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Abstract

Now that complete genome sequences are available for a variety of organisms, the

elucidation of gene functions involved in metabolism necessarily includes a better

understanding of cellular responses upon mutations on all levels of gene products,

mRNA, proteins, and metabolites. Such progress is essential since the observable

properties of organisms – the phenotypes – are produced by the genotype in juxtaposition

with the environment. Whereas much has been done to make mRNA and protein profiling

possible, considerably less effort has been put into profiling the end products of gene

expression, metabolites. To date, analytical approaches have been aimed primarily at the

accurate quantification of a number of pre-defined target metabolites, or at producing

fingerprints of metabolic changes without individually determining metabolite identities.

Neither of these approaches allows the formation of an in-depth understanding of the

biochemical behaviour within metabolic networks. Yet, by carefully choosing protocols for

sample preparation and analytical techniques, a number of chemically different classes of

compounds can be quantified simultaneously to enable such understanding. In this review,

the terms describing various metabolite-oriented approaches are given, and the differences

among these approaches are outlined. Metabolite target analysis, metabolite profiling,

metabolomics, and metabolic fingerprinting are considered. For each approach, a number

of examples are given, and potential applications are discussed. Copyright # 2001 John

Wiley & Sons, Ltd.

Keywords: functional genomics; metabolite profiling; mass spectrometry; metabolism;

mathematical modeling

Introduction

In all higher organisms, not just plants, the majority

of genes have not yet been studied in any experimental

depth. Roughly a third of Arabidopsis thaliana’s

genes have not been assigned putative functions,

even based upon sequence similarities with ortho-

logs in other organisms, and only nine percent of all

Arabidopsis genes have been studied in any detail.

Moreover, many gene assignments are not specific

enough to indicate biochemical function, or not

detailed enough to define biological roles in a more

comprehensive manner [5]. Gene duplications are

known to be a major source of rapid evolutionary

adaptation, and often result in enzyme isoforms

(paralogs) that carry out the same or highly similar

functions in different cells or organs within one

organism. However, such homologous enzymes

(both orthologs and paralogs) may also have quite

different substrate specificities or altered kinetic

characteristics in order to fulfil new biological roles.

This could explain the huge number of up to

200 000 different metabolites estimated to occur in

the plant kingdom (D. Strack, personal commu-

nication). The full suite of metabolites synthesized

by a biological system comprises its metabolome.

Such a system can be defined by level of biological

organization, such as organism, organ, tissue, cell,

or cell compartment levels. In order to determine

biological function of a metabolite (and, by associa-

tion, its cognate enzyme and enzyme-encoding

gene), an often-used strategy is to perturb a system
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by systematically introducing genetic alterations

and looking for the effect of the perturbation. This

can be done by mutating a gene of interest and

describing phenotypic effects of this mutation

(reverse genetics), or by first identifying an interest-

ing phenotype and then seeking its genetic cause

(forward genetics). In both approaches it is essen-

tial to describe the phenotype accurately. Several

schemes for precisely linking genes to their func-

tions have been suggested, among them metabolic

control analysis [15] and the individual analysis of

steady-state levels of metabolites [80] in order to

comprehensively describe the net result of cellular

regulation on the metabolite level. More common,

however, are approaches that study cellular re-

sponses at the transcript or the protein level (trans-

criptomics and proteomics, respectively). Current

strategies and limitations for the quantitative

analysis of cellular responses at all three gene

product levels (mRNA, proteins, and metabolites)

have been recently summarized in a short review

[24], including thoughts on database requirements

and informatic tools. Today, transcriptomic app-

roaches seem to give the best coverage of genome

level responses. However, due to limitations in

analytical precision and high costs, few transcrip-

tomic studies adequately meet rigid statistical

requirements. On the other hand, proteomic

approaches based on two-dimensional gel electro-

phoresis are well established in many biological

laboratories [78] and are comparatively inexpensive.

However, if the full set of proteins separated by 2D

gels are to be identified, highly automated systems

are needed for cutting spots, digesting proteins,

and analysing peptides using mass spectrometry.

Therefore, protein identification strategies regularly

focus on the most abundant alterations in com-

parative experiments, such as newly appearing (or

completely disappearing) spots, which might lead

to erroneous conclusions, since smaller changes in

protein abundances can lead to clear alterations in

metabolic pathways. Furthermore, low abundance

proteins are regularly overlooked [38] as are

hydrophobic proteins, which are difficult to resolve

using current 2D systems. Quantification of protein

abundances can be performed using isotope coded

affinity tags with precisions as accurate as 12%

relative standard deviations [39], but to date, this

technique has not been utilized for proteomic

studies that go beyond one-to-one comparative

experiments. Compared to transcriptomic and

proteomic approaches, analytical techniques for

metabolite detection and quantification are far

more robust and mature. Analytical precisions

may be below 1% relative standard deviations, and

dynamic ranges exceed four orders of magnitude.

However, de novo identification of metabolites is far

more difficult than the readout of linear mRNA or

protein sequences. Therefore, metabolite analyses

have been historically constrained to a number

of pre-defined compounds. To describe cellular

responses in more depth, several strategies have

been developed to answer different questions. These

questions are outlined as follows:

(1) In order to study the primary effect of any

alteration (e.g. a genetic mutation) directly, an

analysis can be restricted exclusively to the

substrate and/or the direct product of the

corresponding encoded enzyme. In order to

improve signal-to-noise ratios, extensive sample

cleanup protocols may be used to avoid

interferences from major accompanying com-

pounds. This strategy is called metabolite

target analysis and is mainly used for screen-

ing purposes, and for analyses that need

extreme sensitivity such as the monitoring of

phytohormones.

(2) For investigations of selected biochemical

pathways, it is also often not necessary to

view the effects of perturbation on all branches

of metabolism. Instead, the analytical pro-

cedure can be focused on a smaller number of

pre-defined metabolites. Sample preparation

and data acquisition can be focused on the

chemical properties of these compounds with

the chance to reduce matrix effects. This

process is called metabolite profiling (or some-

times metabolic profiling). For example, these

pre-defined metabolites can be chosen based

upon a class of compounds (such as amino

acids, organic phosphates, or carbohydrates),

or based upon their association with a specific

pathway. In the context of drug research

or pesticide metabolism, the term metabolic

profiling is frequently used to describe the

metabolic fate of an administered drug.

(3) Due to pleiotropic effects, the effect of a

single mutation may lead to the alteration of

metabolite levels of seemingly unrelated bio-

chemical pathways. This is especially liable to

happen if genes are constitutively overexpressed
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or anti-sense inhibited. A comprehensive and

quantitative analysis of all metabolites could

help researchers understand such systems.

Since such an analysis reveals the metabolome

of the biological system under study, this

approach should be called metabolomics. Both

sample preparation and data acquisition must

aim at including all classes of compounds,

while at the same time assuring high recovery,

and experimental robustness and reproducibi-

lity. The resolving power of the chosen analy-

tical method must be high enough to maintain

sensitivity, selectivity, matrix independence, and

universality. Since metabolomic data sets will be

complex, adequate tools are needed to handle,

store, normalize, and evaluate the acquired data

in order to describe the systemic response of

the biological system. Furthermore, metabolo-

mic approaches must include strategies to

identify unknown metabolites, and analytical

tools may even reach out to incorporate models

of theoretical biochemical networks.

(4) For functional genomic or plant breeding

programmes, as well as for diagnostic usage

in industrial or clinical routines, it might not

be necessary to determine the levels of all

metabolites individually. Instead, a rapid clas-

sification of samples according to their origin

or their biological relevance might be more

adequate in order to maintain a high through-

put. This process can be called metabolic finger-

printing. Such approaches have occasionally

been termed metabonomics, which on the one

hand could be mixed up with the completely

different goal of metabolomics, and on the

other hand with the earlier defined concept of

the metabolon, the coordinated channelling of

substrates through tightly connected enzyme

complexes. Sometimes, metabolic fingerprints

have enough resolving power to distinguish

between individual signals that can then be

related to sample classification. However, it

cannot be assumed that such techniques lead to

the identification of the most important effects,

since major metabolic events might be obscured

during data acquisition due to irreproducible

matrix effects and lack of analytical resolution

and sensitivity.

A number of different metabolomic applica-

tions can be imagined. Some are more obvious,

such as increasing metabolic fluxes into valuable

biochemical pathways by metabolic engineering

(e.g. enhancing the nutritional value of foods) or

into pathways needed for the production of

pharmaceuticals in plants [30]. Other fields of

applications are less obvious. For example, meta-

bolomics could be applied in assessments of

substantial equivalence of genetically modified

organisms [87] when the metabolic phenotypes of

well-known cultivars (that are commonly believed

to be safe) are compared to transgenic plants. In

addition, metabolomic analysis will be of great

theoretical value for understanding metabolic

responses in more detail. Finally, comprehensive

analysis of metabolites could become invaluable in

studies that directly aim at detecting biologically

active small molecules (such as in drug discovery

programmes in which diseased and healthy tissues

are compared).

In this review, comparisons are made among the

current techniques used to acquire metabolomic

data, and strategies to interpret this data to render

it useful are discussed.

Sample preparation

When aiming at the simultaneous detection of the

full suite of metabolites in biological samples, the

applied methods cannot be restricted to the techni-

cal question of which type of data acquisition might

be most suitable, but must also seriously consider

adequate methods of sample preparation. As a first

step, the inherent enzymatic activity of biological

samples has to be rapidly stopped by freeze

clamping, immediate freezing in liquid nitrogen, or

by acidic treatments using perchloric or nitric acid

[4]. However, acidic treatments pose severe pro-

blems for many analytical methods that follow.

Usually, freezing in liquid nitrogen is regarded as

the best way to stop enzymatic activity, but if this

treatment is used, great care must be taken not to

partially thaw tissues before extracting metabolites.

This issue can be circumvented using lyophilization

(which prevents both enzyme and transporter

function), or by immediately adding organic sol-

vents and applying heat, thereby also inhibiting the

recovery of enzymatic activity. Using non-aqueous

fractionation of lyophilised samples, metabolite

levels can be distinguished even from different

cellular compartments [29]. Tissues cultures are
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often directly infused into cold organic solvents,

keeping temperatures below –20uC at all times

during sample preparation [34]. For plant tissues,

sample homogenisation might pose problems.

Frozen samples, for example, can be ground using

a ball mill in pre-chilled holders [25], or ground

directly in an extraction solvent using ultra turrax

homogenisers [54]. Other plant organs such as

roots, however, prove sometimes to be too hard

for ball mills, whereas potato tubers are too soft

[63a]. Most frequently, polar organic solvents like

alcohols are directly added to homogenized frozen

tissues for the extraction of polar components,

often followed by non-polar solvents such as

dichloromethane for gaining sufficient recovery of

lipophilic metabolites.

Any sample preparation protocol must necessa-

rily remain a compromise between complete recov-

ery of some compound classes and avoiding chemical

or physical breakdown of more labile metabolites.

For example, aromatic compounds might need the

input of a reasonable amount of energy into the

system (e.g. heat), in order to increase the recovery

from (lipophilic) membranes or protein complexes,

whereas for other compounds, chemical degradation

might occur even at gentle and cold extraction

conditions. Furthermore, some compounds (such as

polyamines) might need acidic environments for

efficient extraction, whereas acidic compounds

should best be extracted at slightly basic to neutral

conditions. Last, vitamins such as tocopherol are

prone to oxidation, and great care must be taken to

ensure reproducible extraction of such compounds.

Unfortunately, no systematic study has yet been

published on metabolomic recoveries and break-

down reactions comparing different techniques of

sample preparation, homogenisation, and extrac-

tion, although true metabolomic approaches must

consider these questions with great care.

Data acquisition

Metabolite target analysis

For decades, analytical chemistry has increased the

reliability and the sensitivity of detecting pre-

defined compounds in biological tissues. Ultimately,

this has lead to the detection of single molecules in

single living cells, with great potential of studying

biological responses to cellular events in vivo [12].

More routine methods have been developed to

selectively detect a few members of a compound

class while neglecting all others. Polyamines, for

example, are believed to be involved in a number of

processes important for plant systems, such as

drought stress, and various analytical methods are

available for their reliable quantification in plant

material [10]. Vitamins remain the objects of

ongoing analytical research [6], especially when the

simultaneous analysis of different isoforms is

required [71]. On another note, long-studied com-

pounds might still hold some challenges, such as the

reliable detection of metabolites that appear simul-

taneously in the oxidized and reduced form, such as

glutathion [52], or in different stereoisomers, such

as zeaxanthins [17]. Most demanding remains the

analysis of trace compounds in extremely complex

matrices, such as phytohormones in plants. A

variety of protocols have been developed for the

detection of indole-3-acetic acid [60], for abscisic

acid [19], and for indole-3-pyruvate [74], and

methods for phytohormone analysis will almost

certainly be further improved in coming years to

achieve better detection limits and easier sample

clean-ups.

Target analysis will remain the most wide-spread

technique, with applications in all areas of biologi-

cal research. However, for comparative analysis in

functional genomics studies, target analysis is only

of limited use, since the levels of the target analytes

might be altered by unexpected effects that can

not be understood without more comprehensive

approaches. Therefore, a broader analysis of meta-

bolic alterations is needed to limit over-interpretation

of data. In the following section, the concepts and

results of multi-target profiling approaches and

non-biased data acquisition will be reviewed.

Metabolite profiling

Since the late 1960’s, improved chromatographic

methods have made peak identifications possible

relying solely on chromatography. When coupled to

sensitive detectors, these analytical methods were

soon applied to urine samples and plant tissues to

profile important compound classes such as amino

acids [2]. By including compounds with known

retention times, shifts in absolute retention times

could be taken into account. In one application of

this method, up to 155 organic acids were detected

in order to diagnose human diseases in a clinical

routine [75,76]. Mass spectrometry offered an
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additional and completely independent method for

compound identification. By coupling gas chroma-

tography to mass spectrometry (GC/MS), fifty

different human diseases could be diagnosed simul-

taneously [41]. Today, computational constraints

facilitate a more automated and more reliable

categorization of human metabolic disorders [49]

and cancer-related tissues [48].

For automated metabolite identification, reliable

information on both retention time and mass

spectra is required. However, mass spectra of

metabolites can be dominated by co-eluting com-

pounds in complex chromatograms, and may be

obscured at trace levels by chemical noise. To allow

high threshold values for mass spectral quality in

routine identifications, mass spectra therefore need

to be purified. By using mass spectral deconvolution

software, peak identification was possible for 68

target compounds for the rapid detection of inborn

errors [40] when comparing samples from diseased

and healthy children.

Less work has been done on the comparative

analysis of profiling plant compounds. The simulta-

neous determination of carbohydrates, sugar alco-

hols, acids, sterols, and amino acids by GC/MS was

first explored by Sauter et al. [64] for comparing

the effects of pesticide applications on plants. Due

to the lack of sample pre-fractionation, the chro-

matograms were heavily crowded, and less abun-

dant metabolites such as lysine were easily missed.

By restricting the analysis to polar compounds,

derivatisation protocols were further optimised [1],

and profiles of polar metabolites in apricots were

generated [45]. More systematically, Roessner et al.

[63a,b] evaluated the utility of GC/MS measure-

ments for the analysis of polar metabolites in

potato tubers. However, in different organisms

(and also, in different organs of the same organ-

ism), biochemical pathways may be quite differently

organized, and pathways could not be as conserved

as textbooks suggest. Therefore, the actual bio-

chemical pathways must be reinvestigated using

modern analytical tools. For example, GC/MS can

be used to investigate metabolic networks consisting

of a small number of metabolites using stable

isotopes and profiling the fractional enrichment [14].

For some compound classes, such as bis- and

trisphosphates or lipids, liquid chromatography

(LC) is the method of choice for separation. By

measuring the absorption of ultraviolet light (UV),

profiles of aromatic and de-saturated organics

can be acquired, such as carotenes, xanthophylls,

ubiquinones, tocopherols, and plastoquinones.

LC/UV has successfully been used to characterize

transgenic and mutant tomato genotypes and for

screening Arabiodpsis mutants [27]. However, com-

pared to UV detection, mass spectrometers are

clearly more versatile and are capable of not only

analysing isoprenoids and aromatics, but also

compounds without UV absorbing moieties (such

as oligosaccharides). Since the beginning of the

1990’s, electrospray ionisation has offered a robust

and versatile interface to connect liquid chromato-

graphy and mass spectrometry. For compound

classes such as sugar polyols, it has been shown

that its analytical precision is high enough for

reliable quantifications, if stable isotope labelled

compounds are used as internal references [69]. For

other classes of compounds such as ceramides,

LC/MS showed detection limits in the femtomolar

range for analysis of cultured T-cells [37,59]. The

highest absolute sensitivity for metabolite profiling

can be gained by connecting capillary electropho-

resis to laser-induced fluorescence detection. With

this technique, steroids could be quantified in the

attomolar range, compared to femtomolar sensiti-

vities when coupled to mass spectrometry.

Most frequently, the term metabolic profiling refers

to the catabolic degradation of a certain compound in

an organism. In order to study such degradation

pathways comprehensively, several analytical app-

roaches may be followed in parallel. Beuerle and

Schwab [8] investigated the degradation of linoleic

acid in stored apples using GC/MS, LC/MS/MS and

LC in conjunction with radioactivity detection. Even

more frequently, metabolic profiles are determined

in pharmaceutical research in order to follow the

metabolic fate of administered drugs. A typical

example of this is the elucidation of the biochemical

pathways of propanolol degradation in rats using

LC/MS/MS [7]. This can be coupled to bioassay

directed fractionation, such as the binding affinity of

catabolites to specific receptors [51], in order to gain

information about the biological (or toxicological)

relevance of catabolites.

Metabolomics

The obvious next step in metabolic network

analysis is to try to determine metabolic snapshots

in a broad and comprehensive way. In metabolomic

approaches, any bias against a certain class of
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compounds must be avoided. Instead, biological

importance is defined by evaluating relative changes

of metabolite levels in comparative experiments. It

is of utmost importance, therefore, that the abun-

dance of any metabolite can be directly compared

from one sample to the next, which makes the use

of stable isotope standards to cope with potential

matrix effects highly advantageous. Furthermore, it

is probably wise to use fractionation steps (like

lipophilic/hydrophilic separations) and chromato-

graphic separations in order to minimize the

number of compounds that reach the analytical

device simultaneously. To demonstrate the power of

such an approach, a profile with over 150 detectable

peaks in the base peak chromatogram is shown for

the polar phase of potato leaves (Figure 1). In a

proof-of-concept study, such GC/MS analysis was

chosen by Fiehn et al. [26] to characterize plant

mutants using a two-phase fractionation protocol.

326 polar and lipophilic compounds were analysed,

half of which had no assigned chemical structure.

Two mutants were compared to their parental

genotypic backgrounds, and metabolic phenotypes

were assigned by clustering the acquired data

according to the sample origin. However, analysis

was restricted to abundant peaks, and, almost

certainly, a number of trace compounds will have

been overlooked by this approach. GC/MS analyses

were also used for studying metabolic phenotypes in

wild type and transgenic potato tubers, using 86

abundant peaks selected from the chromatograms,

followed by clustering the data according to meta-

bolic phenotypes [63b]. In this paper, however,

quantitative alterations of only a few unidentified

metabolites were taken into account, and pre-

sumably, an even higher number of peaks remained

undetermined. Another approach to identifying

gene functions using extended chromatographic

analysis was performed by Tweedale et al. [81].

After growing wild type and mutant E. coli strains

in minimal media and 14C-labelled glucose, the 70

most abundant metabolites were separated on

two-dimensional thin layer chromatography. Rela-

tive quantification of metabolites by radioactivity

Figure 1. Polar phase of Solanum tuberosum leaves, analysed by GC/quadrupole MS (unpublished results). Inspection of

peaks apparent in the base peak chromatogram results in some 150 distinct metabolites. Abundant peaks in the middle of the

chromatogram are monosaccharides, followed by disaccharides (sucrose being the largest), and raffinose at the end of the

chromatogram. Trimethylsilylated hydroxy- and amino acids are eluted in the first third of the profile
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detection showed reproducible alterations in meta-

bolite pools (among them from unidentified meta-

bolites), depending on culture conditions. However,

changes in metabolite pools could only partly be

ascribed to known control functions of the mutated

gene.

In metabolomic analysis of comparative experi-

ments, major changes in metabolite levels will

almost certainly include unidentified peaks. There-

fore, metabolomic research should include approa-

ches aimed at elucidating chemical structures, for

example by combining liquid chromatography

with nuclear magnetic resonance detection (NMR)

and mass spectrometry [86]. For GC separations,

however, de novo identification strategies are less

straightforward. For polar components, for exam-

ple, chemical derivatisation that hampers structural

investigation is needed, especially if hard ionisation

techniques such as electron impact ionization are

applied. In order to gain information about the

intact molecule, derivatisation agents can be used

that result in characteristic pseudo molecular ions.

Using this approach, 30 uncommon plant metabo-

lites were identified after calculation of elemental

compositions and database queries [25]. However,

compounds larger than monosaccharides could not

be detected using this method due to decreased

volatility of the corresponding derivatives and

incomplete derivatisation due to steric hindrance

of the reagent. In conclusion, metabolomic approa-

ches based on GC/MS need better procedures for

identifying unknown peaks. This could potentially

be achieved by softer ionisation techniques (such as

chemical ionisation), and by combining information

derived from mass spectral fragmentation patterns,

isotope ratios, exact masses, structure generators,

and (bio)chemical databases.

As pointed out above, high throughput analyses

for functional genomics also need an automatic

procedure to assign an indicator of the reliability of

a compound match. This was achieved by develop-

ing an automatic mass spectral deconvolution and

identification software (AMDIS) by Stein [72]. This

software is capable of computing purified mass

spectra from the elution profile of a compound by

deconvolution of the overlapping mass spectra of its

neighbouring compounds (or, background ions that

stem from chemical noise). Using the deconvoluted

mass spectra, peak identities are confirmed by

searching mass spectral libraries. Halket et al. [40]

used this software to enhance the reliability of peak

identifications in GC/MS runs, but did not take the

total number of peaks into account.

Today, analytical methods such as GC/MS,

NMR, and LC/UV/MS are reliable and robust

enough to be used as workhorses in biological

laboratories, yet sample preparation protocols seem

to contain the most error prone steps (that

ultimately might cause irreproducible or artefactual

results). In metabolomic approaches, all protocols

have intrinsic biases for and against chemically

different classes of metabolites. Therefore, recov-

eries and reproducibilities cannot be as high as in

metabolite profiling or metabolite target analyses.

Instead, metabolomic analyses have to be regarded

as ‘quick-and-dirty’ methods, that aim to be as

comprehensive and as fast as possible, but that

cannot insure the precise quantification of each and

every metabolite.

Metabolic fingerprinting

Comprehensive metabolomic analyses cannot be

achieved without pre-fractionation steps, chromato-

graphic separation, and use of different analytical

instruments. Therefore, each sample has to be

portioned into a (limited) number of aliquots,

reducing the total sample throughput. If a higher

number of samples need to be analysed, for exam-

ple for rapid classifications, even faster methods can

be applied that completely refrain from sample

clean-up steps or time consuming chromatography.

This might be needed for diagnostic purposes in the

clinical routine, for product quality controls, or for

analysing large mutant collections in functional

genomics programmes. The bottom line of meta-

bolic fingerprinting is to obtain enough information

to unravel (otherwise hidden) metabolic alterations,

without aiming to get quantitative data for all

biochemical pathways. Therefore, the resolution of

the analytical devices must be high enough to

handle critical information. Such devices as nuclear

magnetic resonance, mass spectrometry, or Fourier

transform infrared spectroscopy (FT-IR) provide

this resolution. Using a combination of pyrolysis

mass spectrometry and FT-IR, bacterial species

have been classified using novel programming tools,

resulting in potential biomarkers then used to

rapidly distinguish among these species [35]. A

similar approach was taken by Smedsgaard and

Frisvad [70], who used direct infusion of crude

fungal extracts into MS/MS instruments in order to
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classify ten different fungal species. NMR was used

to detect effects of toxins on rats via the direct

analysis of dried urine samples, and principle

components analysis for classification of metabolic

alterations [62]. However, metabolic fingerprinting

can easily be over-interpreted, since signals suitable

for distinguishing among samples might not be

biologically relevant, or might not be applicable

when distinguishing among samples from other

species (or situations). For example, Warne et al.

[84] studied metabolic effects by NMR after dosing

earthworms with toxins. By pattern recognition,

they noted elevated levels of glucose, citrate, and

succinate as potential biomarkers for toxicity.

However, there are clearly a lot of situations where

intermediates of the TCA cycle become elevated, and

generalisations about the suitability of this method

for detecting toxic effects should be avoided. For

example, differences in the levels of TCA inter-

mediates were also found by NMR analyses when

investigating urine samples from mutant mice [28].

In the realm of functional genomics, NMR was

used to detect metabolic phenotypes in yeast

mutants that did not show obvious visible pheno-

types. However, the informative power of NMR

was not sufficient in this instance to quantify

individual metabolite levels; enzymatic analysis

had to be applied additionally [58].

Apart from NMR and MS, infrared spectroscopy

has also been used to find differences in compara-

tive experiments. For example, tomato fruits from

plants grown under salinity stress can be distin-

guished from those grown under normal conditions

based on so-called genetic programming [43].

Obviously, all approaches to metabolic fingerprint-

ing have made use of sophisticated informatic tools

in order to deconvolute raw analytical data. How-

ever, Gilbert et al. [31] emphasized that only genetic

programming gives interpretable equations for the

underlying reasons leading to final classification

results.

NMR, low-resolution MS, and FT-IR all lack

resolving power to distinguish all the metabolites in

a single spectrum. To date, no study has been

published that utilizes the enormous resolving

power of Fourier-transform ion cyclotron reso-

nance mass spectrometry (FT-MS). Theoretically,

all small metabolites of an organism could be

analysed simultaneously using this approach (with-

out any chromatography), since the FT-MS

resolution of R>100 000 allows the unambiguous

detection of metabolites that are only 0.005 Da

apart, and the accurate masses of these metabolites

could be used for de novo identification. However,

such an approach would face some severe limita-

tions. First, isomers having identical elemental

compositions (such as fructose and glucose) could

not be distinguished. Second, matrix effects could

cause severe alterations in electrospray ionisation

efficiency by ion suppression. And finally, ion

repulsion in the cyclotron cell could occur, which

would clearly hamper high resolution and accurate

mass analyses. Nevertheless, FT-MS seems prone

to be used for metabolic fingerprinting, and it

might be a powerful tool for rapidly detecting

major metabolic differences when screening mutant

collections.

Data interpretation

Pattern recognition

Regardless of which analytical method is used,

metabolomic analyses, as well as profiling major

events by fingerprinting, will result in large collec-

tions of raw data. As long as more than subtle

metabolic changes are expected, the analysis of

metabolic profiles should definitely result in clear

clusters according to the design of the comparative

experiment, i.e. mutant/wild type, healthy/diseased,

young/old, etc. If such comparisons cannot be

verified by clustering tools, the data might be too

noisy to be further analysed. The lack of inherent

information might either be trivial (important

alterations in metabolite levels could be missed), or

errors might be introduced during sample prepara-

tion steps or by data acquisition itself. Next, any

subgroups within the major clusters must be tested

to insure that classification occurred as per the

intended experimental set-up. Again, such subclus-

ters might be generated either by systematic errors

in sample preparation or data acquisition, or by

random errors such as slight differences among

culture treatments, even if the investigator believed

treatments to be under control. Both reasons

cannot be fully excluded in metabolomic analyses

of comparative biological experiments, since there

are simply too many factors that could cause subtle

changes in clustering results. In Figure 2, a potential

result of a hierarchical clustering analysis is demon-

strated for a hypothetical experiment. Samples are

easily classified according their origin, A or B,
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however, two sub-clusters can be seen within the B

population. Once such a subgroup is found within

B, it is not statistically sound to treat B as one

population and to compare it to A, by Student’s

t test for example. Numerous approaches exist for

statistical analysis, such as multiple analysis of

variance (MANOVA) or analysis of frequency dis-

tributions, but great care should be taken to meet

the statistical requirements for such tests. Whenever

possible, experienced statisticians should be asked

to evaluate the best experimental design in order to

answer a specific question. More important than

clustering metabolic phenotypes or calculating

alterations in average metabolite levels might be

indications of further relationships within metabo-

lomic data sets. Yet, there is not much experience in

analysing such hidden relationships. The current

paradigm is that cluster analysis of linear relation-

ships of variables (e.g. gene expression) might lead

to candidate genes with similar biological roles in

cellular processes [22]. Bittner et al. [9] briefly

summarized current approaches to analyse relation-

ships in mRNA expression data sets, and investiga-

tors using metabolomic data analysis might learn

from these experiences. The authors conclude that

considerable efforts have been made to cluster

linear one-to-one correlations, but the investigation

of non-linear responses may be much more biolo-

gically important. Non-linear response curves could

be investigated using more sophisticated informa-

tion tools, such as the concept of mutual informa-

tion [68]. Furthermore, non-trivial results may also

be obtained by applying other concepts such as

rule-based learning methods. Gilbert et al. [32] have

utilized a variant of such supervised learning algo-

rithms, genomic computing, to build new biological

hypotheses from the re-analysis of mRNA expres-

sion data deposited in publicly accessible data

banks. Very likely, the best we can get from

bioinformatic analyses of large-scale data sets is

the generation of new hypotheses, and information

concerning how much evidence was found support-

ing each of the hypotheses. Such information can

then be the starting point of hypothesis generation.

Other groups can then work to falsify or substan-

tiate hypotheses using classical biochemistry and

molecular biology.

Metabolic networks

To further test the biological relevance of hypo-

theses gained from metabolomic data sets, these

Figure 2. Cluster analysis of a hypothetical experiment. Hierarchical clustering of the samples using Euclidean distances for

all metabolites might result in the expected separation of samples from origin A (such as wild type samples) and from origin B

(such as mutant samples). In this example, B samples fall into two sub-groups. B1 and B2, as indicated by the length of the lines
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data should be compared to predictions made either

by searching connections to known biochemical

pathways, or by using prediction models based

on mathematical calculations from biochemical

kinetics or stoichiometries. For the former, classical

textbooks certainly give a good start. However, as

large networks are generated, a broader view on

metabolic interactions will be needed. Within the

publicly available genomic data base KEGG

[46,53], links to encoded enzymatic pathways can

be found with maps visualizing standard metabolic

pathways of different organisms. However, KEGG

has only a partial overlap with other enzymatic or

metabolic databases and it is worth looking into

BRENDA [11], WIT [85], and PathDB [56].

Another possibility when comparing metabolic

networks is to follow theoretical considerations.

Two basic approaches can be found in literature:

first, metabolic fluxes can be calculated from

experimental knowledge of enzyme kinetics in a

method called metabolic control analysis [4,44,77].

Secondly, metabolic pathways can be calculated to

be feasible or not by considering the stoichio-

metry of enzymatic reactions [36,57]. Below, both

approaches are briefly evaluated for their applic-

ability to metabolomic research.

Metabolic control analysis has regularly been

applied to forward the aim of increasing carbon flux

through certain biochemical pathways in bio-

technological applications [13,33]. These authors

emphasized that relative directions and relative

intensities of metabolite fluxes must be determined

in order to understand even small metabolic net-

works in full. One way to measure such fluxes is by

adding isotopically labelled compounds (often by

growing cultures on 13C-labelled Glucose) and

following the kinetics of isotope distribution by

means of NMR or MS [73,82].

By analysing of the fine structure of NMR

spectra, the positions of incorporated 13C atoms

can be determined, enabling the mathematical

modelling of the contribution of different pathways

to the metabolic cycles [50,55,65]. In plant systems,

however, the situation is even more complicated.

Plant metabolism is heavily split among several

cellular compartments, and a range of methods

must be combined to fully elucidate metabolic

fluxes into certain pathways [61]. Using LC/fluor-

escence, off-line radioactivity measurements, and

NMR, such metabolite fluxes were successfully

elucidated in maize root tips after application of

13C- and 14C-labelled glucose [18]. For selected

organs like potato tubers, Thomas et al. [79] were

able to successfully explain enzymatic influence in

certain pathways using metabolic control analysis.

Further limitations of metabolic control analysis

were reviewed by Kell and Mendes [47] who

emphasized that biochemical predictions using

metabolic control analysis is now only achievable

for small, comparatively simple pathways, and that

it can only be applied if no drastic changes in

enzymatic activities occur. Therefore, metabolic

control analysis does not seem to be directly

applicable to metabolomic data sets in comparative

experiments, which are often designed to study

dramatic alterations like mutant/wild type compar-

isons. Alternatively, metabolic fluxes may also be

modeled from in vitro determined enzyme kinetics.

However, the in vivo kinetics of these enzymes

might be quite different. Additionally, the bottom

line of metabolic control is independent enzyme

action. However, it is unclear if this assumption

holds true for all cellular processes or if the

coordinated action of multiple enzymes may in

fact be a more realistic maxim [83].

In the second approach towards prediction of

metabolic networks, the enzymatic reactions are

further simplified by taking only the stoichiometries

of substrates and products into account, in order to

calculate feasible and optimal metabolic flux direc-

tions. The only constraints that are used for such

calculations (also called flux balance analyses) are

systemic mass balances and reaction capacities,

while neglecting constraints given by mRNA or

protein expression, or enzyme kinetics.

Such models can be computed from functional

assignments of genes for any organism, and no

further experimental data are needed. Therefore,

large metabolic networks can be built from matrix

correlations of overall substrate-product stoichio-

metry, but almost certainly, the models derived

from such calculations will lack prediction power

due to the lack of additional experimental evidence

concerning cellular compartmentalisation and in vivo

kinetics. Nevertheless, non-obvious links in bio-

chemical pathways can be found by pure computer

simulations [16]. This is especially true if each

pathway is reduced to a set of strongly co-operating

enzymes, as developed in the concept of ‘elementary

flux modes’ by Schuster et al. [66,67]. In this

approach, biochemical pathways are not defined

by the interpretation of individual scientists, but are
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purely based on computing the thermodynamic and

stoichiometric feasibility of enzymatic conversions

between arbitrarily chosen sets of metabolites. In

two break-through papers, growth rate data of

E.coli mutants were compared to predictions made

from stoichiometric matrices. In 86% of the studied

cases, the effects of gene knockouts in E.coli could

be correctly predicted when compared to data given

in literature [20,21].

Apart from stoichiometric approaches, standard

biochemical pathways can be considered with even

further simplifications. Each possible substrate-

product conversion may be regarded as an edge in

visualizations of metabolic networks. Fell and

Wagner [23] have suggested that metabolic net-

works generated by such simplifications are scale-

free networks. Therefore, they could potentially be

used to analyse the inherent connections, for

example in evolutionary studies. This approach

has also been followed in two studies from the

Barabási group [3,42], in which the authors showed

that metabolism is generally organized in such

scale-free networks, whichmight be less prone to mal-

functions caused by errors like random mutations.

Conclusions

Metabolomic analyses have only just begun, but it

is clear that the analytical challenges associated

with the relative quantification of metabolites can

be met more easily than those associated with the

de novo identification of unknown metabolites.

However, a combination of results from in-depth

characterization of genetically altered organisms

using transcriptomics, proteomics, metabolomics,

and accurate descriptions of developmental pheno-

types is now more feasible than was imagined just

five years ago. Chasing the dream of comprehen-

sively understanding living organisms will also

require improved data mining tools, and better

tools for integrating the results of experimentally

determined molecular phenotypes with predictions

made by computational simulations of cellular

networks. For example, right now it is difficult to

track the primary effects of mutations using meta-

bolic analyses. However, theoretically it should be

possible to link observed changes in metabolic

pathways to the underlying genetic alterations via

the enzymes involved in these pathways. So far,

however, no results have been published on how to

generate hypotheses about novel gene functions by

metabolite analysis. Eventually, small biological

laboratories will be unable to combine all the

genetic, analytical, and computational resources in

their institutions. Therefore, larger institutions

should face the responsibilities of building up

analytical resource centres and of creating publicly

accessible metabolomic databases similar to geno-

mic sequence repositories.
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