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Abstract
Data assimilation (DA) has been applied in an estuarine system in order to
implement operational analysis in the management of a coastal zone. The
dynamical evolution of the estuarine variables and corresponding observations
are modelled with a nonlinear state-space model. Two DA methods are used
for controlling the evolution of the model state by integrating information from
observations. These are the reduced rank square root (RRSQRT) Kalman
filter, which is a suboptimal implementation of the extended Kalman filter,
and the ensemble Kalman filter which allows for nonlinear evolution of error
statistics while still applying a linear equation in the analysis. First, these
methods are applied and examined with a simple 1D ecological model. Then
the RRSQRT Kalman filter is applied to the 3D hydrodynamics of the Odra
lagoon using the model TRIM3D and water elevation measurements from fixed
pile stations. Geostatistical modelling ideas are discussed in the application of
these algorithms.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Estuarine systems play a key role in our global environment since their richness and diversity
strongly influence connecting ecosystems. The problems of decreasing fish resources and of
endangered migrating birds are some of the most striking examples. The ecological richness
of estuaries is threatened by the huge amount of pollution brought by urban or agricultural
activities in the river basin. River estuaries also play an important socio-economical role in
international maritime transports and as supports for fishing and touristic activities. Sustainable
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management of such areas need some help-for-decision tools. Therefore monitoring and
forecasting methods have gained interest as computing capabilities have increased enough to
allow high-resolution 3D simulations of such a system. This monitoring requires two types of
information: (1) a numerical model based on the physical equations that describe the biological,
chemical and physical interactions in the system and (2) in situ measurements used for model
calibration but also in a more intensive way through a data assimilation (DA) scheme that
improves the model forecast and evaluates the forecast accuracy.

The numerous DA techniques are often classified into variational methods based on the
optimal control theory and sequential methods derived from the theory of statistical analysis.
However, most techniques can be derived as suboptimal solution methods for the same general
problem definition: ‘given a dynamical model and a set of measurements on a spatial and
temporal region; what is the most likely state estimate given information about the dynamics
from the model and information about the real state from measurements’? This leads to a well
posed mathematical problem if one includes information about prior error statistics for both
the model and the measurements. Formulating this problem using Bayesian statistics, one can
derive traditional methods such as the representer solution of the weak constraint variational
problem by assuming Gaussian priors, the strong constraint adjoint method by additionally
assuming the model is perfect, and the Kalman filter methods by only propagating information
forward in time (see [16]).

The most commonly used method for solving the variational problem, i.e. the adjoint
method [23], is very efficient for direct minimization with the model acting as a strong
constraint (the model is assumed exact). In this approach, optimization is performed on the
initial state by iterated gradient descents. To compute the gradient the adjoint model running
backward in time has to be deduced from the direct model, which is a complicated task
especially when the system equations are nonlinear. However the adjoint method in the latest
and conceptually most complex developments has become extremely popular in atmospheric
sciences for successful operational weather forecasts and since the mid-1990s is progressively
replacing the optimal interpolation (OI) techniques, as was stated during the Third World
Meteorological Organization International Symposium on DA of Observations in Meteorology
and Oceanography (Québec City, Canada, 7–11 June 1999). But the OI techniques [10] are
still recognized for their numerical efficiency. Even more recently, the adjoint method has also
been applied in oceanography [29, 35] and successfully assimilated satellite observations of
sea-surface heights in a quasi-geostrophic ocean circulation model [24].

Note, however, that the representer method can be used to solve for the weak constraint
variational problem and it its latest formulation uses much the same machinery as the adjoint
method and has a similar computational cost [2, 30].

The prototype of the sequential methods, the Kalman filter (KF), was designed in the
1960s for the optimal control of systems governed by linear equations and was first introduced
in oceanography at the end of the 1980s [20]. The KF has been mostly applied to quasi-linear
tropical ocean situations [6, 17, 39] but it was extended to the nonlinear case [22] with model
linearization. This extended Kalman filter (EKF) has been examined with different dynamical
models by Evensen [14], Gauthier et al [19], and Miller et al [28]. A common conclusion
from these studies is that the EKF has an apparent closure problem since the error evolution
is computed using the model tangent linear operator, and thus, if the model is in an unstable
regime there is no nonlinear saturation of error growth.

In high-dimensional problems such as in ocean and coastal models the EKF often has
to be simplified by a sub-optimal scheme (SOS hereafter) for reduction of the computational
burden. For the common example of a discretized state of size 300 × 300 the storage of a
covariance matrix of approximate size 105 × 105 requires one gigabyte.
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Two classes of SOS can be distinguished. Those with simplified model error dynamics,
and those using approximations of the error covariance matrix. Among the first group, Dee [11]
assumed the forecast error to be divergence free and nearly geostrophically balanced, Fukumori
and Malanotte-Rizzoli [18] used a coarser grid for the error covariance propagation. Cohn
and Todling [9] used a singular value decomposition of the tangent linear operator in the EKF.
A so-called ‘kriged Kalman filter’ has been proposed by Wikle and Cressie [41] and Mardia
et al [25]. Their approach, similar to the assimilation of tropical sea levels in [6], is based on a
decomposition of both the propagation operator and the state vector on an orthogonal basis of
the state-space, thus assuming that the dynamical model is linear and can be decomposed into
orthogonal time invariant factors. This approach is highly dependent on the relevance of the
decomposition basis and factors a priori discarded are not allowed to re-appear during the DA
process. Optimization of the decomposition basis has to be done iteratively and a posteriori
considering all data. Further extensions of these methods to nonlinear and time-varying models
have not been proposed yet.

Among the second class of SOS, a steady state KF, i.e. a KF where the gain is computed
off-line and is constant, has been applied by Heemink [21] for storm surge forecasting and
by Cañizares et al [5] for 2D hydrodynamics. Eigenvalue decomposition of the covariance
matrix has led to several techniques, e.g., the reduced rank square root (RRSQRT) Kalman
filter [37], the singular evolutive extended/interpolated Kalman filters SEEK and SEIK [3,32]
and the Cohn and Todling method based on a Lanczos algorithm [9].

The ensemble Kalman filter (EnKF) was developed by Evensen [15], to resolve previously
reported problems with the EKF and linearized error covariance evolution. Starting from a
general framework where the error statistics are described by a probability density function
(PDF) which evolves according to the Fokker–Planck equation, it was possible to derive a
Monte Carlo method for evolution of error statistics. Thus, the EnKF converges to an exact
nonlinear error evolution with an infinite sample size. The EKF can be derived from the general
EnKF formulation as a special case, and for linear dynamics the KF and the EnKF will produce
identical results in the limit of an infinite sample size. The EnKF has been applied with ocean
circulation models by Evensen and van Leeuwen [15] and ecological models by Eknes and
Evensen [12].

The schemes by Verlaan and Heemink [37] and Pham et al [32] were originally derived
as simplifications of the EKF. However, by using the nonlinear model operator for evolving
the eigen vectors forward in time they can handle highly nonlinear dynamics.

The present paper first reviews the theory of DA in section 2 and focuses on KF in
section 3 including the description of the RRSQRT KF and the EnKF, both very popular in
oceanographical applications.

Those two DA techniques were extensively compared by Cañizares [4] with a 2D coastal
hydrodynamical model for the following criteria: computer time, sensitivity to systematic
errors in the model forcing and robustness to incorrect definition of error statistics. He valued
them as equally efficient and robust, but his results cannot necessarily be generalized to any field
of application. Verlaan and Heemink [38] also applied the two techniques to the Lorenz equa-
tions and found that the EnKF was more reliable for highly nonlinear dynamics. In the present
paper a comparison of both techniques on an ecological model—for the first time as far as we
know—is presented in section 4. The test case is a simple ecological model describing the evo-
lution of nutrients, phytoplankton and zooplankton concentrations in a synthetic water column
under light conditions favourable to photosynthesis. The interest of this case is that dynamics
are nonlinear and very sensitive to changes in the initial state. Even though the two DA methods
are able to recreate accurately a reference annual cycle they both tend to overestimate their own
error. The experimental differences between the two methods do not seem to be significant.
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Figure 1. Map of the Odra lagoon with the measurement stations Ückermünde, Karnin and
Wolgast, the validation stations Odh1 and Odh2. The measurements of the station Koserów are
used for boundary conditions. The map also shows the three outlets Peenestrom (1), Świna (2) and
Dźwina (3) and the mouth of the Odra river (4).

Independently from this comparison, the following section presents an application of the
RRSQRT KF to the estimation of the hydrodynamical state of the Odra lagoon during the
extreme event of the Odra flood of summer 1997.

The Odra lagoon straddles the Polish–German border. Its surface covers about 600 km2,
its average depth is 5 m, thus its volume is about 3 × 109 km3. Fresh water enters the lagoon
from several rivers, with the Odra being the main input. Intermittently salt water intrudes
in small amounts through the three narrow channels from the Baltic sea (see figure 1). Such
intrusions are caused by water level differences between the Baltic sea and the lagoon and have
a large impact on the whole ecosystem. The system is observed by five fixed pile stations. The
water level measurements from three of these five points are assimilated while those from the
two remaining stations are kept aside for validation.

The 3D hydrodynamical model used is TRIM3D, it has been adapted to the Odra
lagoon [34] and already efficiently reproduces water levels. The question addressed here
is: ‘can DA improve the results of the model’? The long term goal of this study is to build
with DA a tool for state forecasting giving also an estimate of the forecast error.

The RRSQRT KF has already been applied to two and 3D coastal hydrodynamics [5,37],
but the Odra lagoon system required a different implementation than coastal and marine systems
since the open boundaries are very narrow. Previous DA of water levels in the Odra lagoon
has been presented by Wolf et al [42] using the RRSQRT KF and presenting a simple wave
model for evaluating the spatial covariance structure of the model error. In the present paper,
geostatistical ideas are discussed in the application of DA to an estuarine system. The RRSQRT
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KF is efficient for assimilation of water levels, it significantly reduces the model errors within
computation times that are short enough to enable operational forecasting. From there, a
method for improving the observation network is given and application to other variables can
be investigated. Furthermore, knowing the hydrodynamical state with high accuracy will be
helpful for predictions of nutrient transport and ecological monitoring of the lagoon.

2. The data assimilation problem: continuous and discretized

2.1. The state-space model

Let Z(x, t) be a k-dimensional random function of space and time. In this paper, as usual
in applied environmental issues, we will discretize the spatial dependences, that is, we will
consider a multivariate random function Z(t) where all l locations x for all k variables are
different components of the k × l state vector Z(t), without loss of generality.

The state Z(t) is supposed to follow the equations of the physical model

∂Z

∂t
= f(Z), (1)

where f is often a nonlinear function of Z and of the spatial derivatives of Z. Equation (1) is
called the evolution equation of the system.

At every measurement step tn the system state Z(tn) is observed through a measurement
vector zn of m observations. The observed variables are not necessarily the state variables of
Z but they are linked through the observation equation

zn = LZ(tn), (2)

L being a m× (k × l) matrix.
The system of both equations (1) and (2) is called a state-space model. This system is

ill-conditioned and generally has no solution since every measurement contradicts the model
predictions, but the introduction of random errors in both equations allows for finding an
optimal solution that satisfies best both constraints.

When discretized in time, the above equations (1) and (2) become for timestep n:

Zn+1 = fn(Zn) (3)

zn = LZn, (4)

where Zn remains a vector of length k × l and zn a vector of length m.

2.2. The support effect

Within the discretized framework, it should be noted that measurements and model state values
have different spatio-temporal supports for most real case studies: a measurement is an average
of the variable of interest on a spatio-temporal volume that is a technical characteristic of the
sensing device. The elements of the model state, on the other hand, are averages on a whole
grid cell during a model time step that are dependent on the system modelling and represent
much larger volumes.

Therefore, measurements usually have much higher variability than model output and they
are usually smoothed by averaging in order to compare model output with observations that
have similar variability. From a rigorous point of view, the smoothing step before comparison
is an abusive operation and solves the support question only in appearance. In the case of
assimilation of turbulent water currents this operation can even lead to measurement biases,
e.g. taking a vortex that has a radius short enough to be included in a model grid cell. If the
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sampling is not performed in the eye of the vortex, measurements will indicate a constant flow
in the direction tangent to the vortex, while the average flow on the grid cell may be zero.
In such a pathological example, time averaging cannot sweep out the measurement bias and
spatial averaging requires measurements with a resolution finer than the model description, in
which case we would barely need any modelling.

Statistical change-of-support models are reviewed in Chilès and Delfiner [8] but will not
be discussed in our applications since we limit the study to the case of very sparse measurement
stations (<10) which is insufficient for such models.

Accounting for the support effect for both applications will be discussed in the respective
description of each DA systems.

2.3. General solution to the nonlinear problem

The evolution equation (1) can be perturbed by a random model noise dwt , classically
considered a multivariate centred reduced white noise, and it becomes an Itô stochastic
differential equation,

dZ (t) = f(Z, t) dt + g(Z, t) dwt , (5)

where g(Z, t) is the function spreading the noise on the whole model grid. When defined, the
PDF, φt(Z), of Z(t) evolves in time according to the Fokker–Planck equation,

∂φt

∂t
= −

∑

i

∂(fi(Z, t)φt )

∂Zi
+

∑

i,j

1

2
Gij

∂2φt

∂Zi∂Zj
, (6)

with G = ggT . This equation is a deterministic advection–diffusion equation and can be
solved as a partial differential equation in low state dimensions, e.g. less than four. For higher-
dimensional problems the numerical discretization becomes practically impossible, and the
solution process is further complicated by constraints of positivity and unit sum of probabilities.
The measurements are integrated with the model system by Bayes theorem which states that
the posterior PDF can be expressed as,

φt(Z|z1, . . . , zn) = Aφt(Z|z1, . . . , zn−1)φt (zn|Z) (7)

whereA is a normalization constant. The first PDF on the right-hand side is the PDF resulting
from the model integration from the previous data time tn−1 to tn, and the second PDF is the
density for the observations. Thus, the general sequential DA problem would involve forward
integration of the Fokker–Planck equation (6) and update of the PDF using Bayes theorem (7)
every time measurements are available. A more elaborate discussion is given by Evensen and
van Leeuwen [16].

Miller et al [27] found a general numerical solution to the double-well problem, which is
a nonlinear monovariate problem. But for high-dimensional problems such as ocean models
no practical solution method has been found yet.

In the case of a linear dynamical model and zero-mean Gaussian errors, it can be shown
that the KF is the general sequential solution of the weak constraint problem under the classical
Markovian hypotheses [31]. However, in the general case with nonGaussian prior error
statistics and nonlinear evolution of error statistics all existent assimilation techniques provide
solutions which do not coincide with the maximum likelihood solution and therefore must be
characterized as sub-optimal.
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3. Sequential DA methods

In the sequential approach, the measurements zn are used to correct the state vector. The
unknown true state at time n will be denoted Z t

n, while the associated model forecast before
correction will be ZH f

n and the analysed state will be Za
n. Assuming Gaussian PDF in

equation (7), the analysis step equation (9) is linear. This analysed state Za then recursively
feeds the next propagation step,

Zf
n = fn(Z

a
n−1), (8)

Za
n = Zf

n + Kn(zn − LZf
n), (9)

where the a priori nonlinear function fn denotes the model equations integrated from the time
n− 1 to n, fn is varying in time as the phenomena under consideration can be subject to time
varying forcing like light conditions or a river discharge.

Techniques of OI [10] are based on empirical evaluation of the matrix Kn by spatial
statistics. Other methods evaluating Kn from empirical criteria are referred as ‘simple
methods’, a review is given by Robinson et al [33]. ‘Simple methods’ are easy to implement
but they provide no information about the uncertainty in the state estimate or the time evolving
covariance functions which describe the influence of observations on the model state.

Hereafter we will consider the KF in which a measure of the state uncertainty evolves
jointly with the state estimate.

3.1. Principles of the Kalman filter: the stochastic model

Kalman filtering applied to oceanography is described in detail by Bennett [1]. Discretization
is required in our applications for resolving the advection–diffusion equations. The basic KF
is designed for linear models Fn such that

Zn+1 = FnZn + qn, (10)

where qn is the model error, a random noise corresponding to the g(Z, t) dwt term in
equation (5).

The observation equation (2) also has a random additive error rn, called the measurement
error in

zn = LZn + rn. (11)

The classical Markovian hypotheses are that both error processes qn and rn are temporally
independent centred Gaussian white noise:

• The errors are Gaussian and unbiased,

E(qn) = E(rn) = 0.

• The model and measurement errors are uncorrelated in time:

∀p �= n, corr(rp, rn) = corr(qp, qn) = 0.

• They are also independent from each other,

∀(n, p), corr(rn, qp) = 0.

The random vector qn is spatially defined on the model grid and rn on the measurement
locations. Their probability law is determined by their variance–covariance matrices
respectively�m and�o that can be made time-dependent without any influence on the ongoing
calculations. These are symmetric matrices of rank respectively (k × l) and m.
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The measurement error reflects inaccuracy in the measurement value and position.
Therefore, its covariance matrix is rather simple to evaluate, it is a diagonal matrix if we
assume these inaccuracies to be independent from one station to another, and the variance of
these errors can be computed both a priori from the technical characteristics of the sensors
and a posteriori from the short range variability in the measurement timeseries. The model
error is more delicate to determine since it reflects many sources of uncertainty among which
the discretization, the model forcing, inaccurate parameter values and neglected dynamical
processes. Furthermore the knowledge of the entire ‘true state’ of the system is generally
too fragmentary for any a posteriori evaluation of these error statistics. Thus filling in the
covariance matrix �m requires severe assumptions. As a function of space, qn is generally
assumed stationary of order 2 which means that, in addition to the zero mean assumption
above, its covariance function

C(x,h) = cov(qn(x + h), qn(x))

has to be translation independent

∀(x,h), C(x,h) = C(h)

here written in spatial continuous notations, so that it can be fitted with covariance functions
(see [8] or [40]). The DA results are highly dependent on the stochastic model since it
defines the trust we place in each information. Unfortunately the knowledge we have of
both measurement and especially model noise is often very poor and simplifying assumptions
are needed in most case studies.

3.2. Equations of the linear KF

According to the stochastic model above, all random variables are Gaussian and therefore the
maximum likelihood estimator of Z t

n coincides with its expectation, conditionally to the data.
The calculations of the estimators and of their associated error covariance matrices can be
found in [26]. The time step equation of the linear KF can be expressed as

Zf
n = E(Z t

n|Z0, zi , i = 1, . . . , n− 1) (12)

= E(Z t
n|Za

n−1) (13)

= FnZ
a
n−1, (14)

the estimation error εf
n = Z t

n − Zf
n has zero expectation and the evolution of its covariance

matrix is obtained by taking the moments of the Fokker–Planck equation (6),

Cf
n = FnC

a
n1
FT
n + �m. (15)

For the measurement step equation, the Bayes theorem (7) under the KF assumptions—
Gaussian distribution and Markovian observation error processes—shows that the maximum
likelihood estimator coincides with the least squares estimator

Za
n = E(Z t

n|Z0, zi , i = 1, . . . , n) (16)

= E(Z t
n|zn) (17)

minimizing the variance of the estimation error εa = Z t
n − Za

n. This results in the same linear
analysis equation as in all ‘simple’ sequential DA methods (9) cited in the beginning of the
section but here the computation of the gain matrix Kn is more elaborate. The gain matrix Kn

and updated covariance Ca
n are

Kn = Cf
nL

T (LCf
nL

T + �o)
−1 (18)

Ca
n = Cf

n −KnLC
f
n. (19)
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Then from a geostatistical point of view the analysis step is an interpolation of the model-to-data
misfit z − LZf to the whole model grid by simple cokriging.

Depending on which variable is assimilated, the measurement step can respect or violate
the physical properties of the system. For example the assimilation of water levels introduces
masses of water where the model elevation was lower than the measured elevation and other
masses of water vanish in the opposite case. This operation may contradict the mass balance
principle. However in an open boundary system the exchanges through the boundary conditions
are only inaccurately known and this uncertainty can be taken for responsible for the correction
to be done in the mass balance.

Further, the dangers of assimilating data with respect to mass balance have been stated by
Cañizares [4], when he builds a KF with model errors only in the momentum equation. This
conservative KF may provide a solution worse than an ill-calibrated model alone, whereas
assimilating data without respect to mass balance can yield better estimates. Cañizares then
emphasizes that DA should be conservative only if the initial solution are accurate enough, or
else the KF will displace the initial error, but may not be able to get rid of it.

3.3. Extension of the KF to the nonlinear case

Ocean and coastal dynamics are often nonlinear and the KF method has to be modified to the
EKF, in which the system propagation equation is nonlinear:

Zn = fn(Zn, qn) (20)

and the covariance matrix is propagated by successive linearizations of the model fn, when
the Taylor expansion of the model is generally stopped at the first-order. Developments to
higher orders can be necessary in some cases, e.g. see [14] for a limitation of the EKF due to
neglecting higher order moments, but this is rarely done due to the increasing complexity of
the equations and the numerical load associated with storage and evolution of the higher order
statistics.

Here two alternative approaches are used, one based on a decomposition onto a reduced
space spanned by eigenvectors of the error covariance matrix, the other based on an ensemble
representation of error statistics and error evolution using Monte Carlo simulations.

3.3.1. Reduced rank square root (RRSQRT) Kalman filter. The RRSQRT was developed by
Verlaan and Heemink [37]. The method relies on a simplification where the covariance matrix
Cn is represented by only the q largest eigenvalues in the eigen decomposition

Cn = PnDnP
T
n . (21)

The eigen decomposition is performed at every assimilation step, and only the square root Sn
of Cn = SnS

T
n with reduced rank p is computed through the KF process, in both analysed and

forecast stages Sa
n and Sf

n. The ith column of Sn is interpreted as a perturbation vector #Zi,n

and the ensemble of p perturbations is an orthogonal basis of the p-dimensional subspace of
the state-space where the state error vector is expected to take its values.

The propagation of the perturbation by the physical model in the ith direction, is performed
through a first-order approximation

∂f

∂Zi
(Za

n−1) = lim
ε→0

f(Za
n−1 + ε#Za

i,n−1)− f(Za
n−1)

ε

Zf
n + #Zf

i,n ≈ f(Za
n−1 + ε#Za

i,n−1)− f(Za
n−1)

ε
.

(22)
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If the linearization parameter ε tends to zero, under usual differentiability assumptions, the
above fraction tends to the derivative of f in the #Za

i,n−1 direction, and one can conclude
that the ε should be an infinitesimal real parameter. However due to locally discontinuous or
strongly nonlinear dynamics, setting small values for ε can lead to divergent error growth as
in our applications below. These instabilities usually disappear when increasing the value of
ε, which then requires some tuning. It may also be the case that the instability is due to the
integration of orthogonal perturbations that are physically meaningless in the nonlinear model
equations. These perturbations are empirical orthogonal functions (EOFs) defined by statistical
criteria but may not be constrained to physical properties of the variable studied. Therefore as
these EOFs are introduced in the physical model through the equation above, their unrealistic
features could lead to model divergence. But in this last hypothesis it is surprising that the
model divergence disappears when ε increases in our examples below. In both hypotheses the
instability remains unpredictable and this is a drawback of the RRSQRT KF and of many other
EKF schemes using such first-order approximations.

About computational performance, the number p of eigenvalues to be retained is often
inferior to a hundred while the state-space has dimension 105 in most hydrodynamical
applications. As the most time consuming steps are the forward propagation in time of the
reduced square root covariance matrix, and the matrix algebra operations, this reduction of
the state-space represents a speeding of a factor up to one thousand compared to the full rank
EKF. More details are given in [4] with variable number of retained eigenmodes. Verlaan [36]
also describes methods for further speeding up of the RRSQRT KF.

3.3.2. Ensemble Kalman filter (EnKF). In the EnKF, introduced by Evensen [15], the model
state and the error statistics are represented by a Monte Carlo method on an ensemble of
simulated states for solving the Fokker–Planck equation (6). The analysis approximates the
Bayes equation (7) by assuming predicted statistics to be Gaussian. The prediction expectation
and uncertainty are approximated by the first- and second-order statistical moments of the
ensemble population. Therefore the covariance matrix operations (15) and (19) are not
necessary any more but the state propagation (8) and update (9) are repeated as many times
as there are members in the ensemble. As a consequence, no model linearization is necessary
as in the EKF, thus avoiding the tuning of a linearization parameter as in the RRSQRT KF
procedure above. It should also be noticed that all EnKF members are realistic state vectors
and should not lead to disruptions in the physical model.

The key parameter of the EnKF is the size of the ensemble. The ensemble members
are not orthogonal vectors but only randomly scattered equiprobable states. Thus, we need
a large ensemble, with size much larger than the number of dimensions we need to span,
in order to compensate for information redundancy. Usual ensemble sizes are around 100–
200 samples for practical applications so that the method is rather expensive compared to
its competitors in terms of computation time. Here, as the computation of the Kalman gain
in equation (18) is negligible compared to a model integration, the filter requirements are
approximately proportional to the ensemble size. Therefore a significant gain can also be
achieved by using the EnKF instead of the EKF.

3.4. Extension to the nonGaussian case

An extension of the EnKF method to nonGaussian PDF is straightforward by anamorphosis.
When the variables of interest Z are nonlinear functions of a Gaussian variable Y

Z = h(Y ),
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the EnKF is performed on the Gaussian transform Y = h−1(Z) and first- and second-
order statistics are computed on the back-transformed ensemble. For example, some positive
variables such as concentrations are wrongly described by the Gaussian model and can be
treated by assimilation of their log transform, the log normal model being also useful in
applications where measurement uncertainty depends on the measurement value and when
positivity of some variables has to be ensured in the dynamical model.

Other methodologies which represent error statistics by the covariance matrix rather than
using Monte Carlo simulations are more difficult to extend to nonGaussian models. Indeed, if
we refer to the probabilistic interpretation of the assimilation in equation (16), a back transform
of the assimilated Gaussian Y a by the nonlinear function h is a biased estimator of Za since the
expectation does not commute with nonlinear functions. Bias correction is possible (see [8]
for a discussion) but makes the system much more complex.

4. A simple 1D ecological model

4.1. The model

A simple zero-dimensional ecological model was used by Evans and Parslow [13] to describe
annual cycles of plankton and especially spring blooms. Three variables—nutrient (N),
phytoplankton (P) and herbivores (H)—interact through differential equations, the units
for all ecosystem variables are mmol of nitrogen per m3 (mmol N m−3). Herbivores are
grazing phytoplankton and their mortality is supposed constant. Nutrients are taken up by
phytoplankton in the photosynthesis process, and phytoplankton growth responds to light.
The light conditions and mixed layer depth vary throughout the year but present the same
pattern from one year to another. All parameters have been calibrated so that the annual cycle
is appropriate for a water column offshore Newfoundland in the Atlantic Ocean. The model
step divides the year in 400 time intervals.

This model was extended by Eknes and Evensen [12] to contain a vertical dimension and
diffusion terms along this direction have been added to the differential equations. Their model
characteristics have been reproduced here: 20 vertical cells of height 10 m form a 200 m deep
water column. The boundary conditions specify zero flux of the three variables at the water
surface and a constant nutrient flux of 10 mmol N m−3 at the bottom, simulating an idealized
nutrient input from the sediment phase. Phytoplankton and herbivores concentrations at the
bottom are set to zero.

A reference year was simulated by starting the model with initial conditions set to
10 mmol N m−3 for the nutrients and 0.1 mmol N m−3 for both the phytoplankton and the
herbivores concentrations and spinning up the model for 5 years until the annual cycle repeats
itself accurately. Using this reference year as a true state, Eknes and Evensen performed DA
and reported the capability of the EnKF to control the evolution of the system under different
observation conditions.

A common feature of ecological models is that the chemical and biological growth rates
are modelled by Michaelis hyperbolae. In the non-saturated case these rates are directly
proportional to the substrate concentrations as long as this substrate concentration is much
lower than the saturation concentration. This model leads to exponential-like population
growth and the dynamics can be strongly nonlinear.

The ecological model is also very sensitive to initial conditions. Random errors of order
0.01 mmol N m−3 in the initial concentrations of the three variables can produce large deviations
from the reference solution up to 1 mmol N m−3 for all three variables which represents 100% in
relative variations. The main deviation occurs during the spring bloom as shown in figure 2 for
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Figure 2. Absolute differences between nutrient concentrations in the reference case and those
from a single model run with initial state errors as in table 1. The maximum error occurs during
the spring bloom. Note that the scales are 10 times larger than in figure 3. Similar graphs have
also been obtained for the variables phytoplankton and herbivores. Average errors are reported in
table 4.

Table 1. Error statistics for DA using the 1D ecological model, variances expressed in
(mmol N m−3)2.

Variable N P H

Initial 6.25e−4 1.0e−4 1.0e−4
Model 1.0e−05 1.0e−05 1.0e−05
Top boundary 0 0 0
Bottom boundary 1.0e−05 1.0e−05 1.0e−05
Measurements 6.25e−4 1.0e−4 1.0e−4

the case of nutrient concentration variable. The phytoplankton and herbivores concentrations
also severely diverge from the reference case during the spring bloom. Can the RRSQRT KF
and the EnKF correct the wrong initial state?

4.2. Data assimilation

In the present case study, the data from the simple ecological model are simulated during
a one year reference model run, samples are taken on eight cells on the vertical dimension,
they are regularly scheduled throughout the year every ten model steps—i.e. approximately
every 10 days—and a Gaussian white noise of constant variance equal to the measurement
error variance, see table 1, is added to the samples to simulate measurement variability. Both
methods are assimilating the same data and are started from the wrong initial state detailed
above.

DA procedures are then compared with respect to their ability to recreate the reference
run and to estimate their own error. From this sampling procedure we can notice that both
spatial and temporal supports of measurement and model output are the same which is more
convenient than in real applications for which they differ.
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Figure 3. EnKF (left) versus RRSQRT KF (right): SD predicted by the Kalman filter (top)
and observed RMS errors computed from the reference solution (bottom) for the nutrients. Both
methods give rather similar results, the same observation can also be made for the phytoplankton
and herbivores concentrations.

4.3. Comparison of the EnKF and the RRSQRT KF

4.3.1. Error statistics. In the present simulated case, all error statistics have been kept
identical as in [12], they realistically reproduce the features of ecological problems. The
measurement error is about 10% of the mean value, and the model is also assumed erroneous,
although in the present test case the reference solution has been generated by this same model.
The model error variance is apparently lower than that of the measurements, see table 1,
but since data are assimilated every ten model steps, both model and measurement can be
considered as equally accurate.

Both methods compared below (RRSQRT and EnKF) use the same statistics. The initial
covariance matrix Ca

0 is that of a smooth Gaussian auto covariance function of range 50 m—
one fourth of the total column depth—and no cross-covariance has been set between the three
variables, thus assuming that they are initially independent from each other.

The model error—denoted qn in the previous section—is made from two parts. The first
part is an error on the system state—i.e. on all grid cells of the water column for the three
variables—with the same spatial covariance as the initial error. The second part is an error on
the system forcing—i.e. the variables concentrations imposed at top and bottom of the water
column. The model is assumed exact in the top boundary condition but erroneous at the lower
boundary. This error stands for a lack of knowledge of the bottom solid to liquid interactions,
which are more important in ecological modelling than interactions at the surface boundary.

Measurement error is in both cases a nugget effect—which stands for ‘spatial white noise’
in geostatistics—since it seems unrealistic that measurement cells measuring different variables
or located at different locations have correlated errors. The variance of this measurement
error has also been used for generating the measurements by adding noise to the reference
state. Three experiments using different seeds for the random number generator and different
realizations of the random measurement errors have been carried out, the results in table 2
show that the influence of these random numbers is not significant. The variances of the errors
are given in table 1.
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Table 2. RMS errors in mmol N m−3 for DA runs done with three different realizations of
measurements and three different random seeds (left: EnKF, right: RRSQRT).

EnKF RRSQRT
Trial N P H Total N P H Total

n. 1 0.007 35 0.007 30 0.004 44 0.011 27 0.006 53 0.003 98 0.002 29 0.007 98
n. 2 0.007 38 0.006 26 0.003 89 0.010 43 0.006 70 0.003 29 0.002 05 0.007 74
n. 3 0.007 04 0.007 27 0.004 47 0.011 06 0.006 74 0.004 18 0.002 54 0.008 33

In most multivariate DA experiments using the RRSQRT, it is necessary to normalize
the error covariance before the eigen decomposition in order to avoid cutting off the modes
associated with the variables that have lower absolute values or that are expressed in larger
units. As all three variables have similar magnitudes here, this normalization has not been
done.

4.3.2. Stability. The RRSQRT KF has instability problems arising from the model
linearization in equation (22). The linearization ε is supposed to be small for a better precision
of the tangent linear model but for values too small sudden bursts in the estimation variance
are observed and lead to filter divergence. These instabilities might be caused by a strong local
nonlinearity and numerical instability. They are usually countered by tuning the linearization
parameter ε. In the present case, the RRSQRT KF running with values of ε inferior to 1 had
divergent solutions with sudden error growths, on the other hand, all runs using values of
ε superior or equal to 1 remained stable and reproduced equal results on short tuning runs.
However the bursts of estimation variance remain unpredictable and a higher value of ε = 7
has been retained for more security so that the problem did not show up in this application.

4.3.3. Discussion. The state dimension is 60 in this case study (three variables times 20
vertical nodes), for the RRSQRT Kalman filter the number of eigenmodes has been arbitrarily
set to 36 so that the reduction is not too dramatic. In spite of this reduction, the RRSQRT will
propagate more than 36 times the model: for the covariance propagation step in equation (15),
the RRSQRT runs 60 additional vectors accounting for model error in all vertical nodes for the
three variables and also three more vectors accounting for the bottom boundary condition errors.
Together with the propagation of the estimated state vector (8) this sums up to 100 forward
integrations needed at every timestep.

In order to make the EnKF similarly efficient, 1000 ensemble members have been run,
which is much more than in usual EnKF applications.

From the point of view of computation times the RRSQRT propagates 10 times fewer
state vectors but contrarily to the EnKF the RRSQRT KF performs eigen decompositions of
a 99 × 99 matrix at each model step for rank reduction, which is also time consuming. The
RRSQRT is then approximately five times faster than the EnKF. This has been discussed in
detail in Cañizares [4] for the case of a 2D coastal hydrodynamical model.

Figure 3 shows on the top graphs the estimation standard deviation (SD) given by the
EnKF (on the left) and the RRSQRT (on the right), and on the bottom graphs the associated
true root mean square (RMS) errors between the estimation and the ‘true’ reference solution.
The single nutrient variable is shown but the two other variables, phytoplankton and herbivores,
can be commented on in a similar way.

At first sight, both methods seem rather equivalent, the estimated error SD overestimates
the actual RMS error on the whole water column during the whole year run. If we look at the
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Table 3. SD in mmol N m−3 for DA runs done with three different realizations of measurements
and three different random seeds (left: EnKF, right: RRSQRT).

EnKF RRSQRT
Trial N P H Total N P H Total

n. 1 0.010 12 0.008 88 0.005 88 0.014 69 0.010 54 0.010 67 0.006 90 0.016 51
n. 2 0.010 15 0.008 65 0.005 76 0.014 53 0.010 54 0.010 84 0.006 95 0.016 64
n. 3 0.010 07 0.008 91 0.005 92 0.014 69 0.010 54 0.010 85 0.006 97 0.016 65

Table 4. RMS errors in mmol N m−3 of the model run from an erroneous initial state without DA.

N P H Total

0.116 31 0.349 32 0.109 33 0.384 06

average SD and RMS values in tables 2 and 3, the EnKF and the RRSQRT both overestimate
their actual RMS error for all N , P and H variables. This indicates that the error modelling is
efficient—which is relatively easy in synthetic cases since the mechanisms that produced the
errors are known—and also validates the choices of the number of eigenmodes in the RRSQRT
and of the ensemble size in the EnKF. If these numbers were too small, then both DA schemes
would model an error subspace of dimension too small and would not describe accurately
enough the error. This would result in an underestimation of the RMS error as can be seen
in [4].

By comparison with the ‘wrong’ model run without DA in figure 2, the errors due to a
modification of the initial state are significantly reduced by DA. This can also be stated for
other variables and using three different realizations of the measurement set with different
random error, see tables 2 and 4.

In figure 3 vertical lines appear in the SD plots on the top. These are the traces of
the two steps of the KF: first the propagation step increases the forecast error variance with
model error and then the measurement step reduces the analysed error variance. This can
be physically understood since the measurements correct the inaccurate forecast state, the
estimated uncertainty is reduced.

We can also observe that the errors in the nutrient concentrations are lower in the upper
half of the water column from days 100 to 300 (from the beginning of April to the end of
October). This part of the water column and time period are those of the maximum biological
activities, excited by the solar irradiation. During the rest of the year and on the bottom of
the water column, the errors are more or less similar to the model error as specified in table 1.
This shows that the model dynamics play a significant role in the evolution of the error in the
Kalman filter.

A more careful look to the bottom graphs of figure 3 indicates that the RMS errors are
lower in the RRSQRT assimilation than in the EnKF. This observation is confirmed in table 2
for all variables and is surprising since there is no theoretical reason why the EnKF running
with a large ensemble like this should perform less well than the RRSQRT. This result is also
not consistent with those from Cañizares [4] where both methods were equivalent.

An increase of the number of ensemble members should put the EnKF on the same level
of performance as the RRSQRT, but at the expense of computational efficiency. Surprisingly
we noticed that decreasing the EnKF ensemble size to 100 or even 36 members only weakly
deteriorated the results, thus indicating that the size of the ensemble is large enough and that
it is not the most sensitive parameter in this case. This observation may only be valid for
low-dimensional systems as in the present synthetic test case.
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A closer look at the average SD values in table 3 also shows that the RRSQRT produces
higher error SD than the EnKF even if the RMS errors are smaller. There is also no theoretical
explanation for this difference and the amplitude of this difference is a little too low to be
significant.

These two small differences between EnKF and RRSQRT may also depend on the system
and cannot be generalized to other DA situations. As a conclusion to the present comparison,
the two methods are equal for performing DA on the present 1D ecological model.

5. Case of the Odra lagoon hydrodynamics

5.1. The model

The TRIM3D model is a 3D numerical model for hydrodynamics [7]. It solves the Navier–
Stokes equations for free-surface flows under the hydrostatic hypothesis. A semi-implicit finite
difference scheme is carried out on an Arakawa grid with a model timestep of 5 min; see [34]
and [42] for numerical simulations of the Odra lagoon using TRIM3D.

In the following case study, the rectangular grid has a 250 m horizontal resolution and
spreads on 357 × 259 square nodes among which 16 053 are within the Odra lagoon. Three
vertical layers—two with depth 3 m and the third one down to the bottom—are considered
which finally results in 24 455 active nodes.

The size of the state and the computational burden could be reduced by increasing the
grid cell size or the model timestep, but the model would then lose the ability to describe small
scale processes that are significant in the Odra lagoon hydrodynamics. In this application a
size reduction occurs in the course of the KF propagation and on statistical criteria so that the
neglected processes are those inducing the least possible variations, whatever the scale length.

5.2. Initial and boundary conditions

As no global information about the full state is available, the initial state of the model is such
that all hydrodynamical variables—water levels, horizontal and vertical velocities—are set to
zero. This means that the Odra lagoon is initially a still water body and the system forcing
alone set it into motion. The model is supposed to recover by itself from this lack of knowledge.
There are three boundary conditions forcing the lagoon hydrodynamics:

• The Odra river discharge is measured at a station upstream. Discharge values are given
every 4 hours and linearly interpolated at every model step. This is sufficient since the
discharge values are slowly varying.

• The wind stress is a very sensitive parameter for shallow water systems. Hourly averaged
measures are supplied in the pile station Odh1 and since the wind field is almost
homogeneous in this region, the single measure is used for the whole Odra lagoon.

• The water elevation at the Baltic sea interface is also a very sensitive forcing of the Odra
lagoon hydrodynamics since they control the flux directions in the three channels leading
to the Baltic. Unfortunately the water levels are only measured in one station Koserów on
the Baltic coast, see the map in figure 1, and this single measure is assigned to the three
interfaces. These measurements are also hourly averages.

5.3. Data assimilation

5.3.1. Error statistics. Implementing a Kalman filter requires the knowledge of both
observation and model error covariance matrices �o and �m. However we do not have much
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knowledge of the error incurred in the measurements and in the complex data processing.
There is also no objective knowledge of the model error, as always in real cases, because the
true state and dynamics of the system are unknown.

Observation errors can be considered as spatial white noise because they depict a lack of
accuracy in the measurement protocol and are seldom correlated from one device to another.
The variance of this white noise has been set empirically to the unstructured part of the
variability of the measurements time series—which is called the nugget effect part of the
variogram in geostatistical terminology—i.e. the SD is around 3 mm of water level, which
seems physically satisfying for an hourly average of water levels.

Rosenthal et al [34] used TRIM3D in the Odra lagoon and demonstrated that the dynamics
are accurately described by the model, therefore the main error in the modelling is assumed to
come from the determination of boundary conditions.

The water levels at the outlets to the Baltic sea are given by a single station although
these outlets are distant from 70 km, this should be the main source of model error. Another—
minor—source of error is the unknown wind field which is supposed homogeneous all over the
domain. This second assumption is more consistent with the observations of the Odra lagoon
but can remain a source of error since for shallow water hydrodynamics the influence of the
wind direction is very strong.

The model errors are modelled as an uncorrelated noise in the wind field (of amplitude
0.5 m s−1) and a correlated noise in the Baltic interface water levels. Since the data available
are spatially poor—only five stations on the whole domain—but temporally very rich, an
assumption was made by Wolf et al [42] that the error at the boundary was propagated
according to a wave equation. Statistical analysis of the measurement timeseries confirmed
this assumption and gave credibility to the computation of the wave speed. Then the temporal
covariance structures computed could be converted to spatial structures, inaccessible by data
analysis. The eventual spatial covariance of the water level error at the boundary appeared
very flat, which is consistent with the physics of the system since the Odra lagoon water levels
show very little variations over its whole area, and has an amplitude of 1.5 cm.

5.3.2. Observations. The assimilated observations are water levels measured as the magnetic
signature of a 20 cm floating ball kept in a tube. Hourly measurements are sampled in three
pile stations near the coast. Two stations located in the ‘Kleines Haff’ are kept for validation,
see figure 1, their measurements are quasi-continuously transmitted by satellite to the GKSS.
Data calibration and ‘cleaning’ are rather complex and we will not attempt to describe this
protocol in the present paper.

Considering the temporal support, hourly averages of the water level measurements were
satisfactory since they presented the same statistical characteristics as the model time series with
a model time step of 5 minutes. Then for the spatial support the quasi-punctual measurements
can reasonably be taken as representative for a whole grid cell of size 250 × 250 m2 because
water levels present very smooth spatial variations where data is available—even during the
flood period of August 1997. In the case of variables having more spatial variations like
nutrients, currents or salt, the support effect may have a greater impact on DA and should be
introduced in the measurement error model.

5.3.3. Results. Here the RRSQRT has been applied independently from the comparison
done in section 4. The number of retained eigenmodes is set to 50 by considering the shape
of the eigenvalues diagram. As in the previous case study the linearization parameter ε has
been tuned on different dynamical situations: during the flood period and during a more quiet
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Figure 4. Water levels in the stations Odh1 (left) and Odh2 (right) on the 4th August 1997, dots are
the measurements and the full curve is the result of DA of the measurements of water levels from
the stations Ückermünde, Karnin and Wolgast and the dotted curve is the result of the TRIM3D
model without assimilation driven by the boundary conditions. DA is efficient for correcting the
effect of an arbitrary initial condition.

period, and it has eventually been set to 1. The RRSQRT filter was unstable for values of ε
inferior to 0.1 and stable for the values 1 and 10.

The RRSQRT KF simulates the period from the 4th of August 1997 to the 14th of August
1997. The computation took 5 days on a Sun Sparc machine and further reduction of the
computation times can be achieved by tuning the number of eigenmodes. Therefore the
RRSQRT can provide forecasts of the hydrodynamical state of the Odra lagoon starting from
an existing DA run and propagating forward in time the state and RRSQRT covariance matrix
as an expectation of the future state and an estimate of the forecast error. Forecast of the
boundary condition values also have to be supplied for this purpose.

The impact of an erroneous initial condition can also be reduced by the use of DA. The
time series in figure 4 show the water levels in the two measurement stations kept aside for
validation at the beginning of the DA run. The model is initialized by uniform zero water
levels but the measurements indicate water levels of around 20 cm. As the dynamical model
driven by the boundary conditions needs more than 5 days to initialize, one day is enough for
the KF estimate to reach the measurements in both validation stations. This can be understood
as the KF is also a spatial interpolation method.

In the course of a 40 days run, the model TRIM3D slightly underestimates the water levels
in Odh1 from 3 cm and produces RMS errors of amplitude 4 cm, see table 5. This shows that
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Table 5. Mean errors, RMS errors and total errors expressed in m from different estimators of water
levels in the validation station Odh1: the crude model TRIM3D without DA, the average of the
assimilated water levels measured in three stations and the RRSQRT KF assimilated estimations.
Statistics are computed on 40 days, i.e. 961 samples, from the 4th August to the 13th of September
1997.

Bias RMS Total

TRIM3d +0.035 0.041 0.054
Samp. mean +0.018 0.026 0.032
RRSQRT KF +0.005 0.027 0.027

Table 6. Mean errors, RMS errors and total errors expressed inm from different estimators of water
levels in the validation station Odh2: the crude model TRIM3D without DA, the average of the
assimilated water levels measured in three stations and the RRSQRT KF assimilated estimations.
Statistics are computed on 40 days, i.e. 961 samples, from the 4th August to the 13th of September
1997. It should be noted that an extract without the 4th of August of present DA run was also used
for calibration of the measurements in Odh2.

Bias RMS Total

TRIM3d +0.031 0.042 0.052
Samp. mean +0.018 0.045 0.047
RRSQRT KF +0.002 0.031 0.031

the model is already accurate enough for a correct hydrodynamical description of the lagoon,
however the use of DA can subsequently reduce the model bias by 86% and the RMS error by
34%, thus enabling higher accuracy applications such as water constituent transport balance
and ecological modelling. In station Odh2, the water level calibration could not be performed
by physical means and the offset of the water level timeseries was estimated using the DA
analysis timeseries from the 2nd day to the 40th day to skip the initialization. Therefore DA
naturally corrects the model bias in Odh2 and the remaining 2 mm bias reflects the effects of
DA initialization, see table 6. By comparison with another coastal hydrodynamics application
working with comparable measurement frequency, spatial coverage and model grid cell size,
see Cañizares et al [5], both model and assimilated estimates of water levels are more accurate
in the present case, which is probably due to the unusual geometry of the Odra lagoon: an
almost closed basin with only three narrow open boundaries. In other estuarine systems with
wider open boundaries, the DA errors may be larger, even in similar model and observations
conditions.

To assess the DA method, the arithmetic mean of the assimilated measurements has also
been tested as an estimator. This sample mean is a better estimator than the crude TRIM3D
model in the case of the station Odh1 since this station is located in the middle of the assimilation
stations, but the estimation is poorer in the case of the station Odh2 that is outside of this region.
Moreover, the arithmetic average of the stations measurements is also a biased estimator for
the two validation stations, see tables 5 and 6.

It should be noted that the above comparison of validation measurements with model
values or DA values implicitly assumes that the values are comparable from the point of view
of their spatio-temporal support. As stated in the beginning of the section, this is possible
in the case of water levels in the Odra lagoon since spatial variations are very smooth and
quasi-punctual measurements can be considered representative for a larger volume.

If we look now for spatial features of the assimilated water levels on the assimilated water
levels map in figure 5, the RRSQRT Kalman filter has realistic smooth state estimates—around
10 cm water level differences from the East coast to the West coast of the basin—corrections
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Figure 5. DA by RRSQRT KF: maps of the water level (top) assimilated and SD (bottom) of the
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of the measurement step are performed on the whole basin and not only in the neighbourhood
of the measurement stations.

The error SD map in figure 5 shows that the error expected by the RRSQRT KF is
reasonable (mostly below one centimeter SD) and remains stable. It also shows that the
system noise has maximum variance—around 1.6 cm—near the coastal boundaries and this
can be mainly explained by the error of amplitude 1.5 cm that is introduced in the sea boundary
water levels every model step. However the KF propagates the error covariance and it is not
clear whether the estimated error at the center of the basin is due to the error in the sea boundary
water levels or the error in the wind field.

This indicates a method for improving the model observing network: by successively
switching off each of the two sources the error, SD estimation can quantify how much one
dominates the other at any location of the domain. Then knowing where the estimation
should be most accurate in the application, this method indicates which further efforts in
the development of the observation network should be done.

6. Conclusions

Coupling a KF to a numerical model of an estuary can make it account for uncertainties in the
system, measurements and boundary conditions. The filter gives a least squares estimate of
the true state of the system, but also provides an analysis of the estimation error.

When applied to high-dimensional systems driven by nonlinear equations such as the
hydrodynamics of the Odra lagoon, KF is highly demanding in CPU time as well as disk space
and leads to numerical problems.

In the present paper, two suboptimal DA schemes—the RRSQRT KF and EnKF—were
efficiently applied to a 1D ecological model that is very sensitive to uncertainties in the initial
state. The comparison of their results did not show significant differences between both
schemes and proved that the accuracy of the DA results is dependent on the accuracy of the
model dynamics. The RRSQRT KF was also implemented in a 3D hydrodynamical model of
the Odra lagoon. Although the lagoon looks almost closed, the main source of model error has
been identified as the poor knowledge of the three water level boundary conditions in the Baltic
sea. The RRSQRT KF corrected this error and the initialization error with high accuracy.

The DA schemes presented here have overcome two major problems of estuarine
applications. The first one is the spatial extent of the system that leads to high-dimensional
state models. The second one is the nonlinearity of the dynamical models. The two suboptimal
KF schemes provide empirically efficient solutions for estuarine systems. Their success in this
application is a sign that their operational use is a realistic perspective, and that the methodology
can be applied to other physical, chemical or biological application fields.

The inputs of geostatistics in DA methods are in spatial modelling of model and
measurement errors but also in accounting for support effects while comparing in situ
measurements with model forecasts.
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