for programmers who want the performance advantages of

using the VPU directly without being restricted to a particular VPU.

This chapter starts with a definition of what an abstract VPU is, followed by features

that are the essence of an abstract VPU and discusses other features that would make

the abstract VPU useful. This is wrapped up with a look at the differences between the

abstract VPU and other ways of programming the VPU.

5.1 What is an abstract vector processor?

Real VPUs typically share many common constraints and instructions. For example, Al-

tiVec, MMX and 3DNow! share constraints such as fixed vector sizes and faster access

to aligned memory addresses, and share instructions such as saturated addition and sub-

traction. Instead of writing different programs for different VPUs, we propose writing a
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single program for an abstract VPU, a virtual VPU that represents set of real VPUs with

an idealised instruction set and common constraints.

The idealised instruction set makes the abstract VPU easier to use and portable. It

also removes the need for programmers to handle instruction availability, and allows the

programmer to express his logic using ideal VPU constructs, free from any real VPU’s

inadequacies. Instructions should be provided for all types. Low-level instructions, such

as prefetching memory, should also be available. An idealised instruction set implies a

scalar implementation for all functions. This scalar implementation is referred to as the

emulation layer. Vector-processor implementations provide mappings for abstract VPU

functions to real VPU instructions where applicable. An abstract VPU should enable ap-

propriate vector-processor implementations when real VPUs are available. Since a vector-

processor implementation is unlikely to provide mappings for all functions, expressions

involving the use of both the emulation layer and the vector-processor implementation

must be supported.

The abstract VPU should have the common constraints of the real VPUs that it repre-

sents. These constraints ensure that abstract VPU programs are comparable performance-

wise to the real VPU programs. The more ambiguous the constraints, the more real VPUs

the abstract VPU can represent. On desktop VPUs, examples of common constraints are

short vectors, fixed vector sizes and efficient memory access only at aligned memory ad-

dresses. An abstract VPU should not try to represent a real VPU that has incompatible

constraints because the resultant program is likely to be significantly slower than using

the real VPU directly. For example, an abstract VPU with fixed vector sizes should not

try to represent VPUs with variable vector sizes. VPUs that support variable vector sizes

typically have larger start and stop overheads.

In order to be more useful, apart from having an idealised instruction set and common

constraints, the abstract VPU should be easy to use, cater for undefined behaviour, have a

performance measurement tool and be zero-cost. An easy-to-use interface improves pro-

grammer productivity, allowing more programmers to use VPUs. Undefined behaviour

gives vector-processor implementations more choices, allowing them to map instructions

more efficiently. A performance measurement tool allows the programmer to evaluate the

cost of an abstract VPU implementation in his environment. Finally, zero-cost would al-

low abstract VPU programs to execute as fast as hand-coded VPU programs that perform

the same operation in the same manner. Because an abstract VPU’s constraints might be

different from the real VPUs, an abstract VPU program might perform more work. For

example, an abstract VPU that always processed 16 scalars simultaneously would still add

16 ints even if only 8 ints were needed. Since an AltiVec program would be able to add

exactly 8 ints, the abstract VPU program adds an additional 8 ints. It is not expected

that the abstract VPU will need to do much extra work. Zero-cost is important because

programmers turn to the VPU for performance speedups.
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The abstract VPU’s idealised instruction set and common constraints allow program-

mers to write code that appears to target a set of real VPUs simultaneously.

5.2 Differences between the abstract vector processor and

current methods

The differences between programming the VPU through the use of the abstract VPU and

other existing techniques are discussed in this section. How each method differs from the

abstract VPU is discussed.

5.2.1 Vector processor

Unlike the abstract VPU, programming the VPU directly results in code that is not portable

to other vector technologies. The code however should be portable to other VPUs that im-

plement the same vector technology, though some adjustments might be required to cater

for differences in instruction sets and execution costs. Using the VPU directly allows the

programmer to express the algorithm in VPU logic — semantic vectorisation.

Using the abstract VPU would be better, because a good implementation would be

easier to use and allow code to be ported to different architectures with minimal losses in

speed. Programming the VPU directly however might provide users access to instructions

that the abstract VPU might not have and allows programmers to tune their programs

specifically for a single VPU.

5.2.2 Vector-processor wrappers

Vector-processor wrappers place less emphasis than the abstract VPU on being cross-

platform. The main aim is to provide a zero-cost, easy-to-use interface to the real VPU.

While a vector-processor wrapper is likely to have the same instruction set and constraints

as the real VPU, the abstract VPU has an idealised instruction set and more general,

common constraints.

5.2.3 Vector libraries

The main difference between vector libraries and the abstract VPU is that vector libraries

typically have no constraints. For example, even on the desktop computer, they are un-

likely to force the programmer to use only aligned memory or fixed size vectors. While

the abstract VPU is concerned with representing a set of real VPUs simultaneously, the

vector library is concerned with making vector manipulation easier.
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Vector libraries should be easier to use than the abstract VPU, because they have

less constraints. However, the abstract VPU provides more fine-grained control. Writing

hand-coded vector programs should be possible with an abstract VPU. For example, Lai

et al. (2002) presented the same operation implemented in numerous ways to handle dif-

ferent alignment requirements. The operation can be implemented in as many ways using

an abstract VPU, but would have only one implementation when using a vector library.

5.2.4 High-level libraries

Like the abstract VPU, programmers do not need to know if they are using a VPU or not.

Unlike the abstract VPU however, users of such libraries would not be able to perform

semantic vectorisation. While the library routines would be optimised, there is no support

for the programmer who desires to use the VPU for routines that are not supported by the

library, since it is outside the functionality that the library provides.

While different implementations of the same library that target different vector tech-

nologies can be created, creating these different ports involves both more development

and maintenance. The abstract VPU could be used internally by libraries instead of hard

coding for a specific VPU, to remove the need for different ports.

5.2.5 Vectorising compilers

Vectorising compilers change a scalar program to a vector program automatically. Like

the abstract VPU, they can generate code that targets different VPUs (or no VPU) from

the same source code. However, unlike the abstract VPU, they do not provide access to

the VPU, nor are they likely to provide any vector-oriented routines. Because of this, vec-

torising compilers do not support semantic vectorisation. The programmer can however

use one of the other methods discussed in this section to access the VPU.

5.2.6 Parallel languages

Parallel languages seek to provide the user with an easy syntax to express parallelism in

their programs. The idea is to allow the user to focus more on the problem and less on

details of how to pass data correctly between threads, between computers, to the VPU and

so on.

The abstract VPU provides access to a virtual VPU that is representative of a num-

ber of VPUs. Unlike parallel languages, which can also map to multiple computers and

processors, the abstract VPU only provides access to a VPU. With parallel languages, the

user is typically insulated from the idiosyncrasies of real VPUs. The abstract VPU on

the other hand is for programmers who wish to use the real VPU, but would prefer not

to be locked to a single standard, and are looking for an easier-to-use alternative. Being
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a VPU, it is expected to have constraints similar to the VPU. It is expected to have low-

level instructions. An abstract VPU could have low-level instructions, like prefetching,

and low-precision multiplications and divisions, which are unlikely to exist in a parallel

language.

5.3 Conclusion

This chapter presented the abstract VPU. The abstract VPU is a new idea, introduced to

allow programmers to write low-level, efficient, cross-platform VPU programs. This is

required for generic vector programs. A description of the abstract VPU and how it differs

from existing methods of programming the VPU was covered.

The abstract VPU represents a set of real VPUs with a virtual VPU that has an ide-

alised instruction set and common constraints. In order to be more useful, apart from

having an idealised instruction set and common constraints, the abstract VPU should be

easy to use, cater for undefined behaviour, have a performance measurement tool and

be zero-cost. The abstract VPU is suitable for programmers who want to use the VPU

directly and also want to produce portable programs easily.

The idealised instruction set makes the abstract VPU easier to use and portable. It

removes the need for programmers to handle instruction availability, and allows the pro-

grammer to express his logic using ideal VPU constructs, free from any real VPU’s in-

adequacies — semantic vectorisation. An idealised instruction set implies a scalar im-

plementation for all functions. This scalar implementation is referred to as the emulation

layer. Vector-processor implementations provide mappings for abstract VPU functions

to real VPU instructions where applicable. An abstract VPU should enable appropriate

vector-processor implementations when real VPUs are available. Since a vector processor

implementation is unlikely to provide mappings for all functions, expressions involving

the use of both the emulation layer and the vector-processor implementation must be sup-

ported.

The abstract VPU has the common constraints of the real VPUs that it represents.

These constraints ensure that abstract VPU programs are comparable performance-wise

to the real VPU programs. The more ambiguous the constraints, the more real VPUs the

abstract VPU can represent. An abstract VPU should not try to represent a real VPU that

has incompatible constraints because the resultant program is likely to be significantly

slower than using the real VPU directly. The abstract VPU’s constraints ensure that any

program written for it would be essentially a hand-coded vector program, since programs

would be structured in a manner that is conducive to processing by the real VPUs repre-

sented by the abstract VPU.

The abstract VPU conceptually sits between vector-processor wrappers and vector li-

braries. The abstract VPU seeks to provide access to VPUs in a cross-platform manner.
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While vector processor wrappers also provide access to the VPU, they are not designed to

be cross-platform. Vector libraries, on the other hand, provide portability, but they do not

provide direct access to the VPU. Since vector libraries typically do not preserve the con-

straints of the VPU, the programmer does not have fine-grained control over the execution

of his program. High-level libraries and automatic vectorising compilers do not support

semantic vectorisation, because the user does not control what vector instructions are gen-

erated. Parallel languages, like vector libraries, hide the idiosyncrasies of real VPUs from

the programmer, and thus do not provide the programmer with as much control. Parallel

languages also map to multi-threaded and multi-processor programs.

70



Chapter 6

Virtual Vector Machine’s Design

In this chapter, the design of an abstract vector processor called Virtual Vector Machine

(VVM) is discussed. VVM was designed to facilitate the creation of a generic, vectorised,

machine-vision library. VVM is designed to be an API to enable programs that use the

VVM API to use different VVM implementations where required. Different VVM imple-

mentations might have different runtime costs with different compilers, and might provide

support for different VPUs.

In the interest of supporting the creation of a generic, vectorised library, VVM is tem-

plated, has constant scalar count, and provides trait information. Furthermore, where pos-

sible, VVM operators and functions perform the same operation as scalar operators and

functions that have the same name. For example, operator+ performs addition where

overflow behaviour is undefined when applied to both scalars and VVM vectors. Most of

the vector manipulation functions provided by VVM are derived from AltiVec. AltiVec

was chosen as the most influential platform because of all the existing desktop vector-

processor technologies available at the time of writing, it is the only one to have a dedi-

cated vector processor unit. To support the creation of a machine-vision library, VVM also

provides some “unnecessary” functions used commonly in machine-vision. An example

of these “unnecessary” functions is the madd function which performs a multiplication

and an addition as a single instruction. Since it involves only addition and multiplication,

both of which are provided by VVM, madd does not allow the programmer to perform any

new operations. The main advantage of such functions is speed. In madd’s case, AltiVec

provides a dedicated multiply and add instruction which can be utilised by VVM. Despite

its focus, because VVM tries to provide a more complete instruction set for ease of use,

VVM also provides most of the functions from the cmath header file even though it is

unlikely that any real VPU will provide such instructions.

This chapter discusses the VVM interface, including issues considered in its design.
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6.1 Overview

Virtual Vector Machine (VVM) is an abstract VPU designed to be used as the VPU for a

generic, vectorised, machine-vision library. VVM aims to represent desktop VPUs, such

as AltiVec, MMX and 3DNow!. Being an abstract VPU, VVM has an idealised instruction

set and constraints common to desktop VPUs. The characteristics of VVM are described

in this chapter and possible implementations in the next.

VVM’s functions are located in two different namespaces, vvm and vvm::functional,

which are available when vvm/vvm.h and vvm/vvm_functional.h are included. The

vvm namespace contains the bulk of the VVM specification. The VVM vector, functions

and operators are all in this namespace. The vvm::functional namespace contains re-

placement comparison functors. Replacements are needed for Standard C++ comparison

functors because Standard C++ library’s comparison functors return a bool. The result

of comparisons between vectors is a vector of booleans, which cannot be converted to a

bool. Features found in the vvm namespace are not slated at replacing std functions.

VVM has three constraints common to desktop VPUs. These constraints are short

vectors, fixed vector sizes and fast access only to aligned memory addresses. While the

size of each VVM vector is fixed, unlike desktop VPUs, all VVM vectors have the same

scalar count regardless of type. This constant scalar count is required for generic pro-

gramming (Appendix C), and thus is required for the creation of a generic, vectorised

library. Other features that support the creation of a generic, vectorised library include

templated VVM vectors, traits, and consistent functions for both scalar and VVM vector

operations. Because of the high cost of converting types in vector programs, VVM does

not provide automatic type conversion; it supports only explicit type conversions.

Constant scalar count: Unlike real VPUs, such as AltiVec, MMX and 3DNow!, which

have vectors that are all the same size, and therefore have different scalar counts for

different vector types (Mot 1999, Mittal et al. 1997, Weiser 1996), all VVM vectors

consist of the same number of scalars. The value of this fixed scalar count is not

specified by VVM to allow more VPUs to be represented efficiently. A sensible

value for the scalar count is the largest number of scalars in the VPU’s vector, for

example, 16 for AltiVec, 8 for MMX and 1 for the scalar processor. VVM has

constant scalar count for ease of use and because it is required for generic program-

ming. See Appendix C for more detail on why constant scalar count is necessary

for generic programming. Constant scalar count also simplifies type conversions

and makes VVM easier to understand. Examples of image processing operations

that require type conversions are convolutions and equalisations.

Fast access to aligned memory addresses only: VVM can access only aligned memory

addresses quickly. Like SSE and SSE2 (Adv 2002), VVM also provides slower
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access to unaligned addresses. In AltiVec, unaligned memory can be accessed by

loading aligned memory addresses and performing some transformations (Lai &

McKerrow 2001, Ollmann 2001, App 2004b). Even though unaligned addresses are

supported, it is still advisable to use only aligned addresses where possible. VVM

provides access to unaligned addresses to allow implementations to use native VPU

instructions. Using native VPU instructions is likely to provide better performance

than using VVM instructions.

Templated VVM vectors: VVM’s vectors are templated to support the easy creation

of templated vector programs, which would be required for a generic, vectorised

library.

Traits: Traits provide information about types at compile-time. An example of a traits

template in C++ is std::numeric_limits, which provides information such as

minimum and maximum values, and signedness of types. Traits are important when

automating the generation of more complicated generic algorithms (Köthe 1999).

Trait information can be used in the implementation of VVM itself. They are impor-

tant for deriving the appropriate boolean type, since unlike scalar programs, vector

programs have more than one boolean type. AltiVec, for example, has boolean vec-

tor types of differing sizes (Mot 1999). Promotion traits are important for writing

templated code where promotion is necessary, such as in convolutions. Promotion

traits were discussed in Section 4.4.2, and are a part of the CT library in this thesis.

Consistent functions where applicable: VVM has consistent functions for both scalar

and VVM vector operations where applicable. Consistent functions make VVM

easier to use and introduce fewer surprises. For example, a + b adds two VVM

vectors and is undefined when the result overflows. Because VVM has consistent

functions, in many situations, it is possible to write templated code that performs

correctly when instantiated with a scalar or a VVM vector. For example, the fol-

lowing addition function works equally well if T is a scalar or a VVM vector.

template<typename T>

const T do_add(const T& a, const T& b) {

return a + b;

}

Comparison operators in VVM however do not return a single boolean, because

vector comparisons return a vector of booleans. In addition, unlike scalar code,

true is converted to ~0 and not 1. VVM maps true to ~0 because in vector pro-

grams, the results of comparisons are used as a mask. AltiVec comparison functions

also return ~0 for true (Mot 1999). Because VVM comparisons return a vector of
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booleans and true is converted to ~0, template functions that use comparison op-

erators cannot be instantiated for both scalars and VVM vectors. For example, the

following program cannot be instantiated for VVM vectors.

template<typename T>

bool do_less(const T& a, const T& b) {

return a < b;

}

Even if do_less returned T, scalar and VVM vector instantiations will return dif-

ferent values because true is converted to ~0 in VVM. To help scalar programs

return VVM’s value for true and false, VVM defines VVM_TRUE and VVM_FALSE

which are the values that true and false are converted to in VVM respectively.

VVM_TRUE, VVM_FALSE and other VVM preprocessor macros are discussed later in

Section 6.17.

Operators are not only more intuitive, they also allow most Standard C++ functors

to be used with VVM vectors.

Explicit type conversions only: Type conversions are discouraged in vector programs

because type conversions have a pronounced effect on a vector program’s perfor-

mance. Because VPU vectors typically have different scalar counts, type conver-

sions can change the maximum theoretical speedup. For example, in AltiVec, a

__vector unsigned char has 16 scalars, and therefore has a theoretical 16-fold

maximum speedup over unsigned char. A __vector unsigned int on the other

hand only has 4 scalars and therefore AltiVec has only a 4-fold theoretical maxi-

mum speedup. Converting a vector’s type can lead to changes in the theoretical

maximum speedup.

6.2 Fundamental Scalar Types

VVM specifies a set of fundamental scalar types, which are listed in Table 6.1. Funda-

mental scalar types are types that vector-processor implementations must have supporting

code for. It should be possible to create VVM vectors of all the fundamental scalar types

and to manipulate them. While vector-processor implementations are not required to sup-

port all fundamental scalar types, it is recommended that they support as many as possible.

The emulation layer in VVM must support all the fundamental scalar types. There are no

fundamental VPU vector types because the VPU vector types that are available depends

on the presence of real VPUs.

All of C++’s fundamental types (Inf 1998, basic.fundamental) except bool, are also

VVM fundamental scalar types. Instead of bool, VVM has bchar, bshort, bint and so
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Table 6.1 Fundamental VVM scalar types

Implementation Defined Signed Unsigned Boolean

char signed char unsigned char bchar
short int unsigned short int bshort
int unsigned int bint
long int unsigned long int blong
float bfloat
double bdouble
long double bldouble
sint8 uint8 bint8
sint16 uint16 bint16
sint32 uint32 buint32

on. This is to reduce the impact of conversion to and from the boolean types. Converting

a VVM vector to its corresponding boolean vector type should not change the potential

speedup.

In VVM, like in C++, 0 is converted to false, while any other value is converted to

true. Unlike C++ however, converting true to an integer does not result in 1 (Inf 1998,

conv.prom). In VVM, true is converted to a number where all the bits are 1s. This is

because in vector processing, the result of comparisons is used as a bitmask to derive a

new vector that contains the results of the comparison. A second reason for this behaviour

is that this is the same behaviour as in AltiVec. To make it easier for scalar code to convert

properly, VVM provides two preprocessors macros, VVM_TRUE and VVM_FALSE which are

the integer values for true and false respectively. VVM_TRUE, VVM_FALSE and other

VVM preprocessor macros are discussed later in Section 6.17.

Apart from additional booleans, VVM introduces sint8, uint8, sint16, uint16,

sint32, uint32 and corresponding booleans. These are integer types with a specific

number of bits. These are building blocks for image pixels such as 8-bit grey-scale, and

RGB colour pixels.

Pixel types such as 8-bit grey-scale, 16-bit grey-scale, and 24-bit colour were con-

sidered for fundamental scalar types for VVM. The grey-scale pixels in VVM would be

simply a typedef of one of the existing fundamental scalar types. Colour pixels are more

problematic because they are aggregate types. Colour pixel VVM types were avoided be-

cause colour pixels can be stored using different methods. VVM provides only the basic

building blocks.
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6.3 Traits

VVM provides a number of metafunctions for transforming types. These metafunctions

are structured in a similar manner to the transformation type template metafunctions pro-

vided by Boost’s type traits library.

namespace vvm {

template<typename T> struct add_vector;

template<typename T> struct remove_vector;

template<typename T> struct to_bool;

template<typename T> struct to_integer;

template<typename T> struct to_float;

}

In addition, VVM provides information on the three different kinds of data that it uses:

scalars, VPU vectors and VVM vectors. These three data types are referred to as scalar,

vpvector and vector in VVM respectively. To get information on these three kinds of

data, VVM uses three templates: vvm::scalar_traits, vvm::vpvector_traits and

vvm::vector_traits. The scalar_traits, vpvector_traits and vector_traits

trait templates take scalars, VPU vectors and VVM vectors as their template parameters

respectively. In addition, they all have an is_specialised field. A value of true in this

field indicates that the information provided by the trait template is valid.

namespace vvm {

template<typename scalarT> struct scalar_traits;

template<typename vpvectorT> struct vpvector_traits;

template<typename vectorT> struct vector_traits;

}

Details on the type transformations and information provided by these three traits are

presented in this section.

6.3.1 Type transformations

VVM provides two metafunctions, add_vector and remove_vector, respectively to al-

low the user to derive the appropriate VVM vector type for a scalar type and vice versa. In

addition, it provides to_bool, to_integer and to_float, which respectively allow the

user to derive the boolean, integer or float scalar type from a scalar type. When there is no

appropriate answer, these templates should return ct::null_type instead of preventing

compilation. The type transformations supported by VVM are detailed in Table 6.2.

These type transformation metafunctions are the preferred method of deriving the ap-

propriate scalar or VVM vector type, because these type transformations are generally
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Table 6.2 Template metafunctions for transforming types

Expression Return Type Notes

add_vector<T>::type Type Returns vvm::vector<T>
add_vector< Type Returns ct::tuple<ct::apply<
ct::tuple<TL> >::type TL, add_vector>::type>

remove_vector< Type Returns T
vvm::vector<T> >::type

remove_vector< Type Returns ct::tuple<ct::apply<
ct::tuple<TL> >::type TL, remove_vector>::type>

to_bool<T>::type Type Returns scalar_traits<T>::
bool_type

to_bool< Type Returns ct::tuple<ct::apply<
ct::tuple<TL> >::type TL, to_bool>::type>

to_integer<T>::type Type Returns scalar_traits<T>::
integer_type

to_integer< Type Returns ct::tuple<ct::apply<
ct::tuple<TL> >::type TL, to_integer>::type>

to_float<T>::type Type Returns scalar_traits<T>::
float_type

to_float< Returns ct::tuple<ct::apply<
ct::tuple<TL> >::type Type TL, to_float>::type>

smarter. For example, for const scalar types add_vector should return a valid VVM

vector type while vvm::vector<T> might fail to compile because it is not in this spec-

ification. In addition, because add_vector will return ct::null_type when there is

no appropriate type, it can be used to make compile-time decisions. Furthermore, these

metafunctions make it easy to convert typelists of scalars to typelists of VVM vectors and

vice versa. For example, it is possible to use the ct::apply template metafunction with

add_vector as follows:

// TL is a typelist of scalars

typedef ct::apply<TL, vvm::add_vector>::type vectors_tl;

These type transformation metafunctions also convert ct::tuples correctly. In general,

applying OP<ct::tuple<TL>>::type results in ct::tuple<typename ct::apply<TL,

OP>::type>. Because VVM’s type transformation metafunctions support ct::tuples,

which are used to represent multi-channel pixels in the generic, vectorised, machine-

vision library developed as part of this thesis, template functions can be written that in-

stantiate correctly for both single-channel and multi-channel pixels. For example, the

following add template function, which adds two VVM vectors, instantiates correctly if

scalarT is a scalar or a ct::tuple.

template<typename scalarT>
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const typename vvm::add_vector<scalarT>::type

add(

const typename vvm::add_vector<scalarT>::type a,

const typename vvm::add_vector<scalarT>::type b) {

return a + b;

}

6.3.2 vvm::scalar_traits

The vvm::scalar_traits trait template provides information about VVM fundamental

scalar types. It must be specialised for all the VVM fundamental scalar types listed in

Table 6.1.

namespace vvm {

// Replace vpvectorT and boolT with the appropriate types

template<typename scalarT> struct scalar_traits {

static const bool is_specialised = false;

typedef boolT bool_type;

typedef integerT integer_type;

typedef floatT float_type;

typedef vpvectorT vpvector_type;

};

}

The vvm::scalar_traits trait template provides the corresponding boolean scalar, in-

teger scalar, float scalar, and VPU vector types for a VVM fundamental scalar type.

bool_type: This refers to the corresponding boolean scalar type. This should be set to

the appropriate VVM scalar boolean type. This is used to derive the appropriate

boolean VPU or VVM vector type for operations like comparisons.

integer_type: This refers to an integer scalar type, preferably of the same size. If the

original scalar type is an integer, then integer_type is equivalent to the original

scalar type.

float_type: This refers a floating-point scalar type, preferably of the same size. If the

original scalar type is a float, then float_type is equivalent to the original scalar

type.

vpvector_type: This refers to the corresponding VPU vector type.

The vpvector_type type is used to determine the appropriate VPU vector type

from the scalar. This vector type should have scalars that are the same size, the
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same kind (either integer, boolean or float) and have the same signedness as the

scalar, regardless of what its actual name is. For example, AltiVec has a __vector

signed int that has scalars 4 bytes in length. If the compiler’s int is only 2

bytes long, it should not be mapped to __vector signed int. Instead it should be

mapped to __vector signed short which has scalars 2 bytes long.

Whether char is signed or unsigned is implementation dependant. The type re-

turned by char’s vpvector_type should have the same signedness as char.

A VVM scalar type is either an integer or a float type, because bool is not a VVM

fundamental scalar type. Thus either integer_type or float_type is the same type

as the original type. The type returned by integer_type should never be identical to

float_type.

6.3.3 vvm::vpvector_traits

The vvm::vpvector_traits trait template provides information on VPU vector types.

It should be specialised for all VPU vector types that are referred to by specialisations of

vvm::scalar_traits. VVM implementations do not need to provide vvm::vpvector_-

traits for VPU vector types that are not referenced by vvm::scalar_traits, because

they are not be used by VVM.

namespace vvm {

template<typename vpvectorT> struct vpvector_traits

{

static const bool is_specialised = false;

typedef scalarT scalar_type;

typedef vpvectorBoolT bool_type;

enum { scalar_count = scalarCount };

};

}

The vvm::vpvector_traits trait template provides the corresponding scalar type, boo-

lean VPU vector type, and the number of scalars in the VPU vector type.

scalar_type: This refers to the corresponding scalar type.

bool_type: This refers to the corresponding boolean VPU vector type. This should be

the same as scalar_traits<scalar_traits<scalar_type>::bool_type>::-

vpvector_type.

scalar_count: This refers to the number of scalars in the VPU vector. This can be calcu-

lated by dividing the size of the VPU vector by the size of the corresponding scalar,
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since the corresponding scalar’s size should be the same size as the scalars within

the VPU vector.

This information is important when determining how many VPU vectors are con-

tained within a VVM vector. The number of VPU vectors varies between different

VVM vectors because the scalar count is fixed.

6.3.4 vvm::vector_traits

The vvm::vector_traits trait template provides information about VVM vectors. While

vvm::vectors could have kept such information themselves, as much as possible, VVM

tries to present vvm::vectors as a basic types to facilitate compiler optimisations. More-

over, using vvm::vector_traits to query vvm::vector characteristics is consistent

with the behaviour of vvm::scalar_traits and vvm::vector_traits.

The vvm::vector_traits trait template should be specialised for all the standard

vvm::vectors.

namespace vvm {

template<typename vectorT> struct vector_traits {

static const bool is_specialised = false;

typedef scalarT scalar_type;

typedef vpvectorT vpvector_type;

typedef vector<scalar_traits<scalar_type>::bool_type>

bool_type;

typedef vector<scalar_traits<scalar_type>::integer_type>

integer_type;

typedef vector<scalar_traits<scalar_type>::float_type>

float_type;

enum { scalar_count, vpvector_count, step }

};

}

scalar_type: This returns the type of the scalar that is contained in vectorT.

vpvector_type: This returns the type of the VPU vector that is contained in vectorT.

bool_type: This returns a vvm::vector that contains scalar_traits<scalar_type-

>::bool_type scalars.

integer_type: This returns a vvm::vector that contains scalar_traits<scalar_type-

>::integer_type scalars.
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float_type: This returns a vvm::vector that contains scalar_traits<scalar_type-

>::float_type scalars.

scalar_count: This constant is the number of scalars in vectorT. Because VVM has

constant scalar count, this value is actually constant for all vvm::vectors, and

equal to VVM_SCALAR_COUNT.

vpvector_count: This constant is the number of VPU vectors that are in vectorT.

step: This is equal to the number of scalars in an individual vpvector_count. It can

also be obtained through vpvector_traits<vpvector_type>::scalar_count.

6.4 The Vector

The design of vvm::vectors is discussed in this section. Access to individual scalars and

VPU vectors within a vvm::vector is designed to be easy and efficient. VVM’s vectors

are designed to be simple, aiming to be more like intrinsic types like int rather than

full-blown objects. As a result, vvm::vectors are not designed for inheritance, and thus

have no virtual destructors. In addition, all data are kept on the stack and thus user-defined

copy constructors and assignment operators are not necessary. Not providing user-defined

copy constructors and assignment operator allows the compiler to more easily detect that

vvm::vectors can be enregistered. Enregistering allows the vvm::vector to be loaded

into a register and is important for reducing overheads. In Apple GCC 3.1 20021003, for

example, it was not possible to avoid significant overheads when the copy constructor and

assignment operator were defined.

A cost-effective and easy method of accessing individual scalars helps eliminate un-

sightly code such as ((unsigned char *)(&v1))[i] from Lai & McKerrow (2001),

which are a source of potential coding errors. While the cost of accessing individual

scalars might as first glance not seem as important as the cost of accessing individual

VPU vectors, it is important for the emulation functions of the VVM. Since no current

VPU provides support for all VVM functions, it is likely that the emulation layer is re-

quired even when a real VPU is available. Therefore accessing scalars should be as fast

as possible.

Since VVM vector-processor implementations need to access individual VPU vectors

when performing operations, accessing individual VPU vectors should incur no signifi-

cant overheads. If there are significant overhead involved in accessing individual VPU

vectors, then the VVM implementation will have significant overheads as well.

namespace vvm {

template<typename scalarT> class vector {

private:
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typedef scalarT scalar_type;

typedef typename scalar_traits<scalar_type>::vpvector_type

vpvector_type;

public: // Constructors

vector();

vector(const vector& rhs);

vector(const scalar_type& scalar);

public: // Operators

vector& operator=(const vector& rhs);

vector& operator=(const scalar_type& scalar);

public: // Access to data

scalar_type& scalar(const int i);

const scalar_type& scalar(const int i) const;

vpvector_type& vpvector(const int i);

const vpvector_type& vpvector(const int i) const;

};

typedef vchar vector<char>;

typedef vuchar vector<unsigned char>;

typedef vschar vector<signed char>;

typedef vshort vector<short>;

typedef vushort vector<unsigned short>;

typedef vint vector<int>;

typedef vuint vector<unsigned int>;

typedef vlong vector<long>

typedef vulong vector<unsigned long>;

typedef vfloat vector<float>;

typedef vdouble vector<double>;

typedef vbchar vector<bool_char>;

typedef vbshort vector<bool_short>;

typedef vbint vector<bool_int>;

typedef vblong vector<bool_long>;

typedef vbfloat vector<bool_float>;

typedef vbdouble vector<bool_double>;

typedef vbldouble vector<bool_ldouble>;

typedef vsint8 vector<sint8>;

typedef vuint8 vector<uint8>;

typedef vbint8 vector<bint8>;

typedef vsint16 vector<sint16>;

typedef vuint16 vector<uint16>;
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typedef vbint16 vector<bint16>;

typedef vsint32 vector<sint32>;

typedef vuint32 vector<uint32>;

typedef vbint32 vector<bint32>;

}

The definition above is the minimum specification that VVM implementations must pro-

vide. VVM implementations can add extra functions and member variables that are

needed to perform efficiently. Ideally, these extras should not be usable by the user. There

is no requirement for the VVM vector to be a class. For example, a union can be

used instead of a class to represent a vvm::vector; using a union should provide easy

access to both scalar and VPU vector elements. The VVM specification leaves these im-

plementation details open to enable VVM implementations to select the most efficient

implementation method for their chosen environments.

For ease of use, vvm::vectors of VVM fundamental scalar types have a shorter name

in addition to the full template name. For example, vsint8 is a typedef for vector<sint8>.

vector(): This is the default constructor. For efficiency, the behaviour of the default con-

structor is to do nothing. This behaviour is consistent with basic types provided

by C++ such as int and char. Since the default constructor does nothing, VVM

implementations can omit this function.

vector(const scalar_type& scalar): This function sets all scalars in the vvm::vector

to scalar. While VPUs typically provide fill functions, not all of the them are

compatible with VVM’s definition. In AltiVec for example, the value supplied to

the fill function must be a literal; it must be set at compile-time. VVM does not

have such restrictions because it tries to be easy to use and to provide an idealised

instruction set. For VVM to have such a restriction seems excessive.

operator=(const scalar_type& scalar): This function sets all scalars in the vvm::vector

to scalar. It performs the same operation as vector(const scalar_type& scalar).

scalar(const int), vpvector(const int): These two functions provide read/write access to

the scalars and VPU vectors contained in the vvm::vector respectively. Originally,

scalar and VPU vector access was to be provided via a .scalar[] public field and

a .vpvector[] public field respectively. For this scenario to work, either the VVM

implementation implements the vvm::vector as a union, or it uses inner objects

to provide .scalar[] and .vpvector[] access as illustrated in the code below:

template<typename scalarT> class vector {

private:
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struct _scalar_access {

scalarT& operator[](int i);

const scalarT& operator[](int i) const;

};

struct _vpvector_access {

typename scalar_traits<scalarT>::vpvector_type&

operator[](int i);

const typename scalar_trait<scalarT>::vpvector_type&

operator[](int i) const;

};

public:

_scalar_access scalar;

_vpvector_access vpvector;

};

This alternative will be inefficient, because it increases the size of the vvm::vector;

inner objects require a reference to the vvm::vector’s data. Furthermore, even if

the inner objects had no member variables, according to Vandevoorde & Josuttis

(2003), Chapter 16.2 The Empty Base Class Optimisation (EBCO), even empty

classes might still not be of zero sizes. Larger vvm::vectors means less cache

available for other important data, and longer times spent copying data.

Using the functions allows the VVM implementation more leeway in their imple-

mentation, especially since it should be easy for compilers to remove the cost of the

function call via inlining, thereby removing any overheads.

6.5 Constants

As discussed in Section 3.5.1, it can be faster to generate constants using VPU instructions

instead of loading them from memory. However, in order for a C++ library to generate

such code without using any extra external tools, the library needs to know the constants

that the user wants to generate at compile-time. Passing constants in via a parameter in a

function does not give the library this information. Therefore, in the interest of supporting

such constants, VVM provides the following function:

namespace vvm {

template<typename scalarT, int value>

vector<scalarT> constant();

}
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While this feature is good for performance, the author feels that it makes the library less

consistent since there are now two ways of generating constants, with subtle differences.

It would be better, if VVM was able to generate instructions when the fill constructor is

used. If VVM was implemented as a preprocessor, then it is likely that this is not required.

PixelGlow’s MacSTL library (Pix 2003) provides such a feature. The C++ compiler

is used to calculate the appropriate instructions for generating the required constant. Note

that because the C++ compiler is not a fast interpreter, the compile-time might be drasti-

cally increased.

6.6 Memory functions

VVM provides functions to load and write vvm::vectors from and to aligned memory

locations, to allocate and deallocate memory for vvm::vectors and to prefetch data.

namespace vvm {

// Load and Store vectors

template<typename scalarT>

vector<scalarT> load(const scalarT* scalar_addr);

template<typename scalarT>

void store(const vector<scalarT>& v,

scalarT* scalar_addr);

template<typename scalarT>

vector<scalarT> load_unaligned(const scalarT* scalar_addr);

template<typename scalarT>

void store_unaligned(const vector<scalarT>& v,

scalarT* scalar_addr);

// New & Delete operators

template<typename scalarT>

vector<scalarT> *operator new(std::size_t count)

throw(std::bad_alloc);

template<typename scalarT>

vector<scalarT> *operator new[](std::size_t count)

throw(std::bad_alloc);

template<typename scalarT>

void operator delete(vector<scalarT> *addr) throw();

template<typename scalarT>

void operator delete[](vector<scalarT> *addr) throw();

// Alignment

template<typename scalarT>
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offset_t uoffset(scalarT* const p);

template<typename scalarT>

scalarT* align_prev(scalarT* p, const offset_t offset = 0);

template<typename scalarT>

scalarT* align_next(scalarT* p, const offset_t offset = 0);

// Usage Types should be

// read, read_transient, write, write_transient

template<int channel, typename usage, typename scalarT>

void prefetch(const vector<scalarT>* addr, const int count);

template<int channel> void stop_prefetch();

void stop_all_prefetch();

}

6.6.1 Loads and stores

template<typename scalarT>

vector<scalarT> load(const scalarT* scalar_addr);

template<typename scalarT>

void store(const vector<scalarT>& v,

scalarT* scalar_addr);

template<typename scalarT>

vector<scalarT> load_unaligned(const scalarT* scalar_addr);

template<typename scalarT>

void store_unaligned(const vector<scalarT>& v,

scalarT* scalar_addr);

The load and store functions allow the user to load and store a vvm::vector from and

to a scalar pointer. If the user has a vvm::vector pointer, the user can use the dereference

operator* instead.

The load and store functions only work correctly for aligned memory locations.

Loading from or storing to unaligned memory locations is undefined. To access unaligned

memory locations, use load_unaligned and store_unaligned instead.

6.6.2 Alignment

template<typename scalarT>

offset_t uoffset(scalarT* const p);

template<typename scalarT>

scalarT* align_prev(scalarT* p, const offset_t offset = 0);

template<typename scalarT>
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scalarT* align_next(scalarT* p, const offset_t offset = 0);

The alignment functions return how many bytes a pointer is off alignment by, and aligned

pointers nearest to a specified pointer.

uoffset: This function returns the difference in bytes between p and the largest aligned

pointer smaller than p. For aligned pointers, this function returns 0.

align_prev: This function returns the largest aligned pointer that is less than or equal to

p + offset. For aligned pointers, this function will return p.

align_next: This function returns the smallest aligned pointer that is greater than or equal

to p + offset. For aligned pointers, this function will return p.

6.6.3 Allocation and deallocation

template<typename scalarT>

vector<scalarT> *operator new(std::size_t count)

throw(std::bad_alloc);

template<typename scalarT>

vector<scalarT> *operator new[](std::size_t count)

throw(std::bad_alloc);

template<typename scalarT>

void operator delete(vector<scalarT> *addr) throw();

template<typename scalarT>

void operator delete[](vector<scalarT> *addr) throw();

VVM implementations should ensure that the new and delete operators correctly with

vvm::vectors. Fortunately, the compiler usually does this already, and therefore these

functions are unlikely to need implementation. However, the onus is on the VVM imple-

mentation to make sure that the operators work as expected.

6.6.4 Prefetching

// Channels start from 0

// Usage Types should be

// read, read_transient, write, write_transient

template<int channel, typename usage, typename scalarT>

void prefetch(const vector<scalarT>* addr, const int count);

template<int channel> void stop_prefetch();

void stop_all_prefetch();
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VPUs require more data to be loaded before they can execute their instructions because

each instruction operates on more data. This is a problem since, as discussed in Section

3.4, memory is usually the most significant bottleneck in a vector program. One of the

methods for countering this is to prefetch the data so that it is in the caches before the

VPU requires them.

Since such prefetch instructions are important to attaining and sustaining high speedup,

VVM will need instructions for prefetching. For systems without such prefetch instruc-

tions, these prefetch instructions will do nothing, and ideally be optimised to nothing.

prefetch(const vector<scalarT>* addr, const int count): This function starts prefetch-

ing data. The prefetch instruction is designed to allow:

1. Allow easy specification of start address.

The start address is needed to specify where the prefetch should begin. If

the start address is not valid for the VPU, VVM implementations can start

prefetching at any address close to the specified address instead.

2. Allow easy specification of number of bytes to prefetch.

This specifies the number of bytes that should be prefetched from the start

address. If the number of bytes to prefetch is not valid for the VPU, VVM

implementation can fetch any number of bytes that is close to the number of

bytes specified.

3. Allow easy specification of which channel to use to prefetch.

For prefetching data, while VVM supports an unspecified number of channels,

AltiVec only has four different channels. Thus in AltiVec, only the first four

channels would have any effect. Other channels should result in an empty

function.

The channel to use to prefetch is determined by a template parameter type.

This is allow implementations to easily generate no code for channels that do

not exist. In addition, the channel count is specified by a template parameter

because the AltiVec prefetch instruction requires the channel to be specified

as a literal.

Users should use prefetch channels from 0. This allows the user to actually

use more of the channels provided by the real VPU. In addition, it allows

the vector-processor implementation to number the channels internally in a

manner that interferes least with the rest of the system. In MacOS X, for

example, when running on an AltiVec-enabled microprocessor, the operating

system uses AltiVec data stream channels starting from 3, then 2 and so on; the

user should therefore start from AltiVec data stream channel 0 (App 2004a).
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4. Allow easy specification of usage pattern.

The usage pattern specifies what the data being loaded will be used for. These

usage patterns are only hints. VVM specifies four different usage patterns,

which are the same four usage patterns available in AltiVec:

read_only: Use this when the program expects to only read from the address

specified and will probably need to use it more than once.

read_write: Use this when the program expected to read and write from the

address specified and will probably need to use it more than once.

read_only_transient: Use this when the program expects to only read the

data once.

read_write_transient: Use this when the program expects to read and write

the data only once.

Transient usage pattern indicates that the data would only be used once. In

AltiVec, transient data are flushed straight to main memory instead of to the L2

cache (App 2004a). This frees more space in the caches for other programs.

In AltiVec, the prefetch instruction requires bitwise arithmetic. For this to be cal-

culated at run-time is a waste of time if the values are known beforehand. The

design therefore suggests that if possible, the instruction should be precomputed at

compile-time.

The positions where the prefetching will start and stop is not exact, because in

general, it is not really important. The idea is to get as much in as possible. As long

as not too much is missed, or too much extra is loaded, there should be little impact.

stop_all_prefetch(): This function stops all prefetching. Whether these include channels

that are not used by the current application is implementation-defined. Since it

could stop channels that are not used by the application, it is advisable to not use

this function frequently.

6.7 Input/Output functions

The input/output functions provided by VVM are quite basic. The operator<< function

is expected to be useful when debugging programs.

namespace vvm {

template<typename scalarT>

std::ostream&

operator<<(std::ostream& os, const vector<scalarT> &v);

template<typename scalarT>
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std::istream&

operator>>(std::istream& is, vector<scalarT> &v);

}

operator< <: The operator<< function should print out all scalars in a vvm::vector

delimited by spaces. For char types, the integer value of the char should be printed,

instead of the ASCII character. The operator<< function should not print any

extra characters, like brackets before and after the vvm::vector, in order to allow

operator>> to easily read the output back into a vvm::vector.

operator> >: The operator>> function should read in all the scalars using the > > oper-

ator.

6.8 Arithmetic functions

VVM will support all arithmetic operators, including a saturated addition and subtraction.

Also included are madd and nmsub functions. From a functionality point of view, there

is no reason for these functions to exist, since they can be readily computed using other

functions. However, most VPUs have these functions, and compute these functions faster

than if the composite functions were used instead.

namespace vvm {

template<typename scalarT>

const vector<scalarT> adds(const vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

const vector<scalarT> subs(const vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

const vector<scalarT> operator+(const vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

const vector<scalarT> operator-(const vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

const vector<scalarT> operator*(const vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

const vector<scalarT> operator/(const vector<scalarT>& lhs,

const vector<scalarT>& rhs);
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template<typename scalarT>

const vector<scalarT> operator%(const vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

vector<scalarT>& operator++(vector<scalarT>& rhs);

template<typename scalarT>

vector<scalarT> operator++(vector<scalarT>& lhs, int);

template<typename scalarT>

vector<scalarT>& operator--(vector<scalarT>& rhs);

template<typename scalarT>

vector<scalarT> operator--(vector<scalarT>& lhs, int);

template<typename scalarT>

vector<scalarT>& operator+=(vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

vector<scalarT>& operator-=(vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

vector<scalarT>& operator*=(vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

vector<scalarT>& operator/=(vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

vector<scalarT>& operator%=(vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

const vector<scalarT> operator-(const vector<scalarT>& lhs);

template<typename scalarT>

const vector<scalarT>& operator+(const vector<scalarT>& rhs);

template<typename scalarT>

const vector<scalarT> madd(const vector<scalarT>& v1,

const vector<scalarT>& v2,

const vector<scalarT>& v3);

template<typename scalarT>

const vector<scalarT> nmsub(const vector<scalarT>& v1,
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const vector<scalarT>& v2,

const vector<scalarT>& v3);

}

The addition and subtraction operators have undefined behaviour when the result over-

flows. The adds and subs functions perform saturated addition and subtraction respec-

tively.

Originally, addition and subtraction operators were saturated, because saturated arith-

metic is more common in image processing. However, because not all data can be pro-

cessed efficiently using the vector processor, both scalar and vvm::vector operations are

required. Thus, scalar and vvm::vector operations should have the same semantics. This

means that either vvm::vector addition and subtraction should have undefined behaviour

when the result overflows, or scalar addition and subtraction should be saturated.

Undefined behaviour on result overflows was chosen because it leads to more pre-

dictable behaviour for vvm::vectors and its operations. Making scalar addition and

subtraction saturated requires representing scalar types as another type. This can lead to

situations where the scalars within a vvm::vector are of a different type from the tem-

plate parameter of vvm::vector, which would be unexpected. For example, the scalar

elements of vvm::vector<int> would not be of type int.

6.9 cmath functions

Apart from basic arithmetic functions, VVM also provides functions from the Standard

C++ cmath header file. Functions from the cmath library are also important to machine-

vision, since some commonly used image-processing routines require operations from

this library. Having these functions enables vector-processor implementations to perform

these operations using the VPU where applicable. Even if all cmath functions were all

processed using the scalar processor, these functions still simplify code and allow tem-

plated code to also use the cmath functions as well. VVM tries to provide all the cmath

functions, with the same operations so that they perform in the same manner as scalar

code.

namespace vvm {

// The following should be defined for all integer types

// Replace vint with vchar, vshort etc...

vint abs(const vint& v);

// The following should be defined for all real types

// Replace vfloat with vdouble, vldouble

vfloat abs(const vfloat& v);
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vfloat acos(const vfloat& v);

vfloat asin(const vfloat& v);

vfloat atan(const vfloat& v);

vfloat atan2(const vfloat& v1, const vfloat& v2);

vfloat ceil(const vfloat& v);

vfloat cos(const vfloat& v);

vfloat cosh(const vfloat& v);

vfloat exp(const vfloat& v);

vfloat fabs(const vfloat& v);

vfloat floor(const vfloat& v);

vfloat frexp(const vfloat& v,

vector_traits<vfloat>::integer_type* exp);

vfloat ldexp(const vfloat& v,

const vector_traits<vfloat>::integer_type& exp);

vfloat log(const vfloat& v);

vfloat log10(const vfloat& v);

vfloat modf(const vfloat& v, vfloat* iptr);

vfloat pow(const vfloat& v, const vfloat& exp);

vfloat pow(const vfloat& v,

const vector_traits<vfloat>::integer_type& exp);

vfloat sin(const vfloat& v);

vfloat sinh(const vfloat& v);

vfloat sqrt(const vfloat& v);

vfloat tan(const vfloat& v);

vfloat tanh(const vfloat& v);

}

In the interests of being succinct, variations of each function is not listed. For example,

abs should be defined for all signed and unsigned integer vvm::vectors, excluding boo-

lean vvm::vectors. The acos, asin, atan, and so on functions should be defined for all

floating-point vvm::vectors.

A VVM implementation might just provide these functions through the emulation

layer. On Mac OS X, there is a VecLib framework which actually contains such func-

tions, but implemented using AltiVec were appropriate. Other libraries, like Itanium

Vector Math Library (Hew 2003), also provide such functions for other vector-processor

technologies.
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6.10 Bitwise functions

Bitwise operators only apply to integer and boolean vvm::vector types. Trying to use

bitwise operators on floating-point types should result in a compilation error.

namespace vvm

{

// Applies only to integer and boolean vvm::vector types

template<typename scalarT>

vector<scalarT> operator~(const vector<scalarT>& rhs);

template<typename scalarT>

vector<scalarT> operator^(const vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

vector<scalarT>& operator^=(vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

vector<scalarT> operator&(const vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

vector<scalarT>& operator&=(vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

vector<scalarT> operator|(const vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

vector<scalarT>& operator|=(vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

vector<scalarT> operator>>(const vector<scalarT>& lhs,

const unsigned short shift);

template<typename scalarT>

vector<scalarT> operator>>(const vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

vector<scalarT> operator<<(const vector<scalarT>& lhs,

const unsigned char shift);

template<typename scalarT>

vector<scalarT> operator<<(const vector<scalarT>& lhs,

const vector<scalarT>& rhs);
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template<typename scalarT>

vector<scalarT>& operator>>=(vector<scalarT>& lhs,

const unsigned char shift);

template<typename scalarT>

vector<scalarT>& operator>>=(vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

vector<scalarT>& operator<<=(vector<scalarT>& lhs,

const unsigned char shift);

template<typename scalarT>

vector<scalarT>& operator<<=(vector<scalarT>& lhs,

const vector<scalarT>& rhs);

}

There are two versions of the left shift and right shift operations The first versions shifts

the entire vvm::vector by an unsigned char number of bits, while the second version

shifts the scalars in a vvm::vectors by the corresponding scalars in a second vvm::vector.

The first version’s right-hand side is an unsigned char. This shift function shifts the

entire vvm::vector, as a single integer, by the specified number of bits. The amount

shifted is specified using a unsigned char because it is unlikely that the user needs to

shift more than 256 bits.

The second version’s right-hand side is a vvm::vector. In this case, the scalars are

shifted by the corresponding scalar in the right-hand vvm::vector. Because different

vvm::vectors consist of different VPU vectors, which are likely to consist of different

number of scalars, the right-hand vvm::vector is not represented by vector<unsigned

char>. It is instead vector<scalarT> to allow easier mapping to VPU functions.

Shift operations are only valid for positive values. When asked to shift negative values,

the behaviours of these shift operators is undefined. This behaviour is consistent with

Standard C++ (Inf 1998, Section 5.8). The result of shifting by too many bits is also

undefined.

6.11 Logical functions

Logical operators apply to all vvm::vectors, including floating-point types. Any non-

zero value is assumed to be true. This behaviour is consistent with the C++ Standard

(Inf 1998, Section 4.12).

namespace vvm

{

template<typename scalarT>
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vector<scalar_traits<scalarT>::bool_type>

operator!(const vector<scalarT>& rhs);

template<typename scalarT>

vector<scalar_traits<scalarT>::bool_type>

operator&&(const vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

vector<scalar_traits<scalarT>::bool_type>

operator||(const vector<scalarT>& lhs,

const vector<scalarT>& rhs);

}

6.12 Comparison functions

The return value of comparison operators in VVM is different from the comparison oper-

ators in C++. Instead of returning a bool, comparison operators in VVM return a boolean

vvm::vector, because the comparison results of two vectors cannot be expressed as a

single boolean. The exact boolean vvm::vector is derived by querying scalar_traits

for the appropriate boolean type. For more information on obtaining the corresponding

boolean type through scalar_traits, see Section 6.3.

namespace vvm {

template<typename scalarT>

vector<scalar_traits<scalarT>::bool_type>

operator>(const vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

vector<scalar_traits<scalarT>::bool_type>

operator<(const vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

vector<scalar_traits<scalarT>::bool_type>

operator>=(const vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

vector<scalar_traits<scalarT>::bool_type>

operator<=(const vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>
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vector<scalar_traits<scalarT>::bool_type>

operator==(const vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

vector<scalar_traits<scalarT>::bool_type>

operator!=(const vector<scalarT>& lhs,

const vector<scalarT>& rhs);

}

6.13 Predicates

The VVM predicates presented in this section come from AltiVec. Unlike comparisons,

predicates return a single bool. Predicates of the “any” kind OR the results of the com-

parison while predicates of the “all” kind AND. Predicates of the “any” kind return true

if any of the values in the two input vvm::vectors match the comparison operation spec-

ified. Predicates of the “all” kind return true only if all the values in the two input

vvm::vectors match the comparison operation specified.

The eq, ge, gt, le and lt suffixes stand for “equal to”, “greater than or equal to”,

“greater than”, “less than or equal to” and “less than” respectively. The ne, nge, ngt,

nle and nlt suffixes stand for “not equal to”, “not greater than or equal to”, “not greater

than”, “not less than or equal to” and “not less than” respectively.

namespace vvm {

// All predicates

template<typename scalarT>

bool all_eq(const vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

bool all_ge(const vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

bool all_gt(const vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

bool all_le(const vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

bool all_lt(const vector<scalarT>& lhs,

const vector<scalarT>& rhs);
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template<typename scalarT>

bool all_ne(const vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

bool all_nge(const vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

bool all_ngt(const vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

bool all_nle(const vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

bool all_nlt(const vector<scalarT>& lhs,

const vector<scalarT>& rhs);

// Any predicates

template<typename scalarT>

bool any_eq(const vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

bool any_ge(const vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

bool any_gt(const vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

bool any_le(const vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

bool any_lt(const vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

bool any_ne(const vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

bool any_nge(const vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

bool any_ngt(const vector<scalarT>& lhs,
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const vector<scalarT>& rhs);

template<typename scalarT>

bool any_nle(const vector<scalarT>& lhs,

const vector<scalarT>& rhs);

template<typename scalarT>

bool any_nlt(const vector<scalarT>& lhs,

const vector<scalarT>& rhs);

}

6.14 Vector processor specific functions

VVM contains vector functions which are modelled after AltiVec instructions. In the

absence of a real VPU, these functions perform little work since each vvm::vectorwould

have only one scalar.

namespace vvm {

template<typename scalarT>

vector<scalarT> lvsl(const scalarT* const p,

const offset_t offset = 0);

template<typename scalarT>

vector<scalarT> lvsl(const vector<scalarT>* const p,

const offset_t offset = 0);

template<typename scalarT>

vector<scalarT> lvsr(const scalarT* const p,

const offset_t offset = 0);

template<typename scalarT>

vector<scalarT> lvsr(const vector<scalarT>* const p,

const offset_t offset = 0);

template<typename scalarT>

vector<scalarT> mergeh(const vector<scalarT>& a,

const vector<scalarT>& b);

template<typename scalarT>

vector<scalarT> mergel(const vector<scalarT>& a,

const vector<scalarT>& b);

template<typename scalarT>

vector<scalarT> select(

const vector_traits<vector<scalarT> >::bool_type,

const vector<scalarT>& a,

const vector<scalarT>& b)
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template<typename scalarT>

vector<scalarT> perm(const vector<scalarT>& selector,

const vector<scalarT>& a,

const vector<scalarT>& b);

template<typename scalarT>

vector<scalarT> max(const vector<scalarT>& a,

const vector<scalarT>& b);

template<typename scalarT>

vector<scalarT> min(const vector<scalarT>& a,

const vector<scalarT>& b);

template<typename scalarT>

typename ct::promote<scalarT>::type

sum(const vector<scalarT>& a);

}

Figure 6.1 VVM vector processor specific functions
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lvsl: This generates a vvm::vector with ascending scalars that start from vvm::uoff-

set(p + offset). Equation 6.1 summarises lvsl’s operation where s0 is the most

significant element. The value of s0 is directly proportional to vvm::uoffset(p +

offset).
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s0 = vvm :: uoffset(p+offset)

si = (si−1 +1)
(6.1)

lvsr: lvsr is similar to lvsl except the most significant element s0 is VVM_SCALAR_-

COUNT - vvm::uoffset(p + offset). The value of s0 is inversely proportional to

vvm::uoffset(p + offset). Equation 6.2 summarises lvsr’s operation.

s0 = VVM_SCALAR_COUNT−vvm :: uoffset(p+offset)

si = (si−1 +1)
(6.2)

mergeh: The most significant scalars in vvm::vectors a and b are interleaved to pro-

duce the desired result. For a graphical representation, see Figure 6.1(a).

mergel: The least significant scalars in vvm::vectors a and b are interleaved to produce

the desired result. For a graphical representation, see Figure 6.1(b).

select: The select function is used to obtain the results of comparisons. For example,

to obtain the results of a > b, you would write:

select(a > b, a, b);

The select function’s behaviour is illustrated in Figure 6.1(c). It selects each bit

in the vvm::vectors individually because it is modelled after the vec_sel AltiVec

command. It is possible to implement select using bitwise operations if the cur-

rent VPU does not have a comparable command.

perm: The permutation operation is used to select scalars from two vvm::vectors. The

selector contains which scalar from vvm::vector a or b should be placed at the

corresponding position in the result. Figure 6.1(d) shows how the perm function

operates graphically.

Scalars in the selector which have larger values than twice the constant scalar

count, results in undefined values at those positions.

Note that the perm function can be used to produce the same results as mergel,

mergeh and sometimes select. Where possible, the user should use one of the

other vector functions. The perm function should be used as a last resort because

it has less VPU support. AltiVec is the only vector-processor technology available

on the desktop at the time of writing that supports the permutation operation. Even

when AltiVec is enabled, the perm function is easy to implement only for char

types. This is because the AltiVec vec_perm function only operates in the same

manner as VVM’s for char types.
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Unlike AltiVec’s vec_perm instruction, which will let the user rearrange the bytes

of scalars in its VPU vectors, VVM’s perm does not. It only allows scalars in the

vvm::vectors to be rearranged.

max: The max function returns a vvm::vector whose scalars are the larger of corre-

sponding scalars from vvm::vectors a and b. The max function comes from the

vec_max AltiVec operation. The max function is equivalent to:

select(a > b, a, b)

min: The min function returns a vvm::vector whose scalars are the smaller of corre-

sponding scalars from vvm::vectors a and b. The min function comes from the

vec_min AltiVec operation. The min function is equivalent to:

select(a < b, a, b)

sum: The sum function returns the sum of all the scalars within the vvm::vector a.

6.15 Type conversions

Type conversion is handled using the vector_cast template function. The template pa-

rameter accepted by this template function is the vvm::vector that the user wants to

convert to.

namespace vvm {

template<typename toVectorT, typename fromVectorT>

toVectorT vector_cast(const fromVectorT& from);

}

The emulation layer is expected to provide a vector_cast that will convert from vvm::-

vector by invoking static_cast on each scalar element. Therefore it will be possible to

change any vvm::vector type to another. Vector-processor implementations can provide

type conversions that operate on VPU vectors. The exact conversions that are supported

is not defined.

Because vector_cast accepts vvm::vectors as template parameters, it is not valid

to write vector_cast<float>(a). Instead the programmer should write vector_-

cast<vector<float> >(a). This is to keep vector_cast consistent with other cast

templates like static_cast, reinterpret_cast and const_cast. In all these casts,

the template parameter is the type that we want to convert to.
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6.16 Functors

In the Standard C++ library, all comparison functors return bool. These functors can-

not be instantiated with vvm::vectors, because the result of vvm::vector comparisons

is a vvm::vector of booleans. Because Standard C++ comparison functors cannot be

instantiated with vvm::vectors, VVM will also provide substitute comparison functors.

The VVM comparison functors are in a different namespace, vvm_functional, and in

a different header file, vvm/functional.h, from the rest of VVM. This is to enable the

user to specify that the namespace is to be used in preference to the Standard C++ library.

VVM comparison functors can be instantiated for both scalars and vvm::vectors.

namespace vvm::functional {

template<typename scalarT> struct equal_to;

template<typename scalarT> struct not_equal_to;

template<typename scalarT> struct less;

template<typename scalarT> struct less_equal;

template<typename scalarT> struct greater;

template<typename scalarT> struct greater_equal;

}

6.17 VVM settings

VVM allows the user to obtain information about the current VVM implementation and

the current vector-processor implementation. In addition, it provides a few user-configurable

options. All settings are available at compile-time via macros because the information

provided never changes during a single compilation, and allows VVM itself or the user to

make compile-time decisions. Moreover, it is less likely for macros to be set to the wrong

value than global constant variables. If global constant variables were used, there is a

chance that the variables are compiled differently from the rest of the program, thereby

leading to incorrect values. VVM settings are provided either for the purposes of making

compile-time decisions, or for display to the user.

VVM is an active library (for more information about active libraries, see Veldhuizen

& Gannon (1998)), because it helps the compiler compile itself. For example, the con-

stant scalar count is not defined by VVM, but is instead determined by the current vector-

processor implementation. VVM code will need to change if constant scalar count changed.

VVM users could also decide to call different functions depending on information about

their vector-processor implementation. In many cases, just knowing which VPU is avail-

able is enough to make these decisions.
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6.17.1 Information

VVM provides a variety of information to the user. Some of this information can be

displayed on the screen, while others are suitable for making compile-time decisions using

the preprocessor.

VVM_REVISION: This is the revision number of the VVM specification that is im-

plemented by the VVM implementation. VVM implementations implementing the

specification described in this chapter should set VVM_REVISION to 1.

#define VVM_REVISION 1

Subsequent versions would have 2, 3 and so on. While there is no guarantee that

code using revision 1 will run correctly in revision 2, it is a strong possibility. All

programs should check that the VVM_REVISION is greater than or equal to the

revision number that they are using.

VVM_INFO_IMPLEMENTATION: This should be set to the name of the VVM im-

plementation.

VVM_INFO_AUTHOR: This should be set to a human-readable string describing the

author that created this VVM implementation.

VVM_INFO_COMPANY: This should be set to a human-readable string describing the

company that created this VVM implementation.

VVM_INFO_VERSION: This should be set to a human-readable string describing the

version of the VVM implementation.

VVM_INFO_BUILD: This should be set to the version of the VVM implementation as

a number. This number must be larger for subsequent versions.

VVM_VECTOR_PROCESSOR: The VVM_VECTOR_PROCESSOR macro will be defined

only if there are any active vector-processor implementations. This indicates whe-

ther a real VPU that is supported is available.

VVM_<Platform>: To detect what the active vector-processor implementation is, the

program can check if one of the macros listed in Table 6.3 is defined. Some

vector-processor technologies are subsets of other vector-processor technologies.

For example, SSE is an extension of MMX. If the vector-processor implementa-

tion supports SSE, then it also supports MMX. For VPUs that are not listed, the

VVM implementation is allowed to define any macro that it sees fit, as long as the

macro follows the VVM_<Platform> convention. VVM implementations may also

define VVM_ macros for individual processors, as long as they also define architec-

ture macros as required.
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Table 6.3 VVM macros signalling availability of VPUs

Macro Vector Processor Architecture Examples

VVM_ALTIVEC AltiVec Motorola G4, IBM Power4

VVM_MMX MMX Intel Pentium

VVM_3DNOW 3DNow! AMD Athlon

VVM_SSE SSE

VVM_SSE2 SSE2

VVM_INFO_VECTOR_PROCESSOR: The VVM_INFO_VECTOR_PROCESSORmacro is

a human-readable string containing the name of the VPU that is currently active. In

the absence of a vector-processor implementation, it should be set to “None”. This

is used by the programs using VVM to tell the user which VPU is active. It is not

expected that the program makes compile-time decisions using this information.

VVM_SCALAR_COUNT: This macro evaluates to the number of scalars in all vvm::-

vectors.

VVM_PREFERRED_SCALAR_COUNT: This is the preferred scalar count for the

current vector-processor implementation. VVM implementations set this value.

In general, if VVM_USER_SCALAR_COUNT is not defined or is not a sensible value,

VVM_SCALAR_COUNT will be set to this instead.

VVM_TRUE: This macro evaluates to the integer scalar value for true. This value is

~0.

VVM_FALSE: This macro evaluates to the integer scalar value for false. This value is

0.

6.17.2 User-configurable options

VVM provides a few user-configurable options. These options should be set before the

first VVM header file is included.

VVM_USER_NO_VECTOR_PROCESSOR: If this macro is defined, the VVM im-

plementation should not enable any vector-processor implementations, even if they

are available. Using the scalar processor regardless of the vector processor allows a

scalar version to be built on platforms that have vector-processor support.

VVM_USER_SCALAR_COUNT: The user sets this to his preferred scalar count. The

VVM implementation can decide which values are acceptable. This is because,

some values of scalar counts are impractical. For example, setting the scalar count

to 17 for AltiVec is bad. There is no way to represent 17 elements as VPU vectors
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in AltiVec without wasting space. In addition, there could also be constraints in

the way the functions are implemented. The VVM implementation should raise an

error if VVM_USER_SCALAR_COUNT is invalid.

6.18 Conclusion

This chapter presented the design issues and rationale behind the Virtual Vector Machine

(VVM), a new abstract VPU designed to be used as the VPU for a generic, vectorised,

machine-vision library. VVM aims to represent desktop VPUs, such as AltiVec, MMX

and 3DNow!. Being an abstract VPU, VVM has an idealised instruction set and con-

straints common to desktop VPUs. VVM has three constraints common to desktop VPUs:

short vectors, fixed vector sizes and fast access only to aligned memory addresses. While

the size of a vvm::vector is fixed, unlike desktop VPUs, all vvm::vectors have the

same scalar count regardless of type. This constant scalar count is important for ge-

neric programming, which is required for the creation of a generic, vectorised library.

Other features that support the creation of a generic, vectorised library include templated

vvm::vectors, traits, and consistent functions for both scalar and vvm::vector opera-

tions. Because of the high cost of converting types in vector programs, VVM does not

provide automatic type conversion; it only supports explicit type conversions.

While all vvm::vectors contain the same number of scalars, the value of this fixed

scalar count is not specified by VVM to allow more VPUs to be represented. Sensible

values for scalar counts are 16 for AltiVec, 8 for MMX and 1 for the scalar processor.

VVM has constant scalar count for ease of use and because this is important for generic

programming (Appendix C). Having different scalar counts per vvm::vector makes it

difficult to perform type conversions, which are necessary when performing some opera-

tions like convolutions and equalisations.

VVM can access only aligned memory address quickly. Like SSE and SSE2 (Adv

2002), VVM also provides slower access to unaligned addresses. In AltiVec, unaligned

memory can be accessed by loading aligned memory addresses and performing some

transformations (Lai & McKerrow 2001, Ollmann 2001, App 2004b). Even though un-

aligned addresses are supported, it is still advisable to use only aligned addresses where

possible.

Templated vvm::vectors makes creating templated vector programs easier. Tem-

plated vector programs are required for a generic, vectorised library.

Traits are important when automating the generation of more complicated generic al-

gorithms (Köthe 1999). Trait information can be used in the implementation of VVM

itself. They are also important for deriving the appropriate boolean type, since unlike

scalar programs, vector programs use more than one boolean type. Promotion traits are

important for writing templated code where promotion is necessary, such as in convolu-
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tions.

VVM has consistent functions for both scalar and vvm::vector operations where

applicable. This makes VVM easier to use and introduces less surprises; it also allows

the same templated code to be instantiated with a scalar or a vvm::vector. Furthermore,

they also allow most Standard C++ functors to be used with vvm::vectors.

Type conversion is discouraged in vector programs because the effect of these oper-

ations on a vector program’s speed is quite pronounced. Type conversions will change

the type of VPU vectors in a vvm::vector, which changes the maximum theoretical

speedup. However, as mentioned previously, type conversions are important to some

image-processing operations. The compromise was to make the user specify type conver-

sions explicitly.
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Chapter 7

Virtual Vector Machine’s

Implementation

In Chapter 5, the abstract VPU was presented. In Chapter 6, a real abstract VPU, called

Virtual Vector Machine (VVM), was specified. In this chapter, how the VVM specifica-

tion can be implemented using only Standard C++, and the costs associated are discussed.

Using only Standard C++ makes the implementation more portable across different com-

pilers and makes it easier for users to use, since the user does not have to perform any

special additional steps to compile the program. Since VVM is an abstract VPU, know-

ing how implementable it is provides insights into how implementable any abstract VPU

is. In particular it highlights the performance costs of an abstract VPU implemented using

only Standard C++.

This chapter starts with the implementation of VVM fundamental scalar types and

VVM’s traits. This is followed by an investigation into the costs of performing a VVM

operation, and switching between the emulation layer and the active vector-processor

implementation. The implementation of type conversion functions and function objects is

then discussed. This chapter closes with a presentation of the results from a performance

measurement tool on several VVM implementations created as part of this thesis.

7.1 Fundamental scalar types

The implementation of VVM fundamental scalar types is discussed in this section. Most

VVM fundamental scalar types are straightforward to implement, because they are fun-

damental C++ types, and thus require no implementation. Types like sint8, sint16, and

sint32, can be implemented as typedefs, once we can find types with the appropriate

characteristics. Finding scalar types with the appropriate characteristics is discussed later

in Section 7.2.2. Therefore, the only VVM fundamental scalar types worth discussing in

this section are the boolean scalar types.
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Boolean scalar types can be implemented using simple wrappers.

template<typename scalarT> class boolean {

scalarT _value;

public:

boolean() {}

boolean(const scalarT value) : _value(value) {

}

operator scalarT() const {

return _value;

}

};

typedef boolean<char> bchar;

typedef boolean<short int> bshort;

typedef boolean<int> bint;

typedef boolean<long int> blong;

typedef boolean<float> bfloat;

typedef boolean<double> bdouble;

typedef boolean<long double> bldouble;

typedef boolean<int8> bint8;

typedef boolean<int16> bint16;

typedef boolean<int32> bint32;

Using typedefs for boolean scalars is inappropriate, because typedefs prevent AltiVec

boolean VPU vectors from being mapped correctly. Because a typedef is treated as the

original type in C++, it would not be possible to provide different trait information for the

typedef and the original type. For example, the following code will not compile.

typedef signed char bchar;

template<> struct scalar_traits<signed char> {

// ..

typedef __vector signed char vpvector_type;

};

// This will fail to compile because bchar is a typedef

// of signed char

template<> struct scalar_traits<bchar> {

// ...

typedef __vector bool char vpvector_type;

};

What is required for VVM boolean scalars are types that act like the original types, are the

same size as the original types, but are distinct types from the original types. The boolean
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wrapper fulfils these requirements. The conversion operator included in the definition of

the boolean wrapper allows the boolean scalar to act like the original type.

7.2 Traits

VVM provides three trait templates scalar_traits, vpvector_traits and vector_-

traits that provide information on scalars, VPU vectors and vvm::vectors respectively.

Information provided by these traits include scalar-to-VPU vector and its inverse map-

ping, the number of elements in the VPU vector and the corresponding integer, real and

boolean types.

7.2.1 Mapping scalars to VPU vectors

At first glance, mapping scalars to VPU vectors for AltiVec seems easy; scalar types

can be converted to AltiVec vector types by simply adding the __vector modifier. For

example, under this mapping scheme, unsigned char and unsigned short map to

__vector unsigned char and __vector unsigned short respectively. This simple

mapping scheme has three major problems. The first is the question of what char maps

to. The second is that since the size of scalar types in C++ is not fixed, the scalar type

could be mapped to a VPU vector with a different scalar element size. Some compil-

ers, like xlC for example, have different sizes for fundamental types when given different

compiler switches. For example, in xlC, -ldbl128 will increase the size of long doubles

from 64 bits to 128 bits (IBM 2002). The same issue arises when mapping from VPU vec-

tors to scalars. In addition, this simple mapping can result in a less than optimal mapping.

For example, if both long int and int are 32 bits long, then they can be both mapped to

__vector signed int.

The first problem is easy to solve since std::numeric_limits<char>::is_signed

returns true or false if char is signed or unsigned respectively. However because this

information is known at compile-time and not at preprocess-time, the preprocessor cannot

be used to decide whether char maps to __vector signed char or __vector unsigned

char. Instead, template metaprogramming (refer to Section 4.4 for more information)

is required. The following code illustrates how to select the appropriate VPU vector for

char.

template<> struct scalar_traits<char> {

// ... Other fields go here

typedef boost::mpl::if_c<

std::numeric_limits<char>::is_signed,

__vector signed char,

__vector unsigned char>::type vpvector_type;
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};

The second problem is more difficult to solve. Ideally, scalar types should be matched to

VPU vectors that are of the same type and scalar size. For example, signed char should

map to a VPU vector whose scalars are signed integers and are 8 bits long. The type can

be signed integer, unsigned integer, reals or booleans. By using these two characteristics

as template parameters, a VPU vector with the desired characteristics can be found at

compile-time. The type is well-known, except in the case of char which is either a signed

or unsigned integer. The scalar size can be determined at compile-time using the sizeof

operator. The following code illustrates how this works:

// Enumeration of type types

enum { signed_int, unsigned_int, real, boolean };

// If no appropriate VPU vector, just use an appropriate scalar

template<int kind, int scalar_size> struct find_vpvector {

typedef typename find_scalar<kind, scalar_size>::type type;

};

// An entry for each VPU vector for AltiVec

template<> struct find_vpvector<signed_int, 1> {

typedef __vector signed char type;

};

template<> struct find_vpvector<unsigned_int, 1> {

typedef __vector unsigned char type;

};

template<> struct find_vpvector<boolean, 1> {

typedef __vector bool char type;

};

template<> struct find_vpvector<real, 4> {

typedef __vector float type;

};

// And so on ...

template<> struct scalar_traits<signed char> {

// Other fields go here ...

typedef typename find_vpvector<

signed_int, sizeof(signed char)>::type vpvector_type;

};

From the above code, scalar_traits<signed char>::vpvector_type is __vector

signed char since the kind is signed_int and sizeof(char) is 1. In addition, if there is
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no appropriate VPU vector type, the default find_vpvector returns an appropriate scalar

using the find_scalar template metafunction, which is discussed in the next section.

7.2.2 Mapping VPU vector to scalar types

We can try to map VPU vectors to scalar types using the inverse operation of the pro-

cess described in the previous section. In this case, instead of explicitly specifying

the scalar size, the scalar size should be sizeof(scalarT). The size cannot be ex-

plicitly specified because the size is implementation defined. However, each specialised

vpvector_traits will know the explicit size that is required, because it is specified in

AltiVec.

template<int kind, int scalar_size> struct find_scalar;

// Some example specialisations

template<>

struct find_scalar<signed_int, sizeof(short)> {

typedef short type;

}

template<>

struct find_scalar<unsigned_int, sizeof(unsigned short)> {

typedef unsigned short type;

}

template<>

struct find_scalar<signed_int, sizeof(int)> {

typedef int type;

}

template<>

struct find_scalar<unsigned_int, sizeof(unsigned int)> {

typedef unsigned int type;

}

template<>

struct find_scalar<signed_int, sizeof(long)> {

typedef long type;

}

// ...

Unfortunately, this implementation does not work because some of the scalar types have

the same size. This leads to duplicate entries. For example, in Apple GCC 3.1 20021003,

ints and long ints are both 4 bytes. Therefore, they will both end up specialising
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find_scalar<signed_int, 4> and find_scalar<unsigned_int, 4>. This of course

leads to compilation problems.

Trying to use the scalar-to-VPU vector mapping instead to calculate from the VPU

vector-to-scalar mapping, might result in a vpvector_traits implementation.

template<>

struct vpvector_traits<scalar_traits<char>::vpvector_type> {

static const bool is_specialised = true;

typedef char scalar_type;

enum {

scalar_count = sizeof(scalar_traits<char>::vpvector_type) /

sizeof(char)

};

};

Unfortunately this also leads to the same problem. The crux of the problem is that the

scalar-to-VPU vector mapping is a many-to-one mapping.

Instead of trying to use scalar characteristics or the vpvector_type as template pa-

rameters, it is possible to implement a template metaprogram that will iterate through

a list of types until it finds the appropriate type. This is where typelists come in. The

template metafunction find_scalar for signed integers can be easily implemented as

follows, assuming signed_integer_types is a typelist that contains only scalars that

are signed integers.

// Find scalar type that matches type and size

template<int kind, int size> struct find_scalar;

template<int size> struct find_scalar<signed_int, size> {

typedef typename ct::find_first<

signed_integer_types,

ct::has_sizeof<size>::func, int>::type type;

};

In the preceding code snippet, the find_first command will find the first type in sig-

ned_integer_types that is the same size as size. If there is no type that satisfies this

criterion, then it will return int. The default is important when mapping bool_type,

integer_type and float_type.

The same style can be repeated for unsigned integers, real numbers and booleans, with

an appropriate default type. The template metafunction find_scalar for boolean scalars

should probably return ct::null_type if no type is found, because the default boolean

type should be the original type.
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7.2.3 bool_type, integer_type, float_type

The types bool_type, integer_type and float_type return corresponding boolean,

integer and real types. The VVM specification says that where possible, these types

should be the same size as the original. This is important in reducing type conversion

costs.

Fortunately, the find_scalar template from Section 7.2.2 makes it easier to fulfil

VVM’s request. Using find_scalar, the bool_type, integer_type and float_type

for int can be written as

template<> struct scalar_traits<int> {

// Other fields go here

typedef typename find_scalar<boolean,

sizeof(int)>::type bool_type;

typedef int integer_type;

typedef typename find_scalar<real,

sizeof(int)>::type float_type;

};

There is no need to use find_scalar for integer_type, because int is already an

integer type. Likewise, for float, find_scalar would not be used for float_type.

Because the find_scalar template metafunction returns a default type if there is no

appropriate type, there is no need to check whether an appropriate type was found.

Note that for bool_type, if there is no appropriate type, then the original type should

be used. This means that find_scalar<boolean, T>::type should probably return

ct::null_type if no type was found to facilitate the detection of no appropriate boolean

types. The type bool_type can be implemented as follows.

typedef typename find_scalar<boolean,

sizeof(scalarT)>::type _bool_scalar;

typedef boost::mpl::if_c<

boost::is_same<_bool_scalar, ct::null_type>,

scalarT, // Not found

_bool_scalar>::type bool_type;

7.3 Performing an operation

The operation implemented in this section is the addition operator whose function proto-

type is as follows:

template<typename scalarT> const vector<scalarT>

operator+(const vector<scalarT>&, const vector<scalarT>&);
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In order to process a user’s request, the abstract VPU has to decide whether the function

should be executed by the active vector-processor implementation or the emulation layer.

In order to make this decision, VVM requires trait information. After making this deci-

sion, VVM performs the actual operation. In order for VVM to be zero-cost, making the

decision and performing the operation must have no overheads. The implementation and

costs of performing the operation are discussed in this section. The implementation and

costs of switching between the emulation and the active vector-processor implementation

are covered in the next section.

The overheads of a function depend on the compiler and the function prototype. Func-

tions that accept a reference argument to the result are easier for compilers to inline than

functions that return their results, because functions that return their results return a copy

which has to be created, copied to the real result variable and destroyed. Most functions

and operators however return their result. The addition operator discussed in this section

returns its result.

This section starts with a description of the test harness used. The hand-coded ver-

sions of a scalar and VPU vector operations are then covered. Two different methods of

implementation, function overloading and expression templates, and their costs are then

discussed.

7.3.1 The test harness

To measure the execution time of the functions, a test harness was written. The test

harness adds an input array of a fixed size with itself a set number of times. The number

of elements in the array is fixed. Number of operations refers to the number of times each

element is added to itself. The test harness looks like the following:

T* r = new T[count];

T* a = new T[count];

timing_t start, stop;

start = timenow(); // Timer starts

for(int i = 0; i < count; ++i) {

// Insert expression here. Examples are:

// r[i] = a[i] + a[i];

// r[i] = vec_add(a[i], a[i]);

}

stop = timenow(); // Timer ends

delete[] a;

delete[] r;

The test harness applies the operation to an array to prevent the compiler from optimising

the for-loop away. For extra protection against excessive compiler optimisations, the test
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harness could write the output to disk. For the graphs shown in this section however, this

step was not necessary; the same results were obtained with or without writing to disk.

When comparing the speed of expressions involving vvm::vectors with only a single

element, T was signed char and __vector signed char for scalar and VPU vector

expressions respectively. The type char was chosen because in AltiVec, when using

the preferred scalar count, the only vvm::vectors to have a single VPU vector are the

vvm::vectors based on char. There was no particular reason for choosing signed char

over unsigned char.

When comparing the speed of expressions involving vvm::vectors with more than

one element, T was signed int and __vector signed int for scalar and VPU vector

expressions respectively. The type int was chosen because in AltiVec, when running with

the preferred scalar count of 16, vvm::vectors based on int have the largest number of

VPU vectors.

Programs were compiled using both Apple GCC 3.1 20021003 and Apple GCC 3.3

20030304, with the -Os (optimise for size) switch. All programs were timed 20 times,

and the lowest value was taken as the result.

7.3.2 The hand-coded reference versions

There are two different hand-coded versions — one for scalar expressions and one for

VPU vector expressions. In a real abstract VPU, there will also be expressions that involve

both scalar and VPU vector elements. However this facet was not investigated because its

speed is expected to be in-between the speeds of scalar and VPU vector only expressions.

For scalar expressions, the expression is simply r[i] = a[i] + a[i], r[i] = a[i] +

a[i] + a[i], r[i] = a[i] + a[i] + a[i] + a[i] and so on. For VPU vector expressions,

the expression is r[i] = vec_add(a[i], a[i]), r[i] = vec_add(vec_add(a[i], a[i]),

a[i]), vec_add(vec_add(vec_add(a[i], a[i]), a[i]), a[i]) and so on.

Note that because vvm::vector<int> consists of 16 scalars and 4 VPU vectors, the

count was multiplied by 16 and 4 for scalar and VPU vector expressions respectively.

This is to ensure that the hand-coded version performs the same amount of work.

7.3.3 Operations on vvm::vectors with a single element

For vvm::vectors that contain only one element, a zero-cost operator+ should be pos-

sible if the compiler removes the cost of the function call completely. The operator+

function returns an object by value. According to Meyers (1996, Item 20), by-value re-

turns imply the creation of a new object to hold the return value (and appropriate calls

to the constructor and destructor for that object). The overheads of this function call

therefore include not only the function call itself, but also the creation of a new object, its

construction and destruction, and the copying of the new object to the destination. Meyers
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(1996, Item 20) points out that while some functions, including the operator+, simply

must return objects, it is possible to reduce the cost of these objects if the compiler sup-

ports return value optimisation. Return value optimisation is a common optimisation that

removes the cost of the return object completely, by replacing it with the appropriate des-

tination object. According to Meyers (1996, Item 20), the best way to help the compiler

perform this optimisation is to use an unnamed return value. Two different operator+

versions were implemented and timed. The first used an unnamed return value while the

second used a named return value.

Unnamed return value

The addition operator implemented using unnamed return values is as follows:

// Scalar version

template<typename scalarT> inline const vector<scalarT>

operator+(const vector<scalarT>& a, const vector<scalarT>& b) {

return vector<scalarT>(a.scalar(0) + b.scalar(0));

}

// VPU vector version (AltiVec)

template<typename scalarT> inline const vector<scalarT>

operator+(const vector<scalarT>& a, const vector<scalarT>& b) {

return vector<scalarT>(vec_add(a.vpvector(0), b.vpvector(0)));

}

Named return value

Instead of using an unnamed return value, we can use a named return value. This imple-

mentation cannot be used if scalarT is const, because this implementation modifies the

return value after it is created.

// Scalar version

template<typename scalarT> inline const vector<scalarT>

operator+(const vector<scalarT>& a, const vector<scalarT>& b) {

vector<scalarT> ret;

ret.scalar(0) = a.scalar(0) + b.scalar(0);

return ret;

}

// VPU vector version (AltiVec)

template<typename scalarT> inline const vector<scalarT>

operator+(const vector<scalarT>& a, const vector<scalarT>& b) {

vector<scalarT> ret;
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ret.vpvector(0) = vec_add(a.vpvector(0), b.vpvector(0));

return ret;

}

Results

Figures 7.1(a) and 7.1(b) show that using an unnamed return value is slower than a named

return value when using Apple’s GCC 3.1 20021003. The unnamed return value version

was at worst within 80% slower than a hand-coded program for expressions involving up

to five additions when operating on vvm::vectors with a single scalar element in scalar

mode. The overheads of the named return value version on the other hand were within

1% for all cases tested in both scalar and AltiVec mode.

Figures 7.1(c) and 7.1(d) show that when Apple GCC 3.3 20030304 was used, the

performance of returning named or unnamed return values were not significantly different.

However, both versions had significant overheads when the number of additions in the

expression was greater than two in scalar mode. Both versions were within 60% slower

than hand-coded programs in scalar mode. In AltiVec mode, the results were similar to

those obtained with Apple GCC 3.1 20021003; both versions were within 1% for all cases

tested.

These results suggest that it is possible to perform the operation with minimal over-

heads, when there is only one scalar or VPU vector in a vvm::vector with Apple GCC

3.1 20021003, but not Apple GCC 3.3 20030304. When there is no active vector-processor

implementation, vvm::vectors will consist of only one scalar. When AltiVec is active,

only vvm::vectors for char, signed char and unsigned char will consist of only one

VPU vector.

7.3.4 Function overloading

Since VVM has constant scalar count, vvm::vectors do not always consist of a single

element. Furthermore, the number of elements in a vvm::vector is not usually known

at programming-time; it is known at compile-time. Three different methods of handling

one or more scalars or VPU vectors were investigated. The first method uses a for-loop

to iterate over all the elements. The second version unrolls the for-loop at compile-time

using template metaprogramming. The third version returns an unnamed vvm::vector

and performs the addition operation during the construction of the vvm::vector.

for-loop

The addition operator from Section 7.3.3 can be extended to handle vvm::vectors with

more than one element by using a for-loop to iterate over all the elements. Hopefully, the
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Figure 7.1 Performance of operator+ based on function overloading that operates only

on vvm::vectors with a element
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(b) 1 vp::vector per vvm::vector (GCC 3.1)
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(c) 1 scalar per vvm::vector (GCC 3.3)
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compiler will notice that the number of times around the loop is low and constant, and

thus unroll the for-loop automatically. The for-loop version is as follows:

// scalar version

template<typename scalarT> inline const vector<scalarT>

operator+(const vector<scalarT>& a, const vector<scalarT>& b) {

vector<scalarT> ret;

for(int i = 0;

i < vector_traits<vector<scalarT> >::scalar_count;

++i) {

ret.scalar(0) = a.scalar(0) + b.scalar(0);

}

return ret;

}

// VPU vector version (AltiVec)

template<typename scalarT> inline const vector<scalarT>

operator+(const vector<scalarT>& a, const vector<scalarT>& b) {

vector<scalarT> ret;

for(int i = 0;

i < vector_traits<vector<scalarT> >::vpvector_count;

++i) {

ret.vpvector(0) = vec_add(a.vpvector(0), b.vpvector(0));

}

return ret;

}

Figure 7.2 shows that unfortunately the compiler does not remove the for-loop for us. In

fact it does not even remove the for-loop when there is always only a single iteration —

if it did, this version would have been zero-cost for vvm::vectors with a single element.

Unrolled for-loop

Since the compiler is not removing the for-loop for us, we have to do it ourselves. If we

knew exactly how many elements there were at program-time, then we can simply write

code such as:

// scalar version

template<typename scalarT> inline const vector<scalarT>

operator+(const vector<scalarT>& a, const vector<scalarT>& b) {

vector<scalarT> ret;

ret.scalar(0) = a.scalar(0) + b.scalar(0);
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ret.scalar(1) = a.scalar(1) + b.scalar(1);

ret.scalar(2) = a.scalar(2) + b.scalar(2);

// ...

ret.scalar(N) = a.scalar(N) + b.scalar(N);

return ret;

}

// VPU vector version

template<typename scalarT> inline const

vector<scalarT>

operator+(const vector<scalarT>& a, const vector<scalarT>& b) {

vector<scalarT> ret;

ret.vpvector(0) = vec_add(a.vpvector(0), b.vpvector(0));

ret.vpvector(1) = vec_add(a.vpvector(1), b.vpvector(1));

ret.vpvector(2) = vec_add(a.vpvector(2), b.vpvector(2));

// ...

ret.vpvector(N) = vec_add(a.vpvector(N), b.vpvector(N));

return ret;

}

We would know the exact number of elements if we knew the exact mapping between

scalars and VPU vectors and the scalar count at program-time. As discussed in Section

7.2, this unfortunately is something that we do not know. Fortunately, the C++ tem-

plate mechanism provides us with a method for unrolling the for-loop completely without

knowing the exact number of elements at program-time; the number only needs to be

known at compile-time. The trait information in Section 7.2 provides this information.

If the number of elements had been unknown even at compile-time, then it would not be

possible to unroll the loop completely.

Unnamed return value

This version returns an unnamed return value, performing the addition while it is being

created. The version tested has the number of elements hard-coded for simplicity. Since

the number of elements is not really known until compile-time, this approach would not

be adequate for a real implementation.

The unnamed return value tested looks like the following code:

// scalar version

template<typename scalarT>

inline const vector<scalarT>

operator+(const vector<scalarT>& a, const vector<scalarT>& b) {
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return vector<scalarT>(a.scalar(0) + b.scalar(0),

a.scalar(1) + b.scalar(1),

a.scalar(2) + b.scalar(2),

// ...

a.scalar(N) + b.scalar(N));

}

// VPU vector version

template<typename scalarT>

inline const vector<scalarT>

operator+(const vector<scalarT>& a, const vector<scalarT>& b) {

return vector<scalarT>(vec_add(a.vpvector(0), b.vpvector(0),

vec_add(a.vpvector(1), b.vpvector(1),

vec_add(a.vpvector(2), b.vpvector(2),

// ...

vec_add(a.vpvector(N), b.vpvector(N));

}

Note that the code actually uses a constructor that is not required in VVM. In addition,

if the scalar type and the VPU vector type are the same, as in scalar mode, then the

constructor can only be defined once, since the two constructors would have the same

method signature.

To create a version that supports an unknown number of elements at program-time,

but known at compile-time, the user can write code similar to the following:

// n is the number of elements

template<int n> struct do_add;

// For 1 scalar in vvm::vector

template<> struct do_add<1> {

static vector<scalarT>

exec(const vector<scalarT>& a, const vector<scalarT>& b) {

return vector<scalarT>(a.scalar(0) + a.scalar(0));

}

};

// For 2 scalars in vvm::vector

template<> struct do_add<2> {

static vector<scalarT>

exec(const vector<scalarT>& a, const vector<scalarT>& b) {

return vector<scalarT>(a.scalar(0) + a.scalar(0),

a.scalar(1) + a.scalar(1));

}

123



};

// And so on

template<typename scalarT>

inline const vector<scalarT>

operator+(const vector<scalarT>& a, const vector<scalarT>& b) {

return do_add<vector_traits<vector<scalarT> >::scalar_count

>::exec(a, b);

}

The template do_add is specialised for all the possible number of elements accepted by

the constructor, and the appropriate specialisation is picked up at compile-time. The

vvm::vector also needs to have constructors that accept the entire range of possible el-

ement counts. The constructors do not actually have to be compilable code, since the

real number of elements might be less. The code has to be careful to only use the con-

structor with the correct element count. This is similar to the constructor provided for

boost::tuple.

Results

Figures 7.2(a) and 7.2(b) show that unrolling the for-loop using template metaprogram-

ming introduced no significant overheads for vvm::vectors with a single scalar or VPU

vector with Apple’s GCC 3.1 20021003.

Figures 7.2(c) and 7.2(d) show the same performance behaviour for the unrolled for-

loop version as for the versions discussed in Section 7.3.3 when Apple GCC 3.3 20030304

is used. Like the results obtained previously, the unrolled for-loop had significant over-

heads only in scalar mode and when the number of additions in the expression was greater

than two. Like the results obtained for Apple GCC 3.1 20021003, the fastest version was

the unrolled for-loop.

Figure 7.3 shows that as expected, as the number of elements in the vvm::vector

increases, the overheads increase. At worst, for AltiVec’s preferred scalar count of 16,

using vvm::vectors with no AltiVec support would be about 70% slower than a hand-

coded scalar program for a single addition for the fastest version, the unrolled for-loop.

When the number of elements in the vvm::vector is greater than one, the overheads

increase as the number of additions in the expressions increase. The results obtained

for Apple GCC 3.1 20021003 were similar to the results obtained for Apple GCC 3.3

20030304.

7.3.5 Expression templates

The reason why increasing the number of elements in a vvm::vector increases overheads

when using function overloading is well known (Veldhuizen 1995b, Blinn 2000). Con-
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Figure 7.2 Performance of operator+ based on function overloading, when operating on

only vvm::vectors with a single element
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Figure 7.3 Performance of operator+ based on function overloading, when operating on

vvm::vector<int> with a constant scalar count of 16
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sider the expression R=A+B+C+D. Using function overloading, the compiler will generate

code similar to the following:

vvm::vector temp1 = A + B;

vvm::vector temp2 = temp1 + C;

vvm::vector temp3 = temp2 + D;

R = temp3;

Evaluating expressions in this manner is slower than hand-coded programs because more

temporaries are used, and each statement contains its own for-loop (or its unrolled equiv-

alent) (Veldhuizen 1995b, Blinn 2000).

The preferred execution method is to evaluate the entire expression for each element

in the vvm::vector. Hand-coded C++ would look something like the following:

R.scalar(0) = A.scalar(0)+B.scalar(0)+C.scalar(0)+D.scalar(0);

R.scalar(1) = A.scalar(1)+B.scalar(1)+C.scalar(1)+D.scalar(1);

// And so on....

Expression templates is a technique that can help the compiler generate this faster im-

plementation. It can generate the faster implementation because it delays evaluating ex-

pressions until the entire expression is used. With expression templates, A+B+C+D returns

an object that represents the addition of A, B, C and D. When R=<expression object> is

evaluated, the entire expression is evaluated simultaneously and the result is assigned to R.

Since expression templates represent expressions as objects, they allow expressions to be

passed to a function as an argument. This second feature allows users to create functors

directly from expressions when using generic libraries.

Expression templates cannot be used efficiently for all functions because it is ineffi-

cient to pass a non-constant reference as a parameter. This is because the function that per-

forms the evaluation is a const function (Blinn 2000, Veldhuizen 1995b). Being const, it

cannot call non-const functions, and therefore does not support functions that take non-

const reference arguments. Removing the const means that all fields cannot be const

either, and this results in a slower expression template implementation, because of the ex-

tra copying that is required when the expression object is created. Examples of functions

that cannot be implemented efficiently using expression templates include operator++

(both pre- and post- versions), operator-=, operator+=, amongst others.

When applying expression templates to VVM, it is important to remember that an

abstract VPU expression can involve only scalars, only VPU vectors or a combination of

both, that the number of elements in a vvm::vector is small and the number of elements

in a vvm::vector is known at compile-time.
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Expression templates however decompose an expression to a single type. For ex-

ample, A+B becomes A.scalar(i)+B.scalar(i) or A.vpvector(i)+B.vpvector(i).

While types that can convert to and from this single type are allowed, converting a single

VPU vector to a single scalar and vice versa is not possible, since they have different

scalar counts. VPU vectors however can be considered to be an array of scalars. There-

fore the expression template implementation for an abstract VPU should decompose a

vvm::vector expression to an expression consisting of VPU vectors.

The number of elements in a vvm::vector is expected to be small. For such vec-

tors, different papers have different performance results. Blinn (2000) showed that for

short vectors (in Blinn’s paper, there were three floats in a vector), expression templates

can be faster than hand-coded C. Blinn (2000) said that his final version generated “op-

timal code on all examples” that were attempted. Veldhuizen (1995b) presented a more

modest picture. Veldhuizen (1995b)’s implementation focused on expression templates

involving long vectors, and the results from his paper show that for short vectors (less

than 20), the performance of expression templates is quite poor when compared with

hand-coded C. Veldhuizen (1995b)’s implementation only approached zero-cost for vec-

tors with about a 1,000 elements. Veldhuizen (1995b)’s implementation never managed

to run faster than hand-coded C despite the same assembly code being generated (after

some compiler options and tuning performed by Veldhuizen). The poor performance of

expression templates for short vectors was because of the time spent in the expression

object constructors. Like Veldhuizen (1995b), Bassetti et al. (1998) also said that ex-

pression templates perform worse than hand-coded C. However the reason given for their

poor performance was because more registers were required by the expression templates

version.

Since the number of elements in a vvm::vector is always known at compile-time

(and is a small number), we can unroll the for-loop using template metaprogramming.

We cannot unroll the loop during programming, because the constant scalar count changes

depending on the availability of real VPUs. Knowing the number of elements in a vvm::-

vector at compile-time gives any hand-coded version for VVM an edge over other ex-

pression template libraries, like Blitz++. While Blitz++’s TinyVector allows the user to

specify the number of elements at compile-time, Blitz++ does not use this information

to unroll the loop, since the same algorithms also cater for vectors where the number of

elements is not known at compile-time.

Because different papers suggest different costs for short vectors when using expres-

sion templates, three different expression template versions were evaluated. The first

version was a hand-coded version based on Veldhuizen (1995b)’s paper, the second uses

Blitz++’s expression template engine and the final version was based on Blinn (2000)’s

paper.
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Expression templates based on Veldhuizen (1995b)’s paper

Like all expression template implementations, the first expression template implementa-

tion, based on Veldhuizen (1995b)’s paper, has a template, _e, that represents an expres-

sion. The _e template is shown below:

template<typename T> class _e {

const T _expr;

public:

typedef typename T::scalar_type scalar_type

typedef typename T::return_type return_type;

_e(T t) : _expr(t) {

}

return_type vpvector(int i) const {

return _expr.vpvector(i);

}

};

Unlike classes used to represent expressions by Veldhuizen (1995b) and Blinn (2000),

_e has two additional types, scalar_type and return_type. The type scalar_type

refers to the scalar type of operands in the current expression. It is used to decide the

specialisation of the class representing the operation. The type return_type refers to the

VPU vector type being returned. This is important for VVM because not all operators,

namely the logical operators, return the same type as their arguments.

The template _e is specialised for a vvm::vector. This specialisation stores a con-

stant reference to a vvm::vector instead of a copy as in the general version. The pro-

gram will run without this specialisation, but will be slower, because of the extra copy.

The general expression cannot use a reference because the result of an operation might be

a temporary object. The addition operation for example returns a temporary object. The

template _e specialised for a vvm::vector is shown below:

template<typename scalarT> class _e<vector<scalarT> > {

const vector<scalarT>& _v;

public:

typedef scalarT scalar_type;

typedef typename scalar_traits<scalarT>::vpvector_type

return_type;

_e(const vector<scalarT>& v) : _v(v) {

}

return_type vpvector(int i) const {

return _v.vpvector(i);
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}

};

The template _binary_expr is used to represent binary expressions. Other templates are

also required for unary and ternary expressions in this implementation.

template<typename opT, typename leftT, typename rightT>

class _binary_expr {

const leftT _left;

const rightT _right;

public:

typedef typename opT::scalar_type scalar_type;

typedef typename opT::vector_type vector_type;

typedef typename opT::return_type return_type;

_binary_expr(const leftT& left, const rightT& right)

: _left(left), _right(right) {

}

return_type vpvector(int i) const {

return opT::evaluate(_left.vpvector(i),

_right.vpvector(i));

}

};

In addition to adding a specialisation for vvm::vector, vvm::vector also requires the

following two additional functions — a constructor and an operator= that accept _e.

template<typename T>

vector<scalarT>(const _e<T>& a);

template<typename T>

vector<scalarT>& vector<scalarT>::operator=(const _e<T>& a);

These additional functions assign the expression to the vvm::vector. This assignment

process starts the code generation from the expression template. The conversion con-

structor and operator= can be implemented as follows, using the meta::EFOR template

metaprogram to unroll the for-loop.

template<typename scalarT, typename destT, typename arg1T>

struct _copy_vpvector {

template<int i> struct Code {

static void

exec(destT& dest, arg1T arg1) {
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dest.vpvector(i) = arg1.vpvector(i);

}

};

};

template<typename scalarT> template<typename T>

vector<scalarT>::vector(const _e<T>& a) {

meta::EFOR2<0, meta::Less, vpvector_count, +1,

_copy_vpvector<scalarT, vector<scalarT>, const _e<T>&>

>::exec(*this, a);

}

template<typename scalarT> template<typename T> vector<scalarT>&

vector<scalarT>::operator=(const _e<T>& a) {

meta::EFOR2<0, meta::Less, vpvector_count, +1,

_copy_vpvector<scalarT, vector<scalarT>, const _e<T>&>

>::exec(*this, a);

return *this;

}

Instead of a single operator+, four different versions are required (Blinn 2000). These

cater for all possible permutations of adding a vvm::vector and an expression. For

ternary operators, eight different versions would be required. Langer & Kreft (2003)

needed to use only one operator+, because the arguments are automatically promoted to

doubles during the addition. Since type conversion is undesirable for vector programs,

this technique is not suitable. Note the use of leftT::scalar_type to select the appro-

priate _add specialisation.

#define VaV _binary_expr<_add<scalarT>, \

_e<vector<scalarT> >, _e<vector<scalarT> > >

#define EaV _binary_expr<_add<scalarT>, \

_e<leftT> , _e<vector<scalarT> > >

#define VaE _binary_expr<_add<scalarT>, \

_e<vector<scalarT> >, _e<rightT> >

#define EaE _binary_expr<_add<typename leftT::scalar_type>, \

_e<leftT> , _e<rightT> >

template<typename scalarT> inline const _e<VaV>

operator+(const vector<scalarT>& a, const vector<scalarT>& b) {

return _e<VaV>(VaV(a, b));

}

template<typename scalarT, typename leftT> inline const _e<EaV>

operator+(const _e<leftT>& a, const vector<scalarT>& b) {
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return _e<VaE>(VaE(a, b));

}

template<class scalarT, typename rightT> inline const _e<VaE>

operator+(const vector<scalarT>& a, const _e<rightT>& b) {

return _e<VaE>(VaE(a, b));

}

template<typename leftT, typename rightT> inline const _e<EaE>

operator+(const _e<leftT>& a, const _e<rightT>& b) {

return _e<EaE>(EaE(a, b));

}

The template _add represents the addition operation. It is the class that actually performs

the addition. The template _add can be implemented as follows:

// Scalar version

template<typename scalarT> struct _add {

typedef scalarT scalar_type;

typedef const typename scalar_traits<scalarT>::vpvector_type

return_type;

typedef typename scalar_traits<scalarT>::vpvector_type

vpvector_type;

struct do_add {

template<int i> struct Code {

static inline void

exec(return_type& ret, const vpvector_type& a,

const vpvector_t& b) {

reinterpret_cast<scalar_type*>(&ret)[i] =

reinterpret_cast<const scalar_type*>(&a)[i] +

reinterpret_cast<const scalar_type*>(&b)[i];

}

};

};

static inline return_type

evaluate(const vpvector_type& a, const vpvector_type& b) {

return_type ret;

meta::EFOR3<0, meta::Less,

vpvector_traits<vpvector_type>::scalar_count,

+1, do_add>::exec(ret, a, b);

return ret;

}
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};

// VPU vector version

template<typename scalarT> struct _add {

typedef scalarT scalar_type;

typedef const typename scalar_traits<scalarT>::vpvector_type

return_type;

typedef typename scalar_traits<scalarT>::vpvector_type

vpvector_type;

static inline return_type

evaluate(const vpvector_type& a, const vpvector_type& b) {

return vec_add(a, b);

}

};

The _add implementation described above will fail to compile currently if both scalar

and VPU vector versions are included at the same time. Switching between the emulation

layer and the active vector-processor implementation automatically is covered later in

Section 7.4.

Blitz++

To create a version based on Blitz++, vvm::vector was derived from Blitz++’s Tiny-

Vector. Since it derives from TinyVector, there is no need to keep VPU vector instances

anymore. TinyVector’s operator[] provides access to VPU vectors. Scalars can be ac-

cessed by retrieving the first VPU vector and performing some pointer arithmetic. Note

that the data in TinyVector could not be used directly since it is a private data mem-

ber and that the scalar access methods assume that the data allocated by TinyVector is

contiguous.

template<typename scalarT> class vector

: public blitz::TinyVector<

typename scalar_traits<scalarT>::vpvector_type,

vector_traits<vector<scalarT> >::vpvector_count

> {

// Other normal vvm::vector stuff goes here

public:

inline vpvector_type& vpvector(const int i) {

return operator[](i);

}
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inline const vpvector_type vpvector(const int i) const {

return operator[](i);

}

inline scalar_type& scalar(const int i) {

return (reinterpret_cast<scalarT*>(&vpvector(0)))[i];

}

inline const scalar_type scalar(const int i) const {

return (reinterpret_cast<const scalarT*>(&vpvector(0)))[i];

}

public:

template<class P_expr>

inline vector(blitz::_bz_VecExpr<P_expr> expr) {

_bz_assign(expr, blitz::_bz_update<T_numtype,

_bz_typename P_expr::T_numtype>());

}

template<class P_expr>

inline vector& operator=(blitz::_bz_VecExpr<P_expr> expr) {

_bz_assign(expr, blitz::_bz_update<T_numtype,

_bz_typename P_expr::T_numtype>());

return *this;

}

};

Inheriting from TinyVector is all that VVM needs when it runs without a VPU. When

a VPU, like AltiVec, is active, instead of creating an object that represents an addition

and calling vec_add, this version wraps AltiVec types in a wrapper class and overloads

operator+. The wrapper class is required because operator overloading of AltiVec vec-

tors is not allowed. The wrapper and its operator+ can be implemented as follows:

template<typename T> struct _wrapper {

T value;

};

typedef _wrapper<__vector signed char> _vpvector_schar;

// Insert _wrapper typedefs for other AltiVec types here

inline const _vpvector_schar

operator+(const _vpvector_schar a, const _vpvector_schar b) {

return vec_add(a.value, b.value);

}

// Insert operator+ for other types here
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Expression templates based on Blinn (2000)’s paper

The hand-coded version based on Blinn (2000)’s paper is almost identical to the hand-

coded version based on Veldhuizen (1995b)’s paper. The major difference is that Blinn

(2000) did not use a class that represents a binary expression.

The operator+ definitions would therefore look like the following:

#define VaV \

_add<scalarT, _e<vector<scalarT> >, _e<vector<scalarT> > >

#define EaV \

_add<scalarT, _e<leftT> , _e<vector<scalarT> > >

#define VaE \

_add<scalarT, _e<vector<scalarT> >, _e<rightT> >

#define EaE \

_add<typename leftT::scalar_type, _e<leftT>, _e<rightT> >

template<typename scalarT> inline const _e<VaV>

operator+(const vector<scalarT>& a, const vector<scalarT>& b) {

return _e<VaV>(VaV(a, b));

}

template<typename scalarT, typename leftT> inline const _e<EaV>

operator+(const _e<leftT>& a, const vector<scalarT>& b) {

return _e<EpV>(EpV(a, b));

}

template<typename scalarT, typename rightT> inline const _e<VaE>

operator+(const vector<scalarT>& a, const _e<rightT>& b) {

return _e<VaE>(VaE(a, b));

}

template<typename leftT, typename rightT> inline const _e<EaE>

operator+(const _e<leftT>& a, const _e<rightT>& b) {

return _e<EaE>(EaE(a, b));

}

Without the binary expression class, the addition class needs to handle the arguments

itself.

template<typename scalarT, typename leftT, typename rightT>

class _add {

const leftT _left;

const rightT _right;

public:

typedef typename scalar_traits<scalarT>::vpvector_type

135



return_type;

inline _add(const leftT& l, const rightT& r)

: _left(l), _right(r) {

}

inline return_type vpvector(const int i) const {

#if defined VVM_ALTIVEC

return vec_add(_left.vpvector(i), _right.vpvector(i));

#else

return _left.vpvector(i) + _right.vpvector(i);

#endif

}

};

Results

Figures 7.4 and 7.5 show that in general the version based on Blinn (2000)’s paper was

fastest, followed by the version based on Veldhuizen (1995b)’s paper, and lastly Blitz++’s

TinyVector. The version based on Veldhuizen (1995b)’s paper was within 20% slower

than a hand-coded program when the number of elements was four or sixteen for expres-

sions with one to five additions. For the same kind of expressions, vvm::vectors with a

single scalar were about 8 times slower. This behaviour is consistent with the trend shown

by Veldhuizen (1995b) where the expression templates perform badly on short vectors but

quickly become comparable to the hand-coded C version with increasing vector sizes. As

expected, the hand-coded expression templates were faster than Blitz++, probably be-

cause the hand-coded versions unrolled the for-loop using template metaprogramming.

Blinn (2000) states that expression templates were faster than the hand-coded ver-

sion for simple expressions to about zero-cost for more complex expressions, for a vector

that had only three elements. According to Blinn (2000), this was because the expres-

sion templates removed more temporaries and used registers more efficiently. Veldhuizen

(1995b)’s implementation however only approached zero-cost for vectors with about a

1,000 elements. However, it should be noted that Veldhuizen (1995b)’s implementation

is for long vectors and uses iterators to iterate through the elements in the vector. VVM’s

expression templates speedup should therefore be similar to Blinn (2000)’s implementa-

tion. The results obtained however do not correlate with the results from Blinn (2000).

Blinn (2000)’s expression templates were faster than hand-coded programs for simple ex-

pressions, and slightly slower for more complex expressions, for a vector that has only

three elements. One possible reason for the difference is the compiler. Unfortunately,

Blinn (2000) did not specify the compiler that he used.

Expression templates cannot be used to create a VVM implementation that has no

significant overheads when compiled with Apple GCC 3.1 20021003 or Apple GCC 3.3
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Figure 7.4 Performance of operator+ based on expression templates, when operating on

vvm::vectors with a single element
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(b) 1 vp::vector per vvm::vector (GCC 3.1)
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Figure 7.5 Performance of operator+ based on expression templates, when operating on

vvm::vector<int> with a constant scalar count of 16
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(b) 4 vp::vectors per version (GCC 3.1)
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20030304. An implementation based on expression templates has particularly significant

overheads when processing vvm::vectors that have only a single element. As the num-

ber of elements in a vvm::vector increases, the overheads decrease. This behaviour is

the opposite of function overloading. An implementation based on function overloading

has no significant overheads when processing vvm::vectors with a single element. As

the number of elements in a vvm::vector increases, the overheads increase.

7.4 Switching between the emulation layer and the active

vector-processor implementation

Up until now, we have been providing two different implementations, one scalar and one

VPU vector, for the same operation. The scalar version is part of the emulation layer while

the VPU vector version is the active vector-processor implementation version. While pre-

processor macros appear to be the most appropriate technique for determining whether a

function should be executed by the emulation layer or the active vector-processor imple-

mentation, in VVM’s case, the preprocessor cannot make this choice because the exact

mapping between VPU vectors and scalars is not known until compile-time. Instead of

using the preprocessor, template specialisation can be used to select between different

implementations automatically.

When using template specialisation, the emulation layer is usually the general tem-

plate and vector-processor implementations specialise this general template. This way,

anything that is not specialised is automatically handled by the emulation layer, which is

exactly the required behaviour. The most obvious way to implement this is to specialise

the appropriate VVM function as follows:

// Vectorised Addition available for ints

template<> vector<int>

operator+(const vector<int>& lhs, const vector<int>& rhs) {

vector<int> ret;

for(int i = 0;

i < vector_traits<vector<int> >::vpvector_count;

++i) {

ret.vpvector(i) = vec_add(lhs.vpvector(i), rhs.vpvector(i));

}

return ret;

}

// Scalar Addition for doubles

template<> vector<double>

operator+(const vector<double>& lhs, const vector<double>& rhs) {
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vector<double> ret;

for(int i = 0;

i < vector_traits<vector<double> >::scalar_count;

++i) {

ret.scalar(i) = lhs.scalar(i) + rhs.scalar(i);

}

}

The above approach fails for the following reason: since the scalar-to-VPU vector map-

ping is unknown at programming-time, the programmer cannot be expected to know what

scalar types to specialise. For example, if long is of the same length as int, then it can

also use vectorised addition. However, since the size of long is not known until compile-

time, the programmer cannot decide whether it should be a vector or scalar addition.

Four different switching methods are discussed — function, operator, template and

enabler switching. All programs were compiled using Apple GCC 3.1 20021003 and

Apple GCC 3.3 20030304, with the -Os (optimise for size) and timed 20 times. The

lowest values were used as the representative. Note that for brevity, none of the techniques

used in Section 7.3 to speed up the execution are used.

7.4.1 Function switching

Instead of specialising functions in the VVM specification, vector-processor implemen-

tations can use function templates which accept a VPU vector type as a template param-

eter. This extra function call provides an additional level of indirection. The emulation

layer would provide the general function template, while vector-processor implementa-

tions would specialise the function template for their VPU vectors. Note that using a

scalar as a template parameter does not help since it runs into the same problems as spe-

cialising the VVM functions directly. VPU vector types will be used instead. The VVM

addition function therefore becomes something like the following:

template<typename scalarT> vector<scalarT>

operator+(const vector<scalarT>& lhs, const vector<scalarT>& rhs) {

vector<scalarT> ret;

for(int i = 0;

i < vector_traits<vector<scalarT> >::vpvector_count;

++i) {

ret.vpvector(i) = _add(lhs.vpvector(i), rhs.vpvector(i));

}

return ret;

}
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// Emulation layer

template<typename vpvectorT> vpvectorT

_add(const vpvectorT a, const vpvectorT b) {

typedef typename vpvector_traits<vpvectorT>

::scalar_type scalar_type;

vpvectorT ret;

for(int i = 0;

i < vpvector_traits<vpvectorT>::scalar_count;

++i) {

reinterpret_cast<scalar_type*>(&ret)[i] =

reinterpret_cast<scalar_type*>(&a)[i] +

reinterpret_cast<scalar_type*>(&b)[i];

}

return ret;

}

// AltiVec vector-processor implementation

template<> __vector signed int

_add(const __vector signed int a, const __vector signed int b) {

return vec_add(a, b);

}

// Scalar processor implementation

template<> int _add(const int a, const int b) {

return a + b;

}

There are now three different versions of _add that operate on different VPU vector types.

A vector-processor implementation switching technique would have at least the emulation

layer and the AltiVec versions.

1. Emulation layer

Since the emulation layer might be used both whether a VPU is available or not,

the addition must support both scalar and VPU vector scalar types. To support

both scalar and VPU modes, the addition operation treats the element type as VPU

vectors, but perform its operations using scalar operations.

2. AltiVec vector-processor implementation

The AltiVec vector-processor implementation uses AltiVec commands (in this case,

vec_add) to perform its operations, and would be specialised for applicable AltiVec

vectors only.
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3. Scalar processor implementation

The scalar processor implementation is not a necessity because the emulation layer

uses the scalar processor. The scalar processor implementation however can in-

crease the performance of VVM in scalar mode.

7.4.2 Operator switching

Instead of trying to adding an extra level of indirection, operator+ can be used directly.

In this case, scalars call operator+ directly, while VPU vectors need to be wrapped and

have operator+ defined. VPU vectors need to be wrapped because C++ does not allow

operators to be overloaded for base types.

The following code shows how operator switching can be applied to the addition op-

erator, implemented using function overloading:

template<typename scalarT> inline const vector<scalarT>

operator+(const vector<scalarT>& lhs, const vector<scalarT>& rhs) {

vector<scalarT> ret;

meta::EFOR3<0, meta::Less,

vector_traits<vector<scalarT> >::vpvector_count,

+1, _add<scalarT> >::exec(ret, lhs, rhs);

return ret;

}

// Scalar implementation

template<typename scalarT> struct _add {

template<int i> struct Code {

static inline void

exec(vector<scalarT>& ret, const vector<scalarT>& a,

const vector<scalarT>& b) {

ret.vpvector(i) = a.vpvector(i) + b.vpvector(i);

}

};

};

// Wrapper class for VPU vectors

template<typename T> struct _wrapper {

T value;

inline _wrapper() {}

inline _wrapper(const T& v) : value(v) {}

};

// AltiVec implementation

typedef _wrapper<__vector signed int> vpvector_sint;
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inline const vpvector_sint

operator+(const vpvector_sint a, const vpvector_sint b) {

return vpvector_sint(vec_add(a.value, b.value));

}

// Emulation layer

template<typename vpvectorT> inline const _wrapper<vpvectorT>

operator+(const _wrapper<vpvectorT> a,

const _wrapper<vpvectorT> b) {

typedef typename vpvector_traits<_wrapper<vpvectorT> >

::scalar_type scalar_type;

_wrapper<vpvectorT> ret;

for(int i = 0;

i < vpvector_traits<_wrapper<vpvectorT> >::scalar_count;

++i) {

reinterpret_cast<scalar_type*>(&ret)[i] =

reinterpret_cast<const scalar_type*>(&a)[i] +

reinterpret_cast<const scalar_type*>(&b)[i];

}

return ret;

}

In this version, the general _add template is actually the scalar processor implementation.

AltiVec and emulation functions will pass through this function. AltiVec specialisations

are provided by specialising operator+ for the appropriate VPU vector wrapper type.

The emulation layer is found in the operator+ for the wrapper with an unknown VPU

vector type. In this implementation, all vector-processor implementations would have to

use the same wrapper type.

Figures 7.6 and 7.7 show that this version does not incur any additional overheads.

However, this method makes it difficult to provide custom behaviour for scalar types. For

example, it would be difficult to provide a operator% for float types if needed. While

we can define an operator% for float types if we wrapped the scalar types, wrapping can

make it more difficult for the user to use the scalars or VPU vectors in a vvm::vector

directly. In particular, the scalars returned via the scalar() access method would not

behave identically to the scalar type of the vvm::vector, which would be confusing.

7.4.3 Template switching

In this version, we add a VPU vector type as a template parameter to the addition class.

Despite being able to derive a scalar type from a VPU vector type, the scalar type is still

passed to the addition class as a template parameter, because the VPU vector-to-scalar
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mapping is a one-to-many relationship. Thus the addition class will not know exactly

what vvm::vector types to accept.

The following code shows how template switching can be applied to the addition

operator, implemented using function overloading:

template<typename scalarT> const vector<scalarT>

operator+(const vector<scalarT>& a, const vector<scalarT>& b) {

typedef typename vector_traits<vector<scalarT> >

::vpvector_type vpvector_t;

vector<scalarT> ret;

meta::EFOR3<0, meta::Less,

vector_traits<vector<scalarT> >::vpvector_count,

+1, _add<scalarT, vpvector_t> >::exec(ret, a, b);

return ret;

}

// Emulation

template<typename scalarT, typename vpvectorT> struct _add {

template<int i> struct Code {

static void exec(vector<scalarT>& dest,

const vector<scalarT>& a, const vector<scalarT>& b) {

for(int j = 0;

j < vpvector_traits<vpvectorT>::scalar_count;

++j) {

reinterpret_cast<scalarT*>(&dest.vpvector(i))[j] =

reinterpret_cast<const scalarT*>(&a.vpvector(i))[j] +

reinterpret_cast<const scalarT*>(&b.vpvector(i))[j];

}

}

};

};

// AltiVec version

template<typename scalarT>

struct _add<scalarT, __vector signed int> {

template<int i> struct Code {

static void exec(vector<scalarT>& dest,

const vector<scalarT>& a, const vector<scalarT>& b) {

dest.vpvector(i) = vec_add(a.vpvector(i), b.vpvector(i));

}

};

};
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// Scalar version

template<typename scalarT> struct _add<scalarT, int> {

template<int i> struct Code {

static void exec(vector<scalarT>& dest,

const vector<scalarT>& a, const vector<scalarT>& b) {

dest.vpvector(i) = a.vpvector(i) + b.vpvector(i);

}

};

};

The general _add class is the emulation layer’s version, while _add<scalarT, int> and

_add<scalarT, __vector signed int> are the scalar processor implementation’s and

AltiVec vector-processor implementation’s versions respectively. This example illustrates

how you can use the VPU vector type to determine the appropriate specialised class in-

stead of the scalar type.

While template switching provides good performance and avoids wrapping, special-

ising operations for template switching can be tiresome because each type must be spe-

cialised individually.

7.4.4 Enabler switching

Enabler switching uses enablers to decide which version of the addition operation will be

invoked. Using enablers allow us to specialise the operation on vvm::vector instead of

the operation on VPU vector. Enablers make it easier to specialise for a number of types

simultaneously, make it easier to provide specialisations for operations that do not apply

the same operation to all the VPU vectors, and allow the emulation layer to operate on

scalars. The other switching techniques discussed require the emulation layer to operate

on VPU vectors because the specialisations are applied to the addition of VPU vectors and

not to the addition of vvm::vectors. Furthermore, because the emulation layer operates

on scalars, there is no need to create a scalar processor implementation version.

The following code shows how enabler switching can be applied to the addition oper-

ator, implemented using function overloading.

namespace priv {

// Emulation layer

template<typename scalarT, typename specializedT = void>

struct add {

static vector<scalarT>

exec(const vector<scalarT>& a, const vector<scalarT>& b) {

// Perform Emulation addition here
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}

};

// AltiVec vector-processor implementation

template<typename scalarT> struct add<scalarT,

typename ct::enable_if<

ct::contains<

altivec_types,

typename scalar_traits<scalarT>::vpvector_type

>::value

>::type

> {

static vector<scalarT>

exec(const vector<scalarT>& a, const vector<scalarT>& b) {

// Perform AltiVec addition here

}

};

} // End of priv namespace

template<typename scalarT>

vector<scalarT>

operator+(const vector<scalarT>& a, const vector<scalarT>& b) {

return priv::add<scalarT>::exec(a, b);

}

It is also possible to specialise on other parameters and to make more complex decisions.

For example, it is easy to specialise the prefetch operation only for channels 0 to 3 for

AltiVec.

7.4.5 Results

Figure 7.6 shows the cost of switching between the emulation layer and the active vector-

processor implementation when operating on vvm::vectors with only one element. Fig-

ures 7.6(a) and 7.6(b) are for Apple GCC 3.1 20021003 in scalar and AltiVec mode re-

spectively. Figures 7.6(c) and 7.6(d) are for Apple GCC 3.3 20030304 in scalar and

AltiVec mode respectively.

Figures 7.6 and 7.7 show that, on both Apple GCC 3.1 20021003 and Apple GCC 3.3

20030304, operator, template and enabler switching incur no significant overheads. Func-

tion switching incurred no significant overheads except when applied to vvm::vectors

with a single element in scalar mode. In such situations, a program based on function

switching was at worst 80% and 30% slower than a program without any switching when

Apple GCC 3.1 20021003 and Apple GCC 3.3. 20030304 were used respectively.
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Figure 7.6 Cost of switching between the emulation layer and the active vector-processor

implementation when operating on vvm::vectors with a single element
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(b) 1 vp::vector per vvm::vector (GCC 3.1)
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(c) 1 scalar per vvm::vector (GCC 3.3)
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Figure 7.7 Cost of switching between the emulation layer and the active vector-processor

implementation when operating on vvm::vector<int> with a constant scalar count of

16
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(b) 4 vp::vectors per vvm:vector<int>
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(c) 16 scalars per vvm::vector<int> (GCC

3.3)
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7.5 Type conversions

From Chapter 6, type conversions involve performing a static_cast on each of the

scalars in the vvm::vector. Thus, a scalar version of the vector_cast function can be

implemented as follows:

template<typename toVectorT, typename fromVectorT>

toVectorT vector_cast(const fromVectorT& from) {

typedef vector_traits<toVectorT>::scalar_type to_scalar_t;

toVectorT ret;

for(int i = 0;

i < vector_traits<fromVectorT>::scalar_count;

++i) {

ret.scalar(i) = static_cast<to_scalar_t>(from.scalar(i));

}

return ret;

}

Unlike operations like operator+, which were the focus of Section 7.3 and apply the

appropriate operation to VPU vectors, vector_cast should be applied to vvm::vectors,

because different VPU vectors can contain different numbers of scalars.

It is easy to provide an appropriate specialisation using enabler switching from Section

7.4.4. The following example shows how to use AltiVec functions to convert from a

__vector float to a __vector unsigned int.

namespace priv {

template<typename toScalarT, typename fromScalarT>

struct vector_cast<vector<toScalarT>, vector<fromScalarT>,

typename ct::enable_if<

boost::is_same<

typename scalar_traits<fromScalarT>::vpvector_type,

__vector float>::value &&

boost::is_same<

typename scalar_traits<toScalarT>::vpvector_type,

__vector unsigned int>::value

>::type

> {

inline static vector<toScalarT>

exec(const vector<fromScalarT>& a) {

vector<toScalarT> ret;

for(int i = 0;
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i < vector_traits<vector<toScalarT> >::vpvector_count;

++i) {

ret.vpvector(i) = vec_ctu(a.vpvector(i), 0);

}

return ret;

}

};

}

template<typename toVectorT, typename fromVectorT>

toVectorT vector_cast(const fromVectorT& from) {

return priv::vector_cast<toVectorT, fromVectorT>::exec(from);

}

The priv::vector_cast template is only enabled if the VPU vector type for the source

vvm::vector is __vector float and the VPU vector type for the destination vvm::-

vector is __vector unsigned int. The exec function is the one that actually performs

the conversion.

For clarity, for loops were used. As usual, the for loops shown in this section can be

replaced with meta::EFOR which will unroll the loop for the compiler. In addition, it is

good to provide a specialised version for cases where fromVectorT and toVectorT are

equivalent, to reduce the costs of casting a type to itself.

7.6 Functors

The functors required by VVM are easy to implement once traits are implemented. The

equal_to function object, for example, can be implemented in the following manner.

template<typename scalarT> struct equal_to

: public binary_function<

vector<scalarT>, vector<scalarT>,

vector<scalar_traits<scalarT>::bool_type>

> {

vector<scalar_traits<scalarT>::bool_type>

operator()(const vector<scalarT>& lhs,

const vector<scalarT>& rhs) const {

return lhs == rhs;

}

};

The other comparison functors can be implemented in the same manner as equal_to.
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Table 7.1 Contents of a vvm::vector in AltiVec mode and in Scalar Mode

AltiVec Mode (Constant scalar count is 16) Scalar Mode (Constant scalar count is 1)

Contents of vvm::vector Contents of vvm::vector

char 1 __vector unsigned char 1 signed char

or 1 __vector signed char or 1 unsigned char

signed char 1 __vector signed char 1 signed char

unsigned char 1 __vector unsigned char 1 unsigned char

short int 2 __vector signed shorts 1 short int

unsigned short int 2 __vector unsigned shorts 1 unsigned short int

int 4 __vector signed ints 1 int

unsigned int 4 __vector unsigned ints 1 unsigned int

long int 4 __vector signed ints 1 long int

unsigned long int 4 __vector unsigned ints 1 unsigned long int

float 4 __vector floats 1 float

double 16 doubles (No appropriate VPU vector) 1 double

7.7 Performance measurement tool results

In order for an abstract VPU implementation to have no overheads, both the actual ex-

ecution of the operation, and the switching between the emulation layer and the active

vector-processor implementation should have no overheads. Sections 7.3 and 7.4 eval-

uated these overheads separately. In this section, performance measurement tool results

from two implementations of VVM are presented. These results combine both the execu-

tion and switching costs.

The performance tool evaluates the cost of adding two to six vvm::vectors. The ad-

dition expression is repeated a fixed number of times, and the total time taken is recorded.

Twenty total times were recorded with the same input, and the lowest time was taken as

the representative.

Tables 7.2 and 7.3 show the results of the performance tool on two different VVM

implementations: function overloading with enabler switching, and expression templates

based on Veldhuizen (1995b)’s paper with function overloading. The tables are divided

into two sections, “AltiVec Mode” and “Scalar Mode”, which refers to the mode that

VVM is running in. For each mode, there are five columns, labelled 1 to 5, which refer to

the number of addition operations in a single expression. Columns A and B contain the

number of VPU vectors and scalars in a vvm::vector respectively. Table 7.1 shows the

number of elements and their types in each vvm::vector in AltiVec and Scalar mode.

For example, from Table 7.1, vvm::vector<int> consists of 4 __vector signed ints

or 1 int in AltiVec and scalar modes respectively. Since there is no AltiVec addition

function for doubles, the table does not show the percentage difference for doubles in

AltiVec mode. When asked to add vvm::vectors of doubles, which has 16 scalars in

AltiVec mode, VVM uses the scalar processor.
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Table 7.2 Percentage difference between a VVM implementation, which used function

overloading (Unrolled for-loop) and enabler switching, and a hand-coded program for ex-

pressions involving one to five additions. Values less than 0 indicate that the VVM imple-

mentation was faster. Refer to Table 7.1 for the number of elements in each vvm::vector.

AltiVec Mode Scalar Mode

A 1 2 3 4 5 B 1 2 3 4 5

char 1 -17.0 -16.2 -15.3 -16.7 -15.8 1 -16.1 -13.8 -16.0 -14.8 -12.9

signed char 1 0.0 -2.3 -0.6 -2.5 -0.5 1 -0.7 -2.3 -1.0 -2.3 -2.4

unsigned char 1 -0.9 -1.8 -0.9 -1.0 -0.7 1 -1.2 -1.2 -0.7 -0.9 -0.6

short int 2 10.8 12.3 14.1 14.4 17.1 1 -12.2 -9.2 -10.6 -9.4 -9.3

unsigned short int 2 16.2 15.2 17.2 17.7 19.7 1 0.3 -0.7 -0.8 -1.1 -1.2

int 4 13.7 13.9 15.4 16.9 16.9 1 -8.7 -8.9 -7.9 -8.2 -7.0

unsigned int 4 16.3 16.6 19.7 18.4 23.0 1 -0.2 -0.5 0.4 -1.9 -0.2

long int 4 18.5 17.7 18.6 19.5 23.6 1 -1.3 -0.4 -1.5 -0.3 -2.1

unsigned long int 4 16.9 18.8 19.3 19.1 20.9 1 -0.6 -0.4 0.1 -1.2 -1.2

float 4 18.7 20.1 19.4 15.5 13.8 1 -1.4 0.9 -0.9 -0.4 -0.1

double 16 N/A N/A N/A N/A N/A 1 -4.1 -4.7 -4.5 -3.1 -3.4

Table 7.3 Percentage difference between a VVM implementation, which used expression

templates (Based on Veldhuizen’s paper) and function switching, and a hand-coded pro-

gram for expressions involving one to five additions. Values less than 0 indicate that the

VVM implementation was faster. Refer to Table 7.1 for the number of elements in each

vvm::vector.

AltiVec Mode Scalar Mode

A 1 2 3 4 5 B 1 2 3 4 5

char 1 -2.5 9.1 26.0 45.7 71.3 1 128.1 315.2 613.9 793.3 958.1

signed char 1 13.0 27.1 46.4 70.0 98.7 1 167.1 358.5 744.2 920.6 1101.8

unsigned char 1 12.0 26.7 46.1 68.2 98.7 1 154.7 335.2 700.7 874.9 1046.0

short int 2 0.9 6.7 15.6 27.3 38.8 1 78.5 200.2 414.0 544.0 685.0

unsigned short int 2 4.1 10.7 19.2 30.2 43.2 1 97.9 238.4 459.9 603.1 762.5

int 4 -1.7 1.7 5.3 8.6 17.2 1 44.8 128.3 232.2 338.5 438.9

unsigned int 4 1.8 4.9 9.5 13.8 20.6 1 56.4 134.7 257.6 361.8 463.1

long int 4 1.4 4.4 8.8 13.4 19.2 1 54.9 147.2 268.9 373.3 475.6

unsigned long int 4 1.5 3.6 8.5 15.4 19.5 1 58.0 133.5 259.5 365.0 468.3

float 4 1.9 4.7 11.5 14.2 21.1 1 66.3 123.0 193.6 241.6 291.9

double 16 N/A N/A N/A N/A N/A 1 30.1 61.6 102.4 137.9 177.4
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From Sections 7.3.4 and 7.4, a VVM implementation that uses function overload-

ing and enabler switching is expected to have no significant overheads when the number

of elements in a vvm::vector is one. From Table 7.1, all char vvm::vectors types

in AltiVec mode, and all vvm::vectors in scalar mode have one element. Table 7.2

shows that when the number of elements in a vvm::vector was one (indicated by a 1

in columns A and B in Table 7.2), the VVM implementation was within 1% (in bold in

Table 7.2) slower than a hand-coded program, when operating on expressions with one to

five additions. When the number of elements in a vvm::vector increased to two and four

(indicated by 2 and 4 in column A in Table 7.2 respectively), the VVM implementation

was within 11% to 20% (in bold in Table 7.2) and within 14% to 24% (in bold in Table

7.2) respectively, when operating on expressions involving one to five additions.

Sections 7.3.5 and 7.4 suggest that a VVM implementation based on expression tem-

plates would have poor performance for vvm::vectors with only one element, near op-

timal performance for vvm::vectors with four or sixteen elements for expressions with

a single addition, and increasing overheads as the number of additions in the expression

increases. These behaviours are evident in Table 7.3. For vvm::vectors with a single

element, the VVM implementation was more than 11 times slower than a hand-coded

program. For vvm::vectors with two elements, the overhead increased from within 1%

to within 44% when the number of additions in the expression increased from one to five.

For vvm::vectors with four elements, the overhead was within 0% to 22%.

The results obtained suggest that the main overheads are related to the technique used

to perform the operation. The cost of switching between the emulation layer and the active

vector-processor implementation was generally optimised away by the compiler. Expres-

sion templates appear to have poor performance for short vectors. For vvm::vectors

with a single element, the overheads of performing the operation was slightly faster than

a hand-coded program. Expression templates were faster than function overloading for

vvm::vectors with two elements when the number of additions was less than three. For

vvm::vector with four elements, expression templates were faster for expressions with

less than five additions. Expression templates appear to be affected by the number of

additions in the expression more than function overloading.

7.8 Porting to other architectures

While this chapter used only AltiVec, on desktop computers today, there are actually two

major vector-processing technologies: AltiVec and MMX derivatives. VVM can also be

implemented using MMX derivatives since MMX derivatives have the same constraints

as VVM: short vectors, fixed-size vectors and fast access to aligned memory only. This

section focuses on how VVM could be implemented using MMX derivatives. The char-

acteristics of the different MMX derivatives are discussed first, followed by brief discus-
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sions on how using MMX derivatives would change the implementation details discussed

in this chapter.

MMX derivatives include SSE, SSE2, SSE3 and 3DNow!. All MMX derivatives use

the floating-point unit as the vector-processing unit, unlike AltiVec which has a separate

vector-processing unit. In addition MMX derivatives are little-endian processors, unlike

AltiVec which is found on big-endian PowerPC processors. This difference in endianness

is not expected to be a problem when implementing VVM because there is no VVM

operation that depends on the exact order of bytes within a vvm::vector. However,

similar to how scalar code can depend on endianness, the user can also write abstract

VPU code that depends on endianness. Since generic programs should not depend on

endianness, generic vector programs need to avoid such constructs.

The different MMX derivatives are summarised below:

MMX: MMX provides support for 64-bit vectors for bytes, 16-bit integers and 32-bit

integers (Int 2005).

Like AltiVec, MMX also requires data to be aligned. Unlike AltiVec, which re-

quires data to be aligned at 128-bit boundaries, MMX requires data to be aligned at

64-bit boundaries.

SSE: SSE adds a single 128-bit vector support for 32-bit floats to MMX. Ideally for

a SSE vector processor implementation, the preferred scalar count would be 16.

However, this means that only float vvm::vectors will consist of only one VPU

vector. char vvm::vectors would consist of two VPU vectors. Because this thesis

is focused on supporting a machine-vision library, and vvm::vectors with more

than one VPU vector incurs additional overheads, a SSE implementation for this

thesis would ignore SSE’s support for floats.

SSE2: SSE2 adds 128-bit vector support for 8-bit, 16-bit, 32-bit and 64-bit integers, and

64-bit floats to SSE. This means that SSE2 actually provides more vector support

for more types than AltiVec. Namely, AltiVec lacks vector support for 64-bit floats.

The preferred scalar count for SSE2 would be 16. The 64-bit instructions inherited

from MMX would not be used at all.

SSE3: SSE3 does not add any new data type support to SSE2. Instead, SSE3 provides

13 additional instructions.

How implementations of VVM for MMX derivatives is likely to differ from the imple-

mentation for AltiVec discussed previously is summarised below:

Fundamental scalar types: The fundamental scalar types is specified by VVM, and are

independent of the VPU. Thus using a MMX derivative is not expected to have any

effect on fundamental scalar types.
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Traits: The template metaprograms described for mapping between scalars and VPU

vectors are also applicable to MMX derivatives. The only difference from an im-

plementation for AltiVec would be a different typelist of VPU vector types. Since

MMX derivatives provide different support for different types, the scalar-to-VPU

vector mappings would be different. In fact, the mappings are expected to be dif-

ferent between MMX derivatives. Table 7.4 summarises the expected support for

fundamental scalar types. The table is not definitive, because the size of fundamen-

tal scalar types is not fixed. SSE2 and SSE3 actually provide more vvm::vector

support than AltiVec. Namely, they provide support for doubles.

The preferred scalar count for MMX would be 8, because MMX vectors are 64 bits

long. For SSE, because float vectors are 128 bits long, a SSE vector-processor

implementation would ideally have a preferred scalar count of 16. However, this

means that only float vvm::vectors will consist of only one VPU vector; char

vvm::vectors would consist of two VPU vectors, since all other SSE vectors are

64 bits long. Because this thesis is focused on supporting a machine-vision library,

and vvm::vectors with more than one VPU vector incurs additional overheads,

a SSE implementation for this thesis would forego support for floats. SSE2 and

SSE3 provide 128-bit vectors for all the types that it supports. Thus the preferred

scalar count for SSE2 and SSE3 is 16.

Performing an operation: The best method for performing an operation depends largely

on the compiler used. Since different processors are typically supported by different

compilers, it would be best to re-time the different methods discussed. If the VVM

implementation is to support multiple vector-processing technologies, it would be

a good idea to choose a method that all compilers being used will generate efficient

code for.

Switching: The suggestions for performing an operation also apply to switching.

Type conversions: All MMX derivatives have type conversion functions. VVM imple-

mentations for MMX derivatives would be similar to the AltiVec implementation

except different instructions would be used.

Functors: Functors are implemented using VVM operations. Thus the VPU has no effect

on the implementation of functors.

Instructions: Instruction-wise, MMX derivatives also have the arithmetic instructions,

though like AltiVec, they also lack full multiplication and division. Like AltiVec,

MMX only provides instructions to access aligned memory locations; it uses aligned

access and shift operations to access unaligned addresses (Mittal et al. 1997). Start-

ing with SSE however, there are actually instructions for accessing unaligned mem-
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Table 7.4 Expected vvm::vector support for MMX derivatives with Apple GCC 3.1

20021003 and Apple GCC 3.3 20030304.

Size in bits MMX SSE SSE2 SSE3 AltiVec

char 8
√ √ √ √ √

signed char 8
√ √ √ √ √

unsigned char 8
√ √ √ √ √

short int 16
√ √ √ √ √

unsigned short int 16
√ √ √ √ √

int 32
√ √ √ √ √

unsigned int 32
√ √ √ √ √

long int 32
√ √ √ √ √

unsigned long int 32
√ √ √ √ √

float 32
√ √ √ √

double 64
√ √

long double 64
√ √

ory. These additional load functions would be used by VVM’s unaligned load and

store functions.

7.9 Applications of VVM

Ideally, since VVM is an abstract VPU, any library or application that uses real VPUs

can potentially use VVM as its VPU instead of the real VPU. However, due to current

implementation shortcomings, practically, any application or library that operates on non-

char types would actually experience performance drops when switching from a real

VPU to the abstract VPU. For applications suitable for vector processing that do not

operate primarily on char types, the use of VVM would be to build for the future. It

is hoped that in the future, a VVM implementation that has comparable performance

to hand-coded programs for all types would be possible. Since the use of VVM does

not preclude the use of real VPU instructions, real VPU instructions could be used for

portions that require higher performance.

VVM is designed to allow generic algorithms to use the VPU. While VVM’s imple-

mentation is not zero-cost for all types, because it requires constant scalar count across

types, as Appendix C shows, an algorithm cannot be made generic without this restriction.

Thus any generic library that wishes to use the VPU should use VVM.

Applications areas that use the VPU are digital signal processing, linear algebra and

3-D geometry processing. Each application area is introduced briefly, followed by exam-

ples of some libraries that provide applicable routines. How VVM can be used in these

libraries is then discussed.
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Digital signal processing: Digital signal processing (DSP) refers to the processing of

signals digitally. Signals are generally processed to reduce “noise”. By removing or

at least reducing unwanted signals, the quality of the signal increases. DSP is com-

mon in many devices such as mobile phones, video recorders and even CD players.

Since DSPs typically involve applying the same operation to a large amount of data,

VPUs are frequently used to increase the throughput of DSP operations.

vDSP (App 2005) is a vectorised DSP library for AltiVec. vDSP provides Fast

Fourier Transforms (FFTs), convolutions, and squares. vDSP functions typically

operate on floating-point types: float and double. Since vDSP is targeted at

AltiVec and AltiVec does not have double support, vDSP functions for doubles

are not accelerated. According to Section 7.7, a VVM implementation for float

could add overheads of as little at 2%, for expressions with a single operation, if it

was implemented using expression templates. The overheads rise to 22% when the

number of operations in a single expression increases to five. For doubles, VVM

will also use the scalar processor in AltiVec. If it is compiled without support for

AltiVec, it could provide vector support with minimal overheads. However, since

vector and scalar programs are different, using VVM without the scalar processor

would still add overheads. Unfortunately, if VVM was compiled for AltiVec the

overheads would be much larger for doubles.

Thus vDSP might be able to be implemented using VVM. While using VVM would

allow the same program to be used for floats and doubles, vDSP’s existing scalar

functions are likely to be faster for doubles than a VVM vector program. Because

vDSP is not generic, and does not perform operations on different types simulta-

neously, VVM’s design is not actually a particularly good fit. An abstract VPU

designed for vDSP could have vvm::vectors which all consists of a single VPU

vectors. Such an abstract VPU would be less likely to introduce unexpected over-

heads.

Linear algebra: Linear algebra is a branch of mathematics that deals with vectors, vec-

tor spaces, linear transformations and systems of linear equations. On the computer,

linear algebra is usually provided by Basic Linear Algebra Subprograms (BLAS).

BLAS is used as the building blocks for other linear algebra libraries such as LIN-

PACK and LAPACK.

VecLib also provides BLAS support for AltiVec. BLAS functions also typically

operate with floating-point types. Thus the same comments made on using VVM

for DSP is also applicable.

3-D geometry processing: With the advent of 3-D graphics, 3-D geometry processing

has become more important. VPUs improve the performance of 3-D geometry pro-
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cessing by allowing more vertices to be processed simultaneously. Ma & Yang

(2002) were able to achieve close to four times the throughput using SSE, by pro-

cessing four vertices at a time. 3-D geometry processing involves the use of float

vectors. Thus many of the same comments made on using VVM for DSP is applica-

ble. The effect of using VVM in Ma & Yang (2002)’s paper would be an additional

overhead of at least 2%, for a VVM implementation based on expression templates.

For the VVM implementation used in this thesis, which is based on function over-

loading, the overheads would be at least 19%.

VVM is designed to enable the creation of generic, vectorised libraries. As such, even

though it could be used in other existing libraries that are not generic, it is not a partic-

ularly good fit. VVM would provide constant scalar count, which is not required, at the

cost of performance. An abstract VPU for such libraries could have vvm::vectors that

always consists of a single VPU vector. Since there are no vectorised, generic libraries

available currently, there is no existing library for which VVM would be required.

Function overloading provides near zero-cost for vvm::vectors with only one VPU

vector or scalar. So far, this thesis has suggested constant scalar counts that would allow

char vvm::vectors to consist of only one VPU vector. However, this is only because this

thesis is targetted at machine-vision, and machine-vision operations typically use char

types. For DSP, where the most common type used is float and double, the constant

scalar count could be set so that float vvm::vectors have only one VPU vector. For

example, the constant scalar count would be four for AltiVec. This however precludes the

use of the VPU for vvm::vectors where the number of scalars in a VPU vector is greater

than four. For example, it would preclude char and short vvm::vectors in AltiVec.

These types would processed using the scalar processor. Thus it is possible to select other

types apart from char to have the best performance, using the techniques discussed so

far.

For situations where performance is required for all types and constant scalar count

is required, alternative VVM implementation methods that are discussed in Chapter 12

might be a better choice.

7.10 Conclusion

Details of how VVM can be implemented were discussed in this chapter. The imple-

mentation of traits, performing an operation efficiently, switching between the emulation

layer and the active vector-processor implementation efficiently, type conversions and the

results from a performance tool were covered. In addition, porting VVM to other desktop

vector technologies and how VVM might be used for applications other than machine

vision were discussed. Through these discussions, this chapter provides new insights into
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the implementability and usefulness of an abstract VPU. The VVM specification (and

thus abstract VPUs) can be implemented using only Standard C++; and conditional zero-

cost is possible with Apple GCC 3.1 20031003. Using only Standard C++ makes the

implementation more portable across different compilers and makes it easier for users to

use, since the programmer is not required to perform any additional steps to compile his

program.

VVM can be implemented using only Standard C++. Through the use of template

metafunctions, the compiler can deduce the correct relationships between scalar and VPU

vectors, even though the size of types in C++ is not fixed. Having an expression that

uses both the vector and scalar processor is possible. The fall-back nature of the abstract

VPU to the emulation layer is implementable without requiring any special extensions

or extended compilation processes. The implementation of VVM shows that the abstract

VPU is implementable using Standard C++.

While VVM can be implemented using only Standard C++, there are some perfor-

mance issues. The cost of the abstract VPU depends on how it is implemented, and

the compiler used. For an abstract VPU’s operation to be zero-cost, there should be no

additional overheads when executing the appropriate instruction, and when switching be-

tween the emulation layer and the active vector-processor implementation. With Apple’s

GCC 3.1 20021003, a VVM implementation based on function overloading and template

switching was within 1% slower than a hand-coded program when the number of ele-

ments in a vvm::vector was one. For vvm::vectors with two and four elements, this

implementation was within 11% to 20% and within 14% to 24% slower than a hand-coded

program respectively. A VVM implementation that used expression templates based on

Veldhuizen (1995b)’s paper and function switching was faster than function overloading

when the number of elements in a vvm::vector was two for expressions with less than

three additions and when the number of elements in a vvm::vector was four for expres-

sions with less than four additions. When there is only a single element in a vvm::vector,

expression templates were at worst about 11 times slower. For vvm::vectors with two

VPU vectors, the cost increased from within 1% to within 44% when the number of ad-

ditions in the expression increased from one to five. For vvm::vectors with four VPU

vectors, the cost was within 0% to 22%. Switching between the emulation layer and the

active vector-processor implementation did not add any additional overheads if imple-

mented correctly.

As discussed previously, there are many other applications for VPUs that do not oper-

ate primarily on char types, but operate primarily on a single type. For such situations, the

VVM implementation can still use function overloading to be near zero-cost for the most

frequently used type. The constant scalar count would be adjusted so that vvm::vectors of

the most frequently used type would consists of only one VPU vector. While this would

boost performance for the most frequently used type, note that types whose corresponding

159



VPU vectors consist of more scalars than the constant scalar count would be relegated to

the scalar processor.

Since most image-processing operations operate on char types, a VVM implementa-

tion based on function overloading would be within 1% slower than a hand-coded program

for most image processing operations. It will be within 1% slower than a hand-coded pro-

gram for all types in scalar mode and for char types in AltiVec mode.
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Chapter 8

Categorisation of Operations based on

Input-to-Output Correlation

Every field has a vast number of different operations. To help manage this complex-

ity, it is usual to categorise these operations into smaller groups. A common method of

grouping is by functionality. Categorisation by functionality provides hints on what the

operation does and how it works. It is evident in National Instruments’ IMAQ library

(Nat 1999), which has categories like lookup transformations, operators, spatial filter, and

frequency filters. Intel’s Performance Primitives library (Int 2000-2001) also uses this

categorisation and has groups like colour conversions, and arithmetic, logical and mor-

phological operations. Thacker et al. (1994) categorised image-processing operations by

the demands placed upon hardware to ease the implementation of image-processing oper-

ations in hardware. For example, in this categorisation scheme, thresholds load “an image

block into a register of the processor”, generate a “block of output image data at a time”

and are classified as pixel operations. Convolutions load “a row of image data into one

register of the processor”, generate “a row of output image data at a time” and perform

“multiple 2D image operations per block”. Both categorisation by functionality and by

hardware demands map poorly to generic programming.

One important characteristic of a generic library is that algorithms are separated from

the data they that operate on and the operations that transform the data. Algorithms are

the most important component of a generic library (Musser & Stepanov 1994). Current

generic programming libraries have a list of algorithms that apply the functor to the data

in different ways. For example, in the Standard Template Library (STL), std::for_each

applies the functor to each element in a data set, discarding any results; std::transform

applies the functor to each element in the data set and writes the result to another data set.

VIGRA (Köthe 2000c) also follows this style with algorithms such as vigra::trans-

formImage and vigra::transformImageIf.

Having more algorithms than necessary is not an issue for Standard C++ and VIGRA

because generally the algorithms are easy to write. However, as Lai et al. (2002) showed,
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a corresponding vectorised algorithm is much more complex and has to handle additional

issues such as memory misalignment, misalignment between the input and output sets,

edge handling and prefetching. It is therefore desirable to reduce the number of algorithms

to a manageable level. Is it really necessary to have a vigra::transformImageIf when

a vigra::transformImage with an IF functor would be sufficient?

A division based instead on the input-to-output correlation of machine-vision algori-

thms is therefore proposed. By grouping algorithms using characteristics of their input-

to-output correlation, it is possible to reduce the number of algorithms that are required.

For example, with this categorisation, the std::accumulate function is not longer nec-

essary. This method of categorisation encourages more work to be done by the functors.

The algorithm is only responsible for loading, and, in some cases, writing data.

This chapter starts with a description of how the input-to-output correlation categori-

sation works, and discusses some characteristics that are useful for the categorisation.

Advantages and disadvantages of using this input-to-output correlation categorisation and

how it can be applied to generic programming are discussed next. This is followed by a

description of the categories that are used in the generic, vectorised, machine-vision li-

brary, detailed in the next two chapters.

8.1 Categorisation based on input-to-output correlation

Operations are categorised by the input required to produce the output, the output pro-

duced from the input and how the output is produced from the input. In this thesis, the

characteristics that are used to categorise image-processing operations are as follows:

Number of input elements per input set: This refers to the number of input elements

per input set that is used to produce the output elements. This number is assumed

to be the same for all input sets required to produce the output. When selecting

the correct number of input elements per input set for an operation, it is useful

to visualise how the operation would be implemented using generic programming.

The term “element” is used instead of “pixel” because separating the type from the

number of input and output elements reduces the number of distinct algorithms.

For example, both threshold and rotation are operations that require one input ele-

ment to produce one output element, even though the element types are different.

For thresholds, the element type is pixels while for rotations, the element type is

coordinates.

Number of output elements per output set: This refers to the number of output ele-

ments per output set that is produced. This number is assumed to be the same

for all output sets produced. It is also useful to visualise how an operation would be
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implemented using generic programming when deciding what the number of output

elements per output set is.

Number of input sets: This refers to the number of input sets used. In image processing,

input sets are typically images.

Number of output sets: This refers to the number of output sets produced. In image

processing, output sets can be images, histograms or statistics.

Input element type: This refers to the type of the input element. All input elements are

assumed to be of this type. Most image-processing operations have input types of

pixels. For geometric transformations, the input elements would be coordinates.

Output element type: This refers to the type of the output element. All output elements

are assumed to be of this type. Possible output element types in image processing

are pixels, histograms, and statistics. For geometric transformations, the output

elements would be coordinates.

To show how an operation would be categorised using these characteristics, three opera-

tions are discussed:

Threshold: Using these characteristics, a threshold operation produces one output set

from one input set; both input and output sets are images. One output element is

produced from one input element; both input and output elements are pixels.

Histogram: A histogram operation produces one output set (a histogram) from one input

set (an image). Since it examines one input pixel at a time and uses this one pixel

to later produce the histogram, a histogram would be classified as using one input

element per input set to produce zero or more output elements per output set. In

this case, the input elements are pixels, while the output elements are statistics.

Binary arithmetic operations: Binary arithmetic operations, such as addition and sub-

traction, produce one output set from two input sets; all three sets are images. From

each input set, one element is used to produce one output element. Both input and

output elements are pixels.

Table 8.1 illustrates how image-processing operations can be categorised using the six

characteristics discussed. M and N refer to the total number of input and output elements

respectively. Rectangular refers to a rectangle of input, eg. a 3×3 pixel window. Spatial

filters like Sobel filters, for example, typically produce a single pixel from a square of

pixels centred around a pixel; they have rectangular input elements. A rectangle was

used instead of a square to make the group more general. Since a single pixel is also a

rectangle, operations accepting one input element per input set also fall under rectangular.
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Table 8.1 Some image processing algorithms categorised using input-to-output correla-

tion

Number of Elements Number of Sets Type of Elements

Input Output Input Output Input Output Examples

1 1 1 1 Pixels Pixels Lookup

transformations.

Colour

conversions. Eg.

threshold,

equalise, reverse

and invert.

1 1 2 1 Pixels Pixels Arithmetic and

logical

operations. Eg.

addition and

subtraction.

Rectangular

(eg. 3×3

pixels

windows)

1 1 1 Pixels Pixels Spatial filters. Eg.

convolution

filters, edge

extraction and

edge thickness.

Also includes

some

morphological

analysis. Eg.

erosion and

dilation.

1 0 or more 1 1 Pixels Number Quantitative

analysis. Eg.

perimeter and

area.

1 1 1 1 Coordinates Coordinates Geometric

operations.

M N 1 1 Coordinates Coordinates Scale operations.
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While this thesis uses these six characteristics, there are other characteristics that can

be used to perform categorisation. For example, a characteristic that specifies whether

all input elements were always processed would be necessary if an operation like “find

first” was to be implemented. This characteristic was not considered, because the target

application, image processing, always processes all input elements. Thus all the groups

shown in Table 8.1 assume all input elements will be processed.

8.1.1 Applied to generic programming

Different characteristics are handled by different concepts in a generic programming li-

brary. In the Standard Template Library (STL), the number of input elements, number

of output elements, number of input sets and number of output sets are handled by the

algorithm. The input element type and the output element type are handled by the iter-

ator. For example, in STL, rotations can be expressed as a std::transform call that

takes one input set and one output set, operating on iterators that return coordinates. In

VIGRA, the number of input elements, number of output elements, number of input sets

and number of output sets are also handled by the algorithm. The input element type and

output element type can however be handled either by the iterator, or by the accessor.

Some characteristics have more impact on implementations than others. Since an al-

gorithm that accepts two input sets is almost identical to an algorithm that accepts only

one input set, the number of sets has less impact on the algorithm than the number of

elements. For example, a std::transform implementation that accepts two input sets

is almost identical to a std::transform implementation that accepts only one input set.

In addition, if output is not handled by algorithms, fewer algorithms would be required.

The number of output sets and number of output elements can instead be handled by

the functor or the accessor. Under this scheme, the algorithm is only responsible for

orchestrating the loading of data, while the functor/accessor is responsible for orches-

trating the output. Examples of functors that write output are vigra::FindAverage,

vigra::FindBoundingRectangle and vigra::FindMinMax. Since element types are

handled by the iterator, number of input sets have little impact on algorithm implemen-

tations, and number of output elements and output sets can be handled by the functor

or accessor, the most important characteristic for categorising operations so that fewer

algorithms are required is the number of input elements.

When applied to generic programming, each category defined would have one main

algorithm, with variations for each combination of input and output sets. Once an op-

eration satisfies the criteria for a category, the category’s algorithm can be used, even

though in some cases it might not be the most efficient. For example, find first can be

implemented using the same algorithm as threshold’s, since they have the same six char-

acteristics. However, find first would be faster if it gave up searching after finding the
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answer. This example shows that more characteristics can be added to further narrow

the groups. However, this was not done, because the objective, a generic, vectorised,

machine-vision library, did not require any other characteristics.

An operation under the input-to-output correlation categorisation proposed can be-

long to many groups simultaneously, because groups overlap. For example, a convolution

algorithm can also be used to perform thresholding because one input element is also

rectangular input. In fact, only one main algorithm would be needed, one whose input el-

ement to output element correlation would be M to N. However, such a general algorithm

would be highly inefficient, especially for operations that have a one input to one output

element relationship. Generally, if an operation cannot be placed into a group smaller

than M to N, then it is prudent to implement an algorithm for that operation explicitly.

8.1.2 Inferences

Some characteristics have implications for how an operation can be implemented. Char-

acteristics that affect how the operation would be implemented generically, and how the

operation would be implemented using the vector processor in this thesis are discussed

below:

One input element per input set: This implies that only a 1-D iteration is needed. Since

only a 1-D iteration is needed, the algorithm can be written to support regions of

any shape.

One output element: Having one output element implies that the algorithm can perform

more work than necessary, as long as it ensures that the extra results are discarded.

Since extra results can be discarded, edges can be handled using the vector proce-

ssor (see Section 3.5.4 for more information about edges).

One input element per input set produces one output element per output set: This

characteristic suggests that elements can be computed efficiently out of turn using

a vector processor. The output order obviously still has to match the input order.

Rectangular input elements per input set: This characteristic indicates that a spatial it-

erator is required. For the vector processor, it is faster to compute this data from

left to right, top to bottom, since data loaded from the last iteration can be used in

the next.

Zero or more output elements: Zero or more output elements suggest that the algo-

rithm cannot handle the output because the output is unknown. Functors cannot

simply return a list of output elements because the answers might be unknown un-

til all elements are processed, and functors generally do not know which element

is the last element. While it is possible for the algorithm to inform the functor
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Figure 8.1 Categorisation for the generic, vectorised, machine-vision library developed

in this thesis
Convolutive

1. Rectangular input element per input set

2. One output element per output set

3. One output set

Quantitative

1. One input element per input set

2. Zero or more output elements per output set

3. One output set

Transformative

1. One input element per input set

2. One output element per output set

3. One output set

when the last element is reached, it is easier to let the functor handle the output.

In addition, zero or more output elements suggest that performing more work than

necessary can lead to wrong outputs, since the algorithm cannot discard unwanted

outputs. The algorithm cannot discard unwanted outputs because it cannot handle

the output.

8.2 Categories for the generic, vectorised, machine-vision

library

The primary aim of using this categorisation scheme in this thesis was to reduce the num-

ber of algorithms required, while retaining efficiency. Because of this, the requirements

of the algorithm form the basis for the categories. In the previous section, we observed

that the most important characteristic for categorising operation so that fewer algorithms

are required is the number of input elements. Using only this characteristic results in two

categories. This indicates that only two main algorithms are required to handle all the

image-processing operations considered in Table 8.1. However, since output characteris-

tics were not utilised, the functor would always be responsible for the output. Because

functors that handle output are more difficult to implement, consistency with other li-

braries makes algorithms more readily understandable, and most image-processing oper-

ations produce a single image as output, the output characteristics were also considered in

deriving the categories for the generic, vectorised, machine-vision library. Since functors

are the most commonly user-defined concepts, making functors more difficult to imple-

ment also makes the library more difficult to use

Both input and output characteristics were used to divide the image-processing op-

erations considered in Table 8.1 into three categories: quantitative, transformative and

convolutive. Figure 8.1 shows how the three categories are related to each other.
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Quantitative operations: Quantitative operations have one input element per input set,

zero or more output elements per output set and a single output set. Because they

have zero or more output elements, the output is handled by the functor.

An example of a quantitative operation is the histogram.

Transformative operations: Transformative operations accept one input element per in-

put set. In image processing, transformative algorithms require one or two input sets

and produce either one output image set, or one numerical output set. Since trans-

formative operations required either one or two input sets, two algorithms will be

provided.

Since they produce a single output element, calculating more than is necessary is a

not a problem. In addition, because they require only one input element, they are

also easy to parallelise and can be computed out of order without problems.

Examples of transformative operations are thresholding, addition and subtraction.

Convolutive operations: Convolutive operations accept a rectangle of elements per in-

put set, and produces a single output element for one output set. Convolutive algo-

rithms are named after the name of operations that mostly fall under it — convolu-

tions.

Because they have a single output element, calculating more than is necessary is

not a problem. Because they have rectangular input, convolutive algorithms require

spatial iterators. While convolutions can be computed out of order, there is little

incentive to do so when using the VPU, because most of the input already loaded

for the current output is required when computing the next output.

Examples of convolutive operations are linear and non-linear filters like Sobel and

Gaussian filters.

8.3 Conclusion

In this chapter, a new categorisation scheme based on input-to-output correlations, and a

description of the categories that will be used in the generic, vectorised, machine-vision

library were discussed. The categorisation scheme was proposed by the author as a classi-

fication method that maps more directly to generic programming. By using this categori-

sation scheme, it is easier to decide how many algorithms are required, and the require-

ments of the iterator, the accessor and the functor. This categorisation scheme was used to

derive three categories for use with the generic, vectorised, machine-vision library. The

categorisation’s main disadvantage is that a single operation belongs simultaneously to

multiple categories.
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A categorisation scheme based on input-to-output correlation is ideally suited to gene-

ric programming, identifying what algorithm an operation should use, and even providing

implementation inferences. For example, if only one input element per input set is re-

quired, only a one-dimensional iteration is needed. It helps to reduce the number of algo-

rithms required, and clearly defines the algorithm’s main role as coordinating the loading,

and, in many cases, the writing of data. Fewer categories would have been required if the

algorithm was not responsible for coordinating the output.

Applying this categorisation scheme led to three categories for the generic, vectorised,

machine-vision library: quantitative, transformative and convolutive. Since each category

requires only one main algorithm, the number of algorithms required is small. A cate-

gory might have more than one algorithm to handle different combinations of input and

output sets. These algorithms are expected to be extremely similar. The machine-vision

library only needs to provide four algorithms to support all the image-processing opera-

tions considered in this thesis. Having fewer algorithms is good for a generic, vectorised,

machine-vision library, because vectorised algorithms are not particularly easy to write.
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Chapter 9

A Generic, Vectorised, Machine-Vision

Library

A generic, vectorised library is based on generic programming paradigms (Musser &

Stepanov 1989, 1994) and uses the VPU. Genericity produces libraries that are more

adaptable to the user’s needs without sacrificing much performance. Examples of generic

libraries include the Standard Template Library (STL) (Inf 1998), Matrix Template Li-

brary (Siek 1999) and Vision With Generic Algorithms (VIGRA) (Köthe 2000b, 2001).

None of these generic libraries use the VPU.

Being generic allows a library to better adapt to the user’s environment, while using

the VPU gives a library better performance. Generic image-processing libraries already

exist. Image-processing libraries that use the VPU also exist. However, there is currently

no image-processing library that is generic and uses the VPU.

This chapter discusses the creation of a generic, vectorised, machine-vision library

called Vectorised Vision (VVIS). In particular, it covers issues applicable to the design

of generic, vectorised libraries. An overview of VVIS is presented first, followed by

why VIGRA and other generic libraries are unsuitable for vectorisation, and the division

of duty selected for VVIS. Each concept and its responsibilities are detailed in ensuing

sections. Import/export issues are covered last.

9.1 VVIS overview

Vectorised Vision (VVIS) aims to be a generic, vectorised, machine-vision library. Since

machine vision involves image acquisition, processing, analysis and output, VVIS pro-

vides functions to facilitate all these processes. Images can be either loaded from disk or

streamed from a sequence grabber. Image processing and analysis is where VVIS uses

the VPU. For output, VVIS is able to write to files and to convert images to QuickTime

GWorlds for display.
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Figure 9.1 VVIS’s architecture

Vector Processor

VVM QuickTime

VVIS

I/O hardware

& drivers

VVIS uses VVM to access the VPU and QuickTime to import and export images.

QuickTime is used to access sequence grabbers, to load and write images from and to

files. VVIS’s architecture is summarised in Figure 9.1.

Using an abstract VPU, like VVM, allows VVIS to be cross-platform, while preserv-

ing the ability to express its algorithms in a vectorised manner. Furthermore, it allows

VVIS to support more vector-processor technologies more easily. A port requires only an

additional vector-processor implementation for the abstract VPU. VVM provides addi-

tional benefits like an easy-to-use interface, template support and operators. The easy-to-

use interface not only makes coding VVIS easier, but also user-defined functors and code.

Template support is necessary for VVIS since all concepts are implemented as templates.

Operators allow for a cleaner syntax, and the same templated code to be used for both

scalar and vvm::vector implementations that do not use logical and comparison opera-

tions. The same templated code cannot always be used for both scalar and vvm::vector

implementation because logical and comparison operators in VVM return a vvm::vector

of booleans instead of a single bool.

Using VVM instead of programming for a VPU directly however introduces the pos-

sibility of speed degradation. However, since zero-cost is an important criterion for an

abstract VPU, hopefully the overheads would be minimal. Section 7.3 shows that it is

possible to attain zero-cost under certain circumstances when using an appropriate com-

piler and compiler settings. The VVM implementation used by VVIS in this thesis is

within 1% slower than a hand-coded program for char types when AltiVec is enabled,

and when there is no VPU. This implementation was chosen because in machine-vision,

most images are either 8-bit or use 8-bit channels.

QuickTime is used to read images from sequence grabbers, and read and write from

and to files. Using QuickTime allows VVIS to easily acquire images from sequence

grabbers, like cameras, and import and export image files. VVIS leverages QuickTime’s

ability to read and write a wide range of image file formats. QuickTime was chosen be-

cause the target platform is a Macintosh. Since QuickTime is also available on Windows,

it should be possible for the input/output interface to operate on both platforms.
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9.2 Division of duty

Every library has different concepts. For generic libraries, concepts, including their in-

teractions and responsibilities, are particularly important, because users are allowed to

replace components, and because implementation-wise, they is little type safety. Being

able to replace parts of the library with components that are more suitable is one of the

main advantages of using a generic library. Since the rest of the system assumes that

users’ components will handle all the duties of the original component, it is important to

establish exactly the responsibilities of each concept and its interfaces.

This section starts with a brief description of the division of duty used by other generic

libraries, in particular VIGRA. After discussing existing division of duties, reasons why

they are unsuitable for a generic, vectorised, machine-vision library are discussed. Viable

alternatives are discussed and evaluated, to allow an informed decision to be made.

9.2.1 Existing division of duties

VIGRA is a generic image-processing library, created as a result of a Ph.D. thesis (Köthe

2000b, 2001, 1998, 2000a,c, 1999). VIGRA was chosen as a starting point because VI-

GRA, like VVIS, aims to be a generic library and provides many image-processing rou-

tines. Differences between VIGRA and VVIS include the use of the VPU, VVIS’s support

for sequence grabbers, and routines provided for image processing and machine vision.

VIGRA uses the following division of duty:

Images: Images in VIGRA store and provide read/write access to the pixels in an image.

VIGRA’s own images keep their pixels in a contiguous chunky format (see Section

9.2.4 for more information on contiguous chunky formats).

Generally users replace images completely. There is no need for the user’s images

to have the same interface as VIGRA’s images because algorithms do not access

images directly.

Accessors: Accessors add an extra level of indirection between the data and the iterator.

They read and write data from and to iterators. This extra level of indirection makes

it easier to preprocess the data. For example, an accessor can be used to easily

restrict an algorithm to only the red channel of a RGB image and to process multi-

channel planar images in a generic image-processing library (Köthe 1998). Without

the accessor, additional iterators and proxy objects will be required (Kühl & Weihe

1997, Köthe 1998).

User-defined accessors are useful for accessing portions of the data.

Iterators: Iterators decouple the algorithm from the image. They represent a location

and are able to traverse the data that they refer to. In VIGRA, iterators are two-

173



dimensional. However, only algorithms that require spatial knowledge require two-

dimensional iterators (Ablavsky et al. 2003). From the categorisation presented in

Chapter 8, only convolutive algorithms will require two-dimensional iterators.

Since iterators are coupled to images, user-defined images will almost certainly

require a user-defined iterator.

Functors: Functors are responsible for actually utilising the data provided. Some func-

tors return values, while other keep their results within themselves. Functors are

the most common concept that are added by the user, especially if the library does

not support creating functors from expressions.

Algorithms: Algorithms decide how to retrieve data from iterators and accessors, and

obtain answers from functors, and write the answers back using iterators and acces-

sors. In VIGRA, algorithms are passed the upper left and bottom right corners to

determine a rectangular region of interest.

Users are not expected to produce many algorithms, though they are certainly wel-

come to.

STL’s division of duty is similar to the VIGRA’s except it does not use accessors. The

duties of the accessor are handled by the iterator. Ablavsky et al. (2003) also used the

same division of duty as STL; the paper discusses the creation of iterators that allow

image processing to be handled using STL algorithms. Matrix Template Library (MTL)

has a division of duty similar to VIGRA’s, except there is no accessor, and different types

of matrices in the place of images.

9.2.2 Problems with existing division of duties

VIGRA has two problems: its use of upper left and bottom right corners to specify regions

of interest makes specifying non-rectangular regions difficult, and vectorisation is difficult

because algorithms do not know how data are kept in memory. The first problem is

VIGRA-specific, while the second applies to other generic libraries, such as STL and

MTL.

VIGRA specifies regions of interest by passing two iterators, which mark the upper

left and bottom right corners of a rectangular region of interest, to the algorithm. This

rectangular constraint is unnecessary, since operations that do not require spatial iterators

(quantitative and transformative operations from Section 8.2) can use algorithms that op-

erate on one-dimensional iterators and can process regions of any shape. Not being able

to specify non-rectangular regions of interests is not serious though because it is possible

to use a mask to constrain results to a non-rectangular region of interest.
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Existing generic libraries, like STL, MTL and VIGRA, are difficult to vectorise be-

cause iterators hide from algorithms how the pixels are arranged in memory. While such

decoupling increases flexibility, without details of how pixels are arranged, algorithms

do not know whether the pixels are arranged in a manner conducive for vector program-

ming, and thus whether the pixels should be processed with or without the VPU. A vector

program that operates on scattered data can be slower than a scalar program. Section

3.7 showed how different versions of the same algorithm have different execution times

depending on the alignment of the data.

For efficient vectorisation, libraries need to consider the following:

1. How will algorithm get vectors efficiently? How would algorithms handle situa-

tions where it is impossible to load vectors efficiently?

Aligned, contiguous data are the easiest for the vector processor to load efficiently.

Contiguous data also enables easier and more efficient prefetching which leads to

faster loads and stores.

When obtaining vectors efficiently is impossible, the easiest and safest course of

action is to use the scalar processor to process the data.

2. How is unaligned data handled? In addition how will two images that have different

alignments be handled?

VPUs can typically only load data efficiently from aligned locations. Algorithms

not only have to handle unaligned data, they also have to handle different source

alignments when an operation involves two or more different sources.

3. How are edges handled?

Edge handling was discussed in Section 3.5.4. Edges can be handled using the

scalar or the vector processor. When processing edges using the VPU, programs

might trigger an exception by accessing memory that does not belong to the current

process if the edge is loaded directly. In addition, using the VPU to process edges

only produces correct output if the current operation does not mind more work

being done, namely transformative and convolutive operations (from Section 8.2).

Quantitative operations should not have their edges processed using the VPU.

The scalar processor can always be used to process edges. In addition, as mentioned

in Section 3.5.4, since AltiVec can execute scalar instructions at the same time as

vector instructions, using the scalar processor to handle edges might actually be

faster than using the VPU (App 2002e).

4. Who handles prefetching?

Prefetching was discussed in Section 3.4.3. Prefetching refers to moving data to

the caches before it is actually used. Section 3.7 showed that prefetching increased
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the speedup factor of a vector program over a scalar program significantly on a

PowerPC G4.

As discussed previously in Section 3.4.3, not all VPUs handle prefetching in the

same manner. While the PowerPC G5s also support AltiVec, they require less man-

ual prefetching control because they have automatic prefetching and a larger bus. In

fact, prefetching instructions might be detrimental to speed on the G5 since it might

cause large bubbles in program execution time (App 2003c). Such differences in

prefetching behaviour should be handled by VVM and not VVIS, since they are

VPU specific.

To allow non-rectangular regions of interest to be specified easily, VVIS introduces the re-

gion and shape concepts. The region represents a region of interest in an image. Regions,

like VSIPL’s views, are responsible for representing regions of interest and to transform

the data into a form more suitable for vectorisation where necessary. Shapes provide al-

gorithms information about the shape of the region of interest. They allow algorithms to

specify the shape of regions of interests that are accepted where necessary. For operations

that require spatial iterators, namely convolutive operations, the algorithm must be coded

specifically to support non-rectangular regions of interests.

Storages were introduced to address the vectorisation problem. Storages specify con-

straints on how their data are arranged, allowing the algorithm to make informed decisions

regarding the use of the VPU. Regions and images either provide storages or are storages

themselves. Storages are passed to the algorithm instead of iterators. Since some algo-

rithms require specific shapes, it is important to associate a shape with a storage. Since

iterators can move and thereby break the constraints guaranteed by a storage, passing iter-

ators to the algorithm makes it difficult to decide whether to use the VPU at compile-time.

Passing iterators to the algorithm was not considered in this thesis.

9.2.3 Viable alternative divisions of duties

Two divisions of duties were considered: Algorithm Only and Vector Head. The differ-

ences between these divisions of duties are summarised in Table 9.1. In both divisions of

duties, algorithms determine when to use the VPU, because the use of VPUs affects the

implementation of algorithms. Furthermore, both divisions of duties have edges, because

quantitative algorithms (see Section 8.2) cannot process more data than necessary. Hav-

ing no edges is not possible in VVIS, because VVIS uses VVM and VVM has constant

scalar count. Having no edges would be possible if VVM had variable scalar count, or an

additional scalar count of 1. For reasons why VVM has a constant scalar count, see Sec-

tion 6.1. The main difference between Algorithm Only and Vector Head is that in Vector

Head, algorithms do not need to handle misalignment between images, because storages
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Table 9.1 Summary of responsibilities of viable divisions of duties

Algorithm Only Vector Head

Vector/scalar mode Algorithm Algorithm

Unaligned loads Algorithm Storage

Edges seen by algorithm Left, Right Right

Misalignment between images Algorithm N/A

Admit/release N/A Maybe

always return aligned data. This allows algorithms to assume that storages are not only

aligned to memory but also to each other.

Both divisions of duties use the same concepts: storages, images, regions, accessors,

iterators, functors and algorithms.

Storages: Storages specify how pixels are arranged in memory. Since storages are passed

to algorithms instead of iterators, algorithms can decide when to use the VPU based

on the storage type at compile-time, or information provided by the storage at run-

time.

Images: These represent images. Images are storages, or provide storages. They provide

read/write access to pixels.

Regions: Regions represent regions of interest in images. Regions are also storages, or

provide storages.

Accessors: Accessors are responsible for loading and writing data from and to iterators.

Iterators: Iterators represent positions in a storage and are responsible for traversing

storages. Different storage types can have different iterator types.

Functors: Functors perform the desired operation on the pixel(s).

Algorithms: Algorithms are responsible for using iterators to traverse through storages,

using accessors to read and write data from and to iterators, and using functors

to obtain the results. Depending on the storage type passed to an algorithm, or

information provided by the storage at run-time, algorithms decide when to use the

VPU.

Algorithm Only

In Algorithm Only, the algorithm handles all the VPU issues raised in Section 9.2.2; it

is responsible for deciding when to use the VPU, loading, storing and processing both

the left and right edges. A single algorithm is expected to have different implementations
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to support different storage formats. A single algorithm, for example, could have an

implementation that uses the VPU and one that does not.

Storages indicate whether data are arranged in a VPU friendly format or not. In ad-

dition, they provide iterators that indicate where data start and end. When the data is not

arranged in a VPU friendly format, the user can pass to the algorithm either a storage that

indicates this deficiency, or a region that first rearranges a copy of the data. While both the

start and end iterators can be unaligned, both the left and right edges should be loadable

using the VPU. To load the left edge using the VPU, the storage must ensure that the data

are either aligned or all data from the first aligned position before the data belongs to the

current process. Without this condition algorithms cannot load the unaligned left edges

safely without skipping a vvm::vector. To ensure the right edge can be loaded using the

VPU, an extra vvm::vector can be allocated at the end. Ensuring the right edge is load-

able using the VPU allows the right edge to be processed using the VPU and facilitates

unaligned loading.

Regions and iterators in Algorithm Only should be easy to implement because itera-

tors can be pointers, and regions generally does not need to make copies and can refer to

positions within the images directly. Algorithms are more difficult to implement in Algo-

rithm Only than Vector Head because they have to handle misalignment on two edges, and

between storages. Since Algorithm Only’s algorithms are able to operate on any location

in memory, less preprocessing is needed.

Vector Head

Like Algorithm Only, algorithms accept different storage types and decide which imple-

mentation to use depending on the storage types passed. In addition, storages specify

how data are arranged. However, in Vector Head, storages ensure that the start iterator is

aligned. While the end iterator can be unaligned, storages must ensure that the right edge

can be loaded using the VPU.

Storages can fulfil this requirement by making a copy of the data, or by performing

unaligned loads and stores. Making a copy of the data requires an admit/release phase,

while performing unaligned loads and stores do not. Without the left edge, algorithms

are easier to implement, and are faster because algorithms do not handle misalignment

between different sources. Regions, storages and iterators are more difficult to implement

because of the increased responsibilities of the storage.

9.2.4 Performance comparison

This section starts with an investigation into the performance of storage formats suitable

for vector programs. This is followed by a description of four storage formats that were

investigated. This section concludes with an investigation into the performance of the two
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viable divisions of duties, Algorithm Only and Vector Head.

Storage formats

Four different storage formats were investigated: contiguous planar, contiguous chunky,

Illife planar and Illife chunky. Contiguous storages refer to storage formats where the

structure of a 2-D image is accessed via a polynomial into a “flat” storage. Illife storages

access the same structure via a table of row pointers. While planar formats store each

channel in a different array, chunky formats interleave all channels in a single array. Since

VVIS is aimed at algorithms that work efficiently on a VPU, it interleaves a vvm::vector

instead of a scalar at a time. For example, if there are 4 elements in a vvm::vector,

then a chunky RGB image would be RRRRGGGGBBBBRRRRGGGGBBBB, instead of

RGBRGBRGBRGB. When the context is unclear, the former is referred to as chunky

vector, while the latter is chunky scalar. Figure 9.2 provides a visual representation of the

different storage formats. Note that for single-channel images, chunky and planar formats

are equivalent.

Figure 9.3 shows the time taken for different hand-coded programs to process four dif-

ferent storage formats on an Apple PowerMac with two 450 MHz PowerPC G4 processors

with 32K L1 cache and 1Mb L2 cache each. For single-channel images, the functor ac-

cepted a single value and returned the result. For RGB images, the functors accepted six

parameters, three for the input and three for the output. All versions were compiled us-

ing Apple GCC 3.1 20021003 with the -Os (optimise for size) switch, and timed twenty

times. The times shown are the lowest times and include the cost of constructing functors.

The versions are described in more detail below:

1-channel, Contiguous Planar: This version processed single-channel, unsigned char

images, where the entire image is stored in a single contiguous block (a contiguous

planar storage).

1-channel, Illife Planar: This version processed single-channel, unsigned char images,

where all the rows were stored in separate contiguous blocks (an Illife planar stor-

age). Illife planar images have h contiguous blocks, where h is the height of the

image.

RGB, Contiguous Planar: This version processed RGB, contiguous planar images. Since

each unsigned char channel is stored in separate contiguous blocks, these images

have three contiguous blocks.

RGB, Contiguous Chunky: This version processed RGB, contiguous chunky images.

In scalar mode, the pixels are interleaved one scalar at a time. In AltiVec mode, the

pixels are interleaved sixteen at a time, because there are sixteen unsigned chars
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Figure 9.2 A 4x4 RGB image stored using different storage formats.
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Figure 9.3 Effect of storage formats on a simple transformative operation, where each

pixel is added to itself, when the input and output are equivalent
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in a __vector unsigned char. The entire image is stored in a single contiguous

block

RGB, Illife Planar: This version processed RGB, Illife planar images. Each row of each

unsigned char channel is stored in a single contiguous block. RGB, Illife planar

images have 3h contiguous blocks, where h is the height of the image.

RGB, Illife Chunky: This version processed RGB, Illife chunky images. Each row is

stored in a single contiguous block, which has all three unsigned char channels

interleaved within it. In scalar mode, the pixels are interleaved one scalar at a

time. In AltiVec mode, the pixels are interleaved sixteen at a time, because there

are sixteen unsigned chars in a __vector unsigned char. RGB, Illife chunky

images have h contiguous blocks, where h is the height of the image.

Figure 9.3 shows the effect of storage formats on a transformative operation which

adds each pixel to itself, when source and destination images are the same image. Figures

9.3(a) and 9.3(b) show the effect of storage formats in scalar and AltiVec mode respec-

tively.

Figure 9.3 shows that in both scalar and AltiVec modes, it was slightly faster to process

both single-channel and RGB images as contiguous storages than as Illife storages. For
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RGB images, planar storages were noticeably faster than chunky storages in both scalar

and AltiVec modes. The fastest RGB storage in both scalar and AltiVec modes was the

contiguous planar storage. The Illife planar storage was not significantly slower though.

Contiguous storages were faster than Illife storages probably because the pixels are closer

to each other in memory. Since all channels were being processed, it was thought that

chunky storages would be faster, since the chunky storage would place the pixels of the

three channels that are being processed closer to each other. The results however show

that planar storages were noticeably faster than chunky storages. This might be because

the processor loaded the separate channels in the planar storages into the caches simulta-

neously. This would mean that more of the image was loaded into the caches for planar

storages, which leads to less time spent waiting for the processor, than for chunky stor-

ages. Thus prefetching is likely to have more impact on chunky storages than on planar

storages.

Different divisions of duties

In this section the performance of the two viable divisions of duties, Algorithm Only and

Vector Head, are evaluated. Algorithms were developed for both divisions of duties and

were compared to hand-coded scalar, hand-coded AltiVec and VIGRA programs in scalar

and AltiVec mode. In scalar mode, the algorithms were evaluated against hand-coded

scalar and VIGRA programs, while in AltiVec mode, they were compared to aligned only

AltiVec, unaligned AltiVec and VIGRA programs. The scalar and AltiVec hand-coded

programs were derived from the functions presented in Section 3.7. Algorithms that have

similar performance to corresponding scalar or AltiVec programs are good implementa-

tions. While algorithms used VVM as its VPU, specialised versions for different channel

counts were implemented; the algorithms evaluated are unsuitable for a generic library.

Only contiguous planar storages were investigated because contiguous planar storages

are the most common storage format used in vector programs. The performance of the

algorithms on other storages are expected to follow trends shown in Section 9.2.4.

Figures 9.4 and 9.5 show the time taken for implementation to process contiguous

planar storages (except VIGRA, which uses contiguous chunky scalar storages), when

the source and destination storages are the same and different respectively. The sub-

figures (a) through (d) show the time taken for implementation to process single-channel

images in scalar mode, single-channel images in AltiVec mode, RGB images in scalar

mode, and RGB images in AltiVec mode respectively. The operation performed added

each pixel to itself. All implementations, except VIGRA, did not use accessors. All

implementations were compiled using Apple GCC 3.1 20021003, with the -Os (optimise

for size) switch. From Chapter 7, this is the compilation environment under which the

VVM implementation used with this thesis is zero-cost for vvm::vectors with a single

element. A compilation environment that generates a non-optimal VVM implementation
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will adversely affect the performance of the algorithms.

VIGRA: This version used VIGRA. VIGRA uses a contiguous chunky scalar storage

format. From Figure 9.3, we expect VIGRA in scalar mode to be faster when

processing RGB images and equivalent when processing single-channel images.

Scalar: This version refers to hand-coded scalar implementations. The functor was a

function that accepted each channel as a separate argument.

When processing RGB images, this version accepts three pointers pointing to the

start of each of the channels, a pointer pointing to the first after the end element of

the first channel, three pointers pointing to the start of each channel of the output

image and a functor. No tuples or arrays were used to represent RGB pixels.

AltiVec (aligned): This version is basically Aligned Load and Aligned Store from Sec-

tion 3.7. This version only correctly handles storages whose data start and end on

aligned memory addresses.

When processing RGB images, it accepts three pointers pointing to the start of

each of the three channels, one pointer pointing to the first after the end element of

the first channel, three pointers pointing to the start of each channel of the output

image and a functor. The functor accepts six parameters, three for the input pixel’s

channels and three for the output pixel. No tuples or arrays were used to represent

RGB pixels.

AltiVec (unaligned): This version is basically Unaligned Load and Aligned Store from

Section 3.7. It can correctly handle storages whose data do not start or end on

aligned memory addresses.

When processing RGB images, this version accepts seven pointers, one functor for

VPU vector operations and one for scalar operations. Once again, no tuples or

arrays were used to represent RGB pixels.

Algorithm Only (aligned): This refers to an algorithm that uses the Algorithm Only di-

vision of duty, but is only able to handle aligned data. It is basically a VVM version

of the Aligned Load and Aligned Store from Section 3.7.

Algorithm Only (unaligned): This refers to an algorithm that uses the Algorithm Only

division of duty and is able to handle unaligned data. It is basically a VVM version

of the Unaligned Load and Aligned Store from Section 3.7.

Vector Head (without admit/release): This refers to an algorithm that uses the Vector

Head division of duty. In this version, the cost of admitting and releasing is not

included. Because no admit/release was included, this version is only representative

when the the storage is already in the required format.

183



Vector Head (without admit/release) will only handle storages that start on an aligned

location. This will cover images of any size as long as the entire image is used. While it

handles more situations than Algorithm Only (aligned), it handles fewer than Algorithm

Only (unaligned). In order for it to handle all cases, either it needs to convert a storage so

that it is aligned at the beginning, or the iterator needs to perform unaligned loading for

the algorithm. For example, if the user only wants to process half of the image, the user

needs to use a region, admit the region of interest to the region, process the region, and

then release the region.

Figure 9.4 shows how the different implementations fare when the source image is

also the destination image. As mentioned previously, all implementations used contiguous

planar storages except VIGRA, which used contiguous chunky scalar storages. In scalar

mode when processing single-channel images, Vector Head (without admit/release)’s

performance was comparable to VIGRA’s and was faster than Scalar, Algorithm Only

(aligned) and Algorithm Only (unaligned). This verifies that VVM introduced no signif-

icant overheads in scalar mode as expected from Section 7.7. However in scalar mode

when processing RGB images, Vector Head (without admit/release) was slower than VI-

GRA, but comparable to Algorithm Only (aligned). In scalar mode, both Vector Head

(without admit/release) and Algorithm Only (aligned) were slower than Scalar when pro-

cessing 320×960 RGB images, but faster for larger images. As expected, Algorithm Only

(unaligned) was the slowest when processing single-channel and RGB images in scalar

mode.

In AltiVec mode when processing single-channel images, Algorithm Only (aligned)

and Vector Head (without admit/release) had similar performance to AltiVec (aligned).

This shows that as expected from Section 7.7, VVM in AltiVec mode had no significant

overheads when processing unsigned char vvm::vectors. Algorithm Only (unaligned)

was slower than AltiVec (unaligned) because VVM’s unaligned load function performs a

switch before a vec_sld (see Section B.2.1, load(A, B, o)). When processing RGB

images, Algorithm Only (aligned) and Vector Head (without admit/release) had com-

parable performance. While these two implementations were slower than AltiVec (un-

aligned), these two implementations were surprisingly faster than AltiVec (aligned) for

images 640×960 and larger. However, these two implementations were slower than Al-

tiVec (aligned) for 320×960 images.

Figure 9.5 shows the performance of the different implementations when the source

image is not the destination image. Both source and destination images were contiguous

planar storages. Algorithm Only (unaligned) was significantly slower than Scalar in scalar

mode when operating on both single-channel and RGB images. Algorithm Only (aligned)

and Vector Head (without admit/release) was near optimal, in both scalar and AltiVec

mode when operating on single channel images. Like Figure 9.4(a), Vector Head (with-

out admit/release) was faster than Scalar, Algorithm Only (aligned), and Algorithm (un-
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Figure 9.4 Performance of different divisions of duties when processing unsigned char
contiguous planar storages. The source and destination images were the same image.
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Figure 9.5 Performance of different divisions of duties when processing unsigned char
contiguous planar storages. The source and destination images were different images.
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Table 9.2 Number of operations required for Vector Head to match Algorithm Only when

operating on unaligned, contiguous planar storages. Source and destination storages were

the same

320×960 640×960 960×960 1280×960

Single-Channel Image, Scalar 20 18 17 17

Single-Channel Image, AltiVec N/A N/A 1588 560

RGB Image, Scalar 1 1 1 1

RGB Image, AltiVec N/A 182 196 174

Table 9.3 Number of operations required for Vector Head to match Algorithm Only when

operating on unaligned, contiguous planar storage. Source and destination storages were

different

320×960 640×960 960×960 1280×960

Single-Channel Image, Scalar 14 12 12 12

Single-Channel Image, AltiVec 122 143 2873 324

RGB Image, Scalar 1 1 1 1

RGB Image, AltiVec 195 2234 1199 N/A

aligned) in scalar mode when processing both single-channel and RGB images. However,

in AltiVec mode when processing RGB images, Algorithm Only (aligned), Algorithm

Only (unaligned), and Vector Head (without admit/release) were significantly slower.

Tables 9.2 and 9.3 show the number of addition operations that would be required to

be performed, where the source and destination images are equal and not equal respec-

tively, before the cost of admitting and releasing an entire image would be covered. In

both cases, all storages used were contiguous planar storages. The admittance process

copies all the data to a different location in memory, while the release process copies the

data back. Under some cases, Algorithm Only (unaligned) was faster than Vector Head

(without admit/release). This is because prefetching was off, and is consistent with results

obtained earlier in Section 3.7. In such cases, it is impossible for Vector Head (without

admit/release) to catch up; the table shows N/A in such situations.

The admittance and release processes that were evaluated copied each pixel one at a

time. While this process is robust, its performance is not optimal. It should be possible to

perform memory to memory copy operations between certain combinations of storages.

Therefore the difference would be less for such cases. The program evaluated actually

copies the entire image, which is something that is rarely needed, since regions of interests

usually refer to a portion of the image. This version is likely to be the worst admittance

method performance-wise.

Tables 9.2 and 9.3 show that the cost of copying is really quite large compared to the

savings obtained through the use of Vector Head (without admit/release) instead of Al-

gorithm Only (unaligned). Generally when AltiVec is enabled, the number of operations
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Table 9.4 Template metafunctions for discovering the shape

Expression Return Type Notes

is_rectangular<X>::value bool Returns true if X is rectangular

required to match Algorithm Only is either very large, or is impossible. This suggests

that Vector Head should use regions that can load data unaligned instead, especially if the

work to be done is small. From Section 3.7, this version should run like Unaligned Load

and Unaligned Store from Figure 3.6.

9.2.5 Division of duty chosen

Vector Head was chosen because it always performs well without admit/release. In ad-

dition, it simplifies the creation of algorithms greatly, since it removes the need to be

concerned about misalignment, not only with memory, but also between storages.

Vector Head does not require an admit and release when the image is aligned, or if the

region performs unaligned loads and stores automatically. Therefore it is just as fast as

Algorithm Only for aligned images. The main advantage Vector Head has over Algorithm

Only is that algorithms are much easier to code.

9.3 VVIS concepts

VVIS uses the Vector Head division of duty discussed in Section 9.2.3. This division of

duty uses shapes, storages, iterators, images, regions, accessors, algorithms and functors.

Each of these concepts is discussed in more detail in this section. The responsibilities,

design issues and implementation issues of each concept are covered.

9.3.1 Shapes

Shapes refer to the shape of a storage. While VVIS only provides a single shape, the rect-

angular shape, shapes are included nonetheless because some algorithms require specific

shapes. VVIS’s convolutive algorithm requires the input and output storages to be rect-

angular. VVIS’s transformative and quantitative algorithms accept storages of any shape,

because transformative and quantitative operations do not require spatial iterators.

The template metafunctions in Table 9.4 indicate the shapes of storages. Since they

are template metafunctions, algorithms can use them to decide how to handle storages at

compile-time. Algorithms that can operate on any shape do not need to check the shape

of a storage before using it.
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Figure 9.6 Row-major and Column-major two-dimensional arrays
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Table 9.5 Contiguous storage’s required interface

Expression Return Type Notes

X::component_tl ct::typelist of T1, T2, ...

X::iterator iterator type pointing to T Convertible to

X::const_iterator
X::const_iterator iterator type pointing to const T
a.begin() iterator;

const_iterator for constant a
a.end() iterator;

const_iterator for constant a

9.3.2 Storages

Storages refer to how pixels are arranged, relative to each other. Pixel arrangement is im-

portant to algorithms because it helps determine which method of processing the storage

is best. Three storages are specified: contiguous, unknown and Illife. Contiguous and

unknown storages are one-dimensional storages while Illife storages are n-dimensional

storages. Only contiguous storages will be handled using the VPU.

All storages in VVIS are expected to be row-major; pixels adjacent horizontally are

adjacent in memory, while pixels adjacent vertically are not. For a graphical representa-

tion of row-major and column-major refer to Figure 9.6. Row-major was chosen because

this is the usual order used in the implementation language C++.

Contiguous storages

Contiguous storages are 1-D storages where components of pixels are assumed to be adja-

cent to each other in memory. Originally, components were required to be adjacent to each

other from the beginning to the end, but the restriction was later eased to support chunky

storages. Components of pixels now just have to be adjacent for a single vvm::vector.

The begin function returns an aligned iterator that points to the first element. The
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Figure 9.7 Expected allocation requirements of contiguous storage

begin() end()
Allocated, aligned memory

Allocated, unaligned memory

Figure 9.8 The difference between vector, scalar and pixel steps

vector step

scalar step

pixel step

end function returns an iterator, which may be unaligned, that points to the first past-the-

end scalar. Note that even if the end function returns an unaligned iterator, it is expected

that performing a vvm::vector load from the last aligned position is valid. This means

that the contiguous storage is expected to pad the number of bytes allocated so that the

allocation ends on an aligned position. Figure 9.7 illustrates this requirement. The figure

assumes that there are four scalars in a vvm::vector. In this figure, three extra scalars

were allocated at the end to allow the last aligned position to be loaded as a vvm::vector.

The iterator of a contiguous storage is expected to be able to traverse forwards and

backwards by taking vvm::vector, scalar or pixel steps. Backward iteration is only used

by convolutive algorithms. Scalar and vvm::vector steps refer to advancing the posi-

tion so that the iterator now points to a position that is one scalar or one vvm::vector

length away. Walking by scalar steps is only valid if the step does not leave the cur-

rent vvm::vector. Pixel steps refer to steps where the unit is a scalar, but can cross

vvm::vector boundaries. Pixel steps are used by convolutive algorithms to adjust the

end iterator to cater for kernel sizes. Scalar and pixel steps both exist even though they

both walk by the same unit because a pixel step may require more processing and an

algorithm does not usually need to walk across vvm::vector boundaries. For planar im-

ages, the scalar and pixel step implementations are expected to be the same. For chunky

storages however, the scalar implementation is much easier than pixel step’s. Refer to

Figure 9.8 for an illustration depicting the difference between vvm::vector, scalar and

pixel steps in a chunky storage. While it is possible to use only pixel steps, advancing by

vvm::vectors would be slower than necessary.

Originally, the iterator advanced by vvm::vector and scalar steps by adding differ-

ent numbers. A vvm::vector step would be i += vector_step, and a scalar step would

be i += scalar_step, where i is an iterator, vector_step is equal to VVM’s constant
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scalar count and scalar_step is one. Since this scheme allows iterators to be pointers,

iterators are easier to implement, and produces code that is likely to be easier for the

compiler to optimise. While this iterator style can iterate through planar storages easily,

it cannot iterate through chunky storages, because unlike planar storages, scalar_step

and vector_step would be constant only if their units are different; the units should

be number of scalars and bytes respectively. For planar storages, scalar_step and

vector_step both refer to the number of scalars to move by. If scalar_step and

vector_step both referred to the number of scalars to move by, then they would only

support chunky storages if all channels in the chunky storage were the same type. If we

use different object types to represent vvm::vector, scalar and pixel steps, we can over-

come this problem. Weihe (2002) provides some ideas on how such a syntax could be

implemented correctly. It was not investigated further because it seemed to be a lot of

work for small gains.

Using different iterator types for each type of walk was also considered and discarded

because the resultant interface would be more confusing. It was considered because it was

thought that it would be possible to use simple pointers as iterators in this scheme with

both planar and chunky storages. Unfortunately, this is not possible, because there would

have been only two pointer types (scalar and vvm::vector) and three different walks. In

addition, the different iterators need to be convertible between one another, because we

would want to be able to advance by vvm::vector steps when we were using the VPU

and switch to scalar steps when we came to the edges. The only way to convert pointers

legally is to use reinterpret_cast. This is not suitable if the iterators were not pointers.

It is not possible to perform automatic conversions between pointer types.

The iterator originally kept a single location, and provided methods to move the posi-

tion by different steps. Keeping a single location forces the algorithm to calculate where

the position of the right edge, and might increase != operator’s requirements (!= operator

might have to calculate the real position first). If instead, the iterator kept two orthogonal

components, a scalar and a vvm::vector component, like a complex number, then !=

operator can be applied to each component separately, and there would be no need to cal-

culate the position of the right edge since once the vvm::vector steps were completed,

only the right edge will remain. Keeping two orthogonal components however increases

the cost of constructing the iterator, since the vvm::vector and scalar components have

to be calculated. Keeping two orthogonal components was chosen because this method

simplifies the algorithm’s implementation, and reduces processing requirements during

execution.

Table 9.5 shows the required interface of a contiguous storage. The expected interface

of a contiguous storage’s iterator is shown in Table 9.6. Note that there is no operation

that reads data from or writes data to the current location. The required interface for that

is determined by what accessors the iterator should be compatible with. See Section 9.3.5
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Table 9.6 Contiguous storage’s required iterator interface

Operation Result Notes

difference_type Type Returns type of i - j
i = j iterator& After operation, i != j is false

i != j bool After operation, i == j is false

i - j difference_type Returns number of pixels between

i and j
i.vector != j.vector bool
++i.vector; i.vector++ iterator& Move forward by 1 vector

i.vector += j iterator& Move forward by j vectors

i.scalar != j.scalar bool
++i.scalar; i.scalar++ iterator& Move forward by 1 scalar

i.scalar += j iterator& Move forward by j scalars

++i; i++ iterator& Move forward by 1 pixel

i += j iterator Returns an iterator that has moved

forward by j pixels

--i.vector; i.vector-- iterator& Move backward by 1 vector

i.vector -= j iterator& Move backward by j vectors

--i.scalar; i.scalar-- iterator& Move backward by 1 scalar

i.scalar -= j iterator& Move backward by j scalars

--i; i-- iterator& Move backward by 1 pixel

i -= j iterator& Returns an iterator that has moved

backward by j pixels

for more details on accessors.

Unknown storages

Unknown storages refer to a 1-D stream of pixels where the relationship between the

location of pixels in memory is unknown. Unlike contiguous storages, there are no con-

straints on how the pixels are stored relative to each other. While unknown storages

provide the same functions as contiguous storages, they have different iterators. In addi-

tion, the begin and end functions can both return unaligned iterators. The begin function

returns an iterator that points to the first element. The end function returns an iterator that

points to the past-the-end element.

The iterator of a unknown storage is expected to be able to traverse forwards and back-

wards by taking pixel steps. There is no need for vvm::vector steps because unknown

storages are expected to be processed by the scalar processor. The unknown storage’s and

its iterator’s interfaces are shown in Tables 9.7 and 9.8 respectively.

Note that the unknown storage’s iterator’s interface is the same as the contiguous

storage’s iterator’s interface except it does not have .scalar and .vector operations.

This means that a contiguous storage also conforms to the unknown storage’s interface.
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Table 9.7 Unknown storage’s required interface

Expression Return Type Notes

X::component_tl ct::typelist of T1, T2, ...

X::iterator iterator type pointing to T Convertible to

X::const_iterator
X::const_iterator iterator type pointing to const T
a.begin() iterator;

const_iterator for constant a
a.end() iterator;

const_iterator for constant a

Table 9.8 Unknown storage’s required iterator interface

Operation Result Semantics

i = j iterator& After operation, i != j is false

i != j bool Checks if i and j are pointing to the same location

++i; i++ iterator& Move forward by 1 pixel

i += j iterator& Move forward by j pixels

--i; i-- iterator& Move backward by 1 pixel

i -= j iterator& Move backward by j pixels

This is important because when processing storages, if a single storage is unknown, then

all of the storages would be processed as unknown storages.

Illife storages

Another way of storing pixels in memory is to use an Illife vector (Group 2000). The

Illife vector is a vector which stores pointers to rows in an image. An illustration of an

Illife vector is shown in Figure 9.9.

In VVIS, Illife storage refers to storages where the rows are stored independently from

each other. How the rows are stored is not the concern of the Illife storage. Unlike con-

tiguous or unknown storage, the Illife storage actually represents a n-dimensional storage.

It is n-dimensional because there is no constraint on the storage type of the rows; the stor-

age type of a row can also be an Illife storage. Some algorithms, like convolutions, will

require the Illife storage to be 2-D though.

Figure 9.9 An Illife vector

Illife Vector Image

193



The Illife storage originally started with an interface similar to contiguous storage’s,

except that the begin and end functions accepted an int which represented a row. How-

ever, implementation-wise, the Illife storage algorithm is usually just the contiguous

or unknown algorithm applied a row at a time instead of an image at a time. This

begin(int), and end(int) prototype meant that it was more difficult to call the con-

tiguous algorithm for a row directly, because algorithms accept storages and not iterators.

The main advantage of this interface is the the same class can implement both the Illife

and a 1-D storage interface.

To counter this, the begin and end functions return iterators which on dereferenc-

ing will return a storage for the current row. This interface is actually the same as the

container interface from STL. Using such an interface, the for_each algorithm could be

implemented in the following manner:

template<

typename regionInT,

typename accessorT,

typename functorT

> void for_each(const regionInT& in, accessorT a, functorT f) {

for(typename regionInT::iterator i = in.begin();

i != in.end();

++i) {

// Call for_each for each row

for_each(*i, a, f);

}

}

The Illife storage interface uses some of the same functions as the contiguous storage

interface. However, these functions do different things. For example, in contiguous and

unknown storages, begin() returns an iterator that points to the beginning of image data,

while in Illife storages, begin() returns an iterator pointing to the first row. Because

of this, a storage that supports the Illife storage interface cannot support the contiguous

storage interface.

A contiguous storage can not always be an Illife storage with contiguous storages,

because the beginning of a row would not necessarily be aligned correctly. A contiguous

storage can only be an Illife storage with contiguous storages when the number of pixels

in a row is exactly divisible by the number of scalars in a vvm::vector. A contiguous

storage however can always be an Illife storage with unknown storages. In addition, an

unknown storage can also be an Illife storage with unknown storages and vice versa.

An Illife storage might be able to pose as a contiguous storage if it used an iterator like

Ablavsky et al. (2003)’s and was able to join the right edge of one row with the left edge
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Table 9.9 Illife storage’s required interface

Expression Return Type Notes

X::value_type T T is assignable

X::iterator iterator type pointing to T Convertible to

X::const_iterator
X::const_iterator iterator type pointing to const T
a.begin() iterator;

const_iterator for constant a
a.end() iterator;

const_iterator for constant a

Table 9.10 Illife storages’ required iterator interface

Expression Return Type Notes

i = j iterator& After operation, i != j is false

i != j bool
++i; i++ iterator& Moves down by 1 row

i += j iterator& Moves down by j rows

i + j iterator Returns an iterator j rows down

--i; i-- iterator& Moves up by 1 row

i -= j iterator& Moves up by j rows

i - j iterator Returns an iterator j rows up

*i value_type Returns the current row

i[n] value_type Returns the row n rows down

of the next. However after performing this join, the next row would have to be loaded

unaligned.

It should however be possible to create an Illife storage of unknown storages wrapper

around a contiguous storage, if required. In addition, regions can be used by the user to

convert the storage types if required.

The interface for Illife storages is shown in Table 9.9. Since the Illife storage interface

is quite similar to STL containers, it should be possible to use STL containers to house

each storage of a row easily. The begin function returns an iterator referring to the first

row’s storage. The end function returns an iterator that refers to the first past-the-end row.

The result of the expression begin() == end() is true when there are no rows in the

Illife storage.

The iterator’s requirements is shown in Table 9.10. The iterator supports the +, - and

[] operators. This is required for easy access to other rows positioned relatively to the

current row. An algorithm that requires such functionality is the convolutive algorithm.
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Table 9.11 Template metafunctions for discovering the storage type

Expression Return Type Notes

uses_contiguous_storage<T>::value bool Returns true if T is

a contiguous stor-

age

uses_illife_storage<T>::value bool Returns true if T is

an Illife storage

uses_unknown_storage<T>::value bool Returns true if T
is neither contigu-

ous nor Illife

Figure 9.10 Pixels are labelled with (0, 0) in the top-left corner. The value of x increases

from left to right, while y increases from top to bottom.

(0,0)

Pixel

Discovering storage types

Table 9.11 shows VVIS template metafunctions that determine the storage’s type. Be-

cause they are template metafunctions, they can be used at compile-time. This allows

algorithms to make their decision on how to process storages at compile-time. A storage

does not have to specify that it supports an unknown storage interface. Any storage that is

not contiguous or Illife is treated as unknown. Since VVIS currently cannot detect storage

types at run-time, writing storages whose type changes at run-time is impossible.

9.3.3 Images

Images are two-dimensional representations of a scene composed of pixels. Pixels are

often square and have values which represent the light intensity at a point. They can be

referenced individually via an x and y index. The origin of images in VVIS is located in

the top-left corner of an image. The values of x and y increase from left to right and top

to bottom respectively. Many image-processing libraries such as VIGRA (Köthe 2001),

IMAQ (Nat 1999) and the Microsoft Vision SDK (Group 2000) all label pixels in this

manner. However, some libraries, like the Microsoft Vision SDK (Group 2000) allow the

origin to be moved from its default top-left corner. For a visual representation of this pixel

labelling scheme, refer to Figure 9.10. All images in VVIS are rectangular.
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Figure 9.11 VVIS image hierarchy
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Table 9.12 VVIS storage policies

Storage Policy Description

contiguous_planar_storage Keeps data in a contiguous planar format

contiguous_chunky_storage Keeps data in a contiguous chunky format

illife_planar_storage Keeps data in an Illife storage of contiguous

planar storages

illife_chunky_storage Keeps data in an Illife storage of contiguous

chunky storages

The VVIS image hierarchy is shown in Figure 9.11. The image_base type con-

tains definitions that all images must have. It does not have any implementation. The

base_image type provides the implementation of a general multi-channel image. The

image type represents single-channel images, while rgb_image represents RGB images.

Since VVIS images implement the storage interface, images can be passed directly

to algorithms. The exact storage type of an image in VVIS is dictated by a storage

policy. VVIS provides four different storage policies: contiguous_planar_storage,

contiguous_chunky_storage, illife_planar_storage, and illife_chunky_sto-

rage. The default storage policy is illife_chunky_storage. See Table 9.12 for a brief

description of each storage policy.

The base_image type’s declaration is as follows:

template<

typename typelistT,

typename storageP = illife_chunky_storage

> class base_image<typelistT, storageP>;

The template parameter typelistT is a typelist containing the types for the different

channels. If typelistT contains only one type, then the pixel type is that type. Otherwise,

the pixel type is a ct::tuple<typelistT>. This tuple is how VVIS represents multi-

channel pixels. Using a typelist to specify channel types allows the same declaration to
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Table 9.13 The interface provided by base_image

Expression Return Type Notes

A::component_tl Type Component Typelist

A::pixel_type Type Pixel Type

a(w, h) Creates an image of size w×h
a.component<i>(x, y) ith type in

component_tl
Returns the ith component of

pixel at (x, y)

a.pixel(x, y) pixel_type Returns pixel at (x, y)

support both single-channel and multi-channel images. In addition, it allows different

channels to have different types. Coupled with storage policies, the same declaration also

supports planar and chunky images. For example, a RGBA image with unsigned char

for RGB channels, but bool for the alpha channel can be declared as:

typedef base_image<CT_TYPELIST4(unsigned char,

unsigned char,

unsigned char,

bool)> rgba_image_t;

The interface provided by base_image is summarised in Table 9.13.

The types image and rgb_image are children of base_image that allow the user to

create single-channel and RGB images without having to use a typelist to specify each

channel’s type. In addition, they provide additional functions to access channels in a

more intuitive manner. For example, rgb_image adds red, green, and blue functions. If

base_image was used directly, the user would have to remember that channels 0, 1 and 2

are red, green and blue respectively.

9.3.4 Regions

Regions are storages that represent regions of interest in an image. Since they are storages,

they have to ensure that data are kept in a particular format. To support this, regions can

either have an admit/release phase, or perform unaligned loads and stores automatically.

Like VSIPL, after admittance, the portion of the image referred to by the region should

not be used by the user until it has been released. An image can have more than one

portion admitted to different regions at one time, as long as the portions do not overlap.

Like images, regions were implemented using storage policies. Since regions are

storages, regions can be passed to algorithms. A region can have a different storage

policy from the image (or region) that it is admitting. Because of this, you can use the

region to convert between storage types using admittance if required. Storage formats can

also be converted by copying pixels from one storage to another, using a transformative

algorithm with a functor that did not change the source value.
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9.3.5 Accessors

In the STL, data elements are accessed via references to the original data returned by

operator* and operator[]. The problem with this approach is that for multi-channel

planar images, there is no efficient way of returning a reference to a pixel with all the chan-

nels. Returning pixel references efficiently from chunky images or from single-channel

planar images is possible. To access a pixel that contains all the channels of a multi-

channel planar image, a proxy object is required. This proxy object reduces the efficiency

of accessing the data elements (Kühl & Weihe 1997).

Accessors, which were introduced by Kühl & Weihe (1997), solve this problem by

providing an extra level of indirection. Unlike accessors in VIGRA or those described in

Kühl & Weihe (1997) that provide access to a single type, accessors in VVIS provide ac-

cess to two types — a scalar and a vector type. In addition, apart from being responsible

for retrieving and writing data, and performing any necessary type conversions, acces-

sors in VVIS are also responsible for prefetching. Read and write accessor requirements

for contiguous storage are shown in Tables 9.14 and 9.15, respectively. For unknown stor-

ages, A::prefetch_channel_count,A::vector_type, a.prefetch_read<ch>(i),a.pre-

fetch_write<ch>(i), a.get_vector(i), a.get_vector(i, o), and a.set_vector(-

v, i) do not need to be implemented. VVIS comes with two accessors — pixel_acces-

sor and component_accessor. The accessor pixel_accessor reads and writes com-

plete pixels while component_accessor reads and writes a single component in a pixel.

VVIS accessors provide get and set functions for a scalar and a vector type. Apart

from providing functions that load a scalar and a vector from an iterator, or an offset from

an iterator, VVIS accessors also provide a function that loads a vector from two vectors

originally loaded by the accessor. This extra vector load function is used for unaligned

loading.

For scalar types, type conversions are usually automatically performed by the com-

piler. For vvm::vector types however, type conversions must be specified explicitly. The

accessors provided by VVIS all perform explicit vvm::vector type conversions automat-

ically on write. To prevent the compiler from having to perform explicit type conversions

when none is necessary, the accessors provided by VVIS overload a.set_vector(v, i)

with a template function.

Prefetching is handled by accessors because only accessors know exactly what data

are being loaded and stored. For example, component_accessor would only need to

prefetch a single channel instead of all the channels. Prefetching functions are required

by both read and write accessors.

The types scalar_type and vector_type return the scalar and vvm::vector type

used by the accessor. This is useful if the algorithm wishes to keep a cache of the values

returned from the accessor. The number of prefetch channels required when prefetching
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Table 9.14 Read accessor’s required interface

Expression Return Type Notes

A::prefetch_channel_count int Returns number of

prefetch channels required

A::scalar_type Type Scalar type

A::vector_type Type vvm::vector type

a.prefetch_read<ch>(i) void Prefetch from iterator i for

read using channel ch
a.get_scalar(i) scalar Returns the scalar at itera-

tor i
a.get_scalar(i, o) scalar Returns the scalar at itera-

tor i+o scalar steps

a.get_vector(i) vector Returns the vector at itera-

tor i
a.get_vector(i, o) vector Returns the vector at itera-

tor i+o vector steps

a.get_vector(a, b, o) vector Returns the vector obtained

by ....

For unknown storages, A::prefetch_channel_count, A::vector_type,

a.prefetch_read<ch>(i), a.get_vector(i), and a.get_vector(i, o) do not

need to be implemented.

Table 9.15 Write accessor’s required interface

Expression Return Type Notes

A::prefetch_channel_count int Returns number of

prefetch channels required

A::scalar_type Type Scalar type

A::vector_type Type vvm::vector type

a.prefetch_write<ch>(i) void Prefetch from iterator i for

writing using channel ch
a.set_scalar(s, i) void Writes scalar s to iterator i
a.set_vector(v, i) void Writes vector v to iterator i

For unknown storages, A::prefetch_channel_count, A::vector_type,

a.prefetch_write<ch>(i), and a.set_vector(v, i) do not need to be imple-

mented.
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Table 9.16 VVIS algorithms

Expression Return Type Notes

vvis::convolute(in, ia,
out, oa, f)

void Convolutive algorithm

vvis::for_each(in, ia, f) void Quantitative algorithm

vvis::transform(in, ia,
out, a, f)

void Transformative algorithm

vvis::transform(in1, ia1,
in2, ia2, out, oa, f)

void Transformative algorithm

is stored in prefetch_channel_count. If you want to prefetch from multiple storages,

then be sure to pass the prefetch_channel_count of the previously prefetched storage

to the prefetch functions, so that they do not reuse the same prefetch channels. The

following example illustrates how to prefetch more than one storage.

// Assume there are three accessor types, A1, A2, A3

// Assume a1, a2, a3 are of types A1, A2, A3

// Assume there are three iterators i1, i2, i3

// Assume i1 and i2 are for reading, i3 is for writing

a1.prefetch_read<0>(i1);

a2.prefetch_read<A1::prefetch_channel_count>(i2);

a3.prefetch_write<A1::prefetch_channel_count +

A2::prefetch_channel_count>(i3);

9.3.6 Algorithms

Algorithms are responsible for coordinating how the rest of the concepts are used to solve

a problem. In Section 8.2, three categories, convolutive, quantitative and transformative,

were identified for use with VVIS. The convolute, for_each and transform algorithms

are for convolutive, quantitative and transformative categories respectively. Table 9.16

shows the algorithms that VVIS supports. There are two versions of the transform

algorithm to handle one and two input sets. Like VIGRA, algorithms accept an accessor

for each input or output set. Without an accessor for each input or output set, it is more

difficult to perform operations on images that involve different channels. The algorithms

will be discussed in more detail later, in Chapter 10. Details will be given on how it

is implemented, how they compare to hand-coded scalar and AltiVec versions and the

functor requirements. Implementation issues common to all algorithms are discussed in

this section.

All algorithms are expected to process data differently depending on the storage type.

An algorithm in VVIS does not have to provide an implementation for all three storage
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types. For transformative and quantitative operations, algorithms must provide an im-

plementation for the Illife (with row storages of any type) and unknown storages. For

convolutive operations, algorithms must provide only an Illife (with unknown row stor-

ages) implementation. Implementations for contiguous storages are not required because

contiguous storages also implement the unknown storage interface.

Selecting algorithm implementation at compile-time

Different algorithm implementations can be selected at compile-time by using tag-dispat-

ching (see Section 4.5), or function enablers (see Section 4.6). The appropriate tag or

function enabler can be selected at compile-time by using the template metafunctions for

storage type discovery discussed in Section 9.3.2. Selecting the correct implementation to

use at compile-time should lead to faster programs. While different algorithms can select

their implementations differently, usually, we would select contiguous and Illife before

unknown.

An example of a template metafunction that selects an implementation is shown be-

low:

namespace priv {

struct using_contiguous_storage {};

struct using_illife_storage {};

struct using_unknown_storage {};

template<typename typelistT> struct fastest_storage {

typedef typename boost::mpl::if_c<

ct::all<typelistT, uses_contiguous_storage>::value,

using_contiguous_storage,

typename boost::mpl::if_c<

ct::all<typelistT, uses_illife_storage>::value,

using_illife_storage,

using_unknown_storage

>::type

>::type type;

};

} // End of priv namespace

The metafunction fastest_storage accepts a typelist of storages. If all the storages are

contiguous or Illife storages, then it returns using_contiguous_storage, or using_-

illife_storage respectively. Otherwise, fastest_storage will return using_un-

known_storage. Since Illife storages are not unknown or contiguous storages, if Illife

storages are mixed with contiguous or unknown storages, the algorithm will not compile.
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Once we have a template metafunction that returns a tag representing the version we

should be using, we can implement the algorithm using enablers as shown below:

namespace priv_unknown_storage {

template<

typename storageInT,

typename accessorInT,

typename functorT

> typename ct::enable_if<

boost::is_same<

typename priv::fastest_storage<

CT_TYPELIST1(storageInT)>::type,

priv::using_unknown_storage

>::value

>::type

for_each(const storageInT& in, accessorInT ia, functorT f) {

// Unknown for_each implementation goes here

}

} // End of priv_unknown_storage namespace

namespace priv_illife_storage {

template<

typename storageInT,

typename accessorInT,

typename functorT

> typename ct::enable_if<

boost::is_same<

typename priv::fastest_storage<

CT_TYPELIST1(storageInT)>::type,

priv::using_illife_storage

>::value

>::type

for_each(const storageInT& in, accessorInT ia, functorT f) {

// Illife for_each implementation goes here

}

} // End of priv_illife_storage namespace

namespace priv_contiguous_storage {

template<

typename storageInT,
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typename accessorInT,

typename functorT

> typename ct::enable_if<

boost::is_same<

typename priv::fastest_storage<

CT_TYPELIST1(storageInT)>::type,

priv::using_contiguous_storage

>::value

>::type

for_each(const storageInT& in, accessorInT ia, functorT f) {

// Contiguous for_each implementation goes here

}

} // End of priv_contiguous_storage namespace

using priv_unknown_storage::for_each;

using priv_contiguous_storage::for_each;

using priv_illife_storage::for_each;

Each for_each version is in a different namespace because Apple GCC 3.1 20021003

fails to compile the program if all the functions are in the same namespace. This worka-

round technique was discussed in Section 4.6.

Illife algorithms

The Illife algorithm’s implementation is usually quite trivial, since it will usually use the

algorithms for the other storage types. As an example, the for_each Illife algorithm

is presented in Algorithm 9.1. The Illife algorithms for transform and convolute are

similar, expect they take different arguments and call different algorithms.

Calculating the start of the right edge

Calculating the right edge is only applicable to contiguous storages. In VVIS, all edges

were computed using the scalar processor. Knowing where the right edge is allows us

to deduce which portion of the storage should be processed using the VPU and which

portion uses the scalar processor.

Originally, the author intended to use vvm::align_prev to calculate the right edge’s

start location from end. While this method would be correct if the VPU were used directly,

as Figure 9.12 shows, this would be erroneous for VVIS, because a vvm::vector spans

more than one aligned memory address. The vvm::align_prev function can be used to

calculate the start of the right edge when using AltiVec char types and with a scalar count
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Algorithm 9.1 for_each Illife implementation

template<
typename storageInT,
typename accessorInT,
typename functorT

> typename ct::enable_if<
boost::is_same<

typename priv::fastest_storage<
CT_TYPELIST1(storageInT)>::type,

priv::using_illife_storage
>::value

>::type
for_each(const storageInT& in, accessorInT ia, functorT f) {
for(int y = 0; y < in.height(); ++y) {

vvis::for_each(in.row(y), ia, f);
}

}

Figure 9.12 Comparison of VVIS and VVM align_prev behaviour

Aligned address

Unaligned address

A vvm::vector

End

vvm::align_prev

Beginning Start of right edge

of sixteen. Instead, the right edge’s location should be calculated using the following

formula:

begin + ((begin - end) / VVM_SCALAR_COUNT)

The introduction of orthogonal vvm::vector and scalar components to the iterator,

removes the need to calculate the start of the right edge. When the algorithm iterates

through all the vvm::vector components, the remaining portion is the right edge, as

illustrated by the following code:

for(; begin.vector != end.vector; ++begin.vector) {

// vvm::vector portion

}
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for(; begin.scalar != end.scalar; ++begin.scalar) {

// scalar portion

}

9.3.7 Functors

Different categories have different functor requirements. Quantitative and transformative

functors both accept input via a call to operator(). Transformative functors however are

expected to return their answers, while quantitative functors keep their answers. Convo-

lutive functors have a more complex interface because they accumulate input one pixel at

a time and then return the answer for that set of input. Functor requirements are discussed

in more detail in Chapter 10. In this section, issues common to all functors are discussed.

The issues discussed are the need for both a scalar and a vvm::vector implementation,

determining types automatically and binders.

The need for a scalar and a vvm::vector implementation

VVIS requires functors to provide two implementations for the same operation, one for

the scalar processor and one for the VPU. The scalar version is used to handle edges and in

situations where the storage format is not suitable for vector processing (when processing

unknown storages).

Because VVM provides many of the same operations for vvm::vectors as scalars, in

many cases it is possible implement a single templated version for both versions. In some

cases however, the scalar and vvm::vector implementations are not identical. Functors

using comparison and logical operators and vvm::vector specific functions will usu-

ally require different scalar and vvm::vector implementations because the scalar and

vvm::vectors functions are not identical. An example of a non-identical functor would

be the less functor which is shown below:

template<typename T = void> struct less

: public std::binary_function<

T, T, typename vvm::scalar_traits<T>::bool_type

> {

typename vvm::scalar_traits<T>::bool_type

operator()(const T& a, const T& b) const {

return a < b ? VVM_TRUE : VVM_FALSE;

}

vvm::vector<typename vvm::scalar_traits<T>::bool_type>

operator()(const vvm::vector<T>& a,

const vvm::vector<T>& b) const {
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return a < b;

}

};

The less functor is non-identical because vvm::vector’s operator< returns ~0 for true

while the scalar operator< returns 1 for true.

Having two implementations for each functor, while required, makes it impossible

to use STL binders with VVIS functors. Because STL binders cannot be used, VVIS

provides its own binders. Having two implementations also prohibits the use of Boost’s

Lambda library to generate functors from expressions automatically. While VVIS cur-

rently does not provide a substitute, it should be possible to create a replacement using

expression templates.

Functors determine types automatically

Since VVM provides many of the same operations for vvm::vectors as for scalars, in

many cases it is possible implement a single templated version for both versions. For

example, the plus functor can be implemented as follows:

struct plus {

template<typename T>

const T operator(const T& a, const T& b) const {

return a + b;

}

};

Such an implementation does not require the user to specify a type for plus, and makes

it impossible for the user to specify the wrong type. These make plus easier to use.

This plus functor is not adaptable, and therefore cannot be used with adaptors like

binders, because it does not contain information about its arguments and return type (Mey-

ers 2002). Binders require argument and return types when a functor is constructed. This

information is only available when the plus functor is used and not when it is constructed.

While the binder can decide the argument types when it is used, determining the return

type is not possible. To solve this problem, we can create functors whose argument and

return types can both be determined automatically or specified explicitly by the user, using

techniques described in (Meyers 2002). Shown below is the plus functor reimplemented

to support both automatic type determination and explicit type specification.

template<typename T = void> struct plus

: public std::binary_function<T, T, T> {

T operator()(const T& a, const T& b) const {
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return a + b;

}

vvm::vector<T> operator()(const vvm::vector<T>& a,

const vvm::vector<T>& b) const {

return a + b;

}

};

template<> struct plus<void> {

template<typename T>

T operator()(const T& a, const T& b) const {

return a + b;

}

};

VVIS functors that can determine the required types automatically are:

plus minus multiplies

divides modulus negate

equal_to not_equal_to greater

less greater_equal less_equal

logical_and logical_or logical_not

plus_saturated minus_saturated bitwise_and

bitwise_not bitwise_or constant

VVIS functors that cannot determine the required types automatically are:

equalize linear_filter max_filter

The functors cannot determine their type automatically because they keep additional in-

formation. For example, equalize requires a range. If a type is not specified for the

range, then equalize would introduce conversion costs during execution if the type cho-

sen for the range is not the type that was required.

Binders

Binders require the functor to be instantiated with a type. Functors in VVIS are parame-

terised using their scalar type. The vector type is deduced by applying the template meta-

function vvm::add_vector to the scalar type. Using vvm::add_vector is preferable to

simply using vvm::vector because the scalar type T might be const or a ct::tuple.

When vvm::add_vector encounters a const T, it removes the const. When T is a

ct::tuple, vvm::add_vector returns a ct::tuple of vvm::vectors. Note that the
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VVM implementation used cannot handle const vvm::vectors because it did not ini-

tialise the new vvm::vector using the constructor.

Because there are two implementations for each functor, STL C++ binders cannot be

used with VVIS functors. Their reimplementation is straightforward though, once we

establish that functors are parameterised using their scalar type.

template<typename opT>

class binder1st

: public std::unary_function<

typename opT::second_argument_type,

typename opT::result_type

> {

public:

binder1st(const opT& op,

const typename opT::first_argument_type& value)

: _op(op), _value(value) {

}

typename opT::result_type

operator()(const typename opT::second_argument_type& a) const {

return _op(_value, a);

}

typename vvm::add_vector<typename opT::result_type>::type

operator()(const typename vvm::add_vector<

typename opT::second_argument_type>::type& a) const {

return _op(_value, a);

}

protected:

opT _op;

typename opT::first_argument_type _value;

};

template<typename opT, typename T>

binder1st<opT> bind1st(const opT& op, const T& x) {

return binder1st<opT>(op, x);

}

For single-channel images, the pixel value is passed to the functor. For multi-channel

images however, the components are packaged together in at tuple (ct::tuple to be

exact).

The binders provided by VVIS are as follows:

binder1st bind1st
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binder2nd bind2nd

Like STL, binder1st and binder2nd are binder types, while bind1st and bind2nd are

functions that facilitate the creation of binder1st and binder2nd respectively.

9.4 Import/Export

VVIS’s import/export interface consists of three main classes — fimporter, fexporter

and sgimporter. The fimporter and fexporter classes read and write from and to

image files respectively. The sgimporter class grabs images from a sequence grabber

that is connected to the computer.

VVIS imports, exports and captures images using QuickTime. However, QuickTime

usually provides images in a chunky scalar format. While VVIS can process Quick-

Time images directly as unknown storages, the VPU is not used with unknown storages.

To process the image using the VPU, VVIS has to convert the chunky scalar image to

an appropriate storage format. Four different conversion methods, using GetCPixel, us-

ing GetPixBaseAddr, using GetPixBaseAddr with AltiVec, and using GetPixBaseAddr

with VVM, were implemented and evaluated. AltiVec and VVM dechunkify and chun-

kify functions also need to handle unalignment.

While QuickTime supports planar images, the author was unable to capture directly

to planar images. In addition, since QuickTime does not support chunky vvm::vector

images, conversion routines might still be required. Moreover since video cards usually

use a chunky scalar format, QuickTime might still need to perform conversions internally

even if it captured directly to planar images.

9.4.1 GetCPixel

The easiest and most portable method of getting pixels from a GWorld is to use the

GetCPixel function (App 2002d). This function returns a RGBColor structure (App

2002d) which contains values for red, green and blue as 16-bit integers. Since they are

16-bit integers, they need to be scaled if the target destination does not use 16-bit integers

to represent the red, green and blue components. GetCPixel is portable because the same

code not only works on any GWorld regardless of the internal representation of the pixels,

it also works with on-screen GWorlds. None of the other methods discussed work with

on-screen GWorlds.

Converting a GWorld to a VVIS image using GetCPixel is shown below:

// Assume width & height refer to the width & height of the image

const float uc_max =
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(float)std::numeric_limits<unsigned char>::max();

const float us_max =

(float)std::numeric_limits<unsigned short>::max();

// Keep original port and device

CGrafPtr orig_port;

GDHandle orig_device;

GetGWorld(&orig_port, &orig_device);

// Convert

SetGWorld(gworld, NULL);

for(int y = 0; y < height; ++y) {

for(int x = 0; x < width; ++x) {

RGBColor c;

GetCPixel(x, y, &c);

red[y][x] = (unsigned char)((c.red / us_max) * uc_max);

blue[y][x] = (unsigned char)((c.blue / us_max) * uc_max);

green[y][x] = (unsigned char)((c.green / us_max) * uc_max);

}

}

// Restore original port and device

SetGWorld(orig_port, orig_device);

Converting VVIS images back to a GWorld is shown below:

// Assume width & height refer to the width & height of the image

const float uc_max =

(float)std::numeric_limits<unsigned char>::max();

const float us_max =

(float)std::numeric_limits<unsigned short>::max();

// Keep original port and device

CGrafPtr orig_port;

GDHandle orig_device;

GetGWorld(&orig_port, &orig_device);

// Convert

SetGWorld(gworld, NULL);

for(int y = 0; y < height; ++y) {

for(int x = 0; x < width; ++x) {

RGBColor c;

c.red = (unsigned short)((red[y][x] / uc_max) * us_max);

c.blue = (unsigned short)((blue[y][x] / uc_max) * us_max);

211



c.green = (unsigned short)((green[y][x] / uc_max) * us_max);

SetCPixel(x, y, &c);

}

}

// Restore original port and device

SetGWorld(orig_port, orig_device);

While this code is easy to write and highly portable, it is also rather slow. A quick look

ahead to Table 9.17 shows that this method is abysmally slow, being unable to keep up

with the QuickTime capture process, even when capturing 320×240 images.

9.4.2 GetPixBaseAddr

Othmer & Reed (1992) discussed methods for accessing data in off-screen GWorlds

quickly. Instead of using GetCPixel, the pixmap structure can be accessed directly.

When using this method, there is no need to call GetCPixel, nor is there any need to

use RGBColor. QuickTime supports a number of different formats (see App (2002f), IV-

2862 for a list of formats), and selecting one that closely matches the target image reduces

the time required to massage the data to the required format. For example, appropriate

pixel formats for converting to unsigned char RGB images using the method discussed

in this section are either 24-bit RGB or 32-bit RGBA.

To access the pixels directly, we have to obtain the PixMap from the GWorld using

the GetGWorldPixMap (App 2002d) function. After obtaining a handle to the PixMap,

LockPixels (App 2002d) should be called. LockPixels prevents QuickTime from mov-

ing the GWorld’s data while the program is accessing the pixels directly. Since programs

typically decompress to the same image, the LockPixels function might only need to

be issued once after the GWorld is created. GetPixBaseAddr (App 2002d) provides

an address to the raw image data in memory. GetPixRowBytes (App 2002d) returns

the number of bytes per row. In Windows, since GetPixRowBytes is not available,

(**pixmap).rowBytes & 0x3fff can be used instead. After obtaining the address of

the first pixel, and the number of bytes per row, we iterate through memory and copy the

components to separate channels. The meaning of the pixels depends on the pixel format

of the GWorld.

The code below dechunkifies a k32ARGBPixelFormat GWorld. While a 24-bit RGB

pixel format could have been chosen, k32ARGBPixelFormatwas used to enable all meth-

ods discussed to use the same pixel format. Using GetPixBaseAddr with AltiVec and

VVM requires 32-bit images.

// Assume width & height refer to the width & height of the image
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// Convert from k32ARGBPixelFormat

PixMapHandle p = GetGWorldPixMap(gworld);

LockPixels(p);

unsigned char* addr = (unsigned char*)GetPixBaseAddr(p);

// row_bytes is the number of bytes in a row of the GWorld image

unsigned short row_bytes = GetPixRowBytes(p);

for(int y = 0; y < height; ++y) {

for(int x = 0, i = 0; x < width; ++x, i += 4) {

// If we had wanted alpha

// alpha[y][x] = addr[i];

red[y][x] = addr[i+1];

green[y][x] = addr[i+2];

blue[y][x] = addr[i+3];

}

addr += row_bytes;

}

UnlockPixels(p);

Converting the data back to the GWorld involves writing directly to the memory location

returned by the GetPixBaseAddr. The alpha channel should be set to 0xff to prevent the

image from being transparent.

// Assume width & height refer to the width & height of the image

// Remember to call LockPixels on gworld

// Convert to k32ARGBPixelFormat

PixMapHandle p = GetGWorldPixMap(gworld);

LockPixels(p);

unsigned char* addr = (unsigned char*)GetPixBaseAddr(p);

// row_bytes is the number of bytes in a row of the GWorld image

unsigned short row_bytes = GetPixRowBytes(p);

for(int y = 0; y < height; ++y) {

for(int x = 0, i = 0; x < width; ++x, i += 4) {

addr[i] = 0xff; // Opaque

addr[i+1] = red[y][x];

addr[i+2] = green[y][x];

addr[i+3] = blue[y][x];

}

addr += row_bytes;

}
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UnlockPixels(p);

9.4.3 GetPixBaseAddr with AltiVec

Computers with AltiVec (Mot 1999, App 2002c, AltiVec.org 2002, Lai & McKerrow

2001) can use AltiVec functions to convert chunky scalar data to planar data more rapidly.

An appropriate pixel format for converting to unsigned char planar RGB images is

k32ARGBPixelFormat, a 32-bit RGB format. A 24-bit RGB format is not suitable be-

cause it is more difficult to separate 24-bit pixels using AltiVec. Any other 32-bit RGB

format, such as k32BGRAPixelFormat, would also have be appropriate. Like the version

presented in the previous section, the AltiVec version also accesses the image data di-

rectly using GetGWorldPixMap and GetPixBaseAddr. It therefore also requires a call to

LockPixels. The AltiVec version differs in the manner in the way in which it dechunki-

fies and chunkifies images.

Since the pixel format chosen was k32ARGBPixelFormat, the source image is of the

form ARGBARGBARGBARGB. Applying the vec_pack function reduces the input to

GBGBGBGB. A second pass results in BBBB. To get the other components, we shift the

ARGB and GB vectors by 8 and 16 bits respectively using vec_sro. For example, shifting

the GB vector right by 8 bits produces 0GBGBGBG. Passing this through vec_pack gives

us GGGG. A 32-bit RGB pixel format was chosen even though the alpha channel was not

needed, because this technique can only dechunkify images with pixels that consist of

two, four, eight, sixteen, and so on, bytes.

// Assume width & height refer to the width & height of the image

// Remember to call LockPixels on gworld

// Convert from k32ARGBPixelFormat

vector unsigned char c16 = (vector unsigned char)(16);

vector unsigned char c8 = (vector unsigned char)(8);

vector unsigned int argb1, argb2;

vector unsigned int argb3, argb4;

vector unsigned short gb1, gb2;

vector unsigned short ar1, ar2;

vector unsigned char r, g, b;

PixMapHandle p = GetGWorldPixMap(gworld);

LockPixels(p);

char* addr = GetPixBaseAddr(p);

// row_bytes is the number of bytes in a row of the GWorld image

unsigned short row_bytes = GetPixRowBytes(p);

for(int y = 0; y < height; ++y) {
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for(int x = 0, i = 0; x < width; x += 16, i += 4*16) {

unsigned int* iaddr = (unsigned int*)(&addr[i]));

argb1 = vec_ld( 0, iaddr);

argb2 = vec_ld(16, iaddr);

argb3 = vec_ld(32, iaddr);

argb4 = vec_ld(48, iaddr);

gb1 = vec_pack(argb1, argb2);

gb2 = vec_pack(argb3, argb4);

vec_st(vec_pack(gb1, gb2), 0, &blue[y][x]);

vec_st(vec_pack(vec_sro(gb1, c8), vec_sro(gb2, c8)), 0,

&green[y][x]);

ar1 = vec_pack(vec_sro(argb1, c16), vec_sro(argb2, c16));

ar2 = vec_pack(vec_sro(argb3, c16), vec_sro(argb4, c16));

vec_st(vec_pack(ar1, ar2), 0, &red[y][x]);

// For if we had wanted alpha

// vec_st(vec_pack(vec_sro(ar1, c8), vec_sro(ar2, c8)), 0,

// &alpha(x, y));

}

addr += row_bytes;

}

UnlockPixels(p);

Chunkifying is a bit easier than dechunkifying because AltiVec provides two merge op-

erations. The mergel interlaces the lower half of the vectors, while mergeh interlaces

the other half. For example, a mergel and mergeh on 1234 and 5678 produces 3748 and

1526 respectively.

// Assume width & height refer to the width & height of the image

// Remember to call LockPixels on gworld

// Convert to k32ARGBPixelFormat

vector unsigned char gr1, gr2;

vector unsigned char ag1, ag2;

vector unsigned char r, g, b;

vector unsigned char a = (vector unsigned char)(0xff); // Opaque

PixMapHandle p = GetGWorldPixMap(gworld);

LockPixels(p);

char* addr = GetPixBaseAddr(p);

// row_bytes is the number of bytes in a row of the GWorld image

long row_bytes = GetPixRowBytes(p);
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for(int y = 0; y < height; ++y) {

for(int x = 0, i = 0; x < width; x += 16, i += 4*16) {

r = vec_ld(0, &red[y][x]);

g = vec_ld(0, &green[y][x]);

b = vec_ld(0, &blue[y][x]);

rb1 = vec_mergeh(r, b);

rb2 = vec_mergel(r, b);

ag1 = vec_mergeh(a, g);

ag2 = vec_mergel(a, g);

vec_st(vec_mergeh(ag1, rb1), 0, &addr[i]);

vec_st(vec_mergel(ag1, rb1), 0, &addr[i+16]);

vec_st(vec_mergeh(ag2, rb2), 0, &addr[i+32]);

vec_st(vec_mergel(ag2, rb2), 0, &addr[i+48]);

}

addr += row_bytes;

}

UnlockPixels(p);

The AltiVec chunkify and dechunkify functions presented above assume that the result of

GetPixBaseAddr(p) is aligned, and that the width of the image is divisible by 16. The

address returned by GetPixBaseAddr(p) does not actually seem to be guaranteed to be

aligned. In addition, the width of the image is definitely not always divisible to 16. The

unaligned AltiVec chunkify version, shown below, addresses these problems.

// Assume width & height refer to the width & height of the image

PixMapHandle pixmap = GetGWorldPixMap(gworld);

unsigned char* addr = GetPixBaseAddr(pixmap);

// row_bytes is the number of bytes in a row of the GWorld image

long row_bytes = GetPixRowBytes(pixmap);

__vector unsigned char c16 = (__vector unsigned char)(16);

__vector unsigned char c8 = (__vector unsigned char)(8);

__vector unsigned int argb1, argb2, argb3, argb4, argb5;

__vector unsigned short gb1, gb2, ar1, ar2;

// Assuming ARGB

for(int y = 0; y < height; ++y) {

// Calculate left/right edges

const int left_edge = (((unsigned long)addr) & 0xf != 0) ?

VVM_SCALAR_COUNT : 0;

const int right_edge = (width - ((width - left_edge) % 16)) +
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left_edge;

int i = 0, x = 0;

for(; x < left_edge; ++x, i += 4) {

red[y][x] = addr[i+1];

green[y][x] = addr[i+2];

blue[y][x] = addr[i+3];

}

__vector unsigned char vmask = vec_lvsl(0, addr);

argb5 = vec_ld(0, (unsigned int*)&addr[i]);

for(; x < right_edge; x += 16, i += 4*16) {

unsigned int* iaddr = (unsigned int*)&addr[i];

argb1 = argb5;

argb2 = vec_ld(16, iaddr);

argb3 = vec_ld(32, iaddr);

argb4 = vec_ld(48, iaddr);

argb5 = vec_ld(64, iaddr);

// Do shift

argb1 = vec_perm(argb1, argb2, vmask);

argb2 = vec_perm(argb2, argb3, vmask);

argb3 = vec_perm(argb3, argb4, vmask);

argb4 = vec_perm(argb4, argb5, vmask);

// Chunkify

gb1 = vec_pack(argb1, argb2);

gb2 = vec_pack(argb3, argb4);

vec_st(vec_pack(gb1, gb2), 0, &blue[y][x]);

vec_st(vec_pack(vec_sro(gb1, c8), vec_sro(gb2, c8)), 0,

&green[y][x]);

ar1 = vec_pack(vec_sro(argb1, c16), vec_sro(argb2, c16));

ar2 = vec_pack(vec_sro(argb3, c16), vec_sro(argb4, c16));

vec_st(vec_pack(ar1, ar2), 0, &red[y][x]);

}

for(; x < width; ++x, i += 4) {

red[y][x] = addr[i+1];

green[y][x] = addr[i+2];

blue[y][x] = addr[i+3];

}

addr += row_bytes;

}
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The value of left_edge is either VVM_SCALAR_COUNT or 0 depending on if the address is

unaligned or aligned respectively. It is always VVM_SCALAR_COUNT when unaligned be-

cause in VVIS, contiguous storages only have contiguous pixels across a vvm::vector.

If left_edge had been set to the unaligned offset, then the function would have oper-

ated correctly only with contiguous planar storages, but not contiguous chunky storages.

VVM_SCALAR_COUNT was set to 16 to emulate VVIS behaviour in AltiVec mode.

The unaligned AltiVec dechunkify operation is shown below:

// Assume width & height refer to the width & height of the image

// AltiVec unaligned chunkify

PixMapHandle pixmap = GetGWorldPixMap(gworld);

unsigned char* addr = GetPixBaseAddr(pixmap);

// row_bytes is the number of bytes in a row of the GWorld image

long row_bytes = GetPixRowBytes(pixmap);

__vector unsigned char rb1, rb2, ag1, ag2;

__vector unsigned char r, g, b;

__vector unsigned char a = (__vector unsigned char)(0xff);

// Assuming ARGB

for(int y = 0; y < height; ++y) {

// Calculate left/right edges

const int right_edge = width - (width % 16);

int i = 0, x = 0;

for(; x < right_edge; x += 16, i += 4*16) {

r = vec_ld(0, &red[y][x]);

g = vec_ld(0, &green[y][x]);

b = vec_ld(0, &blue[y][x]);

rb1 = vec_mergeh(r, b);

rb2 = vec_mergel(r, b);

ag1 = vec_mergeh(a, g);

ag2 = vec_mergel(a, g);

store(vec_mergeh(ag1, rb1), (unsigned char*)&addr[i]);

store(vec_mergel(ag1, rb1), (unsigned char*)&addr[i+16]);

store(vec_mergeh(ag2, rb2), (unsigned char*)&addr[i+32]);

store(vec_mergel(ag2, rb2), (unsigned char*)&addr[i+48]);

}

for(; x < width; ++x, i += 4) {

addr[i] = 0xff;

addr[i+1] = red[y][x];
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addr[i+2] = green[y][x];

addr[i+3] = blue[y][x];

}

addr += row_bytes;

}

In this case, the source is always aligned, but the destination is not. Thus we can load

aligned, but we need to write unaligned. The unaligned write function, store, was dis-

cussed previously, in Section 3.5.3.

9.4.4 GetPixBaseAddr with VVM

The VVM versions of the AltiVec chunkify and dechunkify operations are discussed in

this section. While VVM does not have AltiVec’s vec_pack functions, it has type con-

versions, which perform the same operation as vec_pack. See Appendix B for more

information about what AltiVec functions are used when the VVM implementation con-

verts from vuint32 to vuint8.

// Assume width & height refer to the width & height of the image

const int step = VVM_SCALAR_COUNT;

PixMapHandle pixmap = GetGWorldPixMap(gworld);

char* addr = GetPixBaseAddr(pixmap);

// row_bytes is the number of bytes in a row of the GWorld image

long row_bytes = GetPixRowBytes(pixmap);

vvm::vuint32 argb1;

// Assuming ARGB

for(int y = 0; y < height; ++y) {

for(int x = 0, i = 0; x < width; x += step, i += 4*step) {

argb1 = vvm::load(reinterpret_cast<vvm::uint32*>(&addr[i]),

0);

vvm::store(vvm::vector_cast<vvm::vuint8>(argb1),

&image.blue(x, y));

vvm::store(vvm::vector_cast<vvm::vuint8>(argb1 > > 8),

&image.green(x, y));

vvm::store(vvm::vector_cast<vvm::vuint8>(argb1 > > 16),

&image.red(x, y));

// Discard alpha channel

}

addr += row_bytes;

}
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The chunkify operation is similar to the AltiVec chunkify function, because VVM also

has mergel and mergeh functions.

// Assume width & height refer to the width & height of the image

const int step = VVM_SCALAR_COUNT;

PixMapHandle pixmap = GetGWorldPixMap(gworld);

char* addr = GetPixBaseAddr(pixmap);

// row_bytes is the number of bytes in a row of the GWorld image

long row_bytes = GetPixRowBytes(pixmap);

vvm::vuint8 rb1, rb2, ag1, ag2;

vvm::vuint8 r, g, b;

vvm::vuint8 a(0xff); // Opaque

// Assuming ARGB

for(int y = 0; y < height; ++y) {

for(int x = 0, i = 0; x < width; x += step, i += 4*step) {

r = vvm::load(&image.red(x, y));

g = vvm::load(&image.green(x, y));

b = vvm::load(&image.blue(x, y));

rb1 = vvm::mergeh(r, b);

rb2 = vvm::mergel(r, b);

ag1 = vvm::mergeh(a, g);

ag2 = vvm::mergel(a, g);

vvm::store(vvm::mergeh(ag1, rb1), (uint8*)&addr[i]);

vvm::store(vvm::mergel(ag1, rb1),(uint8*)&addr[i+step]);

vvm::store(vvm::mergeh(ag2, rb2),(uint8*)&addr[i+2*step]);

vvm::store(vvm::mergel(ag2, rb2),(uint8*)&addr[i+3*step]);

}

addr += row_bytes;

}

The unaligned VVM dechunkify operation is shown below. Like the unaligned AltiVec

dechunkify function presented in the previous section, left_edge is either VVM_SCALAR_-

COUNT or 0 to support both contiguous planar and contiguous chunky storages. The value

of i starts from -offset to ensure that &addr[i] is always aligned, because, as men-

tioned previously, loading unaligned addresses using vvm::load is undefined in VVM.

// Assume width & height refer to the width & height of the image

PixMapHandle pixmap = GetGWorldPixMap(gworld);
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unsigned char* addr = GetPixBaseAddr(pixmap);

// row_bytes is the number of bytes in a row of the GWorld image

long row_bytes = GetPixRowBytes(pixmap);

vvm::vuint32 argb1, argb2, argb;

vvm::vuint32 c8(8), c16(16);

// Assuming ARGB

for(int y = 0; y < height; ++y) {

const int offset = vvm::uoffset(addr);

// Calculate left/right edges

const int left_edge = (vvm::uoffset(addr) != 0) ?

VVM_SCALAR_COUNT : 0;

const int right_edge = (width - ((width - left_edge)

% VVM_SCALAR_COUNT)) + left_edge;

// Use -offset to ensure addr[i] is aligned

int i = -offset, x = 0;

for(; x < left_edge; ++x, i += 4) {

red[y][x] = addr[i+1];

green[y][x] = addr[i+2];

blue[y][x] = addr[i+3];

}

argb2 = vvm::load(reinterpret_cast<vvm::uint32*>(&addr[i]));

for(; x < right_edge;

x += VVM_SCALAR_COUNT, i += 4*VVM_SCALAR_COUNT) {

argb1 = argb2;

argb2 = vvm::load(reinterpret_cast<vvm::uint32*>(&addr[i])

+ VVM_SCALAR_COUNT);

argb = vvm::load(argb1, argb2, offset);

vvm::store(vvm::vector_cast<vvm::vuint8>(argb),

&blue[y][x]);

vvm::store(vvm::vector_cast<vvm::vuint8>(argb > > c8),

&green[y][x]);

vvm::store(vvm::vector_cast<vvm::vuint8>(argb > > c16),

&red[y][x]);

}

for(; x < width; ++x, i += 4) {

red[y][x] = addr[i+1];

green[y][x] = addr[i+2];

blue[y][x] = addr[i+3];
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}

addr += row_bytes;

}

The unaligned VVM chunkify operation is shown below.

// Assume width & height refer to the width & height of the image

PixMapHandle pixmap = GetGWorldPixMap(gworld);

char* addr = GetPixBaseAddr(pixmap);

// row_bytes is the number of bytes in a row of the GWorld image

long row_bytes = GetPixRowBytes(pixmap);

vvm::vuint8 rb1, rb2, ag1, ag2;

vvm::vuint8 r, g, b;

vvm::vuint8 a(0xff); // Opaque

// Assuming ARGB

for(int y = 0; y < height; ++y) {

// Calculate left/right edges

const int right_edge = width - (width % VVM_SCALAR_COUNT);

int x = 0, i = 0;

for(; x < right_edge;

x += VVM_SCALAR_COUNT, i += 4*VVM_SCALAR_COUNT) {

r = vvm::load(&red[y][x]);

g = vvm::load(&green[y][x]);

b = vvm::load(&blue[y][x]);

rb1 = vvm::mergeh(r, b);

rb2 = vvm::mergel(r, b);

ag1 = vvm::mergeh(a, g);

ag2 = vvm::mergel(a, g);

store_unaligned(vvm::mergeh(ag1, rb1),

reinterpret_cast<vvm::uint8*>(&addr[i]));

store_unaligned(vvm::mergel(ag1, rb1),

reinterpret_cast<vvm::uint8*>(&addr[i+VVM_SCALAR_COUNT]));

store_unaligned(vvm::mergeh(ag2, rb2),

reinterpret_cast<vvm::uint8*>(&addr[i+2*VVM_SCALAR_COUNT]));

store_unaligned(vvm::mergel(ag2, rb2),

reinterpret_cast<vvm::uint8*>(&addr[i+3*VVM_SCALAR_COUNT]));

}

for(; x < width; ++x, i += 4) {
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addr[i+1] = red[y][x];

addr[i+2] = green[y][x];

addr[i+3] = blue[y][x];

}

addr += row_bytes;

}

The unaligned store function implemented using only VVM’s aligned functions is shown

below:

void store_unaligned(const vvm::vuint8& v, unsigned char *p) {

// Load the surrounding areas

vvm::vuint8 low = vvm::load(p, 0);

vvm::vuint8 high = vvm::load(p, 16);

// Prepare the constants that we need

vvm::vuint8 pv = vvm::lvsl(p, 0);

vvm::vuint8 offset(vvm::uoffset(p));

// Insert our data into the low and

// high vectors

low = vvm::select(pv >= offset, low, v);

high = vvm::select(pv < offset, v, high);

// Store the two aligned result

// vectors

vvm::store(low, p, 0);

vvm::store(high, p, 16);

}

Note that VVM’s unaligned functions were added after these results were collated. As a

result, the VVM dechunkify and chunkify operations discussed in this section uses only

VVM’s aligned functions. This is why the store_unaligned function was used.

9.4.5 Results

All results were collected on a PowerMac Dual 450 MHz PowerPC G4, with 384 MB of

RAM and 1 MB L2 cache for each processor. The camera used was an Orange Micro iBot

FireWire. The iBot is capable of delivering frame rates of up to 30 frames per second at

640×480 pixels depending on the configuration of the computer (Ora 2002). Programs

were compiled using Apple GCC 3.1 20021003 with the -Os (optimise for size) setting.

Tables 9.17 and 9.18 show the capture and maximum conversion rates for different

conversion methods at different sizes respectively. The versions tested were:
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Decompress Only: This version does not perform any conversions. Since there are no

conversions, maximum conversion rate is not applicable.

GetCPixel: This version was discussed in Section 9.4.1.

GetPixBaseAddr: This version was discussed in Section 9.4.2.

AltiVec (Aligned): This refers to the aligned AltiVec chunkify and dechunkify functions

discussed in Section 9.4.3.

VVM (Aligned) in Scalar mode: This refers to the aligned VVM chunkify and dechun-

kify functions discussed in Section 9.4.4, running in scalar mode. In this mode,

there is only 1 scalar in each vvm::vector.

VVM (Aligned) in AltiVec mode: This refers to the aligned VVM chunkify and dech-

unkify functions discussed in Section 9.4.4, running in AltiVec mode. In this mode,

there are 16 scalars in each vvm::vector.

AltiVec (Unaligned): This refers to the unaligned AltiVec chunkify and dechunkify func-

tions discussed in Section 9.4.3.

VVM (Unaligned) in Scalar mode: This refers to the unaligned VVM chunkify and de-

chunkify functions discussed in Section 9.4.4, running in scalar mode. In this mode,

there is only 1 scalar in each vvm::vector.

VVM (Unaligned) in AltiVec mode: This refers to the unaligned VVM chunkify and

dechunkify functions discussed in Section 9.4.4, running in AltiVec mode. In this

mode, there are 16 scalars in each vvm::vector.

Table 9.17 shows the capture rate, in frames per second, for the different conversion meth-

ods for images of different sizes. For each method, except Decompress Only, two capture

rates, read-only and read-write, are shown. Decompress Only’s capture rate is equal to

the maximum capture rate attainable under the configuration used. Images were captured

during a 20 second period, except for GetCPixel and VVM (Unaligned) in Scalar mode,

which were run for 60 seconds.

Table 9.17 shows that GetCPixel requires so much processing that not only were pro-

grams using GetCPixel unable to keep up with Decompress Only even with 320×240

images, they were more than 5 times slower. For read-only, GetPixBaseAddr, AltiVec

(Aligned), VVM (Aligned) in AltiVec mode, AltiVec (Unaligned), and VVM (Unaligned)

in AltiVec mode were able to keep up with Decompress Only for images of size 640×480

and smaller. For read-write, only AltiVec (Aligned), and AltiVec (Unaligned) were able

to keep up with Decompress Only for images of size 640×480 and smaller.
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Table 9.17 Capture rate in frames per second. Where applicable, the two frame rates

represent capture rates for read-only and read-write tasks respectively.

320×240 640×480 800×600

Decompress Only 29.9 29.9 29.9

GetCPixel 5.3, 4.5 1.5, 1.2 1.0, 0.8

GetPixBaseAddr 29.9, 29.9 29.9, 25.8 21.9, 15.6

AltiVec (Aligned) 29.9, 29.9 29.9, 29.9 27.9, 23.4

VVM (Aligned) in Scalar mode 29.9, 29.9 18.4, 8.7 11.3, 5.7

VVM (Aligned) in AltiVec mode 29.9, 29.9 29.9, 29.0 24.5, 18.1

AltiVec (Unaligned) 29.9, 29.9 29.9, 29.9 28.2, 19.1

VVM (Unaligned) in Scalar mode 29.9, 13.4 17.8, 3.5 10.9, 2.3

VVM (Unaligned) in AltiVec mode 29.9, 29.9 29.9, 19.8 18.0, 12.3

1024×768 1280×960 1600×1200

Decompress Only 25.1 19.6 11.4

GetCPixel 0.7, 0.6 0.6, 0.5 0.8 , 0.6

GetPixBaseAddr 14.1, 9.7 8.7, 6.3 5.8, 4.3

AltiVec (Aligned) 14.1, 9.7 11.1, 9.2 7.4, 6,1

VVM (Aligned) in Scalar mode 7.1, 3.7 4.7, 2.6 3.3, 2.1

VVM (Aligned) in AltiVec mode 15.3, 10.9 10.4, 7.2 6.6, 4.9

AltiVec (Unaligned) 20.3, 11.9 11.4, 7.7 7.5, 5.1

VVM (Unaligned) in Scalar mode 6.7, 1.5 4.3, 1.0 2.8, 0.8

VVM (Unaligned) in AltiVec mode 11.3, 7.7 7.3, 5.1 4.9, 3.5
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Table 9.18 Maximum conversion rate in frames per second when operating on a Quick-

Time image in memory. The two frame rates represent maximum conversion rates for

read-only and read-write tasks respectively.

320×240 640×480 800×600

GetCPixel 8.2, 4.4 2.0, 1.1 1.3 , 0.7

GetPixBaseAddr 387.4, 189.4 76.7, 39.2 47.8, 25.0

AltiVec (Aligned) 1200.6, 587.1 156.5, 88.5 94.5, 54.1

VVM (Aligned) in Scalar mode 93.1, 42.0 22.7, 10.4 14.7, 6.6

VVM (Aligned) in AltiVec mode 497.7, 245.3 97.9, 48.0 59.2, 31.6

AltiVec (Unaligned) 1177.8, 469.0 155.3, 57.8 89.9, 34.9

VVM (Unaligned) in Scalar mode 98.0, 14.1 22.8, 3.5 14.5, 2.2

VVM (Unaligned) in AltiVec mode 233.2, 134.8 49.7, 26.6 31.0, 16.7

1024×768 1280×960 1600×1200

GetCPixel 0.8, 0.4 0.5 , 0.3 0.3, 0.2

GetPixBaseAddr 28.0, 14.9 17.8, 9.5 11.4, 6.0

AltiVec (Aligned) 55.6, 32.5 35.0, 20.4 22.2, 12.9

VVM (Aligned) in Scalar mode 8.9, 4.0 5.7, 2.6 3.7, 1.7

VVM (Aligned) in AltiVec mode 38.9, 19.0 25.3, 12.2 16.2, 7.6

AltiVec (Unaligned) 54.5, 20.9 34.3, 13.6 22.3, 8.5

VVM (Unaligned) in Scalar mode 8.8, 1.3 5.6, 0.9 3.6, 0.5

VVM (Unaligned) in AltiVec mode 18.8, 10.2 12.1, 6.4 7.7, 4.1

Table 9.18 shows the maximum conversion rate when operating on a QuickTime im-

age in memory. It is calculated in order to provide some indication of the amount of

processing power left after conversion. The maximum conversion rate should always be

higher than the capture rate for the same method and target image size because the capture

rate also involves decompressing and scaling the image obtained from the camera, which

the maximum conversion rate does not take into account. In addition, unlike the maxi-

mum conversion rate, the capture rate is also influenced by the speed of the camera, and

by the speed of the line that connects the camera to the computer. All versions captured

100 frames, except GetCPixel which captured only 10 frames. This was because of its

extremely poor performance.

Table 9.18 shows that AltiVec (Aligned) was fastest, followed by AltiVec (Unaligned),

VVM (Aligned) in AltiVec mode, GetPixBaseAddr, VVM (Unaligned) in AltiVec mode,

VVM (Aligned) in Scalar mode, VVM (Unaligned) in Scalar mode and GetCPixel. As

expected, the maximum conversion rate was generally larger than the capture rate.

VVM in AltiVec mode was slower than AltiVec, because the conversion from vuint32

to vuint8 is not zero-cost, since the number of elements in a vuint32 is greater than

one. In addition, there are also overheads involved in loading vuint32 and performing

unaligned loads on vuint32. Unaligned loads on vuint32 seem to have particularly high

overheads, because while VVM (Aligned) in AltiVec mode was about two times slower
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than AltiVec (Aligned), VVM (Unaligned) in AltiVec mode was about five times slower

than AltiVec (Aligned).

Since VVM in AltiVec mode was significantly slower than AltiVec, VVIS uses Al-

tiVec (Unaligned) dechunkify and chunkify operations. In the absence of a VPU, VVIS

will use GetPixBaseAddr since it was faster than both VVM (Aligned) and VVM (Un-

aligned) in both Scalar mode. Furthermore, GetPixBaseAddr was faster than VVM (Un-

aligned) in both AltiVec and Scalar mode.

9.5 Conclusions

In this chapter, the design and implementation of a generic, vectorised, machine-vision li-

brary, named Vectorised Vision (VVIS), was discussed. The reason why divisions of duty

used in current generic libraries, such as STL and VIGRA, cannot be directly vectorised

was discussed. This was followed by an evaluation of two different divisions of duties

that would be viable for a generic, vectorised library. The interfaces and general imple-

mentation of the different concepts in VVIS were then discussed. This chapter concluded

with an investigation into the cost of converting from the chunky scalar format provided

through QuickTime to a more VPU-friendly format.

QuickTime allows images to be captured from a camera. Unfortunately, the author

was unable to get QuickTime to capture to planar RGB images, which are required for

efficient vector processing. Eight different methods of dechunkifying and chunkifying

were discussed. AltiVec (Aligned) was fastest, followed by AltiVec (Unaligned), VVM

(Aligned) in AltiVec mode, GetPixBaseAddr, VVM (Unaligned) in AltiVec mode, VVM

(Aligned) in Scalar mode, VVM (Unaligned) in Scalar mode and GetCPixel. For read-

only operations, GetPixBaseAddr, AltiVec (Aligned), VVM (Aligned) in AltiVec mode,

AltiVec (Unaligned), and VVM (Unaligned) in AltiVec mode were able to keep up with

the QuickTime capture process for images of size 640×480 and smaller. For read-write

operations, only AltiVec (Aligned) and AltiVec (Unaligned) were able to keep up for

images of size 640×480 and smaller. VVM in AltiVec mode was slower than AltiVec,

because the conversion from vuint32 to vuint8 is not zero-cost, since the number of

VPU vectors in vuint32 is more than one. In addition, there are also overheads involved

in loading vuint32 and performing unaligned loads on vuint32. Since VVM in AltiVec

mode was significantly slower than AltiVec, VVIS uses AltiVec (Unaligned) dechunkify

and chunkify operations in AltiVec mode and GetPixBaseAddr in scalar mode.

In this chapter, two new different divisions of duties suitable for vectorised generic

programming were discussed. Two new concepts, shape and storage, were introduced.

In addition, accessors and functors in VVIS use both scalars and vvm::vectors. Also

new in this chapter is the use of different algorithms and iterators to process for different

storages, the contiguous storage iterator, the use of typelists to declare channel types in
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an image, and a contiguous chunky storage format suitable for vector programs.

Two new divisions of duties that are suitable for a generic, vectorised library were

investigated: Algorithm Only and Vector Head. While these two divisions of duties use

the same concepts, they distribute responsibilities differently. Algorithm Only assigns all

vector processing responsibilities to the algorithm, while Vector Head distributes vector

processing responsibilities between the storage, algorithm and potentially the iterator and

accessor. Vector Head was chosen for VVIS, because it provides good performance when

whole images are processed, and it simplifies the implementation of algorithms, because

storages ensure that there is no left edge.

Shapes allow algorithms to explicitly specify what shapes they can process correctly.

Quantitative and transformative algorithms can process storages of any shape, because

quantitative and transformative operations do not require spatial iterators (see Section

8.2). For convolutive operations, the algorithms may be valid only for certain shapes.

The storage concept is the cornerstone of a vectorised, generic library because it

provides information about how the pixels are arranged relative to each other. Thus it

provides the information that is required to decide how the pixels can be loaded effi-

ciently into a VPU. Furthermore storages allow non-rectangular regions to be specified

if required. Three different storages were introduced: contiguous, unknown and Illife.

Contiguous storages can be processed efficiently using a VPU, while unknown storages

should be processed using the scalar processor. Illife storages are n-dimensional; their

iterators provide access to other storages.

Unlike accessors and functors from existing libraries like STL and VIGRA, accessors

and functors in VVIS provide and process both scalars and vvm::vectors. Accessors

and functors that support both scalars and vvm::vectors are required, because it is inef-

ficient to use the VPU in all situations. The scalar version is used to process edges and

in situations where the storage format is not suitable for vector processing, namely when

processing unknown storages.

VVIS has different algorithms and iterators for different storages. Different algori-

thms and iterators are required for different storages, because different storages can be

processed differently. Contiguous and unknown storages are processed with a VPU and a

scalar processor respectively. Unknown storages provide access to only scalars, contigu-

ous storages provide access to both scalars and vvm::vectors, and Illife storages provide

access to other storages.

The contiguous storage iterator was introduced in this thesis to enable extraction of

both vvm::vectors and scalars. Like VIGRA’s iterator, the contiguous storage iterator

has two orthogonal components. However, while VIGRA’s iterators are two-dimensonal,

the contiguous storage iterator is one-dimensional. It allows traversal by vvm::vector,

scalar or pixel steps. Each component is changed independently by vvm::vector and

scalar steps, while pixel steps can change both. Having two orthogonal components re-
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moves the need to pre-calculate the position of the right edge, because once the vvm::-

vector component is exhausted, the remaining portion is the right edge. Keeping two

orthogonal components however increases the cost of constructing the iterator, since the

vvm::vector and scalar components have to be calculated during construction. If the

two components were not orthogonal, the algorithm would have had to calculate the po-

sition of the right edge, and != operator’s requirements might be increased, because the

!= operator might have to calculate the real position first.

A chunky storage format suitable for vector programs was also proposed. This chunky

format basically interleaves a vector at a time instead of a scalar. The advantages of such

a storage format is that all components of a pixel are closer to each other in memory, only

a single pointer is needed when traversing through this image, and that only one prefetch

channel is needed.

VVIS uses typelists to decide the types of channels in an image. This makes it easy to

use different types for different channels in images. In addition, it makes it easy to create

multi-channel images. Only a single real image implementation is needed.
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Chapter 10

Vectorisability of Machine-Vision

Algorithms

In Chapter 8, three categories of image-processing operations were identified for use with

a generic, vectorised, machine-vision library: quantitative, transformative and convolu-

tive. For each of these categories, the general algorithm is developed and evaluated against

hand-coded implementations and VIGRA. Some common operations that fall in each of

these categories are then discussed, and timed.

10.1 Quantitative operations

Quantitative operations (see Section 8.2) have one input element per input set, zero or

more output elements per output set and a single output set. Because quantitative algo-

rithms can produce an unknown number of output elements per input pixel, quantitative

functors are responsible for their outputs.

10.1.1 Algorithms

The quantitative algorithm accepts a single storage, an accessor and a functor.

namespace vvm {

template<

typename storageInT,

typename accessorT,

typename functorT

> void for_each(const storageInT& in, accessorT a,

functorT& f);

}
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Algorithm 10.1 Quantitative generic scalar algorithm

template<typename inIteratorT, typename functorT>
void for_each(inIteratorT begin, inIteratorT end, functorT f) {

for(; begin != end; ++begin) {
f(*begin);

}
}

The for_each algorithm requires the functor to be passed by reference instead of by

value, because quantitative functors keep their outputs. Without the reference require-

ment, the program would compile and run, but would be unable to return the output, since

the answer had been calculated in a copy and thrown away after the algorithm returned.

VIGRA’s inspectImage algorithms, which are equivalent to VVIS’s for_each, also ac-

cept a reference to the functor. Unlike VIGRA, which provides inspectImage algorithms

that accept one or two input sets, VVIS only provides a quantitative algorithm for a single

input, because VVIS does not have any functors that require more than one input set. The

algorithm can easily be extended to support more than one input set.

The generic scalar algorithm is discussed first, followed by a non-generic AltiVec

algorithm. The generic VVIS algorithm, which is the result of both of these algorithms, is

described last. After discussing how the algorithm can be implemented, execution times

are presented and discussed.

Generic scalar algorithm

Generic scalar algorithms for quantitative operations already exist and are easy to im-

plement. Examples of quantitative algorithms in VIGRA are vigra::inspectImage,

vigra::inspectImageIf, vigra::inspectTwoImages, and vigra::inspectTwoIma-

gesIf (Köthe 2001). An example of a quantitative algorithm in the STL is std::for_-

each. In all these existing generic algorithms, the functor is responsible for handling

output. Algorithm 10.1 shows how a generic scalar quantitative algorithm might be im-

plemented.

AltiVec algorithm

The quantitative AltiVec algorithm is similar to the transformative algorithm presented

in Section 3.7. This is expected as transformative operations are a subset of quantitative

operations. Quantitative algorithms however are easier to implement since algorithms

do not have to handle output. Quantitative algorithms only coordinate the loading of

input. Algorithm 10.2 shows a simple AltiVec implementation that is able to handle any

contiguous block. The left and right edges are processed using the scalar processor. Since

there is only one input image, there is no need to deal with misalignment between images.
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The AltiVec implementation would need to handle misalignment between images if there

was more than one input image.

Generic VVIS algorithm

The generic VVIS quantitative algorithms for unknown and contiguous storages are pre-

sented in Algorithms 10.3 and 10.4. There is also a generic VVIS quantitative algo-

rithm for Illife storages, which simply calls vvis::for_each for each storage contained

within. Algorithms for Illife storages were discussed in Section 9.3.6. As discussed in

Section 9.3.6, these algorithms are selected using function enablers. The priv::fast-

est_storage template metafunction will return priv::using_contiguous_storage

or priv::using_illife_storage if all the storages are contiguous or Illife storages re-

spectively. Otherwise, priv::fastest_storage returns priv::using_unknown_sto-

rage. Since the generic VVIS quantitative algorithms should be able to process storages

of any shape, the enabler logic does not check the shape of the storages.

The algorithm for handling unknown storages is essentially the same as the generic

scalar algorithm presented in Algorithm 10.1. It is shown in Algorithm 10.3.

The generic VVIS algorithm for contiguous storages is simple, because storages in

VVIS have no left edges. Thus there is no need to handle misalignment between storages,

even if the algorithm accepted more than one storage. Algorithm 10.4 shows the generic

vvis::for_each algorithm for handling contiguous storages. Note that the algorithm for

contiguous storages performs prefetching.

Results

Figure 10.1 shows the execution times for different for_each implementations. Fig-

ures 10.1(a) and 10.1(b) show how these implementations fare when processing a single-

channel image, and a RGB image respectively. In both cases, the channels were 8-bit un-

signed integer (unsigned char) types. All implementations were timed with do-nothing

functors. The timings include the costs of obtaining iterators to the region of interest and

of creating the do-nothing functor. All implementations were compiled using Apple GCC

3.1 30031003 with the -Os (optimise for size) switch.

The implementations investigated were:

VIGRA: This implementation uses VIGRA’s inspectImage algorithm. VIGRA by de-

fault uses a contiguous chunky scalar storage format. For single-channel images,

contiguous chunky storages are equivalent to contiguous planar storages. When

processing RGB images, VIGRA represents a pixel using the vigra::RGBColor

struct.

Scalar: This is a hand-coded scalar loop that processes contiguous planar storages.
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Algorithm 10.2 Quantitative AltiVec algorithm

template<typename T, typename V, typename F>
void for_each(T* start, T* end, F f) {

typedef __vector unsigned char vec_uc;
const int step = sizeof(V)/sizeof(T);
V ov, iv, iv_xtr;
vec_uc ifix;
int count = end - start;
T* pi = start;

#ifdef DST
vec_dst(pi, 0x10010100, 0);

#endif
int roffset = ((unsigned long)pi & 0xf);
// Do Initial load
iv_xtr = vec_ld(0, pi);
pi += step;
ifix = vec_lvsl(roffset, pi);
// Do front with scalar processor
for(int i = 0; i < roffset; ++i)

f(start[i]);
// Do middle with vector processor
for(int i = roffset; i < count; i += step) {

#ifdef DST
vec_dst(pi, 0x10010100, 0);

#endif
// Load unaligned
iv = iv_xtr;
iv_xtr = vec_ld(0, pi);
pi += step;
iv = vec_perm(iv, iv_xtr, ifix);
// Do operation
f(iv);

}
// Do end with scalar processor
int starti = (count / step) * step;
for(int i = starti; i < count; ++i)

f(start[i]);
}
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Algorithm 10.3 Quantitative generic VVIS algorithm for unknown storages

template<
typename storageInT,
typename accessorInT,
typename functorT

> typename ct::enable_if<
boost::is_same<

typename priv::fastest_storage<
CT_TYPELIST1(storageInT)>::type,

priv::using_unknown_storage
>::value

>::type for_each(storageInT in, accessorT a, functorT& f) {
typename storageInT::const_iterator pi = in.begin();
typename storageInT::const_iterator end = in.end();
for(; pi != end; ++pi) {

f(a.get_scalar(pi));
}

}

Algorithm 10.4 Quantitative generic VVIS algorithm for contiguous storages

template<
typename storageInT,
typename accessorInT,
typename functorT

> typename ct::enable_if<
boost::is_same<

typename priv::fastest_storage<
CT_TYPELIST1(storageInT)>::type,

priv::using_contiguous_storage
>::value

>::type for_each(storageInT in, accessorT a, functorT& f) {
// Calculate aligned end position
typename storageInT::const_iterator pi = in.begin();
typename storageInT::const_iterator end = in.end();
// Process front using the vector processor
for(; pi.vector != end.vector; ++pi.vector) {

ia.template prefetch_read<0>(pi);
// Perform operation
f(ia.get_vector(pi));

}
// Process rest using the scalar processor
for(; pi.scalar != end.scalar; ++pi.scalar) {

f(ia.get_scalar(pi));
}

}
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When processing single-channel images, the function accepts two pointers, one

pointing to the beginning and one pointing to the first past the end element, and a

functor. The single-channel function is shown below:

typedef unsigned char T;

template<typename F>

void for_each(const T* begin, const T* end, F f) {

for(; begin != end; ++begin) {

f(*begin);

}

}

When processing RGB images, the function accepts four pointers instead of two,

and a functor. Three of these pointers point to the beginning of each channel. The

last pointer points to the first past the end element of the first channel. The RGB

function is shown below:

typedef unsigned char T;

template<typename F>

void for_each(const T* begin0, const T* begin1,

const T* begin2, const T* end0, F f) {

for(; begin0 != end0; ++begin0, ++begin1, ++begin2) {

f(*begin0, *begin1, *begin2);

}

}

Scalar Mode, VVIS (Specialised Iterators): This version was compiled without any VPU

support. This version uses a specialised iterator for single-channel images instead

of using the general iterator that also supports multi-channel images. Prefetching

was not enabled in this version.

Scalar Mode, VVIS (Automatic Unknown): This version was compiled without any VPU

support. In the absence of a VPU, this version treats contiguous storages as un-

known storages. This optimisation has no effect when VVM runs in AltiVec mode.

Prefetching was not enabled in this version.

In scalar mode, we can process the entire storage as scalars instead of as vvm::-

vectors and scalars. This is because in scalar mode, there is only one scalar in

a vvm::vector and therefore trying to treat it as a vvm::vector just adds un-

necessary overheads. To implement this tweak, the preprocessor could be used

to remove the vvm::vector portion of the contiguous for_each algorithm. This

method however fails for chunky images because the algorithm should be taking
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pixel steps and not scalar steps. Instead of modifying the algorithm, we can treat

contiguous storages as unknown storages by simply changing vvis::uses_conti-

guous_storage to always return false. Treating contiguous storages as unknown

storages in scalar mode is not only easy to implement, more importantly, it does

not lead to an incorrect solution. VVIS detects that there is no VPU available by

querying the VVM_VECTOR_PROCESSOR macro defined by VVM.

Scalar Mode, VVIS (Automatic Unknown + Prefetch): This version was compiled with-

out VPU support. This version is basically the Scalar Mode, VVIS (Automatic

Unknown) version but with prefetching enabled. In scalar mode, this version is

actually equivalent to Scalar Mode, VVIS (Automatic Unknown) because in scalar

mode, the unknown algorithm, which never prefetchs, is used.

AltiVec (Aligned only): This version is an AltiVec algorithm that does not have any edge

handling capabilities. This version actually solves a simpler problem than the other

versions evaluated. It is only applicable in AltiVec mode. Prefetching was not

enabled. The single-channel version is shown below:

typedef unsigned char T;

typedef __vector unsigned char V;

template<typename F>

void for_each(const T* begin, const T* end, F f) {

const int step = sizeof(V)/sizeof(T);

for(; begin != end; begin += step) {

f(vec_ld(0, begin));

}

}

When processing RGB images, the AltiVec function accepts a contiguous storage

for each channel, and passes the value of each channel as a separate parameter. The

RGB version is shown below:

typedef unsigned char T;

typedef __vector unsigned char V;

template<typename F>

void for_each_rgb(const T* begin0, const T* begin1,

const T* begin2, const T* end0, F f) {

const int step = sizeof(V)/sizeof(T);

for(; begin0 != end0;

begin0 += step, begin1 += step, begin2 += step) {

f(vec_ld(0, begin0),
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Figure 10.1 Performance different vvis::for_each implementations
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vec_ld(0, begin1),

vec_ld(0, begin2));

}

}

AltiVec Mode, VVIS (Specialised Iterators): This version is the same as Scalar Mode,

VVIS (Specialised Iterators) but compiled with AltiVec support.

AltiVec Mode, VVIS (Automatic Unknown): This version is the same as Scalar Mode,

VVIS (Automatic Unknown) but compiled with AltiVec support.

AltiVec Mode, VVIS (Automatic Unknown + Prefetch): This version is the same as

“Scalar Mode, VVIS (Automatic Unknown + Prefetch)” but compiled with AltiVec

support.

Figure 10.1 shows that when processing single-channel images in scalar mode, VVIS

with a specialised iterator for single-channel images was significantly slower than scalar

hand-coded and VIGRA versions, because the VVIS algorithm selected was vectorised,

and thus performs more work than necessary. In AltiVec mode however, a specialised iter-

ator allows the VVIS implementation to run on par with the AltiVec hand-coded version.
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Table 10.1 Quantitative algorithms’ required functor interface

Expression Return Type Notes

f(s) void s is a scalar

f(v) void v is a vector

Prefetching had no effect in scalar mode as expected because the VVIS algorithms do

not prefetch when processing unknown storages. Prefetching in AltiVec mode produced

slower programs when processing single-channel images, but was faster when processing

RGB images. This suggests that there was so little work to be done when processing the

single-channel images that the VPU outruns the prefetching process.

When processing RGB images, VVIS was always significantly slower. Specialised

iterators, automatic unknown storages, and prefetching did not make any difference. This

was probably because ct::tuple was used, and ct::tuple is probably more difficult

for Apple GCC 3.1 20021003 to optimise.

10.1.2 Functors

The VVIS quantitative algorithm requires functors to implement the interface detailed in

Table 10.1. How the output is returned to the user is not defined. The output requirements

were not defined because the VVIS quantitative algorithm does not handle output and

because the output is unknown.

10.2 Transformative operations

As discussed in Section 8.2, transformative operations are a subset of quantitative opera-

tions, and thus with the right functor, can also use the quantitative algorithm. However, to

reduce the responsibilities of the functor, and to be consistent with other generic libraries,

transformative operations have their own algorithms in VVIS. Since transformative oper-

ations are a subset of quantitative operations, as expected, the transformative algorithm is

similar to the quantitative algorithm. Transformative operations produce a single output

element from a single input element per input set, and have one output set. In VVIS,

transformative algorithms are provided for one or two input sets.

10.2.1 Algorithms

The transformative algorithm in VVIS is the transform algorithm, which has the follow-

ing definitions.

namespace vvm {
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template<

typename storageInT,

typename accessorInT

typename storageOutT,

typename accessorOutT,

typename functorT

> void transform(const storageInT& in, accessorInT ia,

storageT& out, accessorOutT oa, functorT f);

template<

typename storageIn1T,

typename accessorIn1T

typename storageIn2T,

typename accessorIn2T

typename storageOutT,

typename accessorOutT,

typename functorT

> void transform(const storageIn1T& in1, accessorIn1T ia1,

const storageIn2T& in2, accessorIn2T ia2,

storageT& out, accessorOutT oa, functorT f);

}

Like VIGRA, each input and output set has its own accessor. This allows for more flexi-

bility. Unlike the quantitative algorithm, the transformative algorithm uses a copy of the

functor. This allows unnamed functors and functions to be used. While const functorT&

accepts unnamed const functors, it does not accept functions. For example, if transform

accepted a reference like for_each, vvis::transform(... vvis::plus<>()) would

not be valid. Using a copy however makes it impossible to return values through the

functor.

Only the one input set version is discussed here. The two input set version is simply

longer and does not pose any new problems.

Generic scalar algorithm

The generic scalar transformative algorithm is easy to implement, with suitable generic

versions already existing in VIGRA (Köthe 2001) and the Standard C++ Library (Inf

1998). VIGRA provides a vigra::transformImage and vigra::transformImageIf

function which uses a 2-D iterator to walk through the image. The std::transform

function provided in the Standard C++ Library can also be used if the image is presented

as a 1-D iterator.

Algorithm 10.5 is an example of how a generic scalar transformative algorithm would
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Algorithm 10.5 Transformative generic scalar algorithm

template<typename inT, typename outT, typename F>
void transform(inT begin, inT end, outT out, F f) {
for(; begin != end; ++begin, ++out)

*out = f(*begin);
}

be implemented. A one-dimensional loop was used because transformative operations do

not require spatial iterators.

Note that std::transform, vigra::transformImage, and Algorithm 10.5 are ca-

pable of using any memory location; they are capable of handling unaligned loads and

stores. In addition, all three algorithms fail if the input region overlaps with the output

region, because the algorithms write the output to the correct position immediately. If this

output position located in input that is yet to be processed, the output will be erroneous

since the input has changed.

AltiVec algorithm

AltiVec transformative functions were discussed in Section 3.7. Section 3.7 also investi-

gated the effects of alignment, prefetching and function complexity on the performance

of AltiVec transformative functions.

Generic VVIS algorithm

The generic VVIS transformative algorithms for unknown and contiguous storages are

presented in Algorithms 10.6 and 10.7. There is also a generic VVIS transformative algo-

rithm for Illife storages, which simply calls vvis::transform for each storage contained

within. Algorithms for Illife storages were discussed in Section 9.3.6. Like the generic

VVIS quantitative algorithms presented in Section 10.1.1, transformative algorithms use

the same enabler logic and can process storages of any shape.

The generic VVIS transformative algorithm for unknown storages is straightforward,

and is similar to the scalar algorithm presented earlier. The unknown storage version

does not use the VPU and is selected if any of the input or output storages are unknown

storages. The generic VVIS transformative algorithm for unknown storages is presented

in Algorithm 10.6.

In VVIS, since storages do not have left edges, all storages have the same alignment.

Because of this, the VVIS generic algorithm for transformative operations on contiguous

storages is straightforward. It is shown in Algorithm 10.7. This algorithm is only used

when all input and output storages are contiguous storages and performs prefetching.
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Algorithm 10.6 Transformative generic VVIS algorithm for unknown storages

template<
typename storageInT,
typename accessorInT,
typename storageOutT,
typename accessorOutT,
typename functorT

> typename ct::enable_if<
boost::is_same<

typename priv::fastest_storage<
CT_TYPELIST2(storageInT, storageOutT)>::type,

priv::using_unknown_storage
>::value

>::type transform(const storageInT& in, accessorInT,
storageOutT& out, accessorOutT a, functorT f) {

typename storageInT::const_iterator pi_rend = in.end();
typename storageInT::const_iterator pi = in.begin();
typename storageOutT::iterator po = out.begin();

for(; pi != pi_rend; ++pi, ++po) {
a.set_scalar(f(a.get_scalar(pi)), po);

}
}

Results

Figures 10.2, 10.3 and 10.4 show how different implementations of the transformative

algorithm perform. All implementations were compiled using Apple GCC 3.1 20021003,

with the -Os (optimise for size) switch. The functor used with the implementations,

simply returns the value passed to it without any modifications.

The implementations that were evaluated are as follows:

VIGRA: This implementation uses VIGRA’s transformImage algorithm. VIGRA uses

a contiguous chunky scalar storage format. When processing RGB images, VIGRA

uses vigra::RGBColor to represent a pixel.

Scalar: This version is a hand-coded scalar loop that processes contiguous planar stor-

ages.

Scalar Mode, VVIS (No Prefetch): This version uses VVIS’s transform algorithm with-

out prefetching and without a VPU. VVIS by default automatically treats contigu-

ous storages as unknown storages when there is no VPU present. Thus, the VVIS

transform algorithm used in this version operated on unknown storages. In addi-

tion, since the storages were unknown storages, VVIS used T* and ct::tuple<-
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Algorithm 10.7 Transformative generic VVIS algorithm for contiguous storages

template<
typename storageInT,
typename accessorInT,
typename storageOutT,
typename accessorOutT,
typename functorT

> typename ct::enable_if<
boost::is_same<

typename priv::fastest_storage<
CT_TYPELIST2(storageInT, storageOutT)>::type,

priv::using_contiguous_storage
>::value

>::type transform(const storageInT& in, accessorInT,
storageOutT& out, accessorOutT a, functorT f) {
typename storageInT::const_iterator end = in.end();
// Process front using the vector processor
typename storageInT::const_iterator pi = in.begin();
typename storageOutT::iterator po = out.begin();
for(; pi.vector != end.vector; ++pi.vector, ++po.vector) {

ia.template prefetch_read<0>(pi);
oa.template prefetch_write<

accessorInT::prefetch_channel_count>(po);
a.set_vector(f(a.get_vector(pi)), po);

}
// Process rest using the scalar processor
for(; pi.scalar != end.scalar; ++pi.scalar, ++po.scalar) {

a.set_scalar(f(a.get_scalar(pi)), po);
}

}
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CT_TYPELIST3(T*, T*, T*)> as iterators for single-channel and RGB images re-

spectively, where T is unsigned char.

Scalar Mode, VVIS (Prefetch): This version is the same as Scalar Mode, VVIS (No

Prefetch) except prefetching is enabled. Because VVIS automatically treats con-

tiguous storages as unknown storages when there is no VPU available and because

VVIS algorithms operating on unknown storages never prefetch, this version should

run at the same speed as Scalar Mode, VVIS (No Prefetch).

AltiVec (Aligned only): This version uses an AltiVec transform function that only per-

forms aligned loads and aligned stores. It is equivalent to Aligned Load and Aligned

Store from Section 3.7.

The single-channel version is shown below.

typename unsigned char type;

typename __vector unsigned char vector_type;

template<class F>

void transform(const type* begin, const type* end,

type* out, F f) {

const int step = sizeof(vector_type)/sizeof(type);

vector_type ov, iv;

for(; begin != end; begin += step, out += step) {

iv = vec_ld(0, begin);

ov = f(iv);

vec_st(ov, 0, out);

}

}

AltiVec (Unaligned): This version uses an AltiVec transform function that is equivalent

to Unaligned Load and Unaligned Store (Optimised version) from Figure 3.6. This

version was only timed for single-channel images.

AltiVec Mode, VVIS (No Prefetch): This version uses VVIS’s transform algorithm

without prefetching but with AltiVec active. In this case, VVIS does not treat con-

tiguous storages as unknown storages because the VPU is available. The transform

algorithm in this version is therefore the contiguous version. When operating on

single-channel images, VVIS uses a specialised iterator.

AltiVec Mode, VVIS (Prefetch): This version is the same as AltiVec Mode, VVIS (No

Prefetch) except prefetching is enabled. Because the VVIS transform algorithm
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Figure 10.2 Performance of different vvis::transform implementations, when the

source image is the destination image, and the functor returned input values unchanged
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does not actually detect when the source and destination storages are equal, the

algorithm prefetchs the same memory block twice using different channels. Since

the storage is a planar storage, three prefetch channels were required for prefetching

each storage. Since AltiVec only has four prefetch channels, all three channels of

the sources storage would be prefetched, but only one of the destination would be.

Chunky storage formats would have required only one prefetch channel per storage.

Figure 10.2 shows the performance of different transformative algorithm implementation

when the source and destination storages are the same. The net effect is that the transform

algorithm copies the input image to itself.

Figure 10.2(a) shows that when processing single-channel images, VVIS appears to

perform adequately. In scalar mode, it runs on par with or slightly faster than the hand-

coded scalar or VIGRA versions. When AltiVec is available, it is slower than AltiVec

(Aligned) which is expected. It is also slower than AltiVec (Unaligned) when prefetching

is off, which is consistent with results from Section 3.7, despite the VVIS algorithm only

handling unalignment on one edge, while AltiVec (Unaligned) handles unalignment on

two edges. From Section 3.7, AltiVec (Unaligned) will be slower than AltiVec (Aligned)

when prefetching is on. VVIS was slower than AltiVec (Aligned) because of the extra
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cost involved in creating the iterator. VVIS has to calculate the vvm::vector and scalar

components of the iterator. When prefetching is on, VVIS was either close to or faster than

AltiVec versions. The margin increased as the image size increased which is expected.

Prefetching provides more benefits when there is more data to process. VVIS actually run

faster than Scalar or VIGRA in scalar mode, which was unexpected. This was probably

because of the optimiser. Scalar Mode, (No Prefetch) was slower than Scalar Mode,

(Prefetch) even though no prefetching was done probably because the prefetch version

was timed after the non-prefetching version in the same program and thus benefited from

data already in the cache.

Figure 10.2(b) shows that when processing RGB images, VVIS’s performance in Al-

tiVec mode was comparable to AltiVec hand-coded programs, but was dismal in scalar

mode. In scalar mode the iterator was a tuple of pointers while in AltiVec mode, the

iterator was an object which contained a tuple of vvm::vector pointers and an integer.

In RGB mode, prefetching produced faster results but was unable to overtake AltiVec

(Aligned).

In Figure 10.3, all the implementations were evaluated using a functor that simply

returned the same value that it was given. Since in Figure 10.3, the source and destination

images are different images, the net effect is that the transform algorithm copies one image

to the other.

Figure 10.3 displays generally the same behaviour as Figure 10.2. The main difference

is that Scalar was noticeably faster than VIGRA. In addition, Scalar Mode, VVIS (No

Prefetch) run at the same speed as Scalar Mode, VVIS (Prefetch) as expected. The AltiVec

Mode, VVIS (No Prefetch) was much slower in this version. It was even slower than

Scalar Mode, VVIS (No Prefetch) when handling single-channel images, which is a bit

disappointing. As shown in Figure 10.2(b), when processing RGB images, VVIS in scalar

mode was much slower while it seems to be alright in AltiVec mode.

In Figure 10.4, all implementations were evaluated against a functor that added each

value to itself. The net effect is that the algorithm doubled the value of pixels in the

source image. While the value on overflow is undefined, this is not important because the

purpose was to give the vector processor something extra to do. Lai et al. (2002) used the

same operation to evaluate its transform algorithms.

Figure 10.4 also displays generally the same behaviour as Figure 10.2. The AltiVec

(Unaligned) version was faster AltiVec (Aligned) which was unexpected. However the

speedup ratio was lower when the source and destination images were different.

Drawing conclusions from Figures 10.2, 10.3 and 10.4 is a bit more difficult because

of the presence of the optimiser. The optimiser was included because VVIS and VVM

depend on the optimiser to remove extra functions calls. Generally though, they show

that VVIS provides close to hand-coded performance in AltiVec mode when processing

single-channel images. When processing single-channel images, in scalar mode, VVIS
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Figure 10.3 Performance of different vvis::transform implementations when the

source image and the destination images are different, and the functor returned input

values unchanged
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Figure 10.4 Performance of different vvis::transform implementations when the

source and destination images are different, and the functor returns 2×input value
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Table 10.2 Transformative algorithms’ required functor interface

Expression Return Type Notes

f(s) Output s is a scalar

f(v) Output v is a vector

was actually faster than the hand-coded version. When processing RGB images, it pro-

vides close to hand-coded performance only in AltiVec mode. In addition, they show that

AltiVec generally provides only about a one-fold speed even with unsigned char images

when optimisation is on for simple transformative algorithms. These figures suggest that

the treatment of RGB images in scalar mode needs more adjustment.

10.2.2 Functors

Functors for transformative algorithms should implement the interface shown in Table

10.2. As usual functors should provide both a scalar and vvm::vector version. For

transformative algorithms that have two input sets, there would be two arguments to both

functions.

Arithmetic, logical, equalise and threshold operations were investigated in more de-

tail. For each of these operations, the implementation of the functor is discussed, followed

by timing results. In both scalar and AltiVec modes, the storage policy used was Illife pla-

nar and prefetching was on. In addition, in scalar mode, contiguous storages are treated as

unknown storages. Timing results were collected for unsigned char, unsigned short

int, unsigned int, float and double images. Images consisting of longs were not

timed because in the compiler used, Apple GCC 3.1 20021003, long is the same size

as a int. All programs were compiled with the -Os (optimise for size) switch, which is

required for the VVM implementation used to run at zero-cost when operating on chars.

The timing results show the ratio of VVIS running in AltiVec mode compared to scalar

mode. A value of one indicates that VVIS runs at the same speed in AltiVec mode as in

scalar mode. A value greater than one indicates that VVIS runs faster in AltiVec mode

while a value less than one indicates that it runs slower in AltiVec mode. Since VVIS

is comparable to scalar hand-coded programs in scalar mode, the ratio obtained is also a

rough indication of the speedup factor of VVIS in AltiVec mode over hand-coded scalar

programs.

Arithmetic

The plus functor’s implementation that is discussed in this section is representative of

arithmetic operations. The plus functor is shown in Algorithm 10.8 and 10.9. Algorithm

10.8 works for both single and multi-channel images. This is because tuples also have
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Algorithm 10.8 plus functor (single-channel and multi-channel)

template<typename T = void> struct plus
: public std::binary_function<T, T, T> {

T operator()(const T& a, const T& b) const {
return a + b;

}
typename vvm::add_vector<T>::type operator()(
const typename vvm::add_vector<T>::type& a,
const typename vvm::add_vector<T>::type& b) const {

return a + b;
}

};

Algorithm 10.9 plus functor (autodetect)

template<> struct plus<void> {
template<typename T>
T operator()(const T& a, const T& b) const {

return a + b;
}

};

the standard operators defined. T is the pixel type. While the implementation of plus

is generally straightforward, note the use of vvm::add_vector<T>::type to deduce the

appropriate vvm::vector type instead of vvm::vector<T>. As discussed in Section

9.3.7, vvm::add_vector<T>::type is more appropriate because the scalar type T might

be const or a ct::tuple. VVIS also provides a plus functor that is able to autodetect

the pixel type, in the manner presented by Meyers (2002).

You can use the plus functor in the following manner:

typedef vvis::image<vvis::uint8> image_t;

image_t source1, source2, destination;

vvis::transform(source1, vvis::pixel_accessor<image_t>(),

source2, vvis::pixel_accessor<image_t>(),

destination, vvis::pixel_accessor<image_t>(),

plus<image_t::pixel_type>());

You can also use plus<>(), which is the autodetect version, instead. The non-autodetect

version is required for binding. All the arithmetic functors, listed below, can be imple-

mented in the same manner as plus.

plus minus multiplies

divides modulus negate

250



Algorithm 10.10 plus_saturated functor (single-channel)

template<typename T = void> struct plus_saturated
: public std::binary_function<T, T, T> {
T operator()(const T& a, const T& b) const {

typename ct::promote<T>::type r = a + b;
return r < std::numeric_limits<T>::max() ?

r : std::numeric_limits<T>::max();
}
typename vvm::add_vector<T>::type operator()(
const typename vvm::add_vector<T>::type& a,
const typename vvm::add_vector<T>::type& b) const {

return vvm::adds(a, b);
}

};

The plus_saturated and minus_saturated functors are a bit different because VVM

provides saturated addition and subtraction functions for vvm::vectors but not for scalars.

The scalar version is coded using additions, promotions and ifs. The plus_saturated

functor is shown in Algorithms 10.10, 10.11 and 10.12. Unlike plus which could use the

same version for both single and multi-channel images, plus_saturated requires differ-

ent versions for single and multi-channel images because vvm::adds is not defined for

tuples. The tuple version is actually similar to the autodetect version. The tuple imple-

mentation basically applies the functor object’s operator() to each element in the tuple.

This can be performed using template metaprogramming. It was omitted from Algorithm

10.12 for brevity.

Once again, note the use of vvm::add_vector to get the vvm::vector type. The

multi-channel and autodetect versions does not use vvm::add_vector to help the com-

piler select the most specialised version. In fact, if vvm::add_vector was used, Apple

GCC 3.1 20021003 selects the general scalar version. The scalar version uses ct::pro-

mote to keep the result of a + b in a larger type. If T was used, then the result will never

be larger than T’s largest value. If the result is never larger, then we will not detect that an

overflow had occurred.

For arithmetic operations that have a one-to-one relationship with an AltiVec instruc-

tion, namely addition and subtraction, the potential speedup is shown in Tables 10.3. The

plus_saturated functor is also profiled because plus_saturated has a VPU instruc-

tion while the scalar code is coded using additions, promotions and ifs. As expected,

plus_saturated’s speedup was greater than plus’s.
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Algorithm 10.11 plus_saturated functor (multi-channel)

template<typename TL> struct plus_saturated<ct::tuple<TL> >
: public std::binary_function<ct::tuple<TL>, ct::tuple<TL>,
ct::tuple<TL> > {

ct::tuple<TL> operator()(
const ct::tuple<TL>& a, const ct::tuple<TL>& b) const {

ct::tuple<TL> ret;
meta::EFOR4<0, meta::Less, ct::length<TL>::value, +1,
priv::function_call>::exec(*this, ret, a, b);

return ret;
}
typename vvm::add_vector<ct::tuple<TL> >::type operator()(
const typename vvm::add_vector<ct::tuple<TL> >::type& a,
const typename vvm::add_vector<ct::tuple<TL> >::type& b) const {

typename vvm::add_vector<ct::tuple<TL> >::type ret;
meta::EFOR4<0, meta::Less, ct::length<TL>::value, +1,
priv::function_call>::exec(*this, ret, a, b);

return ret;
}

public:
// Should be private, but template friendship fails in GCC 3.1
/// Scalar implementation
template<typename T>
T operator()(const T& a, const T& b) const {

typedef typename ct::promote<T>::type promote_t;
promote_t r = a + b;
return r < std::numeric_limits<T>::max() ?
static_cast<T>(r) : std::numeric_limits<T>::max();

}
/// Vector implementation
template<typename T>
typename vvm::vector<T> operator()(
const vvm::vector<T>& a,
const vvm::vector<T>& b) const {

return vvm::adds(a, b);
}

};
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Algorithm 10.12 plus_saturated functor (autodetect)

template<> struct plus_saturated<void> {
/// Tuple implementation
template<typename TL>
ct::tuple<TL> operator()(
const ct::tuple<TL>& a,
const ct::tuple<TL>& b) const {

// Tuple implementation here
// Apply operator() to each element of a
// Not reproduced here for brevity

}
/// Scalar implementation
template<typename T>
T operator()(const T& a, const T& b) const {

typedef typename ct::promote<T>::type promote_t;
promote_t r = a + b;
return r < std::numeric_limits<T>::max() ?

static_cast<T>(r) : std::numeric_limits<T>::max();
}
/// Vector implementation
template<typename T>
typename vvm::vector<T> operator()(
const vvm::vector<T>& a,
const vvm::vector<T>& b) const {

return vvm::adds(a, b);
}

};
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Table 10.3 Speedup attained by executing some VVIS’s arithmetic functors in AltiVec

mode over scalar mode

Single-Channel Image RGB Image

320

×960

640

×960

960

×960

1280

×960

320

×960

640

×960

960

×960

1280

×960

unsigned char 2.3 1.6 1.9 1.8 6.0 5.8 6.6 6.5

unsigned short int 1.2 1.3 1.4 1.3 2.6 2.9 2.9 2.8

unsigned int 1.2 1.2 1.3 1.3 1.3 1.3 1.9 1.3

float 1.1 1.2 1.2 1.2 1.4 1.3 1.5 1.4

double 0.9 1.0 1.0 1.0 1.2 1.3 1.5 1.2

(a) plus functor

Single-Channel Image RGB Image

320

×960

640

×960

960

×960

1280

×960

320

×960

640

×960

960

×960

1280

×960

unsigned char 3.7 2.5 2.8 2.7 7.2 7.2 8.1 7.8

unsigned short int 1.7 1.9 2.0 2.0 3.1 3.4 3.5 3.3

unsigned int 1.3 1.4 1.4 1.4 1.5 1.4 2.1 1.5

float 1.3 1.3 1.4 1.3 1.3 1.3 1.4 1.3

double 0.9 0.9 0.9 0.9 1.3 1.3 1.5 1.3

(b) plus_saturated functor

Logical

Most logical operators, like arithmetic operators, require two inputs and have AltiVec

support. The equal_to functor’s implementation is discussed in this section as represen-

tative of logical operators. The equal_to functor is shown in Algorithms 10.2.2, 10.2.2

and 10.2.2. The equal_to functor’s implementation is similar to plus_saturated. The

scalar versions return VVM_TRUE and VVM_FALSE for true and false respectively. This is

required because true is converted to 1, and not ~0 in scalar programs. See Section 6.2

for more information on VVM_TRUE and VVM_FALSE.

Algorithm 10.13: equal_to functor (single-channel)

template<typename T = void> struct equal_to

: public std::binary_function<

T, T, typename vvm::scalar_traits<T>::bool_type

> {

typename vvm::scalar_traits<T>::bool_type

operator()(const T& a, const T& b) const {

return a == b ? ~0 : 0;

}

typename vvm::add_vector<
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typename vvm::scalar_traits<T>::bool_type

>::type operator()(

const typename vvm::add_vector<T>::type& a,

const typename vvm::add_vector<T>::type& b) const {

return a == b;

}

};

Algorithm 10.14: equal_to functor (multi-channel)

template<typename TL> struct equal_to<ct::tuple<TL> >

: public std::binary_function<ct::tuple<TL>, ct::tuple<TL>,

typename vvm::to_bool<ct::tuple<TL> >::type> {

typename vvm::to_bool<ct::tuple<TL> >::type operator()(

const ct::tuple<TL>& a, const ct::tuple<TL>& b) const {

typename vvm::to_bool<ct::tuple<TL> >::type ret;

meta::EFOR4<0, meta::Less, ct::length<TL>::value, +1,

priv::function_call>::exec(*this, ret, a, b);

return ret;

}

typename vvm::add_vector<

typename vvm::to_bool<ct::tuple<TL> >::type

>::type operator()(

const typename vvm::add_vector<ct::tuple<TL> >::type& a,

const typename vvm::add_vector<ct::tuple<TL> >::type& b) const {

typename vvm::add_vector<

typename vvm::to_bool<ct::tuple<TL> >::type>::type ret;

meta::EFOR4<0, meta::Less, ct::length<TL>::value, +1,

priv::function_call>::exec(*this, ret, a, b);

return ret;

}

public:

// Should be private, but template friendship fails in GCC 3.1

template<typename T>

typename vvm::scalar_traits<T>::bool_type

operator()(const T& a, const T& b) const {

return a == b ? ~0 : 0;

}

template<typename T>
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vvm::vector<typename vvm::scalar_traits<T>::bool_type>

operator()(

const vvm::vector<T>& a, const vvm::vector<T>& b) const {

return a == b;

}

};

Algorithm 10.15: equal_to functor (autodetect)

namespace priv {

/** Function Call

* Implements tuple code by calling self.operator()

*/

struct function_call {

template<int i> struct Code {

template<

typename selfT,

typename returnT,

typename T

> static void exec(const selfT& self, returnT& ret,

const T& a) {

ret.template get<i>() =

self.operator()(a.template get<i>());

}

template<typename selfT, typename returnT, typename T>

static void exec(const selfT& self, returnT& ret,

const T& a, const T& b) {

ret.template get<i>() =

self.operator()(a.template get<i>(),

b.template get<i>());

}

};

};

} // End of priv namespace

template<> struct equal_to<void> {

template<typename TL>

ct::tuple<typename ct::apply<TL, vvm::to_bool>::type>

operator()(const ct::tuple<TL>& a,

const ct::tuple<TL>& b) const {
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ct::tuple<typename ct::apply<TL, vvm::to_bool>::type> ret;

meta::EFOR4<0, meta::Less, ct::length<TL>::value, +1,

priv::function_call>::exec(*this, ret, a, b);

return ret;

}

template<typename T>

typename vvm::scalar_traits<T>::bool_type

operator()(const T& a, const T& b) const {

return a == b ? ~0 : 0;

}

template<typename T>

vvm::vector<typename vvm::scalar_traits<T>::bool_type>

operator()(

const vvm::vector<T>& a, const vvm::vector<T>& b) const {

return a == b;

}

};

Table 10.4 Speedup attained by executing VVIS’s equal_to functor in AltiVec mode

over scalar mode

Single-Channel Image RGB Image

320

×960

640

×960

960

×960

1280

×960

320

×960

640

×960

960

×960

1280

×960

unsigned char 1.3 1.3 1.4 1.4 6.8 6.3 7.3 6.9

unsigned short int 1.2 1.4 1.4 1.4 3.0 3.3 3.3 3.2

unsigned int 1.2 1.2 1.3 1.3 1.5 1.5 2.1 1.5

float 1.4 1.3 1.4 1.4 2.2 2.1 2.3 2.1

double 0.8 0.8 0.8 0.8 1.8 1.8 1.9 1.8

Table 10.4 shows the speedup attained by changing VVIS from scalar mode to Al-

tiVec mode. The speedup factor is actually better than the arithmetic operations. This

is probably because the logical functions in VVM returns ~0 and 0 for true and false

respectively, whereas the scalar code returns 1 and 0. The scalar code thus has to change

the 1 to a ~0.

Equalise

Equalise distributes a given grey-level interval [min, max] evenly over the full grey scale

[0, 255]. m is the gradient of the line and c is the intersection.
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L(X0) =











0 ifX0 < min

mX0 + c ifX0 ≥ minANDX0 ≤ max

255 ifX0 > max

(10.1)

m =
254

(max−min)
(10.2)

c = 1−m×min (10.3)

The VVIS single and multi-channel versions of the equalise functor are presented in

Algorithms 10.2.2 and 10.2.2 respectively. Equalise does not have an autodetect version

because its constructor accepts parameters. Without specifying a type when it gets cre-

ated, equalize would not know what type the minimum and maximum values should be.

The equalize functor uses vvm::madd to perform multiplication and addition without

promotion.

Algorithm 10.16: equalize functor (single-channel)

template<typename T> struct equalize {

equalize(const T min, const T max)

: _smin(min), _smax(max), _vmin(min), _vmax(max),

_vzero_val(0), _vmax_val(std::numeric_limits<T>::max()) {

// Calculate m & c

_sm = (std::numeric_limits<T>::max() - 1) /

(_smax - _smin);

_sc = 1 - _sm * _smin;

// Copy m & c to vvm::vector

_vm = _sm;

_vc = _sc;

}

T operator()(const T a) {

if(a < _smin)

return 0;

else if(a > _smax)

return std::numeric_limits<T>::max();

else

return _sm * a + _sc;

}

vvm::vector<T> operator()(const vvm::vector<T>& a) {

vvm::vector<T> ret;

ret = vvm::madd(_vm, a, _vc);
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ret = vvm::select(a < _vmin, ret, _vzero_val);

ret = vvm::select(a > _vmax, ret, _vmax_val);

return ret;

}

private:

T _smin, _smax, _sm, _sc;

vvm::vector<T> _vmin, _vmax, _vm, _vc, _vzero_val, _vmax_val;

};

Algorithm 10.17: equalize functor (multi-channel)

template<typename TL> struct equalize<ct::tuple<TL> > {

private:

typedef TL scalar_tl;

typedef typename ct::apply<TL, vvm::add_vector>::type

vector_tl;

public:

equalize(const ct::tuple<TL>& min,

const ct::tuple<TL>& max) {

meta::EFOR3<0, meta::Less, ct::length<TL>::value, +1,

do_init>::exec(*this, min, max);

}

ct::tuple<scalar_tl> operator()(const ct::tuple<TL> a) {

ct::tuple<scalar_tl> ret;

meta::EFOR3<0, meta::Less, ct::length<scalar_tl>::value,

+1, do_op>::exec(*this, ret, a);

return ret;

}

ct::tuple<vector_tl> operator()(

const typename vvm::add_vector<ct::tuple<TL> >::type & a) {

ct::tuple<vector_tl> ret;

meta::EFOR3<0, meta::Less, ct::length<vector_tl>::value,

+1, do_op>::exec(*this, ret, a);

return ret;

}

private:

struct do_init {

template<int i> struct Code {

static void exec(equalize& self, const ct::tuple<TL>& min,
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const ct::tuple<TL>& max) {

typedef typename ct::type_at<TL, i>::type scalar_type;

self._smin.template get<i>() = min.template get<i>();

self._smax.template get<i>() = max.template get<i>();

self._vmin.template get<i>() = min.template get<i>();

self._vmax.template get<i>() = max.template get<i>();

self._vzero_val.template get<i>() = 0;

self._vmax_val.template get<i>() =

std::numeric_limits<scalar_type>::max();

// Calculate m & c

self._sm.template get<i>() =

(std::numeric_limits<scalar_type>::max() - 1) /

(self._smax.template get<i>() -

self._smin.template get<i>());

self._sc.template get<i>() = 1 -

self._sm.template get<i>() *

self._smin.template get<i>();

// Copy m & c to vvm::vector

self._vm.template get<i>() = self._sm.template get<i>();

self._vc.template get<i>() = self._sc.template get<i>();

}

};

};

struct do_op {

template<int i> struct Code {

static void exec(equalize& self, ct::tuple<scalar_tl>& ret,

const ct::tuple<TL>& a) {

typedef typename ct::type_at<TL, i>::type scalar_type;

if(a.template get<i>() < self._smin.template get<i>())

ret.template get<i>() = 0;

else if(a.template get<i>() > self._smax.template get<i>())

ret.template get<i>() =

std::numeric_limits<scalar_type>::max();

else

ret.template get<i>() = self._sm.template get<i>() *

a.template get<i>() + self._sc.template get<i>();

}

static void exec(equalize& self, ct::tuple<vector_tl>& ret,

const typename vvm::add_vector<ct::tuple<TL> >::type& a) {
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typedef typename ct::type_at<TL, i>::type scalar_type;

ret.template get<i>() = vvm::madd(

self._vm.template get<i>(),

a.template get<i>(),

self._vc.template get<i>());

ret.template get<i>() = vvm::select(

a.template get<i>() < self._vmin.template get<i>(),

ret.template get<i>(),

self._vzero_val.template get<i>());

ret.template get<i>() = vvm::select(

a.template get<i>() > self._vmax.template get<i>(,

ret.template get<i>(),

self._vmax_val.template get<i>());

}

};

};

private:

ct::tuple<TL> _smin, _smax, _sm, _sc;

typename vvm::add_vector<ct::tuple<TL> >::type _vmin, _vmax,

_vm, _vc, _vzero_val, _ vmax_val;

};

Table 10.5 Speedup attained by executing VVIS’s equalize functor in AltiVec mode

over scalar mode

Single-Channel Image RGB Image

320

×960

640

×960

960

×960

1280

×960

320

×960

640

×960

960

×960

1280

×960

unsigned char 0.7 0.8 0.8 0.8 2.7 2.7 2.8 2.9

unsigned short int 0.9 0.9 0.9 0.9 1.9 2.1 2.2 2.2

unsigned int 0.5 0.6 0.6 0.6 0.9 0.9 0.9 0.9

float 0.7 0.8 0.8 0.8 1.0 1.1 1.1 1.1

double 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4

Table 10.5 shows that equalize did not experience a speedup for unsigned char

because there is no native vector support for vvm::madd in AltiVec; the VVM implemen-

tation used did not use AltiVec to perform multiplication and addition separately, which

it could have done. AltiVec provides multiply and add instructions for shorts, ints and

floats. See Appendix B for a more information on VVM to AltiVec mappings. Types

without AltiVec multiply and add instructions, were processed with the scalar processor.
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Since the number of scalars in a vvm::vector in AltiVec mode is not one, and the VVM

implementation used is only zero-cost when the number of elements is one, this multi-

plication and addition had additional overheads. As a result, VVIS was always slower in

AltiVec mode for those types.

Threshold

Thresholding divides an image into two distinct areas based solely on the pixel value.

Values greater than or equal to the threshold are set to 1, while other regions are set to 0

(Nat 1999, Young et al. n.d.). However, for vector programs, instead of 1 and 0, it is

more efficient to set the values to ~0 and 0 respectively, because these are the values that

vector comparison functions usually return for true and false. The following equation

summarises the vectorised threshold function:

f (X0) =

{

0 ifX0 ≥ threshold

0 ifX0 < threshold
(10.4)

VVIS does not have a dedicated threshold functor. Instead, a threshold operation is

composed from binders and comparative functions like greater_equal. The following

statement performs a threshold, setting all pixels with value >= 50 to ~0, and 0 for the

rest.

vvis::transform(img1, dest, vvis::pixel_accessor(),

vvis::bind2nd(

vvis::greater_equal<typename image_t::pixel_type>(), 50));

Table 10.6 shows the speedup attained for this statement. Speedup attained for threshold

was lower than the speedup attained for the simpler plus functor. Threshold was faster in

AltiVec mode when operating on unsigned char, and unsigned short int for single-

channel images. As usual, the speedup attained was greater for RGB images, because of

the slow scalar performance of VVIS with RGB images in scalar mode.

10.3 Convolutive operations

Convolutive operations (see Section 8.2) accept a rectangle of elements per input set, and

produce a single output element for one output set.

10.3.1 Algorithms

A single convolutive algorithm is provided by VVIS, which accepts one input set and one

output set.
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Table 10.6 Speedup attained by executing a VVIS threshold functor in AltiVec mode over

scalar mode

Single-Channel Image RGB Image

320

×960

640

×960

960

×960

1280

×960

320

×960

640

×960

960

×960

1280

×960

unsigned char 2.1 1.6 1.8 1.7 7.4 6.5 7.0 6.8

unsigned short int 1.0 1.2 1.3 1.3 2.8 3.1 3.1 3.1

unsigned int 0.9 1.0 1.1 1.1 1.4 1.4 1.4 1.4

float 0.9 1.1 1.1 1.1 1.4 1.5 1.5 1.5

double 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9

template<

typename storageInT,

typename accessorInT,

typename storageOutT,

typename accessorOutT,

typename functorT

> void convolute(const storageInT& in, accessorInT ia,

storageOut& out, accessorOutT oa, functorT f);

Unlike quantitative or transformative operations, convolutive algorithms require spatial it-

erators. The VVIS convolutive algorithm does not accept contiguous or unknown storages

since these are one-dimensional, neither does it accept Illife storages with Illife storages

because the storages will have three or more dimensions. It only accepts Illife storages

with contiguous or unknown storages.

Scalar algorithm

An example of a scalar implementation of the convolutive algorithm is shown in Algo-

rithm 10.18. The functor has four methods — kernel_width, kernel_height, ac-

cumulate, and output. The kernel_width and kernel_height functions return the

width and height of the rectangular input expected respectively. The accumulate func-

tion is used to pass the input values to the functor. Input values are passed in order, row by

row, from top to bottom. Because the output operation requires exactly the same number

of input values and the order of the values is consistent, there is no need to explicitly in-

form accumulate which value was passed. After passing all the input values required for

the current output to the functor through accumulate, output is called to get the output

value.

Examples of generic convolutive scalar algorithms in VIGRA are vigra::convolve-

Image, vigra::convolveImageWithMask, vigra::convolveLine, vigra::separa-

bleConvolveX, and vigra::separableConvolveY. VIGRA provides different algori-
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Algorithm 10.18 Convolutive generic scalar algorithm

template<class T, class F>
void convolute(T* in, int width, int height, T* out, F f)
{

for(int y = 0; y < height - 2; ++y)
{

for(int x = 0; x < width - 2; ++x)
{

int idx2 = (y + 1) * height + x;
int idx3 = (y + 2) * height + x;
for(int i = 0; i < f.kernel_height(); ++i)
{

int idx = (y + i) * height + x;
for(int j = 0; j < f.kernel_width(); ++j)

f.accumulate(in[idx + j]);
}
out[y * height + x] = f.output();

}
}

}

thms for 1-D and 2-D convolutions. In addition, VIGRA’s convolutive algorithms also

accept parameters for controlling how border conditions are handled.

AltiVec algorithm

An AltiVec convolutive function, modified from Fuller (1999), is shown in Algorithm

10.3.1. This algorithm only operates on aligned data. Algorithm 10.3.1 can be modified to

load unaligned data using the same method used on transformative algorithms in Section

3.7.

Algorithm 10.19: AltiVec convolutive algorithm modified from Fuller (1999)

void convolute(signed short int* input, int width, int height,

__vector signed short kernel[9], signed short int* output) {

const int vsize = 8;

__vector signed short zero =

(vector signed short)(0, 0, 0, 0, 0, 0, 0, 0);

// Load input data

for(int i = 0; i < height - 2; ++i) {

// Loop through each row

// Load the pixels from the row assumes Image is 128b

// aligned

// Generate row pointers

264



signed short *r1_ptr = input + i*width;

signed short *r2_ptr = r1_ptr + width;

signed short *r3_ptr = r2_ptr + width;

__vector signed short r11s0, r12s0, r21s0, r22s0,

r31s0, r32s0;

// Now work across the row

for(int j = 0; j < width/vsize; ++j) {

__vector signed short result = zero;

// Main calculation

// Loads, shifts, mladds are interleaved

r11s0 = vec_ld(0, r1_ptr);

r12s0 = vec_ld(16, r1_ptr);

// Process First Row

__vector signed short r11s2 = vec_sld(r11s0, r12s0, 2);

__vector signed short r11s4 = vec_sld(r11s0, r12s0, 4);

result = vec_mladd(r11s0, kernel[0], result);

result = vec_mladd(r11s2, kernel[1], result);

result = vec_mladd(r11s4, kernel[2], result);

// Process Next Row

r21s0 = vec_ld(0, r2_ptr);

r22s0 = vec_ld(16, r2_ptr);

__vector signed short r21s2 = vec_sld(r21s0, r22s0, 2);

__vector signed short r21s4 = vec_sld(r21s0, r22s0, 4);

result = vec_mladd(r21s0, kernel[3], result);

result = vec_mladd(r21s2, kernel[4], result);

result = vec_mladd(r21s4, kernel[5], result);

// Process Last Row

r31s0 = vec_ld(0, r3_ptr);

r32s0 = vec_ld(16, r3_ptr);

__vector signed short r31s2 = vec_sld(r31s0, r32s0, 2);

__vector signed short r31s4 = vec_sld(r31s0, r32s0, 4);

result = vec_mladd(r31s0, kernel[6], result);

result = vec_mladd(r31s2, kernel[7], result);

result = vec_mladd(r31s4, kernel[8], result);

// Store in output

// End Results contains eight shorts

// which are the convolution of the input image

// with the kernel

vec_st(result, 0,
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(__vector signed short*)&output[i*width+j*vsize]);

r1_ptr += VectorSize;

r2_ptr += VectorSize;

r3_ptr += VectorSize;

}

}

}

Algorithm 10.3.1 assumes that the kernel’s size is 3×3. The 3×3 kernel is repre-

sented as a one-dimensional array. An example of how the kernel might be constructed is

shown below:

// Kernel is 3x3

// 1 -2 1

// -2 5 -2

// 1 -2 1

__vector signed short kernel[9] = {

// Row 1

(__vector signed short)( 1, 1, 1, 1, 1, 1, 1, 1),

(__vector signed short)(-2, -2, -2, -2, -2, -2, -2, -2),

(__vector signed short)( 1, 1, 1, 1, 1, 1, 1, 1),

// Row 2

(__vector signed short)(-2, -2, -2, -2, -2, -2, -2, -2),

(__vector signed short)( 5, 5, 5, 5, 5, 5, 5, 5),

(__vector signed short)(-2, -2, -2, -2, -2, -2, -2, -2),

// Row 3

(__vector signed short)( 1, 1, 1, 1, 1, 1, 1, 1),

(__vector signed short)(-2, -2, -2, -2, -2, -2, -2, -2),

(__vector signed short)( 1, 1, 1, 1, 1, 1, 1, 1)

};

Apart from supporting only kernel sizes of 3×3, Algorithm 10.3.1 also requires input and

output images to be of the same type. Input and output images can only have a single

channel, and the data must be aligned.

Generic VVIS algorithm

VVIS’s convolutive algorithm has fewer features than VIGRA’s. VIGRA’s convolutive

algorithms allow the user to choose how border conditions are handled and will offset the

position that output is written to based on the size of the kernel automatically. VVIS’s
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Figure 10.5 Convolutive algorithm behaviour

Input Output

Pixel

Central Pixel

Kernel

convolutive algorithm is similar in functionality to the AltiVec convolution algorithm pre-

sented by Fuller (1999) (see Figure 10.5). There is actually no need to handle central

pixels in the algorithm, since the user can control the destination by creating a region that

offsets the storage automatically.

Converting the AltiVec algorithm discussed in Algorithm 10.3.1 to a generic version is

unfortunately not as simple as converting the quantitative and transformative algorithms.

A generic convolutive algorithm should be able to support different kernel sizes, different

input and output image types, different input and output channel counts, and support

unaligned rows.

Convolutive operations require spatial iterators. Because of this, convolutive algori-

thms only accept Illife storages with contiguous or unknown storages. The scalar convo-

lutive algorithm operates on Illife storages with unknown storages, while the vectorised

convolutive algorithm operates on Illife storages containing contiguous storages.

The convolutive algorithm for Illife storages containing unknown storages is pretty

straightforward, because it only uses the scalar processor. As mentioned previously, scalar

convolutive algorithms already exist in VIGRA. However, while in VIGRA, algorithms

specify the operation applied to the pixels, in VVIS the operation is specified by the

functor.

The generic VVIS convolutive algorithms for unknown and contiguous storages are

presented in Algorithms 10.20 and 10.3.1 respectively. As discussed in Section 9.3.6,

these algorithms are enabled using function enablers. The priv::select_illife_sto-

rage template metafunction will return priv::using_contiguous_storage if all the

storages are Illife storages that contain contiguous storages. Otherwise, it will return

priv::using_unknown_storage if all the storages are Illife storages that contain either

contiguous or unknown storages. Since VVIS convolutive algorithms require storages

to be rectangular, the enabler logic includes checks to ensure that all input and output
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storages are rectangular.

As mentioned previously, Algorithm 10.3.1 requires kernel sizes of 3×3, input and

output image types to be of the same type, input and output images to have only one

channel, and the data must be aligned. On the other hand, a generic vectorised convolutive

algorithm should support different input and output image types, multi-channel input and

output images, unaligned data, and variable kernel sizes. Accessors handle multi-channel

input and output, and allow the input and output types to be different. Because the begin

function of contiguous storages always returns an aligned iterator, algorithms do not have

to handle unaligned data or storages with different alignments. Unaligned data would be

handled by the accessors and storages. Variable kernel sizes though are the responsibility

of convolutive algorithm.

When supporting kernel sizes, variable kernel widths are more difficult to implement

than variable kernel heights. To support variable kernel widths, the vectorised algo-

rithm needs to load zero or more extra vvm::vectors in order to extract the required

vvm::vectors. The exact number of extra loads required depends on the kernel width.

The basic code to retrieve the required vvm::vector, where a is the accessor, can be

distilled to:

a.get_vector(FIRST_VECTOR, SECOND_VECTOR, SHIFT)

We only ever need to load from two vvm::vectors because the resultant vvm::vector

cannot be longer than one vvm::vector length.

The first vvm::vector (FIRST_VECTOR) is as follows, where pi is the current iterator

position and kx is x-coordinate in the kernel. If kx reaches VVM_SCALAR_COUNT, then we

need to load the vvm::vector after pi instead of the vvm::vector located at pi.

a.get_vector(pi, kx / VVM_SCALAR_COUNT)

The second vvm::vector (SECOND_VECTOR) is:

a.get_vector(pi, kx / VVM_SCALAR_COUNT + 1)

SHIFT is therefore:

kx % VVM_SCALAR_COUNT

Thus the code required to load the appropriate vvm::vectors in the x-coordinate is

for(int kx = 0; kx < f.kernel_width; ++kx) {

f.accumulate(

a.get_vector(

a.get_vector(pi, kx / VVM_SCALAR_COUNT),

a.get_vector(pi, kx / VVM_SCALAR_COUNT + 1),

kx % VVM_SCALAR_COUNT));

}
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Algorithm 10.20 Convolutive generic VVIS algorithm for Illife storages containing un-

known storages

template<
typename storageInT,
typename accessorInT,
typename storageOutT,
typename accessorOutT,
typename functorT

> typename ct::enable_if<
boost::is_same<

typename priv::select_illife_unknown<
CT_TYPELIST2(storageInT, storageOutT)>::type,

priv::using_unknown_storage
>::value &&
is_rectangular<storageInT>::value &&
is_rectangular<storageOutT>::value

>::type convolute(const regionInT& in, regionOutT& out,
accessorT a, functorT f) {

typename regionInT::const_iterator iy = in.begin();
typename regionInT::const_iterator iy_end = in.end() -

(f.kernel().height() - 1);
typename regionInT::iterator oy = out.begin();
for(; iy != iy_end; ++iy, ++oy) {

typename regionInT::value_type::const_iterator pi =
iy->begin();

typename regionInT::value_type::const_iterator end =
iy->end();

end -= f.kernel().width() - 1;
typename regionOutT::value_type::iterator po = oy->begin();
int vi = 0;
for(int i = 0; pi != end; ++i, ++pi, ++po) {

f.reset();
for(int ky = 0; ky < f.kernel().height(); ++ky) {
typename regionInT::value_type::const_iterator itr =

(iy + ky)->begin() + i;
for= 0; kx < f.kernel().width(); ++kx) {

f.accumulate(a.get_scalar(itr + i));
}

}
a.set_scalar(f.scalar_result(), po);

}
}

}
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The next step is to calculate pi. The pi iterator contains the position in the row that we are

interested in currently. To calculate each row of an output image, ky rows from the input

image are needed. While it is easy enough to get the starting position of each required

row using in[y + ky], it is more difficult to get to the position required when it is not the

starting position. Since each row in an Illife storage is contiguous storage, if we keep the

number of vvm::vector steps walked so far, we can calculate the required pi as:

pi = in[y + ky].begin();

pi.vector += i;

Algorithm 10.3.1 shows the vectorised VVIS convolutive algorithm for Illife storages

with contiguous storages. For performance, the final algorithm prefetchs, keeps an array

of row iterators and keeps an array of vvm::vectors.

Prefetching: Since VVM prefetching instructions require a prefetch channel to be a lit-

eral, in order to prefetch all the rows required in different channels, code similar to

the following is required:

for(int ky = 0; ky < f.kernel_height(); ++ky) {

switch(ky) {

case 0: /* Prefetch channel 0 */; break;

case 1: /* Prefetch channel 1 */; break;

case 2: /* Prefetch channel 2 */; break;

// ... and so on

default:

// No more prefetch channels available

goto continue_processing;

}

}

continue_processing:

// Continue processing here

Since this prefetching method appears to be computationally expensive, Algorithm

10.3.1 only prefetchs the input row in[y] (ky is 0) and the output row out[y].

Keeps array of row iterators: The algorithm keeps an array with f.kernel_height()

row iterators to avoid having to continuously recalculate pi. The array definition is

as follows:

typename storageInT::value_type::const_iterator

pi[kernel_height];
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The array of pis is initialised at the start of every output row as:

for(int i = 0; i < kernel_height; ++i) {

pi[i] = in[y + i].begin();

}

They are advanced while accumulating:

f.reset()

for(int ky = 0; ky < kernel_height; ++ky) {

// Load vectors and accumulate goes here ...

// Advance pi

++pi[ky].vector;

}

// Write output f.vector_result() ...

Keeps array of vvm::vectors: Because vvm::vectors loaded from an iteration of kx

are likely to be used again, the algorithm loads all the vvm::vectors required once.

Since the number of vvm::vectors that need to be loaded is kernel_width /

VVM_SCALAR_COUNT + 2, we can load all the vvm::vectors necessary into an array

using code similar to the following:

const int req_vcount = kernel_width / VVM_SCALAR_COUNT + 2

typename accessorInT::vector_type vcache[req_vcount];

// Load vectors

for(int i = 0; i < req_vcount; ++i) {

vcache[i] = ia.get_vector(pi[ky], i);

}

The accumulate loop thus becomes the following. Note that the first kx is accumu-

lated directly.

f.accumulate(vcache[0]);

for(int kx = 1; kx < f.kernel_width(); ++kx) {

f.accumulate(

ia.get_vector(vcache[kx / VVM_SCALAR_COUNT],

vcache[kx / VVM_SCALAR_COUNT + 1],

kx % VVM_SCALAR_COUNT));

}
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Algorithm 10.21: Convolutive generic VVIS algorithm for Illife storages containing con-

tiguous storages

template<

typename storageInT,

typename accessorInT,

typename storageOutT,

typename accessorOutT,

typename functorT

> typename ct::enable_if<

boost::is_same<

typename priv::select_illife_unknown<

CT_TYPELIST2(storageInT, storageOutT)>::type,

priv::using_contiguous_storage

>::value &&

is_rectangular<storageInT>::value &&

is_rectangular<storageOutT>::value

>::type convolute(const regionInT& in, regionOutT& out,

accessorT a, functorT f) {

const int kernel_width = f.kernel_width();

const int kernel_height = f.kernel_height();

const int height = in.size() - kernel_height + 1;

const int req_vcount = kernel_width / VVM_SCALAR_COUNT + 2;

typename accessorInT::vector_type vcache[req_vcount];

typename storageInT::value_type::const_iterator

pi[kernel_height];

for(int y = 0; y < height; ++y) {

for(int i = 0; i < kernel_height; ++i) {

pi[i] = in[y + i].begin();

}

typename storageInT::value_type::const_iterator end =

in[y].end() - (kernel_width - 1);

typename storageOutT::value_type::iterator po =

out[y].begin();

// Apply functor the vector processor

for(; pi[0].vector != end.vector; ++po.vector) {

ia.template prefetch_read<0>(pi[0]);

oa.template prefetch_write<

accessorInT::prefetch_channel_count>(po);
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f.reset();

for(int ky = 0; ky < kernel_height; ++ky) {

// Load vectors

for(int i = 0; i < req_vcount; ++i) {

vcache[i] = ia.get_vector(pi[ky], i);

}

// Now accumulate

f.accumulate(vcache[0]);

for(int kx = 1; kx < kernel_width; ++kx) {

f.accumulate(

ia.get_vector(vcache[kx / VVM_SCALAR_COUNT],

vcache[kx / VVM_SCALAR_COUNT + 1],

kx % VVM_SCALAR_COUNT));

}

++pi[ky].vector; // Advance pi

}

oa.set_vector(f.vector_result(), po);

}

// Apply functor using the scalar processor

for(; pi[0].scalar != end.scalar; ++po.scalar) {

f.reset();

for(int ky = 0; ky < kernel_height; ++ky) {

for(int kx = 0; kx < kernel_width; ++kx) {

f.accumulate(ia.get_scalar(pi[ky] + kx));

}

++pi[ky].scalar; // Advance pi

}

oa.set_scalar(f.scalar_result(), po);

}

}

}

Results

Figures 10.6 and 10.7 show how the performance of the VVIS convolutive algorithm,

presented in Section 10.3.1, compares with hand-coded scalar and AltiVec, and VIGRA

programs. All implementations were compiled using Apple GCC 3.1 20021003, with the

-Os (optimise for size) switch. Times presented include the cost of constructing the kernel

functor, which used a 3×3 signed char kernel. Different source and output images were
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used.

The implementations were evaluated for unsigned char and signed short images.

Images of signed shorts were evaluated because Algorithm 10.3.1 used signed short

images. In addition, AltiVec does not provide vector multiply and add instructions for

char AltiVec types; AltiVec only provides vector multiply and add instructions for short,

int and float AltiVec types.

VIGRA: This version used VIGRA’s convolveImage algorithm. VIGRA uses a con-

tiguous chunky scalar storage format. When processing RGB images, VIGRA uses

vigra::RGBColor to represent a pixel.

Scalar: This version is a hand-coded scalar loop that processed contiguous planar stor-

ages. Since the kernel and the image types are different, automatic type conversions

were performed.

Scalar Mode, VVIS (No Prefetch): This version uses VVIS’s convolve algorithm, but

without prefetching, and without a VPU. This version uses automatic unknown

storages and specialised iterators for single-channel images. Since this version uses

automatic unknown storages and there is no VPU, the convolve algorithm used

processed unknown storages using the scalar implementation.

Both kernel and intermediate results were promoted to the same type explicitly. For

unsigned char and signed short images, the promoted type used was signed

short and signed int respectively.

Scalar Mode, VVIS (Prefetch): This version is the same as Scalar Mode, VVIS (No

Prefetch) except prefetching was requested. Since prefetching requests are ignored

in scalar mode, prefetching is not actually enabled and thus this version is expected

to perform identically to Scalar Mode, VVIS (No Prefetch).

AltiVec: This version is a hand-coded AltiVec program, similar to Algorithm 10.3.1 ex-

cept the kernel accepted was an array of signed chars instead of __vector signed

shorts. This version will convert this kernel to an array of __vector signed

shorts using the splat function from Algorithm 3.6.

AltiVec Mode, VVIS (No Prefetch): This version uses VVIS’s convolve algorithm, with-

out prefetching, and with AltiVec. This version uses automatic unknown storages

and specialised iterators for single-channel images.

Both kernel and intermediate results were promoted to the same type explicitly. For

unsigned char and signed short images, the promoted type used was signed

short and signed int respectively.
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Figure 10.6 Performance of different vvis::convolute implementations when operat-

ing on unsigned char images
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AltiVec Mode, VVIS (Prefetch): This version is the same as AltiVec Mode, VVIS (No

Prefetch) except prefetching was requested. As mentioned previously, VVIS’s

convolute algorithm only prefetchs the current input and output rows.

The promoted type in Figure 10.6 is signed short. This is the type that VVIS im-

plementations are operating in. When processing single-channel images in scalar mode

VVIS was slightly faster than the hand-coded scalar algorithm, which is consistent with

observations on the VVIS transformative algorithm. When processing RGB images in

scalar mode, VVIS was slower than the hand-coded scalar algorithm. While this is also

consistent with the VVIS transformative algorithm, the difference was much smaller. In

AltiVec mode, prefetching did not have any effect for either single channel or multi-

channel storages. In scalar mode, prefetching requests are ignored, so as expected, prefetch-

ing had no effect. VVIS was faster than scalar hand-coded and VIGRA programs even

though the linear_filter functor used is actually operating on signed shorts. This is

despite the performance of the VVM implementation being approximately 17% to 20%

slower than a hand-coded AltiVec program.

Figure 10.7 shows the same relationship in scalar mode between hand-coded scalar

and VVIS programs as Figure 10.6. Since the images consisted of signed shorts and

the kernel type was signed char, the promoted type was signed int. Despite the VVM
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Figure 10.7 Performance of different vvis::convolute implementations when operat-

ing on signed short images
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implementation used having about the same relative overheads when processing signed

int as signed short data in AltiVec mode and VVIS being faster in AltiVec mode when

the promoted type was signed short, VVIS was slower in AltiVec mode than in scalar

mode when operating on the promoted type, signed int, because the number of scalars

in a VPU vector dropped from eight to four.

VVIS in AltiVec mode was always slower than AltiVec hand-coded program. This dif-

ference can be attributed to the algorithm supporting variable kernel sizes and VVM’s load

from two vvm::vectors function. Because this VVM load function allows the number of

scalars to be selected from each vvm::vectors to be specified as a variable, VVM loads

unaligned using the AltiVec vec_perm permutation function instead of the vec_sld used

by the AltiVec hand-coded programs. The vec_sld function is faster than vec_perm.

Prefetching did not have any effect on convolutive algorithms. This suggests that ei-

ther the data were always already available in the caches, or that it never was. While

VIGRA was slower in all cases tested, this is probably because of the additional features

provided by the VIGRA convolution algorithm. VIGRA’s convolution algorithm, for ex-

ample, allows the user to specify how the algorithm should process borders.
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Table 10.7 Convolutive algorithms’ required functor interface

Expression Return Type Notes

A::kernel_type Type Type of a.kernel()
a.reset() void Signals start of new rectangle input

a.accumulate(s) void Accumulate a scalar

a.accumulate(v) void Accumulate a vector

a.scalar_result() scalar Returns the scalar answer

a.vector_result() vector Returns the vector answer

a.kernel_width() const int Returns the width of the kernel

a.kernel_height() const int Returns the height of the kernel

10.3.2 Functors

Convolutive operations’ functor’s requirements are more involved than quantitative and

transformative operations’. The expected interface for a convolutive functor in VVIS is

shown in Table 10.7. As a result of using the categorisation scheme detailed in Chapter

8, in VVIS the operation to be performed on the data is part of the functor and not the

algorithm; in VIGRA, the operation is part of the algorithm. Because of this, convolutive

algorithms in VVIS do not require the contents of the kernel; they only require the size.

Furthermore, because the operation is not part of the algorithm, fewer algorithms are

required in VVIS than in VIGRA. Like the VVIS functors required for quantitative and

transformative operations, scalar and vvm::vector versions of its accumulate and output

functions are required.

This section starts with a discussion on the implementation of base_filter which

is the super-class of the other filters featured in VVIS. The base_filter class handles

the allocation and deallocation of the kernel and calculates the sum of all values in a

kernel. The implementation of two other filters, linear_filter and max_filter, are

then described. These filters differ in what operation they perform in the accumulate

functions.

Base filter

The base_filter class handles the allocation and deallocation of the kernel and calcu-

lates the sum of all values in a kernel. The type that the filter should be working with

is determined by base_filter via a promotion policy passed in through promoteP. By

default, promoteP is ct::promote. The user can disable promotions by passing a dif-

ferent template metafunction through promoteP, if the user is sure that the intermediate

results will not overflow. The base_filter class converts the kernel into an array of

vvm::vectors.

Algorithms 10.3.2 and 10.3.2 show how base_filter is implemented for single-
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channel and multi-channel storages respectively. The base_filter class for multi-channel

images also handles kernel allocation and deallocation. However, in this case there is now

a list of types. The base_filter class could have allocated an array for each channel

separately, but this would have been a waste of memory since there are usually duplicate

types in the typelist. Instead, base_filter uses ct::no_duplicates to reduce the list to

unique types, and then creates and maintains an array for each of these unique types. Thus

for a RGB image that has three unsigned char channels, base_filter will only keep

one vvm::vector<T> array of kernel values, where T is the promoted type. The same

applies to the sum of all values in the kernel. The vector_kernel() and vector_sum()

template functions provide easy access to the vvm::vector kernel and sum for a given

type respectively.

Algorithm 10.22: base_filter (single-channel)

template<

typename kernelT,

typename T,

template<typename> class promoteP = ct::promote

> class base_filter {

protected:

typedef typename promoteP<CT_TYPELIST2(kernelT, T)>::type

scalar_type;

typedef vvm::vector<scalar_type> vector_type;

public:

typedef kernel2d<kernelT> kernel_type;

base_filter() : _vector_kernel(0) {

}

base_filter(const base_filter& rhs)

: _kernel(rhs._kernel) {

allocate();

}

base_filter(kernel_type kernel)

: _kernel(kernel) {

allocate();

}

base_filter& operator=(const base_filter& rhs) {

// Check if the same object

if(&rhs == this)

return *this;

// Deallocate memory

deallocate();
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// Then make copy

_kernel = rhs._kernel;

allocate();

return *this;

}

const kernel_type kernel() const {

return _kernel;

}

protected:

// Destructor is protected so that derived classes do not

// have to be virtual. In addition, it prevent base_filter

// from being used by the user.

~base_filter() {

deallocate();

}

private:

void allocate() {

_vector_kernel = new vector_type[_kernel.width()*

_kernel.height()];

typename kernel_type::const_iterator itr = _kernel.begin();

for(int i = 0; itr != _kernel.end(); ++itr, ++i) {

_vector_kernel[i] = *itr;

}

_vector_sum = _kernel.sum();

}

void deallocate() {

if(_vector_kernel)

delete[] _vector_kernel;

}

protected:

kernel_type _kernel;

vector_type _vector_sum;

vector_type* _vector_kernel;

};

Algorithm 10.23: base_filter (multi-channel)

template<

typename kernelT,
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typename TL,

template<typename> class promoteP

> class base_filter<kernelT, ct::tuple<TL>, promoteP> {

protected:

typedef typename priv::apply_promote_with_kernel<kernelT,

TL, promoteP>::type scalar _tl;

typedef typename ct::apply<scalar_tl,

vvm::add_vector>::type vector_tl;

private:

typedef typename ct::no_duplicates<scalar_tl>::type

scalar_kernel_tl;

typedef typename ct::no_duplicates<vector_tl>::type

vector_kernel_tl;

public:

typedef kernel2d<kernelT> kernel_type;

base_filter() : _vector_kernel(0) {

}

base_filter(const base_filter& rhs)

: _kernel(rhs._kernel) {

allocate();

}

base_filter(kernel_type kernel)

: _kernel(kernel) {

allocate();

}

~base_filter() {

deallocate();

}

public:

const kernel_type kernel() const {

return _kernel;

}

protected:

// Retrieves the kernel for the type T

template<typename T>

vvm::vector<T>* vector_kernel() const {

const int ki = ct::index_of<scalar_kernel_tl, T>::value;

return _vector_kernel.template get<ki>();

}
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// Retrieves the kernel sum for the type T

template<typename T>

vvm::vector<T> vector_sum() const {

const int ki = ct::index_of<scalar_kernel_tl, T>::value;

return _vector_sum.template get<ki>();

}

private:

void allocate() {

meta::EFOR1<0, meta::Less,

ct::length<vector_kernel_tl>::value,

+1, do_allocate>::exec(*this);

}

void deallocate() {

meta::EFOR1<0, meta::Less,

ct::length<vector_kernel_tl>::value,

+1, do_deallocate>::exec(*this);

}

private:

struct do_allocate {

template<int i> struct Code {

static void exec(base_filter& self) {

typedef typename ct::type_at<vector_kernel_tl,

i>::type vector_type;

typedef typename ct::type_at<scalar_kernel_tl,

i>::type scalar_type;

self._vector_kernel.template get<i>() =

new vector_type[

self._kernel.width()*self._kernel.height()];

typename kernel_type::const_iterator itr =

self._kernel.begin();

for(int j = 0;

itr != self._kernel.end();

++itr, ++j) {

self._vector_kernel.template get<i>()[j] = *itr;

}

self._vector_sum.template get<i>() =

self._kernel.sum();

}

};
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};

struct do_deallocate {

template<int i> struct Code {

static void exec(base_filter& self) {

if(self._vector_kernel.template get<i>())

delete[] self._vector_kernel.template get<i>();

}

};

};

private:

kernel_type _kernel;

ct::tuple<typename ct::apply<vector_kernel_tl,

boost::add_pointer>::type> _vector_kernel;

ct::tuple<vector_kernel_tl> _vector_sum;

};

Linear filter

The linear_filter class multiplies the input pixel with the appropriate kernel value,

sums up the results and returns the larger of the sum divided by the sum of the kernel

values or 1. Examples of such operations are gradient filters, Laplacian filters, smoothing

filters and Gaussian filters. The only difference between these operations is the value of

the kernel.

Since the relationships between the kernel values are more important than the actual

value, the user can use different kernel values to achieve the same result. For example,

Nat (1999) and Fuller (1999) used integers, while some examples from Köthe (2001) used

real numbers. Users have control over the kernel type and over the values used.

The scalar accumulate is similar to the following, where _scalar_result is the

immediate sum of the multiplication of the pixels and the kernel, v is the pixel value,

_vector_kernel is the kernel represented as an array of vvm::vectors, and _i is the

current position in the kernel. This scalar version depends on automatic conversions.

_scalar_result += v * _vector_kernel[_i].scalar(0);

++_i;

The vvm::vector accumulate can use the vvm::madd function to perform a multipli-

cation and an addition simultaneously. _vector_result is a vvm::vector containing

the immediate sum of multiplication of pixels and the kernel. The vector_type type is

the promoted vvm::vector type. It is the same type as _vector_kernel’s elements and

_vector_result.
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_vector_result = vvm::madd(vvm::vector_cast<vector_type>(v),

_vector_kernel[_i], _vector_result);

++_i;

Type conversions are required to support negative kernel values when operating on un-

signed images and to prevent overflow.

The linear_filter class is shown in Algorithms 10.3.2 and 10.3.2. Algorithm

10.3.2 applies to single-channel storages while Algorithm 10.3.2 applies to multi-channel

storages. In both cases, linear_filter inherits from base_filter and thus does not

have to handle the allocation and deallocation of the kernel and the sum of values in the

kernel. Like base_filter, by default, linear_filter uses ct::promote to promote

the values before use. This promotion behaviour can be changed by passing a different

promotion template metafunction as promoteP.

Algorithm 10.24: linear_filter functor (single-channel)

template<

typename kernelT,

typename T,

template<typename> class promoteP = ct::promote

> class linear_filter

: public base_filter<kernelT, T, promoteP> {

private:

typedef base_filter<kernelT, T, promoteP> parent_type;

typedef typename parent_type::scalar_type scalar_type;

typedef typename parent_type::vector_type vector_type;

public:

typedef typename parent_type::kernel_type kernel_type;

linear_filter() : parent_type() {

}

linear_filter(const linear_filter& rhs)

: parent_type(rhs), _scalar_result(rhs._scalar_result),

_vector_result(rhs._vector_result), _i(rhs._i) {

}

linear_filter(kernel_type kernel)

: parent_type(kernel) {

}

~linear_filter() {

}

public:

void reset() {
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_i = 0;

_scalar_result = 0;

_vector_result = 0;

}

const scalar_type scalar_result() const {

return _scalar_result / _kernel.sum();

}

const vector_type vector_result() const {

return _vector_result / _vector_sum;

}

void accumulate(const T& v) {

_scalar_result += v * _vector_kernel[_i].scalar(0);

++_i;

}

void accumulate(const vvm::vector<T>& v) {

_vector_result = madd(vvm::vector_cast<vector_type>(v),

_vector_kernel[_i],

_vector_result);

++_i;

}

private:

scalar_type _scalar_result;

vector_type _vector_result;

int _i;

};

Algorithm 10.25: linear_filter functor (multi-channel)

template<

typename kernelT,

typename TL,

template<typename> class promoteP

> class linear_filter<kernelT, ct::tuple<TL>, promoteP>

: public base_filter<kernelT, ct::tuple<TL>, promoteP> {

private:

typedef base_filter<kernelT, ct::tuple<TL>, promoteP>

parent_type;

typedef typename parent_type::scalar_tl scalar_tl;

typedef typename parent_type::vector_tl vector_tl;
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public:

typedef typename parent_type::kernel_type kernel_type;

linear_filter() : parent_type() {

}

linear_filter(const linear_filter& rhs)

: parent_type(rhs), _scalar_result(rhs._scalar_result),

_vector_result(rhs._vector_result), _i(rhs._i) {

}

linear_filter(kernel_type kernel)

: parent_type(kernel) {

}

~linear_filter() {

}

public:

void reset() {

_i = 0;

_scalar_result = 0;

_vector_result = 0;

}

const ct::tuple<scalar_tl> scalar_result() const {

ct::tuple<scalar_tl> ret;

meta::EFOR2<0, meta::Less,

ct::length<scalar_tl>::value,

+1, do_result>::exec(*this, ret);

return ret;

}

const ct::tuple<vector_tl> vector_result() const {

ct::tuple<vector_tl> ret;

meta::EFOR2<0, meta::Less,

ct::length<vector_tl>::value,

+1, do_result>::exec(*this, ret);

return ret;

}

void accumulate(const ct::tuple<TL>& v) {

meta::EFOR2<0, meta::Less,

ct::length<TL>::value,

+1, do_accumulate>::exec(*this, v);

++_i;

}
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void accumulate(

const typename vvm::add_vector<ct::tuple<TL> >::type& v) {

meta::EFOR2<0, meta::Less, ct::length<TL>::value, +1,

do_accumulate>::exec(*this, v);

++_i;

}

private:

struct do_accumulate {

template<int i> struct Code {

static void exec(linear_filter& self,

const ct::tuple<TL>& v) {

typedef typename ct::type_at<scalar_tl, i>::type

scalar_type;

self._scalar_result += v.template get<i>() *

self.template vector_kernel<scalar_type>()

[self._i].scalar(0);

}

static void exec(linear_filter& self,

const typename vvm::add_vector<

ct::tuple<T L> >::type& v) {

typedef typename ct::type_at<scalar_tl, i>::type

scalar_type;

typedef typename ct::type_at<vector_tl, i>::type

vector_type;

self._vector_result.template get<i>() = madd(

vvm::vector_cast<vector_type>(

v.template get<i>()),

self.template vector_kernel<scalar_type>()

[self._i],

self._vector_result.template get<i>());

}

};

};

struct do_result {

template<int i> struct Code {

static void exec(const linear_filter& self,

ct::tuple<scalar_tl>& result) {

typedef typename ct::type_at<scalar_tl, i>::type

scalar_type;
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result.template get<i>() =

self._scalar_result.template get<i>() /

self.template vector_sum<scalar_type>().

scalar(0);

}

static void exec(const linear_filter& self,

ct::tuple<vector_tl>& result) {

typedef typename ct::type_at<scalar_tl, i>::type

scalar_type;

result.template get<i>() =

self._vector_result.template get<i>() /

self.template vector_sum<scalar_type>();

}

};

};

private:

ct::tuple<scalar_tl> _scalar_result;

ct::tuple<vector_tl> _vector_result;

int _i;

};

Table 10.8 shows the speedup attained by executing linear_filter in AltiVec mode

over scalar mode. While linear_filter was 1.6 times faster in AltiVec mode when

operating on unsigned char images, its speedup was between 0.3 and 0.5 when operating

on images with vvm::vectors that contained more than one VPU vector.

Table 10.8 Speedup attained by executing VVIS’s linear_filter functor with a 3×3

signed char kernel in AltiVec mode over scalar mode

Single-Channel Image RGB Image

320

×960

640

×960

960

×960

1280

×960

320

×960

640

×960

960

×960

1280

×960

unsigned char 1.6 1.6 1.6 1.6 2.2 2.2 2.2 2.2

unsigned short int 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8

unsigned int 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.6

float 0.6 0.6 0.6 0.6 0.7 0.7 0.8 0.7

double 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6

Max filter

The main difference between max_filter and linear_filter, which was discussed in

the previous section, is how it accumulates and returns the result. max_filter multiplies
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the each input by the required kernel value, and selects the largest value as its output.

Examples of max_filters are nonlinear Prewitt filters and nonlinear Sobel filters.

The scalar accumulate is shown below:

scalar_type val = v * _vector_kernel[_i].scalar(0);

if(val > _scalar_result)

_scalar_result = val;

++_i;

The vvm::vector accumulate uses the vvm::select operation to keep only the largest

values:

vector_type val =

vvm::vector_cast<vector_type>(v) * _vector_kernel[_i];

_vector_result =

vvm::select(val > _vector_result, val, _vector_result);

++_i;

Algorithms 10.3.2 and 10.3.2 show how max_filter is implemented for single-channel

and multi-channel storages respectively. Like linear_filter, it inherits from base_-

filter, which handles the kernel and the sum of all values in the kernel.

Algorithm 10.26: max_filter functor (single-channel)

template<

typename kernelT,

typename T,

template<typename> class promoteP = ct::promote

> class max_filter : public base_filter<kernelT, T, promoteP> {

private:

typedef base_filter<kernelT, T, promoteP> parent_type;

typedef typename parent_type::scalar_type scalar_type;

typedef typename parent_type::vector_type vector_type;

public:

typedef typename parent_type::kernel_type kernel_type;

max_filter() : parent_type() {

}

max_filter(const max_filter& rhs)

: parent_type(rhs), _scalar_result(rhs._scalar_result),

_vector_result(rhs._vector_result), _i(rhs._i) {

}

max_filter(kernel_type kernel)
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: parent_type(kernel) {

}

~max_filter() {

}

public:

void reset() {

_i = 0;

_scalar_result = 0;

_vector_result = 0;

}

const scalar_type scalar_result() const {

return _scalar_result;

}

const vector_type vector_result() const {

return _vector_result;

}

void accumulate(const T& v) {

scalar_type val = v * _vector_kernel[_i].scalar(0);

if(val > _scalar_result)

_scalar_result = val;

++_i;

}

void accumulate(const vvm::vector<T>& v) {

vector_type val = vvm::vector_cast<vector_type>(v) *

_vector_kernel[_i];

_vector_result = vvm::select(val > _vector_result, val,

_vector_result);

++_i;

}

private:

scalar_type _scalar_result;

vector_type _vector_result;

int _i;

};

Algorithm 10.27: max_filter functor (multi-channel)

template<

typename kernelT,
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typename TL,

template<typename> class promoteP

> class max_filter<kernelT, ct::tuple<TL>, promoteP>

: public base_filter<kernelT, ct: :tuple<TL>, promoteP> {

private:

typedef base_filter<kernelT, ct::tuple<TL>, promoteP>

parent_type;

typedef typename parent_type::scalar_tl scalar_tl;

typedef typename parent_type::vector_tl vector_tl;

public:

typedef typename parent_type::kernel_type kernel_type;

max_filter() : parent_type() {

}

max_filter(const max_filter& rhs)

: parent_type(rhs), _scalar_result(rhs._scalar_result),

_vector_result(rhs._vector_result), _i(rhs._i) {

}

max_filter(kernel_type kernel) : parent_type(kernel) {

}

~max_filter() {

}

public:

void reset() {

_i = 0;

_scalar_result = 0;

_vector_result = 0;

}

const ct::tuple<scalar_tl> scalar_result() const {

return _scalar_result;

}

const ct::tuple<vector_tl> vector_result() const {

return _vector_result;

}

void accumulate(const ct::tuple<TL>& v) {

meta::EFOR2<0, meta::Less, ct::length<TL>::value, +1,

do_accumulate>::exec(*this, v);

++_i;

}

void accumulate(
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const typename vvm::add_vector<ct::tuple<TL> >::type& v) {

meta::EFOR2<0, meta::Less, ct::length<TL>::value, +1,

do_accumulate>::exec(*this, v);

++_i;

}

private:

struct do_accumulate {

template<int i> struct Code {

static void exec(max_filter& self,

const ct::tuple<TL>& v) {

typedef typename ct::type_at<scalar_tl, i>::type

scalar_type;

scalar_type val = v.template get<i>() *

self.template vector_kernel<scalar_type>()[self._i]

.scalar(0);

if(val > self._scalar_result.template get<i>())

self._scalar_result.template get<i>() = val;

}

static void exec(max_filter& self,

const typename vvm::add_vector<ct::tuple<TL> >::type& v) {

typedef typename ct::type_at<scalar_tl, i>::type

scalar_type;

typedef typename ct::type_at<vector_tl, i>::type

vector_type;

// Multiply with kernel

vector_type val =

vvm::vector_cast<vector_type>(v.template get<i>()) *

self.template vector_kernel<scalar_type>()[self._i];

// Select largest

self._vector_result.template get<i>() = vvm::select(

val > self._vector_result.template get<i>(),

val,

self._vector_result.template get<i>());

}

};

};

private:

ct::tuple<scalar_tl> _scalar_result;

ct::tuple<vector_tl> _vector_result;
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int _i;

};

Table 10.9 Speedup attained by executing VVIS’s max_filter functor with a 3×3

signed char kernel in AltiVec mode over scalar mode

Single-Channel Image RGB Image

320

×960

640

×960

960

×960

1280

×960

320

×960

640

×960

960

×960

1280

×960

unsigned char 1.6 1.6 1.6 1.6 1.5 1.5 1.5 1.5

unsigned short int 0.7 0.7 0.7 0.7 0.6 0.6 0.6 0.6

unsigned int 0.6 0.6 0.6 0.6 0.4 0.4 0.5 0.4

float 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3

double 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

Table 10.9 shows the speedup obtained by executing VVIS in AltiVec mode over

scalar mode, when using the max_filter functor with a sint8 kernel. Like linear_-

filter, max_filter was 1.6 times faster in AltiVec mode when operating on unsigned

char images. When operating on other images that had vvm::vectors with more than

one VPU vector, max_filter’s speedup was between 0.3 and 0.7.

10.4 Conclusion

This chapter discussed the algorithms and functors of the categories presented in Section

8.2. The categories are quantitative, transformative, and convolutive. For each category,

scalar, AltiVec and VVIS generic algorithms, functor requirements, and some sample

functors were presented.

When processing single-channel unsigned char storages, VVIS quantitative and

transformative algorithms were comparable to hand-coded scalar and AltiVec programs

in scalar and AltiVec mode respectively. When processing multi-channel images how-

ever, VVIS quantitative and transformative algorithms were much slower in scalar mode,

but only a bit slower in AltiVec mode. VVIS convolutive algorithms were comparable to

hand-coded scalar programs in scalar mode, when processing single-channel unsigned

char images, but a bit slower when processing multi-channel images. VVIS convolu-

tive algorithms were slower than the AltiVec hand-coded program when processing both

single-channel and multi-channel images, because the AltiVec hand-coded program did

not support variable kernel sizes and VVM’s slower load unaligned function. VVIS had

good scalar performance when operating on single-channel unsigned char images, be-

cause in scalar mode, VVIS treats all storages as unknown storages and thus avoids the

use of vectorised algorithms.
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For each functor discussed, the speedup attained by executing VVIS in AltiVec mode

instead of scalar mode was presented. Because VVIS generic algorithms’ performance

were generally comparable to hand-coded scalar and AltiVec programs when operating

on single-channel images, the speedup attained by moving to AltiVec is indicative of the

speedup of AltiVec over scalar code. The speedup is larger for RGB images, because

VVIS was much slower in scalar mode with RGB images. For the transformative opera-

tions tested, VVIS provides at most a four-fold speedup when processing single-channel

unsigned char images. For the convolutive operations tested, VVIS provides a speedup

of approximately 1.5 times when processing single-channel unsigned char images, de-

spite using signed short internally.

This chapter provides some new insights into how to implement generic, vectorised

algorithms: it is more efficient to have different algorithms for scalar and vector mode;

it would have been more difficult to implement generic, vectorised algorithms without

VVM; the use of typelists to represent channel types introduces complexity; and without

the left edge, algorithms are easier to implement.

For efficiency, algorithms should have different implementations for scalar and vec-

tor mode. Without different implementations, the generic, vectorised library would be

handicapped when there is no VPU available. In VVIS, this is solved by simply treating

contiguous storages, which are processed using vectorised algorithms, as unknown stor-

ages, which are processed using scalar algorithms. When a VPU is available, VVIS is

near optimal only if the VVM implementation has no significant overheads. Since op-

timising reduces the speedup of AltiVec over scalar code, at least with Apple GCC 3.1

20021003, having no significant overheads is important to the practicality of the abstract

VPU. Without zero-cost, VVIS could actually run slower in AltiVec mode than in scalar

mode. Examples of VVIS functors that run slower in AltiVec mode because of significant

overheads when processing non-char storages in the abstract VPU are linear_filter

and max_filter.

Programming a generic, vectorised library which uses the VPU directly would have

been more difficult without VVM. Without the templated vvm::vectors, more specialised

code for iterators, and functors would have been required. Without the constant scalar

count provided by VVM, convolutions would have been more difficult to implement.

While the use of typelists to represent channel types provides great flexibility, it was

more difficult to implement functors for such images. This was particularly evident during

the implementation of the convolutive functors. The convolutive functors had to keep a

copy of the kernel and sum of the values in the kernel for each different type in the typelist.

The VVIS algorithms created in this section show that without the left edge, the ge-

neric, vectorised algorithms were not overly difficult to implement. There is no need

to handle misalignment between storages since without the left edge, all storages are

aligned to each other. The convolutive algorithm created was much more involved than
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the transformative and quantitative algorithms, because it had to calculate the number of

vvm::vectors that need to be loaded and to load and shift them to obtain the correct

vvm::vectors. In addition it also tried to reduce loads by caching the vvm::vectors

that were previously loaded. If the left edge existed, convolute would have been much

more difficult to implement.
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Chapter 11

Examples

In this chapter, three VVIS examples are presented to provide more insight into how to

use VVIS. The first example presented shows how to load two images, subtract one image

from another, and write the result to a third image file. The second example shows how to

capture an image from a camera attached to the computer, invert the image and then store

the result to an image file. The last example discusses how to create a Cocoa application

that applies a number of operations to a continuous feed from the camera.

11.1 Subtracting one image file from another

The program discussed in this section subtracts one image from another and writes the

output to a third image. The program starts by checking the number of command-line

arguments. After checking the command-line arguments, the program tries to open the

two input files, exiting if any of the files fail to open. The program then checks if the

sizes of the two input files are the same, aborting if they are different, reads the images as

grey-scale images, performs a saturated subtraction, and writes the output to the image file

which was specified by the third command-line argument. To change the sample program

to process RGB images, simply change vvis::image to vvis::rgb_image.

#include <vvis/vvis.h>

int main(int argc, char *argv[]) {

if(argc != 4) {

std::cerr < < argv[0] < < " <input1> <input2> <output>"

< < std::endl;

return 1;

}

// Open files

vvis::fimporter in1(argv[1]);
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vvis::fimporter in2(argv[2]);

if(!in1.good() || !in2.good()) {

std::cerr < < "Unable to open " < < argv[1]

< < " or " < < argv[2] < < std::endl;

return 1;

}

// Check if image sizes are the same

if(in1.width() != in2.width() || in1.height() != in2.height()) {

std::cerr < < "Unable to process because image sizes are not "

< < "the same" < < std::endl;

return 1;

}

// Read in as grey scale images

vvis::image<vvis::uint8> img1, img2;

vvis::image<vvis::uint8> dest(in1.width(), in2.height());

in1 > > img1;

in2 > > img2;

// Do saturated subtraction

vvis::transform(

img1, vvis::pixel_accessor<vvis::image<vvis::uint8> >,

img2, vvis::pixel_accessor<vvis::image<vvis::uint8> >,

dest, vvis::pixel_accessor<vvis::image<vvis::uint8> >,

vvis::minus_saturated<>);

// Write output

vvis::fexporter out(argv[3]);

if(!out.good()) {

std::cerr < < "Unable to open " < < argv[2] < < std::endl;

return 1;

}

out < < dest;

return 0;

}

The program uses fimporter to load the images and fexporter to write the output to

a file. The img, img2, and dest images all use the same storage type. Since the pro-

gram does not explicitly state the storage type, VVIS selects the default storage type,
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which is illife_chunky_storage. The illife_chunky_storage storage type uses a

std::vector to hold a set of contiguous_chunky_storages. Since VVIS runs with au-

tomatic unknown storages optimisation, which was discussed in Section 10.1.1, enabled,

contiguous_chunky_storage is treated as a contiguous storage only when a VPU, such

as AltiVec, is available and as an unknown storage when VVIS runs in scalar mode. As a

result, transform only uses VVM when AltiVec is enabled.

11.2 Inverting an image captured from a sequence grab-

ber

The example discussed in this section captures an image from a sequence grabber, inverts

the image, and then writes the inverted image to a file on disk. VVIS’s sgimporter is

used to capture images from the sequence grabber in synchronous mode. In synchronous

mode, sgimporter will provide the image from the sequence grabber when requested.

Synchronous mode was used because it makes the example easier to implement.

#include <vvis/vvis.h>

int main(int argc, char *argv[]) {

if(argc != 2) {

std::cerr < < argv[0] < < " <output>" < < std::endl;

return 1;

}

// Prepare sequence grabber to grab 640x480 images

vvis::sgimporter<vvis::sync_capture>

sgi(vvis::sgsettings(640, 480));

if(!sgi.good()) {

std::cerr < < "Unable to connect to sequence grabber"

< < std::endl;

return 1;

}

// Get an image

typedef rgb_image<vvis:uint8> image_t;

image_t img;

sgi > > img;

// Do invert
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vvis::transform(img, vvis::pixel_accessor<image_t>(),

img, vvis::pixel_accessor<image_t>(),

vvis::bind1st(vvis::minus<image_t::pixel_type>(),

std::numeric_limits<vvis::uint8>::max()));

// Write output

vvis::fexporter out(argv[1]);

if(!out.good()) {

std::cerr < < "Unable to open " < < argv[1] < < std::endl;

return 1;

}

out < < img;

return 0;

}

The example captured an RGB image. If image_t was defined as image<vvis::uint8>

instead, then the example would capture a grey-scale image, without any further changes.

11.3 Grabbing continuously from a camera while out-

putting to the screen

Figure 11.1 shows the sample application that will be discussed in this section. This ap-

plication was implemented using Objective-C++ and Cocoa. The application shows three

images: camera input, a second image and the resulting image from an operation. The

camera input image shows the image that the camera sees. Since the camera used cap-

tures colour images, the camera input image was in colour. The second image is used in

operations that require two images, such as addition and subtraction. The second image is

a grey-scale VVIS image. The resulting image shows the result of the operation selected.

A frames-per-second label under the resulting image shows the average frame rate and

the last frame rate. Start and Stop buttons start and stop camera capture respectively. The

Grab button makes a copy of the camera input image to the second image. For brevity, the

code is not presented here in its entirety. Instead, only important pieces will be discussed.

The two most important classes in this sample application are CameraViewControl-

ler and GWorldView. CameraViewController responds to user input, while GWorld-

View is responsible for rendering GWorlds to the screen. There is one instance of Cam-

eraViewController for each window. Each of the three images shown in Figure 11.1

are GWorldViews.
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Figure 11.1 Sample Cocoa application using VVIS to capture and process images from a

camera
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CameraViewController is a controller responsible for responding to user input. Cam-

eraViewController’s interface is shown below. Changing image_t to vvis::rgb_image

instead of vvis::image will capture and process RGB images with any other changes.

typedef vvis::sgimporter<vvis::async_capture> sgimporter_t;

typedef vvis::image<vvis::uint8,

vvis::illife_planar_storage> image_t;

enum operation {

noop = 0, invert, threshold, convolve,

plus_op = 21, minus_op, multiply_op, divide_op,

plus_saturated_op, minus_saturated_op, modulus_op,

negate_op,

equal_to_op = 41, not_equal_to_op, greater_op, less_op,

greater_equal_op, less_equal_op,

logical_and_op = 61, logical_or_op, logical_not_op,

bitwise_and_op = 81, bitwise_or_op, bitwise_not_op

};

@interface CameraViewController : NSWindowController {

sgimporter_t* seqGrabber;

image_t* firstImage;

image_t* secondImage;

image_t* resultImage;

GWorldPtr secondGWorld;

GWorldPtr resultGWorld;

int currentOp;

NSLock* imageLock;

IBOutlet GWorldView* cameraView;

IBOutlet GWorldView* secondView;

IBOutlet GWorldView* resultView;

IBOutlet NSTextField* frameRate;

long frameCount;

float lastTime;

float averageFramesPerSecond, currentFramesPerSecond;

}

- (void) fatalError:(NSNotification*)notification;

- (void) doNothing:(id)nothing;

- (void) updateFrameRate:(id)theTimer;
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- (void) frameAvailable:(const TimeValue)time;

- (IBAction) changeOperation:(id)sender;

- (IBAction) startCapture:(id)sender;

- (IBAction) stopCapture:(id)sender;

- (IBAction) grabCapture:(id)sender;

@end

When the window is loaded, CameraViewController initialises the sequence grabber,

VVIS images and GWorlds, detaches a NSThread to switch Cocoa to multi-threaded

mode, and starts a timer to refresh the frames-per-second label twice a second. On failing

to initialise the sequence grabber, CameraViewController posts a notification to display

an error message and close the window later. The notification is required because clos-

ing the window in windowDidLoad does not work. A NSThread has to be detached to

switch Cocoa to multi-threaded mode, because the sequence grabber is capturing asyn-

chronously. The thread detached does nothing. A timer was required for updating the

frames-per-second label to reduce the frequency at which the display is refreshed. Be-

cause VVIS connects to the first available sequence grabber by default, the sample ap-

plication can connect to more than one camera simultaneously; each window will be

connected to a different camera.

- (void) windowDidLoad {

// Setup a notification for closing the window

[[NSNotificationCenter defaultCenter] addObserver:self

selector:@selector(fatalError:)

name:@"fatalError" object:nil];

// Detach a NSThread to switch Cocoa to Multi Threaded mode

[NSThread detachNewThreadSelector:@selector(doNothing:)

toTarget:self withObject:nil];

// Initialise image Lock

imageLock = [[NSLock alloc] init];

// Set current operation to none

currentOp = noop;

// Initialize Sequence Grabber

NSRect rect = [cameraView bounds];

seqGrabber = new sgimporter_t(sgsettings(rect.size.width,

rect.size.height));

if(!(seqGrabber->good())) {
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[[NSNotificationQueue defaultQueue]

enqueueNotification:[NSNotification

notificationWithName:@"fatalError"

object:self

userInfo:[NSDictionary dictionaryWithObjectsAndKeys:

@"Sequence Grabber could not be initialized",

@"Message", nil]]

postingStyle:NSPostASAP];

}

// Create images

firstImage = new image_t(rect.size.width, rect.size.height);

secondImage = new image_t(rect.size.width, rect.size.height);

resultImage = new image_t(rect.size.width, rect.size.height);

// Create new GWorld for second and result

// No need for first because first is showing straight

// camera output

Rect r;

SetRect(&r, 0, 0, rect.size.width, rect.size.height);

if(QTNewGWorld(&secondGWorld, k32ARGBPixelFormat, &r, 0, NULL, 0)

!= noErr) {

[[NSNotificationQueue defaultQueue]

enqueueNotification:[NSNotification

notificationWithName:@"fatalError"

object:self

userInfo:[NSDictionary dictionaryWithObjectsAndKeys:

@"Unable to create GWorld",

@"Message", nil]]

postingStyle:NSPostASAP];

}

if(QTNewGWorld(&resultGWorld, k32ARGBPixelFormat, &r, 0, NULL, 0)

!= noErr) {

[[NSNotificationQueue defaultQueue]

enqueueNotification:[NSNotification

notificationWithName:@"fatalError"

object:self

userInfo:[NSDictionary dictionaryWithObjectsAndKeys:

@"Unable to create GWorld",
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@"Message", nil]]

postingStyle:NSPostASAP];

}

// Start Frames Per Second updater

averageFramesPerSecond = 0;

currentFramesPerSecond = 0;

[NSTimer scheduledTimerWithTimeInterval:0.5 target:self

selector:@selector(updateFrameRate:)

userInfo:NULL repeats:YES];

}

On fatal errors, the fatalError function is called by the notification system. The fatal-

Error function closes the window and removes itself from the notification queue, if the

notification was from itself. It needs to check that the notification was from itself because

all CameraViewController instances are informed when there is a fatalError.

- (void) fatalError:(NSNotification*)notification {

if([notification object] == self) {

NSRunCriticalAlertPanel(@"Error",

[[notification userInfo] objectForKey:@"Message"],

@"Close Window", NULL, NULL);

[self close];

// Since we are closing, we don’t want anymore notifications

[[NSNotificationCenter defaultCenter] removeObserver:self];

}

}

When the window is closed, we stop the capture process, if any, and tell the document to

close as well. The sequence grabber is closed so that it releases the sequence grabber that

it is connected to.

- (void) windowWillClose:(NSNotification *)aNotification {

[self stopCapture:self];

seqGrabber->close();

}

The updateFrameRate function is called twice every second. It displays the last frames

per second value that was calculated.

- (void) updateFrameRate:(id)theTimer {

[frameRate setStringValue:
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[NSString stringWithFormat:

@"Average: %.2f fps Last: %.2f fps",

averageFramesPerSecond, currentFramesPerSecond]];

}

When the user changes the operation, CameraViewController’s changeOperation me-

thod is called. Each operation’s tag value is set to the appropriate value in the enumeration.

So the new operation can be obtained by from the combo box’s selected item’s tag.

- (IBAction) changeOperation:(id)sender {

currentOp = [[sender selectedItem] tag];

}

When the user clicks the Start button, CameraViewController’s startCapture me-

thod is called. This method tells the sequence grabber to start capturing and to call the

frame_available function when a frame is ready. In addition, it gives the sequence

grabber a pointer to itself to pass to the frame_available function. Note that the

frame_available function is not the frameAvailable function defined in CameraView,

but a normal C function.

- (IBAction) startCapture:(id)sender {

seqGrabber->start(frame_available, self);

}

The frame_available function simply uses the pointer to CameraViewController pa-

ssed to it through the sequence grabber to call CameraViewController’s frameAvail-

able.

void frame_available(sgimporter<async_capture>& sgi,

const TimeValue time, void* data) {

CameraViewController* controller = (CameraViewController*)data;

[controller frameAvailable];

}

CameraViewController’s frameAvailable gets the frame available from the sequence

grabber, storing it in the VVIS image firstImage. Then, depending on the value of

currentOp, different operations are performed to firstImage. If an operation requir-

ing two input images was selected then secondImage is also used. The output is stored

in resultImage. The VVIS images secondImage and resultImage are converted to

secondGWorld and resultGWorld respectively using vvis::draw_image. The GWorld-

Views are then used to display the secondGWorld and resultGWorld. The sequence

grabber’s GWorld is displayed in the camera input GWorldView. The frameAvailable

function’s implementation is as follows:
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- (void) frameAvailable {

[imageLock lock];

// Get the image

(*seqGrabber) > > *firstImage;

// Process Image

switch(currentOp) {

case noop:

*resultImage = *firstImage;

break;

case invert:

vvis::transform(*firstImage, vvis::pixel_accessor<image_t>(),

*resultImage, vvis::pixel_accessor<image_t>(),

vvis::bind1st(vvis::minus_saturated<image_t::pixel_type>(),

std::numeric_limits<vvis::uint8>::max()));

break;

case threshold:

vvis::transform(*firstImage, vvis::pixel_accessor<image_t>(),

*resultImage, vvis::pixel_accessor<image_t>(),

vvis::bind2nd(vvis::greater<image_t::pixel_type>(),

std::numeric_limits<vvis::uint8>::max() / 2));

break;

// ... other operations

}

[cameraView displayGWorld:seqGrabber->gworld()];

// Convert to GWorld for display

draw_image(secondGWorld, *secondImage);

draw_image(resultGWorld, *resultImage);

// Show result

[secondView displayGWorld:secondGWorld];

[resultView displayGWorld:resultGWorld];

[imageLock unlock];

}

When the user clicks the Stop button, CameraViewController’s stopCapture method

is called. This method tells the sequence grabber to stop capturing.

- (IBAction) stopCapture:(id)sender {

seqGrabber->stop();

}

305



Clicking on the Grab button calls CameraViewController’s grabCapture. This me-

thod locks imageLock, copies the firstImage to the secondImage, and then releases

imageLock. The imageLock mutex is required to prevent frameAvailable from using

secondImage while it is being copied.

- (IBAction) grabCapture:(id)sender {

[imageLock lock];

*secondImage = *firstImage;

[imageLock unlock];

}

GWorldView was created to render QuickDraw GWorlds to a Cocoa view. Because VVIS

is based on QuickTime, and QuickTime and Cocoa use different 2D display libraries

(QuickTime uses QuickDraw, while Cocoa uses Quartz), VVIS cannot produce Quartz

images directly. GWorldView inherits from NSQuickDrawView. Since NSQuickDrawView

provides a GWorld that represents the screen, GWorldView only needs to render an off-

screen GWorld to an on-screen GWorld. While it was was actually easier to use Draw32-

BitARGBToContext (App 2003b) to render a GWorld to a Quartz Graphics Context,

GWorldView uses sample code from (App 2003a) to decompress an off-screen GWorld to

an on-screen GWorld.

11.4 Conclusion

Three different VVIS examples were presented in this chapter: subtracting one image

from another, inverting an image captured from a sequence grabber and a graphical Cocoa

application that grabs continuously while displaying the output to the screen.

The examples show that it is easy to use VVIS to read and write image files, and

to capture frames from a sequence grabber. In addition, changing a vvis::image to

vvis::rgb_image is usually all that is needed to change a grey-scale program to a RGB

program. VVIS is usable in Objective-C++ and with Cocoa. Rendering to the Cocoa

application’s window was difficult because Cocoa and QuickTime use different 2D dis-

play libraries. VVIS only provided functions to convert a VVIS image to an off-screen

GWorld; on-screen GWorlds are not supported either. VVIS might have been easier to

use with Cocoa if VVIS provided routines for rendering to Quartz.
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Chapter 12

Conclusions

This thesis investigated the integration of generic programming with vector processing.

Integration of generic programming with vector processing: The integration of gene-

ric programming with vector processing resulted in a generic, vectorised, machine-

vision library, called Vectorised Vision (VVIS). The existence of VVIS itself shows

that generic programming with vector processing is feasible.

Divisions of duties used by other generic libraries, like STL and VIGRA, could not

be used in a generic, vectorised library, because the iterator hides from the algorithm

information about how pixels are arranged in memory. The storage concept was

introduced to provide this information to algorithms. This information is used to

determine whether to process the pixels using the scalar processor or the VPU. The

information is also used to load vectors efficiently into the VPU. VVIS has different

iterators and algorithms for different storages.

For a generic, vectorised library to exist, there must be some way of writing generic,

vector programs. The abstract VPU was proposed to address this issue. Since vec-

tor algorithms are generally more difficult to implement efficiently, a categorisation

scheme based on input-to-output correlation was used to reduce the number of al-

gorithms that need to be implemented. This categorisation scheme allows VVIS to

provide only four algorithms to cover a wide range of image-processing operations.

Other problems partially addressed as a by-product are the poor integration of image cap-

ture with machine-vision libraries and the non-portability of vectorised, machine-vision

algorithms.

Poor image capture integration with machine-vision libraries: VVIS provides an easy-

to-use syntax for capturing images from a camera, reading images from files, and

writing images to files. This ease-of-use was illustrated in Chapter 11. Unfortu-

nately, because the captured image’s format was unsuitable for vector programs,
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some conversion costs were present. Conversion costs were discussed in Section

9.4.

Non-portability of vectorised machine-vision algorithms: The abstract VPU was pro-

posed to allow VVIS a mechanism for expressing generic vector programs. Since

generic vector programs are expected to be independent of the real VPU and thus

ideally executable on many real VPUs, the abstract VPU also allows for portable

vector programs. Unfortunately, the performance results obtained do not make it

suitable for all applications. However, because the primary aim of the abstract VPU

used in this thesis, Virtual Vector Machine (VVM), was to allow for generic vector

programs, the performance problems were not investigated further.

This chapter starts with a summary of what is new, followed by some possible future

directions.

12.1 Summary of contributions

The main contribution from this thesis is the design of a generic, vectorised, machine-

vision library.

Generic, vectorised, machine-vision library: The generic, vectorised, machine-vision

library developed as part of this thesis is called Vectorised Vision (VVIS). VVIS

provides functions to facilitate image acquisition, processing, analysis and output.

Images can be either loaded from disk or streamed from a sequence grabber. Image

processing and analysis is where VVIS uses the VPU. For output, VVIS is able to

write to files and to convert images to QuickTime GWorlds for display.

Instead of using a real VPU, VVIS uses VVM, an abstract VPU. Using an abstract

VPU like VVM allows VVIS to express its generic algorithms using VPU con-

structs. The abstract VPU also provides cross-platformability, and allows VVIS

to support more vector-processor technologies more easily. A port requires only

an additional vector-processor implementation for the abstract VPU. VVM’s con-

stant scalar count, templated vectors and traits allows VVIS to provide generic,

vectorised algorithms. VVM also provides an easy-to-use interface, and consistent

functions between scalars and vectors where possible. The easy-to-use interface

makes coding VVIS and user-defined functors easier. Using an abstract VPU in-

stead of a real VPU however introduces the possibility of speed degradation. The

VVM implementation used by VVIS in this thesis is within 1% slower than a hand-

coded program for char types when AltiVec is enabled, and when there is no VPU.

This implementation was chosen because in machine vision, most images are either

8-bit or use 8-bit channels.
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QuickTime is used to read images from sequence grabbers, and to read and write

from and to files. Using QuickTime allows VVIS to easily acquire images from se-

quence grabbers, like cameras, and import and export image files. VVIS leverages

QuickTime’s ability to read and write a wide range of image file formats. Quick-

Time was chosen because the target platform is a Macintosh. Since QuickTime is

also available on Windows, it should be possible for the input/output interface to

operate on both platforms.

Two different divisions of duties were proposed and evaluated. The first division

of duty gives all responsibility for handling VPU issues to the algorithm, while

the second division of duty reduces the responsibilities of the algorithm by having

storages ensure that the data are aligned on the left side. The second division of

duty was chosen for VVIS because it provides good performance as long as there is

no need to copy data around. Furthermore, it simplifies the creation of algorithms

greatly, since it removes the need to be concerned about misalignment, not only

with memory, but also between storages.

Facets of VVIS’s design that enable the use of the VPU are the addition of the

storage concept, different iterators and algorithms for different storages, and the

support for both scalars and vvm::vectors by accessors and functors. The stor-

age concept provides information about the relative positions of pixels in memory.

This information is useful in determining when the data can be loaded efficiently

into the VPU. Each storage type has different iterator requirements and is processed

differently by the algorithm. Accessors and functors that support both scalars and

vvm::vectors are required, because it is inefficient to use the VPU in all situations.

The scalar version is required for processing edges and in situations where the stor-

age format is not suitable for vector processing, namely when processing unknown

storages.

When processing single-channel unsigned char storages, VVIS quantitative and

transformative algorithms were comparable to hand-coded scalar and AltiVec pro-

grams in scalar and AltiVec mode respectively. When processing multi-channel im-

ages however, VVIS quantitative and transformative algorithms were much slower

in scalar mode, but only a bit slower in AltiVec mode. VVIS convolutive algori-

thms were comparable to hand-coded scalar programs in scalar mode, when pro-

cessing single-channel unsigned char images, but a bit slower when processing

multi-channel images. VVIS convolutive algorithms were slower than the AltiVec

hand-coded program when processing both single-channel and multi-channel im-

ages, because the AltiVec hand-coded program does not support variable kernel

sizes and VVM’s slower load unaligned function. VVIS’s good scalar performance

is because in scalar mode, VVIS treats all storages as unknown storages and thus
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avoids the use of vector algorithms.

For the transformative operations tested, VVIS provides at most a four-fold speedup

depending on the operation when processing single-channel unsigned char im-

ages. For the convolutive operations tested, VVIS provides a speedup of approxi-

mately 1.5 times when processing single-channel unsigned char images, despite

using signed short internally.

Other significant, but less important contributions from this thesis are a categorisation

scheme based on input-to-output correlation, and the abstract vector processor.

Categorisation based on input-to-output correlation: A categorisation based on input-

to-output correlation was proposed for this thesis. This categorisation maps readily

to generic programming, and provides insights into how operations might be imple-

mented. For example, requiring only one input element per input set suggests that

only a one-dimensional iteration is needed. This categorisation was initially de-

veloped to help reduce the number of algorithms required by a generic, vectorised

machine-vision library. From this categorisation, it is clear that the algorithm’s duty

is only to coordinate the loading (and writing) of data. The writing of data can be

delegated to accessors and functors.

Three categories were defined for use with the generic, vectorised, machine-vision

library. Only two categories would have been required if the output responsibilities

were removed from the algorithm. Output responsibilities were retained by the

algorithms to be more consistent with other currently available generic libraries.

The three categories are named quantitative, transformative and convolutive.

Abstract vector processor: The abstract VPU was proposed to allow for the creation of

generic vector programs. The abstract VPU represents a family of real VPUs with

a virtual VPU that has an idealised instruction set, and constraints common to the

real VPUs being represented.

The idealised instruction set makes the abstract VPU easier to use and portable.

It also removes the need for programmers to handle instruction availability, and al-

lows the programmer to express his logic using ideal VPU constructs, free from any

real VPU’s inadequacies. Instructions should be provided for all types. Low-level

instructions, such as prefetching memory, should also be available. An idealised

instruction set implies a scalar implementation for all functions. This scalar imple-

mentation is referred to as the emulation layer. Vector-processor implementations

provide mappings for abstract VPU functions to real VPU instructions where ap-

plicable. An abstract VPU should enable appropriate vector-processor implemen-

tations when real VPUs are available. Since a vector-processor implementation is
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unlikely to provide mappings for all functions, expressions involving the use of both

the emulation layer and the vector-processor implementation must be supported.

The abstract VPU should have the common constraints of the real VPUs that it

represents. These constraints ensure that abstract VPU programs are comparable

performance-wise to the real VPU programs. While ambiguity increases the num-

ber of real VPUs that can be represented, ambiguity can make zero-cost abstract

VPU implementations more difficult. Examples of constraints common to desk-

top VPUs are short vectors, fixed vector sizes and efficient memory access only

at aligned memory addresses. An abstract VPU should not try to represent a real

VPU that has incompatible constraints because the resultant program is likely to

be significantly slower than using the real VPU directly. For example, an abstract

VPU with fixed vector sizes should not try to represent VPUs with variable vector

sizes. VPUs, which support variable vector sizes, typically have larger start and

stop overheads.

Apart from proposing the abstract VPU, an abstract VPU specification, called Vir-

tual Vector Machine (VVM) was developed to support the creation of a generic,

vectorised, machine-vision library. VVM aims to represent desktop VPUs, such as

AltiVec, MMX and 3DNow!. It has three constraints common to desktop VPUs:

short vector, fixed vector sizes, and fast access only to aligned memory addresses.

While the size of a vvm::vector is fixed, unlike desktop VPUs, all vvm::vectors

contain the same number of scalars regardless of type. This constant scalar count is

important in template programming, which is required for the creation of a generic,

vectorised library. Other features that support the creation of a generic, vectorised

library include templated vvm::vectors, traits, and consistent functions for both

scalar and vvm::vector operations. Because of the high cost of converting types

in vector programs, VVM does not provide automatic type conversion; it only sup-

ports explicit type conversions.

The implementability of VVM using only Standard C++ was investigated. While

VVM can be implemented using only Standard C++, there were some performance

issues. The cost of the abstract VPU depends on how it is implemented, and the

compiler used. For an abstract VPU’s operation to be zero-cost, there should be no

additional overheads when executing the appropriate instruction and when switch-

ing between the emulation layer and the active vector-processor implementation.

With Apple’s GCC 3.1 20021003, a VVM implementation based on function over-

loading and template switching was within 1% slower than a hand-coded program

when the number of elements in a vvm::vector was one. For vvm::vectors with

two and four elements, this implementation was within 11% to 20% and within

14% to 24% slower than a hand-coded program respectively. A VVM implemen-
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tation that used expression templates based on Veldhuizen (1995b) and function

switching was faster than function overloading when the number of elements in

a vvm::vector was two for expressions with less than three additions and when

the number of elements in a vvm::vector was four for expressions with less than

four additions. When there is only a single element in a vvm::vector, expression

templates were at most about 11 times slower. For vvm::vectors with two VPU

vectors, the cost increased from within 1% to within 44% when the number of ad-

ditions in the expression increased from one to five. For vvm::vectors with four

VPU vectors, the cost was within 0% to 22%. Switching between the emulation

layer and the active vector-processor implementation did not add any additional

overheads if implemented correctly.

Since most image-processing operations operate on char types, a VVM implemen-

tation based on function overloading would be within 1% slower than a hand-coded

program for most image processing operations. It will be within 1% slower than

a hand-coded program for all types in scalar mode and for char types in AltiVec

mode.

In summary, this thesis has demonstrated that generic, vectorised, machine-vision li-

braries are possible, through the addition of the storage concept, and the abstract VPU.

Without the storage concept, there is no way to decide when to use or not use the VPU.

Without the abstract VPU, algorithms and functors would not be generic, instead requir-

ing specialised implementations for all the types supported.

12.2 Future directions

Suggested future work includes handling const and better performance in VVM, faster

multi-channel images, unaligned load and store regions, better QuickTime support, and

converting between Illife and unknown storages in VVIS.

1. Handling const in VVM

The VVM specification handles const poorly. Support for const was added at

a later stage, during the implementation of VVIS’s const_iterators. While

VVIS’s const_iterators should provide only const vvm::vectors, providing

const vvm::vectors was difficult because of the manner in which VVM was im-

plemented. Consider the following:

template<typename scalarT>

vector<scalarT>

operator+(const vector<scalarT>& a,
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const vector<scalarT>& b) {

vvm::vector<scalarT> ret;

ret.vpvector(0) = a.vpvector(0) + b.vpvector(0);

return ret;

}

If ret was a const object, then the addition operation on vpvector(0) would

be illegal. Switching to using an unnamed return value gets around this prob-

lem but had worse performance with the compiler, Apple GCC 3.1 20021003,

used. Because better performance was decided to be more important than const,

const_iterator and iterator are currently identical in VVIS.

2. Better VVM performance

The author believes that faster VVM implementations are still be possible. Two

other techniques are proposed: combining expression templates with function over-

loading, and using metaobject protocols to implement VVM as a preprocessor.

While using metaobject protocols to create a preprocessor is likely to provide more

consistent performance, it will be less user-friendly than combining expression tem-

plates with function overloading because of the extra steps required during compila-

tion. Combining expression templates with function overloading still only requires

Standard C++.

(a) Combining expression templates and function overloading

Since the performance of expression templates appears to be inversely pro-

portional to the performance of function overloading, combining expression

templates with function overloading should provide better performance. Re-

sults from Section 7.7 however suggests that even though combining the two

techniques should produce better performance, the overheads will not always

be insignificant.

Combining expression templates and function overloading means that we pro-

cess the user’s request using either function overloading or expression tem-

plates, based on the number of elements in a vvm::vector. Function over-

loading will be used to handle vvm::vectors with low element counts, while

vvm::vectors with higher element counts will be handled using expression

templates. A first attempt at combining expression templates and function

overloading might produce code similar to the following:

template<typename scalarT> inline const vector<scalarT>

operator+(const vector<scalarT>& a,
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const vector<scalarT>& b) {

// Use template metaprogramming

// IF vector_traits<vector<scalarT> >::vpvector_count

// > threshold

// THEN

// call expression template version

// ELSE

// call simple operator overloading version

// ENDIF

}

The code above fails because the return type of expression templates and func-

tion overloading is different. Adding the return type as a template parameter

is unhelpful, because the user would need to specify the return type explicitly

when it is called.

The vvm::vector can instead be augmented with information about its imple-

mentation. A template parameter can be added to vvm::vectors to determine

which implementation it will use. The following code illustrates this idea:

template<

typename scalarT,

int implementation =

_get_default_implementation<scalarT>::value>

struct vector {

// ...

};

enum { _simple_op_overload, _expr_templates };

template<typename scalarT> _e<...>

operator+(const vector<scalarT, _expr_templates>& a,

const vector<scalarT, _expr_templates>& b) {

}

template<typename scalarT>

const vector<scalarT, _simple_op_overload>

operator+(const vector<scalarT, _simple_op_overload>& a,

const vector<scalarT, _simple_op_overload>& b) {

}

In this technique, each vvm::vector type is either processed using expres-

sion templates or function overloading, but never both. Since VVM does not

allow expressions with different vvm::vector types, there is no need to han-

dle cases where both expression templates and function overloading is used.
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For expression involving different vvm::vector types, the programmer must

explicitly cast one of the vvm::vectors types away.

(b) Metaobject protocol

A metaobject protocol is “an object-oriented interface for programmers to cus-

tomise the behaviour [sic] and implementation of programming languages and

other system software” (Chiba 1995). Metaobject protocols are used to pro-

vide meta-programming capabilities to a language. Some metaobject imple-

mentations rely on a runtime engine to perform their magic. Other implemen-

tations, like Open C++ (Chiba 1995, 1998a,b), are able to perform most of

its meta-programming at compile-time instead of at run-time. Some special

features in Open C++ however require the use of a runtime component.

Since any additional runtime components would introduce overheads, and

thereby increase the overheads of the abstract VPU implementation, runtime

components should be avoided. Since most features of Open C++ do not have

a runtime component, it might be possible to produce a zero-cost abstract

VPU. At the time of writing though, Open C++ does not support templates,

and thus would be unsuitable for implementing VVM.

3. Faster multi-channel images in scalar mode

In scalar mode, while VVIS is comparable to hand-coded scalar programs when

operating on single-channel images, it is much slower than hand-coded scalar pro-

grams when operating on multi-channel images. More work needs to be undertaken

to ascertain how to increase VVIS’s performance in scalar mode with multi-channel

images.

4. Regions that perform unaligned loads and stores

In Section 9.2, regions that produced aligned data by copying were profiled. Tables

9.2 and 9.3 show that a significant number of operations would be required before

the time saved by using an aligned algorithm would offset the cost of copying data.

Thus, a region that performed unaligned loads and stores should be profiled. Using

such a region should have performance similar to Unaligned Load and Unaligned

Store from Section 3.7.

5. Improve QuickTime support in VVIS

While QuickTime supports planar images, the author was unable to get QuickTime

to capture to planar images directly. More work is needed to investigate how to get

QuickTime to capture images directly to planar images, and to investigate the costs

involved. Such changes should reduce the cost of communicating between Quick-

Time and VVIS, and hopefully lead to faster imports, exports and image capture.
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A storage class that provides access to data in an off-screen GWorld directly can be

added to VVIS. Such a storage would either always be treated as unknown storages

or VVIS needs to support runtime storage determination, since the data format of

GWorlds is determined at run-time.

6. Converting Illife storages to unknown storages in VVIS

Because Illife and unknown storage interfaces are currently not interchangeable,

an operation involving an Illife storage and a contiguous or unknown storage will

fail to compile. Because the Illife storages and unknown storages reuse the same

functions, it is not possible to implement a single storage as both an unknown and

an Illife storage.

One solution is to change the interfaces so that they are no longer mutually exclu-

sive. A contiguous or unknown storage would then support the Illife storage (of

unknown storages) interface. Another solution would be to introduce regions that

changed the storage type without requiring expensive copying.

7. Examining the assembly code generated by the compiler, and the compiler’s source

code

Instead of relying only on actual program execution time, the assembly code gen-

erated by the compiler can be investigated. Checking the assembly code generated

might provide more insight into the behaviour of the different programs. In addi-

tion, the assembly code generated can be used to verify that a VVM implementation

is zero-cost.

Examining the assembly code generated could help verify if the slower than ex-

pected performance of programs compiled with Apple GCC 3.3 20030304 in Chap-

ter 7 was because of the failure to inline functions. Since the source code of all the

compilers used is available, an even more direct method of investigating whether

the compiler is inlining a function is to read the compiler’s source code. Whereas

the assembly code generated might only indicate whether a function is inlined or

not, the compiler’s source code would provide clues on why a function was not

being inlined.

8. Processing images with different spatial resolutions

This thesis did not consider the processing of images with different spatial resolu-

tions. All solutions discussed in this thesis assume that all images have the same

spatial resolution. To process images with different spatial resolutions using VVIS,

the user needs to first change all images involved in the operation to the same spatial

resolution.

9. Implementing fimporter and fexporter as streams
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The VVIS classes fimporter and fexporter would be better implemented as

streams. This would allow images to be loaded easily from places other than disk.

This was not investigated further since this thesis is focused on how to process im-

ages generically using the VPU, instead of how to load and store images efficiently.

Both classes were not implemented as streams because it seemed easier to not do

so.

10. Processing incomplete images

This thesis only considered cases where images were completely loaded in memory

before use. As problems become larger, this method becomes more wasteful.

It is expected that images that have not completely arrived could be hidden from

algorithms by the iterator. For example, the iterator could pause the current thread

when the algorithm iterates to a position that has not been loaded yet. Since quan-

titative and transformative operations can be processed out of order, as long as the

input is correlated with the output, it would have been possible for the iterator to

iterate to the next available pixel instead of the pixel in the next row or column.

A solution that aims to provide such features would need to consider how iterators

would correlate inputs and outputs, since there is no mechanism specified for this

in the current design.

11. Processing video streams with consideration to time

While VVIS provides access to sequence grabbers, allowing applications to easily

processing real-time input, VVIS processes these images without any regard for

time. The real-time feed is treated simply as a sequence of images. VVIS makes no

guarantees regarding when each image in the sequence will be available. The time

information provided via QuickTime was not used. For proper video support, time

needs to be taken into consideration.
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Appendix A

Glossary

abstract vector processor: A virtual vector processor that represents a family of vector

processors. See Chapter 5 for more information.

aligned: Vector processors are not able to access all locations of memory directly. The

locations that they can access directly are known as aligned. In AltiVec, an aligned

memory address is always exactly divisible by 16. See Chapter 3 for more infor-

mation on alignment.

AltiVec mode: In this thesis, it refers to a program being compiled with AltiVec instruc-

tions on. In GCC, the appropriate switch is -faltivec. A program that runs in

AltiVec mode will use AltiVec instructions, if coded to use them.

argument: This refers to a value or variable that is passed in, when making a function

call.

Carbon: An Apple C API, which was originally designed to be a migration path for

developers switching from Mac OS 9 to Mac OS X. Carbon’s services cover every-

thing from file management to graphical interfaces.

Cocoa: An object-oriented interface for creating Mac OS X applications. Cocoa comes

from NeXTSTEP. It is only usable in Objective-C (or Objective-C++) and Java.

chunky: This refers to a storage scheme for multi-channel images. It is also known as

interleaved. A chunky RGB image would have its pixels stored as RGBRGBRGB

and so on. In this thesis, chunky is also used to refer to RRRRGGGGBBBBR-

RRGGGGBBBB and so on, where the number of times a component is repeated

is equal to the number of scalars in a corresponding vector. In a sense, we are in-

terleaving vectors instead of scalars. Chunky scalar and chunky vector are used to

refer to interleaving scalar and vectors respectively.
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convolutive operations: Convolutive operations refer to a category of operations defined

in this thesis. They accept a rectangle of elements per input set to produce a single

output element for a single output set. See Chapter 8 for more details.

data streaming instructions: In AltiVec, data streaming instructions are responsible for

prefetching data from memory into the caches. See also prefetch.

emulation layer: Part of an abstract vector processor that provides a scalar implementa-

tion for all operations. The emulation layer must also operate correctly when the

type being operated on has native vector processor support. See Chapter 5 for more

information.

enregister: A value that can be enregistered can be kept in a register inside the processor.

GWorld: Graphics World. QuickDraw represents images using this structure. A GWorld

could be on screen or off screen and can have many different pixel formats.

integer type: This refers to types that represent whole numbers. In C++, they can be

easily identified using std::numeric_limits. The type T is an integer type if

std::numeric_limits<T>::is_integer is true. Examples of integer types in-

clude char, short, int and long. Boolean types are also considered integers.

naturally aligned: Data are naturally aligned if it is aligned appropriately for its size.

The memory location of a naturally aligned datum is exactly divisible by the da-

tum’s size in bytes. For example, a short located at position 0x101 is not naturally

aligned, while 0x102 is, assuming shorts are two bytes long.

pair: This refers to Standard C++’s std::pair which is a tuple with two elements.

planar: Refers to a storage scheme for multi-channel images where each component

is stored in a different location in memory. A planar RGB image, for example,

would have its pixels stored in three arrays (RRRRRR, GGGGGG, BBBBBB) each

containing a different channel.

prefetch: This refers to the process of loading data from memory into the caches before

the processor has actually asked for it.

QuickDraw: A legacy two-dimensional drawing engine in Mac OS. QuickTime is based

on QuickDraw.

quantitative operations: Quantitative operations refer to a category of operations de-

fined in this thesis. They have one input element per input set, zero or more output

elements per output set and a single output set. See Chapter 8 for more details.
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Quartz: The native two-dimensional drawing engine in Mac OS X. Cocoa is based on

Quartz.

scalar: A scalar is a single value. It can be a number, string or even a struct. The most im-

portant thing about a scalar is that the entire value represents a single entity. Scalar

operations’ speeds should largely be unaffected by the presence of the vector pro-

cessor. Scalar operations are executed by scalar units which may or may not affect

the vector processor. In MMX technology, the vector processor unit is actually the

floating-point unit. In AltiVec, the vector processor unit is a separate unit and is

capable of executing in parallel with the other scalar units. This means that in Al-

tiVec, it is possible to perform a scalar operations for “free” when using the vector

processor.

scalar processor: In this thesis, it refers to a processor (or part of a processor) that com-

putes values one scalar at a time.

scalar mode: In this thesis, it refers to a program that has been compiled without any

vector processor support. The resultant program will never use the vector processor.

template metafunctions: A template type that returns either a type or a constant value.

It is used in template metaprogramming.

template metaprogramming: This refers to using C++ templates and other features to

get the compiler to act as a interpreter. Using template metaprogramming in C++,

the program can make decisions about itself while it is being compiled.

transformative operations: Transformative operations refer to a category of operations

defined in this thesis. They accept one input element per input set. See Chapter 8

for more details.

tuple: A tuple is a fixed-size collection of elements. See Section 4.3 for more informa-

tion.

unaligned: Vector processor typically can only load data directly from certain locations

in memory. Memory locations which it cannot load directly are known as un-

aligned. See also “aligned”.

undefined behaviour: The behaviour is not specified by VVM. Thus different VVM

implementations might have different behaviours.

uniform vectors: This refers to a vector where all the values have the same meaning. For

example, a vector containing RGB is not uniform, while a vector that contains only

R is uniform.
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vector: In this thesis, a vector is a fixed set of scalars. However, the word vector by

itself has many different connotations. In the Standard C++ library, for example,

the word “vector” refers to a re-sizable container that allows elements to be directly

accessed. In vector processing, the word vector refers to a finite set of scalars. In

AltiVec, vectors are called vectors. In MMX and its derivatives however, vectors

are called packed data types.

vector processor: A vector processor is a microprocessor that has instructions that work

on a set of scalars at a time. In virtually all desktop microprocessors, the vector

processor is not a standalone microprocessor. Instead it is usually part of the mi-

croprocessor, and in some cases, it is actually one of the scalar units. In MMX

technology for example, the vector processor unit is actually the floating-point unit.

Unless otherwise mentioned, the term vector processor in this thesis only refers to

vector processors on the desktop.

vector-processor implementation: A vector-processor implementation is part of a VVM

implementation that implements VVM for a specific vector processor.

vector technology: The term vector technology refers to the method by which a VPU

is integrated and the instruction set supported. A vector technology can be imple-

mented in more than one microprocessor or family of microprocessors. For exam-

ple, the AltiVec vector technology is implemented in Motorola’s PowerPC G4 and

IBM’s Power4 microprocessors.
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Appendix B

VVM’s AltiVec Vector-Processor

Implementation

The AltiVec vector-processor implementation of the VVM implementation developed for

this thesis is discussed in this appendix. This appendix describes how VVM types are

mapped to AltiVec types, how VVM instructions are mapped to AltiVec instructions, and

how VVM type conversions are mapped to AltiVec instructions.

B.1 Type mappings

AltiVec vector mappings are discussed in this section. As discussed in Section 7.2.1,

VVM maps scalars to VPU vectors based on the characteristics of the scalars. Table

B.1 summarises the characteristics of AltiVec vectors that map to scalars in the VVM

implementation. AltiVec vector types, __vector signed long, __vector unsigned

long and __vector pixel, are not used by VVM and are thus not shown in the table.

The AltiVec vector types __vector signed long and __vector unsigned long are

omitted because they are identical to __vector signed int and __vector unsigned

int respectively. In fact, __vector signed long and __vector unsigned long are

deprecated (Mot 1999). The AltiVec vector type __vector pixel is omitted because

VVM has no scalar pixel type.

Table B.2 shows the VPU vector and scalar types of each vvm::vector type in Apple

GCC 3.1 20021003 and Apple GCC 3.3 20030304.

B.2 Function mappings

The functions executed by the AltiVec vector-processor implementation in relation to

each VVM function are summarised in tables consisting of three columns: Expression,

Types and AltiVec Operations. The Expression column contains an expression involving
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Table B.1 VPU vector selection based on signedness and scalar size in bytes

VPU vector type Element size AltiVec vector type

signed integer 1 __vector signed char
unsigned integer 1 __vector unsigned char
signed integer 2 __vector signed short
unsigned integer 2 __vector unsigned short
signed integer 4 __vector signed int
unsigned integer 4 __vector unsigned int
real 4 __vector float
boolean 1 __vector bool char
boolean 2 __vector bool short
boolean 4 __vector bool int

Table B.2 The scalar and VPU vector types of vvm::vectors in Apple GCC 3.1

20021003 and Apple GCC 3.3 20030304.

VVM’s vector VPU vector Scalar

vector<char> __vector signed char signed char
vector<signed char>

vector<unsigned char> __vector unsigned char unsigned char

vector<short int> __vector signed short short int

vector<unsigned short int> __vector unsigned short unsigned short int

vector<int> __vector signed int int
vector<long int>

vector<unsigned int> __vector unsigned int unsigned int
vector<unsigned long int>

vector<float> __vector float float

vector<double> double double

vector<long double> long double long double

vector<bool_char> __vector bool char bool_char

vector<bool_short> __vector bool short bool_short

vector<bool_int> __vector bool int bool_int
vector<bool_long>

vector<bool_float> __vector bool int bool_float

vector<bool_double> bool_double bool_double
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a VVM function. For this expression, AltiVec Operations contains the functions used by

the AltiVec vector-processor implementation for the VPU vector types specified in the

Types column.

In the Expression and AltiVec Operations columns, the following variables are used:

A B C: Capital A to C represent vvm::vectors.

a b c: Lowercase a to c represent VPU vectors from the corresponding A to C vvm::-

vector.

p: Is a pointer to a scalar location that is aligned.

o: Refers to offset.

c: Refers to count.

In the Types column, five different entries are used. They are:

All: This refers to all AltiVec vector types. Integer and Float types combined together

forms all AltiVec vector types.

None: This refers to no AltiVec vector type. Expressions that refer to None have no

specialised implementation in the AltiVec vector-processor implementation.

Integer: This refers to AltiVec integer and boolean vector types. These types are __vec-

tor signed char, __vector unsigned char, __vector bool char, __vector

signed short, __vector unsigned short, __vector bool short, __vector

signed int, __vector unsigned int, and __vector bool int.

Unsigned Integer: This refers to unsigned AltiVec integer vector types.

Float: This refers to AltiVec floating-point vector types, namely __vector float.

Mladd: This refers to AltiVec vector types that support the vec_mladd function. These

types are __vector signed short and __vector unsigned short.

Shift: This refers to __vector unsigned char, __vector unsigned short, and __vec-

tor unsigned int.

B.2.1 Memory management functions

All memory functions use AltiVec functions except for store(A, B, p, o). The AltiVec

vector-processor implementation only has prefetch channels 0 through 3.

In the table below, EXPR(c) refers to an expression involving c which returns the

proper bitmask for prefetching.
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Expression Types AltiVec Operation

load(p) All vec_ld(0, p)

load(p, o) All vec_ld(o, p)

load(A, B, o) All switch, vec_sld(a, b, 0..15)

store(A, p) All vec_st(a, 0, p)

store(A, p, o) All vec_st(a, o, p)

store(A, B, p, o) None

prefetch<0..3,

read_only>(p, c)

All vec_dst(p, EXPR(c), 0..3)

prefetch<0..3,

read_only_transient>(p,

c)

All vec_dstt(p, EXPR(c), 0..3)

prefetch<0..3,

read_write>(p, c)

All vec_dstst(p, EXPR(c), 0.33)

prefetch<0..3,

read_write_transient>(p,

c)

All vec_dststt(p, EXPR(c), 0..3)

B.2.2 VVM functions

While most VVM functions map to AltiVec functions in the AltiVec vector-processor im-

plementation, in some cases, functions from the VecLib framework that comes with Mac

OS X were used instead. The VecLib framework, which is provided by Apple Computer

Inc, contains a set of vector libraries that cover many areas including digital signal pro-

cessing, basic linear algebra subprograms (BLAS) and a range of numerical functions like

square root.

Since VecLib’s functions usually have different names for different types, wrappers

were used when the same VecLib function was applied to more than one type. This was

to enable one version of the code to refer to all functions. The VecLib wrapper functions

are prefixed with vecLib_. Examples are vecLib_mul and vecLib_div.

Expression Types AltiVec Operation

A + B All vec_add(a, b)

adds(A, B) Integer vec_adds(a, b)

A - B All vec_sub(a, b)

subs(A, B) Integer vec_subs(a, b)

A * B Integer vecLib_mul(a, b)

A / B Integer vecLib_div(a, b, 0)
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Expression Types AltiVec Operation

Float vdivf(a, b)

A % B1 Integer vecLib_div(a, b, &r)

++A, A++ All Same as A + B

--A, A-- All Same as A - 1

A += B All vec_add(a, b)

A -= B All vec_sub(a, b)

A *= B All Same as A * B

A /= B All Same as A / B

A %= B1 Integer Same as A % B

-A None

+A2 None

madd(A, B, C) Mladd vec_mladd(a, b, c)

Float vec_madd(a, b, c)

nmsub(A, B, C) Float vec_nmsub(a, b, c)

~A All vec_nor(a, a)

A ^ B All vec_xor(a, b)

A & B All vec_and(a, b)

A | B All vec_or(a, b)

A ^= B All vec_xor(a, b)

A &= B All vec_and(a, b)

A |= B All vec_or(a, b)

A < < s Shift splat, vec_sel, vec_sll, vec_slo,

vec_splat_u8, vec_srl, vec_sro

A < <= s Shift splat, vec_sel, vec_sll, vec_slo,

vec_splat_u8, vec_srl, vec_sro

A > > s Shift splat, vec_sel, vec_sll, vec_slo,

vec_splat_u8, vec_srl, vec_sro

A > >= s Shift splat, vec_sel, vec_sll, vec_slo,

vec_splat_u8, vec_srl, vec_sro

A < < B Shift vec_sl(a, b)

A < <= B Shift vec_sl(a, b)

A > > B Shift vec_sr(a, b)

A > >= B Shift vec_sr(a, b)

!A All vec_cmpeq(a, 0)

1The modulus operator only applies to Integer types. So the AltiVec operation actually covers all re-

quired types.
2+A just returns A. So there is no need to optimise anything.
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A || B All vec_or(vec_cmpgt(a, 0),

vec_cmpgt(b, 0))

A && B All vec_and(vec_cmpgt(a, 0),

vec_cmpgt(b, 0))

A < B All vec_cmplt(a, b)

A > B All vec_cmpgt(a, b)

A <= B Integer vec_or(vec_cmplt(a, b),

vec_cmpeq(a, b))

Float vec_cmple(a, b)

A >= B Integer vec_or(vec_cmpgt(a, b),

vec_cmpeq(a, b))

Float vec_cmpge(a, b)

A == B All vec_cmpeq(a, b)

A != B All x = vec_cmpeq(a, b); vec_nor(x, x)

select(A, B, C) All vec_sel(a, b, c)

mergeh(A, B) All vec_mergeh(a, b, c)

mergel(A, B) All vec_mergel(a, b, c)

min(A) All vec_min(a, b)

max(A) All vec_max(a, b)

avg(A, B) Integer vec_avg(a, b)

all_eq(A, B) All vec_all_eq(a, b)

all_ge(A, B) All vec_all_ge(a, b)

all_gt(A, B) All vec_all_gt(a, b)

all_le(A, B) All vec_all_le(a, b)

all_lt(A, B) All vec_all_lt(a, b)

all_ne(A, B) All vec_all_ne(a, b)

all_nge(A, B) Integer vec_all_lt(a, b)

Float vec_all_nge(a, b)

all_ngt(A,B) Integer vec_all_le(a, b)

Float vec_all_ngt(a, b)

all_nle(A, B) Integer vec_all_gt(a, b)

Float vec_all_nle(a, b)

all_nlt(A, B) Integer vec_all_ge(a, b)

Float vec_all_nlt(a, b)

any_eq(A, B) All vec_any_eq(a, b)

any_ge(A, B) All vec_any_ge(a, b)

any_gt(A, B) All vec_any_gt(a, b)
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any_le(A, B) All vec_any_le(a, b)

any_lt(A, B) All vec_any_lt(a, b)

any_ne(A, B) All vec_any_ne(a, b)

any_nge(A, B) Integer vec_any_lt(a, b)

Float vec_any_nge(a, b)

any_ngt(A,B) Integer vec_any_le(a, b)

Float vec_any_ngt(a, b)

any_nle(A, B) Integer vec_any_gt(a, b)

Float vec_any_nle(a, b)

any_nlt(A, B) Integer vec_any_ge(a, b)

Float vec_any_nlt(a, b)

abs(A) Float vec_abs(a)

acos(A) Float vacos(a)

asin(A) Float vasinf(a)

atan(A) Float vatanf(a)

atan2(A, B) Float vatan2f(a, b)

ceil(A) Float vec_ceil(a)

cos(A) Float vcosf(a)

cosh(A) Float vcoshf(a)

exp(A) Float vexpf(a)

floor(A) Float vec_floor(a)

fmod(A, B) Float vmodf(a, b)

log(A) Float vlog(a)

log10(A) Float vlog10f(a)

pow(A, B) Float vpowf(a, b)

pow(A, B)3 Float vipowf(a, b)

sin(A, B) Float vsinf(a)

sinh(A, B) Float vsinhf(a)

sqrt(A) Float vsqrtf(a)

tan(A) Float vtanf(a)

tanh(A) Float vtanhf(a)

3In this case B is a vvm::vector<int>
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B.3 Type conversions

In this section, a table summarising the AltiVec functions used to perform vvm::vector

type conversion is presented. Only the vvm::vector conversions listed use AltiVec func-

tions. All other vvm::vector conversions use the emulation layer; each scalar is con-

verted using static_cast. The table consists of three columns:

From: This column shows the VPU vector type of the vvm::vector that we want to

convert from. See Section B.1 to derive the appropriate vvm::vector type.

To: This column shows the VPU vector type of the vvm::vector that we want to convert

to. See Section B.1 to derive the appropriate vvm::vector type.

AltiVec Operation: This column lists the AltiVec functions used.

From To AltiVec Operation

__vector signed char __vector signed short vec_unpackh,

__vector bool char __vector bool short vec_unpackl

__vector signed short __vector signed int

__vector bool short __vector bool int

__vector signed short __vector signed char vec_pack

__vector unsigned short __vector unsigned char

__vector bool short __vector bool char

__vector signed int __vector signed short

__vector unsigned int __vector unsigned short

__vector bool int __vector bool short

__vector signed int __vector float vec_cft

__vector unsigned int __vector float

__vector float __vector signed int vec_cts

__vector float __vector unsigned int vec_ctu

__vector unsigned int __vector unsigned char 3 * vec_pack

__vector signed int __vector signed char

__vector bool int __vector bool char

__vector signed char __vector signed int 3 * vec_unpackh,

__vector bool char __vector bool int 3 * vec_unpackl
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Appendix C

Constant Scalar Count

This appendix discusses why constant scalar count is required for generic programming.

A simple example is discussed to show how generic algorithms would not be possible

without constant scalar count.

Assume that we want to convert an 8-bit grey-scale image to a 16-bit grey-scale image.

To perform this operation using a generic library, we would use a functor that converts an

8-bit grey-scale pixel to a 16-bit grey-scale pixel with a suitable algorithm. Assuming this

functor is called convert8to16, the entire call will look something like the following:

// in: The input 8-bit grey-scale image

// out: The output 16-bit grey-scale image

transform(in, out, convert8to16);

A scalar implementation of convert8to16 would be similar to the following:

// uint8: typedef for an 8-bit unsigned integer

// uint16: typedef for a 16-bit unsigned integer

uint16 convert8to16(uint8 in) {

return in * 256;

}

With constant scalar count, a vectorised convert8to16would be similar to the following:

vvm::vuint16 convert8to16(vvm::vuint8 in) {

return vvm::vector_cast<vvm::vuint16>(in) * vvm::vuint16(256);

}

Without constant scalar count, but fixed counts for each type, implementing a functor for

convert8to16 is not possible because of the possible mismatch between the number of

elements in vuint8 and vuint16. For example, assuming the normal VPU constraint

where the vector size is constant across types, vuint16 would have only half the number
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of elements of vuint8. The convert8to16 function would have to return two vuint16s

instead of one. Such a change would require changing the transform algorithm, making

it un-generic. A single transform algorithm would not be able to support all possibilities

without constant scalar count.
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