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Combining Global and
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Intraduction

HE design optimization of an engineering syslem iypi-

cally requires humdreds of analvies of thar sysem. The
use-of -approximations to-the objective Tunclion el Gon-
straints during portions of the design process is guite common,
hecauss for very few design problems can we afford the com-
raational-cost-of hundreds- of analyses. Such-design approxi-
mations can be divided into two classes. Firdl we Tave locsl,
derivative-bazsd approximations such as the Hnear approxima-
tivn based on & Taylor-series expansion abowl & deskpn polng.
These approximations are fypleally based on an accuraie
model of the sysem response and its derivatives. Second, we
hawe global approximations that ey to caplure the beluavior of
ke cbjective function or consirainis ower (he enlire design
domain. Such approxdmacions are often based on a simpdified
ooy, & coarser madel, or bodh. Here, such global approsd-
mations are feferred (o as simple-model approsimations. Lo-
cal approximarions are typlcalty very accurare near the design
poine where they are generated, bt their aceuracy can deterio-
rafe catasirophically af a distance. Simple-mode] approxima-
tions may not be very accurate anywhers in the design space;
but, on the other hand, they typically do not experience the
cafastrophic deferiorafion in accuracy assacinied with local
approximations,

Consider, for example, approximating the Turction
J=sin{xx) in the inferval [0,0.5). A Tirst-order local approxi-
mation based on data at the ariginis i =wx. A global approx-
imation could be a parabola. Matching the maximum poind,
we get a global approximation as fp = 4x{] = x). At x =L we
have F={0.309, j; =0.314, and f; =0.36. Clearly, the local
approgimation s siwperssr. However, if we check far From the
angin, &l x =|Il-l\,_r=E|.".i|!|'].,.|",,3 =196, and f; = 1.X56, Thaiis,
the local approxtmation can beoome very inaccurate if we
visndwre Loo fap (oo the poind wheese (0 was constructed.

T the past Few years there e been much research inda
improving focal approximations so-as to-extend thetr region of
usefulness, In structural optimization the lea of interaening
variables has begn popular. For examiple, for many stiuctucal
design problems it was found that the reciprocal approsima-
tion, which is a linear approximation in the reciprocal of the
design variables, is more accurate than the ordisary linsar
approximation: Simitarly; it-was found that forces approxi-
mate better than stresses,? so that a linear approximatbon of
element Torces Tollowsd by exact calculation of siresses |5 mare
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apcurale than & linear approximation of the stresses, Similarty,
in-asrodymanies there have been-efforts-to-improve local ap-
proxumations for aerodynamic drag. such as coordinate
attﬂch:'nt.’

There has also boen some reseasch oo improviong global or
aimple-mode] approximations. One active area [ the nse of the
so-calied reduced-basis approximations in strucmural dynam-
ics. There, the structural moded i reduced 10 8 bow-onder
madel by retzining only a small number of vibration awodes,
and asmoming thar the stroctural response can be approx-
mated a5 & Heear combinatkben of these modes, Rescasch bas
focused on the Best selection of these modes® as well ae on
methads that improve accoracy for & given ser of modes® b
may be eapected 1hat the advantages of focal approximackons
and simple-model approximations can be comblned. In fact,
mubtigrid anakysis methods* have demonstrated the wtility of
warklng slmubianeoasly with cosrse and refined approxima-
tons. The objeciive of this Mote B (o describe a method Tor
combining local and global approxmations, & method hereln
called che global-local approximation (GLAY method.

Global-Local Approximation

The Gl approach is based on a oomman methad For wsing
inexaci global approximalions such a8 hose abiainsd [fomn 8
coarse discretization of the problem. Specifically, the crude
approximation 5 compared al one desipn polnl o & more
refined approximation, of 1o (he exac resull, i available. The
raticr ol the refined approsimation tothe crude ome |8 & scaling
factor lsal s used o muluply the crude approdimation at
other deafgn polnts, The scaling factor introduces some local
flavor tno the ghobal approximation in that it is mosr effective
niear the design point where the factor is caleulated. For exam-
ple, comsider the sine fonction just discusssd, and assume that
we cabculate a scaling factor at x =101 At this polnt sinfrx)
=0 308 while the parabolic approximaton s equal too0.36,
W can use the ratio of these two numbsrs a8 & scaling factor
o mhtiply the approzimation and obtain a new approxima-
tion of Jo = 343200 ~xh This approximation will be muach
meore Eccurane mear X =101 than the original approsimation,
bt will be less nocurnte st points farther away, For example;
at-x =04 the original approximation was exact, while the new
approximation has about 14% £mmar,

The GLA approach refines the traditional scaling factor by
using & linzarly varying scaling factor instead of & constant
ome, For the saks of simplicity consider first & funstion of &
single varinble M{x); which is approximated globally by feixk
and define the scaling factor £ calculated at g design point x,
&5

Szl = Al Folxe) (y

The scaling factor ar any other point will be approximaned as
TAXY= Faxey + (x =xalff FA]

where prime denotes derivative with respect to x. Lising the
defimitiom of F; this can also be written as

uirm{ - (f’ﬂo}_.ﬁ{-’io})]
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and then the GLA, denoded f5p . 0s plven as
foulx)=fix)falxy i4)

This approach ix applicable to any number of variables with
Eq. (2) replaced by the first-order Taylor series expansion of

‘r-ﬁ.: an example consider again f = sin(zx) and fi = 4x{1 —x}
and (xgh=10,1. We obrain

fi= 0858 = 0.70x —0.1),  fo =4x{l-x1fy (%)

while a linear approximation based on data at x =0.] gives
Seixy= 0309 + 2.988(x —0.1) (&)

Comparing the approximations we note that at x =0.2, close
£ g, W get fi; = 064, fy = 0,608, fop =0.599, and F=0.587.
Away from g 8t x=0.4, we get fp =09, f =1.208,
Fae = 1048, and F = 0.951. 5o that the local-global approxima-
tion is better than the local approximation both chose to the
nominal design point and alse far away from i

Beam Example
The GLA approach can be applisd with a varizty of global
approximations. One of the more commen applications is
when the approximation involves n coarse discretization of the
mathematical model. This is demonstrated for o simple beam
problem shown in Fig, 1. The clamped-clamped beam has a
siep change in cross-sectional area, and the moment of inertia
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Fig. 1 Siep=beam geomedry.
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HORMALIZED BUCKLING LOADS
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Fig- 1 Approsimatoss ie buckling load for step beam,
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is pssumed to vary with the third power of the area. A coarse
approximation is provided by using one finite element to repres
sent exch hialf of the beam, while a two-element model of sach
half is nssumied to be accurate enough (o be called exact for the
purpase of the discussion here, The buckling load and the two
lowest vibration freguencies are to be approximated.

The initial design point [or the purpose of constructing Lhe
approximation has an arsa ratio A 44 ;= 1.5 and the approxi-
mations are lested by inereasing A, until A ,/4,=71. Figure 2
compares Lhe exact buckling load b, the lingar approximation
by, the global approximation (single element per balf beam)
by and the GLA by . Figures 3 and 4 provide similar com-
parisans for the first two frequenciss of the beam. Tt is seen
that the GLA combines the advantages of the global and local
approximation in baing very accurate near the nominal point
without excessive errors far from that polnt.
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Fig. 3 Approcigmations 0o First vibration frequency for step beam,
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Fig. 4 Approximations to second vibratien freqeescy for step beam.
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Concluding Remarks

A global-local approximation based on a linsar approxima-
Liindt L & scaling Factor has been presented, The approximation
permits us 1o wse a global approximation based on a simple
model of our problem 1o extend the range of usefulness of
derivative-based approximations to & more refined model. The
method was demonatrated for a simple beam example with a
crude and more refined finite element model.
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Algorithm for Modification of
Parameiters in Vibrating Systems
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MNomenclaiure
Sgd = derivative of a @« ¢ mamrix function A with
respect fo an 5 X J matrix argument & (see Ref, 3)
& a4
—=| | (k=105 =1,
1] [&Err.-]{ % Uyvindf}

where

A am,
— = | =2 = 1,...08 j=1...,
™ ﬂ'-!-.u]{ - i)

AEE = EKronecker product of a g g matrix A and ansx f
matrix B (see Ref. 3)

suBagh . o |
AZB= a8 oapl ... ﬂhﬂ'
1 i E 1
dp 8 dp ... a8
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I =wnil matriy
Ev = ifth elementary matrix; all ebements zero except for
I ot the jith posithon

Inireduciion
HE imporance of obiaining sensitivities for an eigen-
value problem stems from the fact that partial derivatives
with respect o system parameters ares extremely important for
effecting efficient design modificntions for given sitwations,
for gaining insight into the reasons for discrepancies between
siructural analvses and dymamic tests, and for indicating 5ys-
temn model changes that will improve correlations between
analyses and tests, Knowledge of sensitivities can be very
wseful im the modification of system parameters; however, the
changes of thess parameters that realize a system possessing
prescribed eigenvalues and eigenvectors are siill anknown,
This Mote presents and demonstrates an efficient method of
determining changes in system parameters for predetermingd
changes of eigenvalues and eigenvectors,

Eigenvaloe Problem of Undamped Systems

The eigenvalue problem of a vibrating system described by
the equation

My +Ky=10 ()

where the matrices M and K are symmetric and positive defi-
nite and can be written in the matnx [arm

(K — o) y = O o

Let us suppose that the system (1) kas # distinet elgenvaloes.
Then we have r l[pcarly independent clgenveciors J, corre-
sponding to the spenvaluss k. The eigenvalues Form the
spectral matelx of order &, A, and the egenvectors can be
arfanged In an 4 = 4 square matrix ¥, called the sodal ma-
trix. These matrices satisfy the orthegonality given by

¥M ¥=1 i3}
FIK ¥F=A i4)

Muodifications of Svsiem Parameters

The modification problem consists of determining changes
10 the parameiers of system (1) represented by the marrices M
and K, which realize a new system possessing predeterminsd
cigenvahses and eigenvectors represented by A and ¥. In other
words, we want 1o determine AM and AK so thar the new
system M* = M 4 AN, K* = £ & AK has prescribed cligenval-
wes AY = A+ AA and sigenveciors F*= F 4+ AF,

It is seen from Eqs. (3) and (4) that the matrices M and K are
functions of the matrices A and ¥, .5,

M=M{ALY) i5)
K=KiAF i6)

We will &ssume thai the elements of the matrices & and ¥
change and that these changes are small. We wani to deter-
mine increments AM and AK of parameters from a new el of
the eigenvaloes A* and the eigenvectors F*, We will use for
that purpass the Taylor expansion.’ According to this expan-
shon, for sulficiently small increments of parameters, only the
first term in the expansions nesd by retained, i.e.,

M*=M + Dyr M - (AWE) + Dyr K - (Ap @D (T
E*=K + D M- -(AN@N+D,rK - (Ar @1 (B}



