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Introduction 

T HE design optimization of an engineering system typi- 
cally requires hundreds of analyses of that system. The 

use of approximations to the objective function and con- 
straints during portions of the design process is quite common, 
because for very few design problems can we afford the com- 
putational cost of hundreds of analyses. Such design approxi- 
mations can be divided into two classes. First we have local, 
derivative-based approximations such as the linear approxima- 
tion based on a Taylor-series expansion about a design point. 
These approximations are typically based on an accurate 
model of the system response and its derivatives. Second, we 
have global approximations that try to capture the behavior of 
the objective function or constraints over the entire design 
domain. Such approximations are often based on a simplified 
theory, a coarser model, or both. Here, such global approxi- 
mations are referred to as simple-model approximations. Lo- 
cal approximations are typically very accurate near the design 
point where they are generated, but their accuracy can deterio- 
rate catastrophically at a distance. Simple-model approxima- 
tions may not be very accurate anywhere in the design space, 
but, on the other hand, they typically do not experience the 
catastrophic deterioration in accuracy associated with local 
approximations. 

Consider, for example, approximating the function 
f = sin(nx) in the interval (0,0.5). A first-order local approxi- 
mation based on data at the origin is fL = nx.  A global approx- 
imation could be a parabola. Matching the maximum point, 
we get a global approximation as fG = 4x(1- x). At x = 0.1 we 
have f = 0.309, fL = 0.314, and fG = 0.36. Clearly, the local 
approximation is superior. However, if we check far from the 
origin, atx=0.4,  f =0.951, fG=0.96, and f L  = 1.256. Thatis, 
the local approximation can become very inaccurate if we 
venture too far from the point where it was constructed. 

In the past few years there has been much research into 
improving local approximations so as to extend their region of 
usefulness. In structural optimization the idea of intervening 
variables has been popular. For example, for many structural 
design problems it was found that the reciprocal approxima- 
tion, which is a linear approximation in the reciprocal of the 
design variables, is more accurate than the ordinary linear 
approximation.' Similarly, it was found that forces approxi- 
mate better than stresses? so that a linear approximation of 
element forces followed by exact calculation of stresses is more 
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accurate than a linear approximation of the stresses. Similarly, 
in aerodynamics there have been efforts to improve local ap- 
proximations for aerodynamic drag, such as coordinate 
~tretching.~ 

There has also been some research into improving global or 
simple-model approximations. One active area is the use of the 
so-called reduced-basis approximations in structural dynam- 
ics. There, the structural model is reduced to a low-order 
model by retaining only a small number of vibration modes, 
and assuming that the structural response can be approxi- 
mated as a linear combination of these modes. Research has 
focused on the best selection of these modes4 as well as on 
methods that improve accuracy for a given set of modes.' It 
may be expected that the advantages of local approximations 
and simple-model approximations can be combined. In fact, 
multigrid analysis methods6 have demonstrated the utility of 
working simultaneously with coarse and refined approxima- 
tions. The objective of this Note is to describe a method for 
combining local and global approximations, a method herein 
called the global-local approximation (GLA) method. 

Global-Local Approximation 
The GLA approach is based on a common method for using 

inexact global approximations such as those obtained from a 
coarse discretization of the problem. Specifically, the crude 
approximation is compared at one design point to a more 
refined approximation, or to the exact result, if available. The 
ratio of the refined approximation to the crude one is a scaling 
factor that is used to multiply the crude approximation at 
other design points. The scaling factor introduces some local 
flavor into the global approximation in that it is most effective 
near the design point where the factor is calculated. For exam- 
ple, consider the sine function just discussed, and assume that 
we calculate a scaling factor at x =0.1. At this point sin(nx) 
=0.309 while the parabolic approximation is equal to 0.36. 
We can use the ratio of these two numbers as a scaling factor 
to multiply the approximation and obtain a new approxima- 
tion of fG =3.43x(l -x). This approximation will be much 
more accurate near x = 0.1 than the original approximation, 
but will be less accurate at points farther away. For example, 
at x = 0.5 the original approximation was exact, while the new 
approximation has about 14% error. 

The GLA approach refines the traditional scaling factor by 
using a linearly varying scaling factor instead of a constant 
one. For the sake of simplicity consider first a function of a 
single variable f(x), which is approximated globally by fG(x), 
and define the scaling factor ff calculated at a design point xo 
as 

The scaling factor at any other point will be approximated as 

where prime denotes derivative with respect to x .  Using the 
definition of ff this can also be written as 
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and then the GLA, denoted fGL, is given as 

This approach is applicable to any number of variables with 
Eq. (2) replaced by the first-order Taylor series expansion of 
ff - 

As an example consider again f = s i n ( ~ x )  and fG = 4x(1- x) 
and (xo) = 0.1. We obtain 

while a linear approximation based on data at x = 0.1 gives 

Comparing the approximations we note that at x = 0.2, close 
to xo, we get fG = 0.64, fL = 0.608, fGL = 0.599, and f = 0.587. 
Away from xo, at x = 0.4, we get fG = 0.96, fL = 1.205, 
fGL = 1.048, and f = 0.95 1. So that the local-global approxima- 
tion is better than the local approximation both close to the 
nominal design point and also far away from it. 

Beam Example 
The GLA approach can be applied with a variety of global 

approximations. One of the more common applications is 
when the approximation involves a coarse discretization of the 
mathematical model. This is demonstrated for a simple beam 
problem shown in Fig. 1. The clamped-clamped beam has a 
step change in cross-sectional area, and the moment of inertia 

Fig. 1 Step-beam geometry. 

A *  /A ,  
Fig. 2 Approximations to buckling load for step beam. 

is assumed to vary with the third power of the area. A coarse 
approximation is provided by using one finite element to repre- 
sent each half of the beam, while a two-element model of each 
half is assumed to be accurate enough to be called exact for the 
purpose of the discussion here. The buckling load and the two 
lowest vibration frequencies are to be approximated. 

The initial design point for the purpose of constructing the 
approximation has an area ratio A I /A2  = 1.5 and the approxi- 
mations are tested by increasing A 1 until A 1/A2 = 3. Figure 2 
compares the exact buckling load b, the linear approximation 
bL, the global approximation (single element per half beam) 
bG, and the GLA bGL. Figures 3 and 4 provide similar com- 
parisons for the first two frequencies of the beam. It is seen 
that the GLA combines the advantages of the global and local 
approximation in being very accurate near the nominal point 
without excessive errors far from that point. 

&'A, 
Fig. 3 Approximations to first vibration frequency for step beam. 
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Fig. 4 Approximations to second vibration frequency for step beam. 
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Concluding Remarks 
A global-local approximation based on a linear approxima- 

tion to a scaling factor has been presented. The approximation 
permits us to use a global approximation based on a simple 
model of our problem to extend the range of usefulness of 
derivative-based approximations to a more refined model. The 
method was demonstrated for a simple beam example with a 
crude and more refined finite element model. 

Acknowledgment 
This work was supported in part by NASA Grant NAG-1- 

224. 

References 
IStoraasli, 0. O., and Sobieszczanski, J., "On the Accuracy of 

the Taylor Approximation for Structure Resizing," AZAA Journal, 
Val. 12, NO. 2, 1974, pp. 231-233. 

2Vanderplaats G. N., and Salajeghah, E., "A New Approximation 
Method for Stress Constraints in Structural Synthesis," AZAA Jour- 
nal, Vol. 27, No. 3, 1989, pp. 352-358. 

3Joh, C.-Y., Grossman, B., and Haftka, R. T., "Efficient Opti- 
mization Procedures for Transonic Airfoil Design," Computational 
Structural Mechanics and Multidisciplinary Optimization, edited by 
R. V. Grandhi, W. J. Stroud, and V. B. Venkayya, AD-Vol. 16, 
American Society of Mechanical Engineers, New York, 1989, pp. 67- 
76. 

4Skelton, R. E., Hughes, P. C., and Hablani, H. B.,"Order Re- 
duction for Models of Space structures with Modal Cost Analysis," 
Journal o f  Guidance, Control, and Dynamics, Vol. 5 ,  No. 4, 1982, 
pp. 351-357. 

5Camarda, C. J., Haftka, R. T., and Riley, M. F., "An Evaluation 
of Higher-Order Modal Methods for Calculating Transient Structural 
Response," Computers and Structures, Vol. 27, No. 1, 1987, pp. 89- 
101. 

6Brandt, A., "Multi-level Adaptive Solutions to Boundary-Value 
Problems," Mathematics of Computation, Vol. 3 1, No. 138, 1977, 
pp. 333-390. 

Algorithm for Modification of 
Parameters in Vibrating Systems 
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Nomenclature 
= derivative of a p x q matrix function A with 

respect to an s x t matrix argument B (see Ref. 2) 

A @ B  = Kronecker product of a p x q matrix A and an s x t 
matrix B (see Ref. 3) 
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I =unit matrix 
~ ' i  = ijth elementary matrix; all elements zero except for 

1 at the ijth position 

Introduction 

T HE importance of obtaining sensitivities for an eigen- 
value problem stems from the fact that partial derivatives 

with respect to system parameters are extremely important for 
effecting efficient design modifications for given situations, 
for gaining insight into the reasons for discrepancies between 
structural analyses and dynamic tests, and for indicating sys- 
tem model changes that will improve correlations between 
analyses and tests. Knowledge of sensitivities can be very 
useful in the modification of system parameters; however, the 
changes of these parameters that realize a system possessing 
prescribed eigenvalues and eigenvectors are still unknown. 

This Note presents and demonstrates an efficient method of 
determining changes in system parameters for predetermined 
changes of eigenvalues and eigenvectors. 

Eigenvalue Problem of Undamped Systems 
The eigenvalue problem of a vibrating system described by 

the equation 

where the matrices M and K are symmetric and positive defi- 
nite and can be written in the matrix form 

(K- w2M) y = 0 (2) 

Let us suppose that the system (1) has n distinct eigenvalues. 
Then we have n linearly independent eigenvectors yi corre- 
sponding to the eigenvalues Xi. The eigenvalues form the 
spectral matrix of order n, A, and the eigenvectors can be 
arranged in an n x n square matrix Y, called the modal ma- 
trix. These matrices satisfy the orthogonality given by 

Modifications of System Parameters 
The modification problem consists of determining changes 

to the parameters of system (1) represented by the matrices M 
and K,  which realize a new system possessing predetermined 
eigenvalues and eigenvectors represented by A and Y. In other 
words, we want to determine AM and AK so that the new 
system M* = M + A M ,  K* = K + AK has prescribed eigenval- 
ues A* = A + AA and eigenvectors Y* = Y + A Y .  

It is seen from Eqs. (3) and (4) that the matrices M and K are 
functions of the matrices A and Y, e.g., 

We will assume that the elements of the matrices A and Y 
change and that these changes are small. We want to deter- 
mine increments A M  and AK of parameters from a new set of 
the eigenvalues A* and the eigenvectors Y*. We will use for 
that purpose the Taylor expansion.' According to this expan- 
sion, for sufficiently small increments of parameters, only the 
first term in the expansions need by retained, i.e., 


