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Abstract

Many chronic diseases, such as heart diseases, diabetes, and obesity, can be related to diet. Hence,

the need to accurately measure diet becomes imperative. We are developing methods to use image

analysis tools for the identification and quantification of food consumed at a meal. In this paper

we describe a new approach to food identification using several features based on local and global

measures and a “voting” based late decision fusion classifier to identify the food items.

Experimental results on a wide variety of food items are presented.
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1. INTRODUCTION

There is a growing concern in the world about chronic diseases related to diet, including

obesity, cancer, diabetes, and heart disease. Of the 10 leading causes of death in the U.S., 6

are related to diet. Dietary intake, the process of determining what someone eats during the

course of a day, provides valuable insights for mounting intervention programs for

prevention of many chronic diseases. The use of a mobile telephone’s built-in digital camera

has been shown to provide unique mechanisms for reducing a users burden and improving

the accuracy and reliability of dietary assessment [1]. To provide accurate estimates of food

energy and nutrient intake we are developing methods to automatically estimate the food

consumed at a meal from image acquired using a mobile device. We have developed a

system, known as the mobile telephone food record (mpFR), to automatically identify and

quantify foods and beverages consumed based on analyzing images of food obtained with a

mobile telephone [2]. This systems is shown in Figure 1. The image analysis involves three

main steps: image segmentation, food identification, and volume estimation. Images

captured before and after foods are eaten are used to estimate the food intake. The energy of

the food consumed can then be determined. This paper concentrates on new methods to
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identify and classify the food items after segmentation, namely the features and the

classification methods. A complete description of the mpFR is presented in [2].

In general, visual categorization of scenes is still an open problem. Many recognition

methods are based on the “parts and structure” model introduced by Fischler and Elshlager

[3], where the object is recognized by finding its constituent parts and measuring their

geometric relationships. This model has been extended to detect and learn new categories

[4]. Another approach for object classification is to represent each object as unordered

collections of feature descriptors creating what is known as a bag of features (BoF) or a bag

of words [5]. These methods categorize the object in isolation from the contextual

information (scene). In [6] general scene understanding is shown to significantly improve

the performance of object classification methods.

Food identification is a difficult problem since foods can dramatically vary in appearance [7,

8, 2]. Such variations may arise not only from changes in illumination and viewpoint, but

also from non-rigid deformations, and intraclass variability in shape, texture, color and other

visual properties. There has been recent efforts to address food identification. In [9] a

method for food identification is described by exploiting the spatial relationship among

different ingredients (such as meat and bread in a sandwich). The food items are represented

by pairwise statistics between local features of the different ingredients of the food items. In

[10], a multiple kernel learning method is described to integrate three sets of features namely

color, texture, and SIFT descriptors. All three features are fused together forming one single

feature vector by assigning different weights to combine them. Finally in [11], an online

food-logging system is presented that distinguishes food images from other images, analyzes

the food balance, and visualizes the log. Global and local features are used to describe food

items and classify them using a Support Vector Machine (SVM).

2. VISUAL REPRESENTATION OF FOOD ITEMS

An essential step in solving any object categorization problem is to adequately represent the

visual information of the object. This is commonly known as feature extraction. Our goal is

to find features that describe the object so that in the classification step we can achieve

maximum inter-class discrimination and maximum intra-class robustness. We explored

many different features to assess the role of each type of feature for visual description of

food item. Our current approach uses both global and local features. By global features we

mean features that describe the entire object with a single feature vector. Global features can

be of limited use when there is object occlusion, different poses, lighting and intra-class

variation. In order to overcome this problem local features are used, which ideally describe

the local visual characteristics around salient or invariant points. In our system, feature

extraction is done after the segmentation step [12], which locates the object boundary for

each food item within the image. Segmentation is beyond the scope of this paper. The

segmentation method currently used in the mpFR is described in[12].

2.1. Global Features

Global features incorporate statistics of the overall distribution of the visual information in

the object. Our proposed method uses two classes of global features: color and texture.
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We consider three types of color features namely color statistics, entropy statistics, and

predominant color statistics. Color statistics consists of estimating the 1st and 2nd moment

statistics of the R, G, B, Cb, Cr, a, b, H, S, V channels for the entire object/segment. The

segmented object is divided into rectangular blocks to measure entropy statistics. For each

block (N × N pixels), 1st and 2nd moment statistics of the entropy in the R, G, B channels are

estimated. The final feature is obtained by averaging the values for all the blocks. The last

global color feature is inspired by the Dominant Color Descriptor of the MPEG-7 (DCD)

[13]. The distribution of the salient colors in the object is estimated by selecting the four

most representative colors (in RGB space) for an object. The RGB space is quantized into a

1000-cell cube where each cell represents a color value. This cube can be seen as a 1000-bin

histogram. The four largest peaks of the food item color histogram are considered to be the

predominant colors. The feature vectors are given by:

(1)

where ci represents the 3-D color vector from the RGB cube, pi is the percentage of color in

the total object, and vi is the color variance inside the region described by the predominant

color.

Finally to capture texture information we use Gabor filterbank [14, 15]. We divide the

segmented object into rectangular blocks and filter each block with a bank of Gabor filters at

four scales and six orientations. Each block is filtered with 24 Gabor filters, and the energy

of the responses is estimated. From the energy we extract mean and variance to form the

texture signatures. We average the mean and variance values over all the blocks.

2.2. Local Features

Extracting local features consists of describing visual information from a patch or

neighborhood (M × M pixels) around a point of interest in the food item. As a result of this,

for each type of local feature we form as many feature vectors as points of interest detected

in that food item. We have evaluated 8 different types of local features including high and

low level descriptors: local color, local entropy color, Tamura perceptual features, Gabor

filters, SIFT descriptor, Haar wavelets, Steerable filters, and DAISY descriptor.

The local color features capture color information around each point of interest by

estimating 1st and 2nd moment statistics of the R, G, B, Cb, Cr, a, b, H, S, V channels. As in

the global case, entropy color features are also extracted. The 1st and 2nd moment statistics

of the entropy in the R, G, B channels are estimated within the neighborhood of feature

points.

To capture local texture descriptions, we used again a bank of Gabor filters at four scales

and six orientations. We estimated mean and variance of the energy response of the filtered

signal. In addition, we use Tamura features to represent texture. Tamura et al. proposed 6

perceptual texture measures namely coarseness, contrast, directionality, line-likeness,

regularity, and roughness selected by psychological experiments to better describe the

human perception [16]. In our experiments we have discovered that coarseness, contrast, and

directionality are the most discriminative. Coarseness provides information about the size of
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the texture elements. The higher the coarseness, the rougher the texture. Contrast reflects

picture quality because it is influenced by the dynamic range of the gray levels, sharpness of

edges and period of repeating patterns. Finally directionality is estimated by a histogram of

gradient orientations giving the directions that the texture patterns follow.

The SIFT descriptor [17], introduced by Lowe in 2004, consists of estimating the gradient at

each pixel in a 16 × 16 neighborhood around a point of interest. At each 4×4 sub-block an 8-

bin histogram of the gradient orientation is formed, these 128 values are normalized to form

a unit length feature vector. Normalization is done to achieve robustness against photometric

variations.

Similar to SIFT, the Haar wavelet features capture the distribution of gradients within the

neighborhood around the point of interest. In this case the gradient response is approximated

by Haar wavelet responses in horizontal and vertical directions. In [18], a novel low level

descriptor known as SURF was introduced that is based on the 2D Haar wavelet responses

and made efficient use of the box filter. The dominant orientation of each image patch is

estimated to obtain orientation invariance. The patch is then pre-filtered with a Gaussian

kernel to obtain scale invariance. We use the Haar wavelet features based on the SURF

descriptors.

Steerable filters refer to randomly oriented filters synthesized using a linear combination of

the basis filters [19]. We use 2D circularly symmetric Gaussian functions and obtain the 1st

and 2nd moment statistics of the response of filtered patch with the steerable filter. We use 5

orientations and up to 5th order Gaussian derivative.

We also use the DAISY descriptor, which depends on histograms of gradients like SIFT but

uses a Gaussian weighting and circularly symmetrical kernel [20] to estimate these

histograms. The final feature vector is formed by normalizing the histograms.

3. GLOBAL AND LOCAL FEATURE CLASSIFICATION

We categorize the food items based on the 12 global and local features vectors we described

above. Each feature is independently classified. As a result of this process, we have 12

decisions of candidate classes for each food item. The final decision is made by a majority

vote of the individual classifiers.

3.1. Global Features Classification

The global features are classified independently using Support Vector Machine (SVM)

classifiers [21, 22]. SVM produces a model of classification space by constructing an N-

dimensional hyperplane that optimally separates the training data into categories. We used

the Radial Basis Function (RBF) kernels for our study.

3.2. Local Features Classification

We use the Bag of Features (BoF) [5, 23] approach for classifying local features. The BoF

estimates the distribution of visual “words” found in the object and compares this

distribution to those found in the training set. These visual “words” are formed from
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orderless collections of local descriptors around the points of interest. The main steps of the

BoF approach are: point of interest detection, local descriptor representation, vocabulary

construction, and supervised classification. Difference of Gaussian (DoG) [17] has proven to

be an efficient method to detect points of interest. Thus, we adopt DoG as our point of

interest detector. The DoG representation is obtained by estimating a set of sub-octave DoG

filters. A DoG filter is generated by subtracting two successive Gaussian smoothed images.

The points of interest are identified by looking for a space and scale extrema in the resulting

structure. Each pixel in the DoG images is compared to its 8 neighbors at the same scale,

plus the 9 corresponding neighbors at neighboring scales. If the pixel is a local maximum or

minimum, it is selected as a candidate point. Low contrast points and responses along the

edges are eliminated from the group of candidates. For each point of interest, we estimate a

gradient orientation so that the features are rotation invariant. The only requirement is to

have at least 20 points of interest for each object.

Once the points of interest have been identified in the food item, we extract 8 types of local

features (Section 2.2) around a neighborhood of each point (image patch). For stability

purposes the size of the neighborhood is proportional to the size of the food item. For each

feature type we obtain the visual vocabulary by performing a hierarchical K-means

clustering. This method proceeds by iterated assignments of points to their closest cluster

centers and recomputation of the cluster centers. Each cluster is subdivided into further

clusters until the largest distance between the cluster center and its member is smaller than a

certain threshold. Finally, for each feature type, we form the final representation of the food

item which is known as the signature of the object,

(2)

where Sj represents the signature of the object for the jth feature type, ti represents the

frequency term. We use a normalized version of the frequency term by dividing it by the

total number of points of interest, and mi is the medoid of the ith cluster. N is the number of

clusters.

Once the signatures of the food items are formed, we classify them based on the nearest

neighbor criteria to assign the corresponding food category.

4. MODEL EVALUATION AND DISCUSSION

As we mentioned earlier, our food identification system is preceded by a segmentation step

[12]. In order to evaluate our features and classifiers we need to isolate the error caused by

the feature extraction and classification steps from the error caused by segmentation step. To

test the entire system we have created a database containing food images obtained under

controlled conditions from nutritional studies conducted at Purdue University [24]. Many of

these images have been hand segmented creating one of the largest groundtruth datasets of

food images with more than 1000 hand segmented images. For these experiments we

considered images from two user studies. In the first user study (dataset 1) there were 19

food items served in different meals, and we collected 63 images. On average there were

approximately 20 images per food item. In the second user study (dataset 2) there were 28
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different foods in 116 total images. We tested our food identification system for each of

these two datasets. In a third experiment, we combined them for a total of 39 foods from 179

images. We divided the dataset into training and testing, for each category approximately

half of the images were training data and half testing data. The minimum number of training

image was 10. We evaluated our system using the groundtruth segmentation masks for

feature extraction. We repeated the experiments 10 times, each time randomizing the

training and testing sets.

In the results shown in Table 1 we have reported the performance of each type of feature

individually and the overall classifier performance after the majority vote decision was

made. Table 1 shows the results of correct classification rate averaged for all the 19

categories available in the first dataset (3rd column), for all the 28 categories corresponding

to the second dataset (4th column), and the combination of both datasets (5th column). Some

food items are inherently difficult to classify due to their similarity in the feature space.

Examples of such errors are canned pineapple labeled as canned pear, ketchup considered

as catalina dressing, garlic bread classified as white bread toasts, or chocolate cake as

brownie as shown in Figure 2.

Overall we believe that combining global and local features allows us to capture more

discriminative visual information for each food item. Having highly informative features

allows reliable classification with simple decision rules. As expected, color contributes the

most in describing foods, however low level descriptors like SIFT, DAISY or SURF have

also proven to be very efficient. We also observed that low level descriptors, and in general

local features, are sensitive to the point detection criteria, i.e., DoG, Laplacian of Gaussian,

Harris points, Hessian-Laplace regions, because they do not always detect salient and

discriminative regions.

As the size and number of categories grows, we will consider a hierarchical feature

extraction and classification system. The first step will be able to separate groups of foods

using a subset of features. As we go down the hierarchy, using groups of food specific

features will give finer discrimination. We will also incorporate contextual information in

our system to correct misidentified food items based on the likelihood of food combinations.

5. CONCLUSIONS

Measuring accurate dietary intake is an open research problem in the nutrition and health

fields [2]. We are developing methods to automatically locate and identify foods in a meal

image. This paper presented a food identification system that combines global and local

features for a more accurate visual description of food items. We have shown that by

applying late decision fusion-based rules to each individual feature channel we can increase

the correct classification rate by more than 7%.
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Fig. 1.
Overall System for Dietary Assessment.
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Fig. 2.
Examples of Misclassified Food Items.
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Table 1

Correct classification accuracy averaged for all categories for each type of feature independently and

combined. (Using half of the data for training and half for testing. Experiments were repeated 10 times with

random selection of training and testing data. L indicates local feature and the dimension is the length of the

feature vector per point of interest. G means global feature and the dimension is the length of the feature

vector for the entire object.)

Feature type Dimension Dataset 1 Dataset 2 Datasets 1 and 2

Color (L) 20/point 0.861 0.845 0.792

Entropy (L) 6/point 0.313 0.279 0.262

Tamura (L) 3/point 0.472 0.452 0.411

Gabor (L) 48/point 0.326 0.311 0.291

SIFT (L) 128/point 0.714 0.702 0.652

Haar Wavelet (L) 64/point 0.687 0.675 0.641

Steerable (L) 50/point 0.548 0.532 0.517

DAISY (L) 200/point 0.694 0.678 0.603

Color (G) 20/object 0.826 0.817 0.786

Predominant (G) 20/object 0.674 0.639 0.606

Entropy (G) 6/object 0.867 0.858 0.782

Gabor (G) 48/object 0.484 0.465 0.402

Final 0.981 0.972 0.861

IEEE Trans Image Process. Author manuscript; available in PMC 2014 August 06.


