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Combining Global and Local Surrogate Models

to Accelerate Evolutionary Optimization

Z. Zhou∗, Y. S. Ong∗, P. B. Nair†, A. J. Keane†, K. Y. Lum‡

Abstract

In this paper, we present a novel surrogate-assisted evolutionary optimization framework for solving

computationally expensive problems. The proposed framework uses computationally cheap hierarchical

surrogate models constructed through online learning to replace the exact computationally expensive

objective function during evolutionary search. At the first level, the framework employs a data parallel

Gaussian Process based global surrogate model to filter the EA population of promising individuals.

Subsequently, these potential individuals undergo a memetic search in the form of Lamarckian learning

at the second level. The Lamarckian evolution involves a trust-region enabled gradient-based search

strategy that employs radial basis function local surrogate models to accelerate convergence. Numerical

results are presented on a series of benchmark test functions and an aerodynamic airfoil design problem.

The results obtained suggest that the proposed optimization framework converges to good designs on a

limited computational budget. Furthermore, it is shown that the new algorithm gives significant savings

in computational cost when compared to the traditional evolutionary algorithm and other surrogate

assisted optimization frameworks.
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I. I NTRODUCTION

Evolutionary Algorithms (EAs) have been successfully applied to many complex engineering

design optimization problems in recent years. Their popularity lies in ease of implementation

and their ability to converge close to the global optimal design. However, EAs typically require

thousands of function evaluations to locate a near optimal solution. Hence when EAs are applied

to problems involving high-fidelity simulation codes, the high computational costs involved pose

a serious impediment to their successful application. This is primarily because a single exact

fitness function evaluation (involving the analysis of a complex engineering system based on

high-fidelity simulation codes) often consumes many minutes to hours or even days of CPU

time. One promising way to significantly reduce the computational cost of EAs is to employ

computationally cheap surrogate models in place of computationally expensive exact fitness

evaluations [1], [2], [3], [4], [5]. By leveraging surrogate models, the computational burden can

be greatly reduced since the efforts involved in building the surrogate model and optimization

using it are much lower than the standard approach of directly coupling the simulation codes

with the optimizer.

In this paper, we present a surrogate-assisted evolutionary optimization framework which com-

bines both global and local surrogate models for solving computationally expensive problems.

The present work is motivated by the lack of suitable multi-layer surrogate-assisted evolutionary

optimization framework for solving computationally expensive problems. In other words, we

show how multiple surrogate models can be combined to accelerate EA search. The first level of

the proposed optimization framework involves a strategy that employs a Data Parallel Gaussian

Process (DPGP) surrogate model to identify the promising individuals in the EA population. The

DPGP approach was devised to reduce the high computational cost associated with Gaussian

Process (GP) modeling [6]. Subsequently, the promising individuals undergo Lamarckian learning

based on a trust-region enabled gradient-based search strategy that accelerates local search using

computationally cheap Radial Basis Function (RBF) surrogate models. Lamarckian learning

forces the genotype to reflect the result of improvement by replacing the locally improved

individual back into the population to compete for reproductive opportunities.

The remainder of this paper is organized as follows: Section II presents a brief review of the

surrogate assisted EAs described in the literature. Section III introduces the proposed surrogate-
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assisted evolutionary optimization framework for solving computationally expensive problems.

Results obtained from numerical studies on a series of benchmark test functions are presented

and discussed in Section IV. Section V presents the application of the proposed surrogate-assisted

EA to a real-world aerodynamic shape design problem. Finally, section VI summarizes our main

conclusions.

II. RELATED WORK

Various techniques for the construction of surrogate models, often also referred to as metamod-

els or approximation models, have been used in engineering design optimization. Among these

techniques, polynomial regression, Artificial Neural Network (ANN), Radial Basis Function

(RBF), and Kriging (also referred to as Gaussian Process (GP) or Design and Analysis of

Computer Experiments (DACE) models) are among some of the most prominent and commonly

used techniques. Empirical studies of a number of these approximation methods have been made

available recently. Among these methods, RBF and GP methods were shown to perform best

under multiple modeling criteria in [7], [8], [9].

Apart from the techniques used to construct surrogate models, there has been a growing body

of research focusing on the development of new EA frameworks for solving computationally

expensive problems on a limited computational budget [2], [10], [11], [12]. Most existing

approaches in this area replace the expensive exact fitness function with a global surrogate

model of the fitness landscape constructed from a limited number of data points that hopefully

mimics the entire search landscape. These data points are usually obtained during one or more

generations of a classical evolutionary search. Subsequently, the surrogate model is updated

online based on the new data points generated as the search evolves.

Keane and Petruzzelli [11] employed variable-fidelity analysis models in the context of ge-

netic algorithm-based optimization of aircraft wings. Ratle [2] examined a simple strategy for

integrating GAs with Kriging models. It uses a heuristic convergence criterion to determine when

an approximate model should be updated. The same problem was revisited by El-Beltagy et al.

[13], where the balance between the concerns of optimization with design of experiments was

addressed. Jin et al. [14] coupled EAs with neural network-based surrogate and proposed an

empirical criterion to switch between the expensive and approximate models during the search.

In Song et al. [5], a real-coded GA coupled with Kriging was demonstrated on firtree structural
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optimization using a3σ principle. A strategy for coupling EAs with local search based on a

quadratic response surface model was considered in Liang et al. [15].

In practice, due to thecurse of dimensionality, accurate global models become increasingly dif-

ficult to construct for problems with large numbers of variables. To circumvent these limitations,

on-line local surrogate models have been considered in place of global models in the evolutionary

search [1], [12]. Ong et. al. proposed a trust-region approach in the hybrid evolutionary search to

interleave use of the exact objective and constraint functions with computationally cheap local

surrogate models during Lamarckian learning [1]. Further the use of gradient information to

improve the approximation accuracy of surrogate-assisted EAs was also considered in [12]. The

local learning technique represents an instance of the transductive inference paradigm, which

has recently been the focus of recent research in statistical learning theory [16], [17].

III. E VOLUTIONARY OPTIMIZATION FRAMEWORK COMBINING BOTH GLOBAL AND LOCAL

SURROGATEMODELS

In this section, we present the essential ingredients of the proposed evolutionary optimiza-

tion framework combining both global and local surrogate models for solving computationally

expensive problems on a limited computational budget. In particular, we consider the general

bound constrained nonlinear programming problem of the form:

Minimize : f(x)

Subject to : xl ≤ x ≤ xu, (1)

where f(x) is a scalar-valued objective function,x ∈ Rd is the vector of continuous design

variables, andxl andxu are vectors of lower and upper bounds, respectively.

In this work, we are interested in cases where the evaluation off(x) is computationally

expensive, and it is desired to obtain a near optimal solution on a limited computational budget.

It is worth noting that the present algorithm may be easily extended to constrained problems

by adopting either an augmented Lagrangian or a penalty function approach. The readers are

referred to the authors’ earlier work in [1] on how this extension may be achieved.

For the sake of readability, we begin by outlining the proposed hierarchical surrogate-assisted

evolutionary optimization framework in four phases:
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Phase 0{Initialization}: At the first step, a population of design points is initialized either

randomly or using design of experiments techniques such as Latin hypercube sampling. These

design points are evaluated using the exact objective function. The exact fitness values obtained

are then archived in a central database together with the design vectors. After some initial period

of time (for instance, after three generations of standard EA search), a Data Parallel Gaussian

Process (DPGP) modeling method is devised to construct a surrogate model that represents the

global trends of the entire fitness landscape, using the top rankingq archived design points of

the database as training data.

Phase 1{Global Search Strategy}: The first step in this phase is to check whether the DPGP

global surrogate model needs be updated or not. If changes in the top rankingq design points of

the database have taken place, the DPGP model will be updated using the new topq design points.

In this manner, the computational cost can be reduced since the DPGP global surrogate model

need not be reconstructed at every generation. Subsequently, the DPGP global surrogate model

is used to pre-evaluate all individuals of the population. The predictions produced by using the

DPGP model are used to pre-screen subsequent EA populations such that only the top ranking

η% (0 < η < 100) individuals undergo Lamarckian learning. This eliminates any unnecessary

local searches from being conducted on individuals whose actual fitness is anticipated to be poor.

Phase 2{Local Search Strategy}: A Lamarckian evolution process involving a trust-region

framework devised for interleaving exact objective functions with computationally cheap RBF

surrogate models is used during the gradient-based search. For each non-duplicatedη% individ-

uals, a local RBF surrogate model is built dynamically using only them nearest neighboring

data points in the central database. Each surrogate model represents the local fitness landscape

in the vicinity of an individual and is hence termed here a local surrogate model. If an improved

solution is found in the Lamarckian learning process, the genotype is forced to reflect the result

of improvement by placing the locally improved individual back into the population to compete

for reproductive opportunities. Subsequently, results of any new exact fitness obtained during the

Lamarckian learning process are added into the central database, facilitating possible updating

of surrogate models through online learning.

Phase 3{Standard EA Operations}: The population then proceeds with the standard EA

operators of crossover, mutation, etc. This process of hierarchical surrogate-assisted EA search

is continued until the computational budget is exhausted or a user specified termination criterion
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BEGIN

Initialize: Generate a database containing a population of designs.

Construct DPGP global surrogate model using top rankingq design points in the database.

While (computational budget not exhausted)

If (The topqmax design points are changed.)

∗ Update the DPGP global surrogate model using the topqmax design points in the

central database.

End If

Evaluate all individuals in the population using the DPGP global surrogate model.

For each non-duplicated top rankingη percent individual in the population

∗ Apply trust-region enabled gradient-based local search strategy to the individual

which interleaves the exact fitness function with a RBF local surrogate model for

the fitness function.

∗ Update the database with any new design points generated during the trust-region

iterations together with the corresponding exact function values.

∗ Replace the individuals in the EA population with the locally improved solution in

the spirit of Lamarckian learning.

End For

Apply standard EA operators to create a new population.

End While

END

Fig. 1. Outline of the proposed evolutionary optimization framework combining both global and local surrogate models.

is met.

The basic steps of the proposed evolutionary optimization framework combining both global

and local surrogate models for solving computationally expensive problems are listed in Figure

1. We next describePhases 1and2 in greater detail.
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A. Global Search Strategy

The global search strategy is designed to identify search regions that contain better-quality

solutions, here represented by the superior individuals in a EA population. An obvious and

commonly used technique is to use a surrogate model to pre-evaluate the entire population of

individuals based on the approximated fitness value [3], [18], [19] [20].

The choice of global surrogate model in the present framework should be one that is capable

of modeling any complex global trends of the exact fitness landscape accurately. A statistically

rigorous approximation is the idea of Bayesian interpolation or regression, which is also referred

to as Gaussian process (GP) regression in the neural networks literature and Kriging in the

geostatistics literature. It is generally recognized as a powerful tool for accurately modeling

complex landscapes. Since GP regression possesses the aforementioned features, it make good

sense to use it as a global surrogate model. Besides the mean fitness prediction, statistical

error estimates can be readily obtained from the Gaussian Process approximation, which can be

potentially exploited during evolutionary search; see, for example, [20]. In the present work, the

Probability of Improvement (PoI) [21] predicted by the GP global surrogate model is used as

the pre-selection criterion to pre-screen the population of promising individuals in our global

search strategy. This may help to prevent premature convergence to a false global optimum,

especially on multimodal and high dimensional problems. Nevertheless, a major disadvantage

of the GP approximation method is that model construction, and in particular, hyperparameter

tuning can be rather time-consuming when compared to other commonly used approximation

methods.

We now briefly describe the GP regression technique used here for global surrogate model

construction. In addition, the pre-selection criterion based on the probability of improvement is

discussed.

Let D = {xi, ti}, i = 1 . . . n denote the training dataset, wherexi ∈ Rd is an input design

vector andti ∈ R is the corresponding target value. The GP surrogate model assumes the

presence of an unknown true modeling functionf(x) and an additive noise termv to account

for anomalies in the observed data. Thus:

t(x) = f(x) + v (2)

The standard analysis requires the specification of prior probabilities on the modeling function



IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS 8

and the noise model. From a stochastic process viewpoint, the collectiont = {t1, t2, ..., tn} is

called a Gaussian process if every subset oft has a joint Gaussian distribution. More specifically,

P (t|C, {xn}) =
1

Z
exp

(
−1

2
(t− µ)TC−1(t− µ)

)
(3)

where C is a covariance matrix parameterized in terms of hyperparametersθ, i.e., Cij =

k(xi, xj; θ) andµ is the process mean. The Gaussian process is characterized by this covariance

structure since it incorporates prior beliefs both about the true underlying function as well as

the noise model. In the present study, we use the following exponential covariance model

k(xi, xj) = e−(xi−xj)
T Θ(xi−xj) + θd+1 (4)

whereΘ = diag{θ1, θ2, ..., θd} ∈ Rd×d is a diagonal matrix of undetermined hyperparameters,

and θd+1 ∈ R is an additional hyperparameter arising from the assumption that noise in the

dataset is Gaussian (and output dependent). We shall henceforth use the symbolθ to denote the

vector of undetermined hyperparameters, i.e.,θ = {θ1, θ2, ..., θd+1}.
In practice, the undetermined hyperparameters are tuned to the data using the evidence max-

imization framework. Once the hyperparameters have been estimated from the data, predictions

can be readily made for a new testing point. To illustrate this, assume thattn represents the set

of n targets,Cn the corresponding covariance matrix and that the process to be modeled has

zero mean, i.e.,µ = 0. Given a new pointxn+1, it can be shown that the predictiontn+1 has a

conditional probability distribution given by :

P (tn+1|D,C,xn+1) =
1

Z
exp

(
−(tn+1 − t̂n+1)

2

2σ̂2

)
(5)

where,

t̂n+1 = kT
n+1(x)C−1

n tn (6)

and

σ2
n+1 = k(xn+1,xn+1; θ)kT

n+1(x)C−1
n kn+1 (7)

where, t̂n+1 and σ2
n+1 are the predicted posterior mean and variance, respectively, andkn+1 =

{k(xn+1, x1), k(xn+1, x2), . . . , k(xn+1, xn)} ∈ Rn. Hence,t̂n+1 is the mean prediction at point

xn+1, σn+1 is the standard deviation oftn+1 and provides a measure of the confidence at point

xn+1. In other words, the Gaussian process approach results in a surrogate model which is a

Gaussian random field.



IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS 9

From a computational perspective, the search for an optimal GP regressor under the evidence

maximization framework [22] involves solving the following nonlinear maximum likelihood

estimation (MLE) problem to determine the most probable hyperparametersθMP for the given

data:

θMP = min
θ

L(θ), where L(θ) = −1

2
log detCn − 1

2
tT
nC−1

n tN − n

2
log 2π (8)

is the negative log likelihood function.

The main computational cost involved in constructing GP surrogate models occurs in the MLE

phase. Since computingL(θ) and its gradient generally involves computing and decomposing a

densen× n covariance matrix (O(n3) operations) at each iteration, training the GP model can

be prohibitively expensive even for moderately sized data (e.g., say a few thousand data points).

It is worth noting that an approximation method requiring high computational cost has limited

utility in a surrogate-assisted optimization framework.

The computational bottleneck in standard GP modeling can be alleviated by employing a data

parallel approach, which makes it possible to deal with datasets containing tens of thousands

of points at modest computational cost [6]. Since a Gaussian stochastic process is completely

specified by its covariance function, training a GP involves considering a parameterized covari-

ance function and determining its hyperparametersθ such that the log likelihood of the data is

maximized. We next outline a compactly supported covariance function to facilitate data parallel

GP learning.

To illustrate our approach, let us assume the existence ofp disjoint and spatially localized

subsets of the training data sayC1, C2, . . . , Cp. This partitioning of data can be readily achieved

using the greedy load balancing clustering algorithm proposed by Choudhury et al. [6]. Given

such a partitioning, the following covariance model can be employed to model the data.

k̃(xi,xj; c(xi), c(xj),θ) = δc(xi),c(xj)k(xi,xj; θ) (9)

wherexi,xj ∈ Rd are input vectors,δij is the Kronecker delta function,θ is a set of hyperpa-

rameters andc : c(x) 7→ 1, 2, . . . , p is an assignment function which maps the input pointx to

one ofm available clusters. Then the covariance function in (8) can be immediately written for

clusteri as :

k̃(x1,x2; c(.),θ) = k(x1,x2; θ), c(xi) = c(xj) = i (10)

= 0, otherwise (11)
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where θi denotes the set of hyperparameters for the local model trained on theith cluster.

Consider the case whenp = 2, i.e, when the data has been partitioned into two disjoint spatially

localized subsets. Then using (10), the covariance matrix can be written as:

K =


 K11 0

0 K22


 (12)

whereKii ∈ Rni×ni contains correlation terms explicitly from theith cluster which consists of

ni points. Since in this case the determinant of the covariance matrix K can be written as the

product of determinants of the blocksK11 andK22, the log likelihood can be split into individual

log likelihoods for the two partitions, i.e.,

L(θ) = L(θ1) + L(θ2). (13)

From the preceding discussion, it is clear that the use of a compactly supported covariance

function naturally leads to a data parallel learning approach to GP regression and hence provides

a means to handle large datasets. In general, it is often the case that the predictive capability

may reduce when an increasing number of clusters are used [6]. However, this degradation in

performance is often very small and acceptable given the significant savings in computational

cost.

As mentioned earlier, the Gaussian process approach results in a random field approximation

of the analysis code. Using the output mean predictiont̂(x) and standard deviationσ(x) of

GP model, a variety of pre-selection criteria for the selection of promising individuals may be

formulated to accelerate evolutionary optimization search. An obvious and common pre-selection

criterion is to use the mean prediction for exploiting the knowledge of the GP model to find the

promising individuals. However, this may lead to premature convergence in many cases due to

the inevitable limitations on the accuracy of a global surrogate model constructed using a few

data points. Hence, there is also a need to explore new areas of search space for a more thorough

global search. To circumvent this problem, Torczon and Trosset [23] proposed minimizing the

merit function fM = t̂(x) − ασ(x). The first term in the merit function ensures exploration

of regions in the design space that are likely to have better solutions whereas the second term

favors those points at which the predictions are likely to have maximum error. The parameter

α in some sense balances the tradeoff between local exploitation and global exploration. An
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alleged disadvantage of this approach is that the user has to choose an appropriate fixed value

of α or develop a sensible strategy for adapting this parameter as the search progresses.

Here we consider using the Probability of Improvement (PoI) instead of the merit function

since previous work in [19] suggests that it performs well. To illustrate the approach used here,

consider the case when it is aimed to solve a minimization problem. Lett− denote the smallest

value of all the outputs in the training dataset used to construct the GP surrogate. Subsequently,

it is intended to use the surrogate model to predict a new pointx∗ at which the output is likely

to be lower thant−. The PoI at the pointx∗ (i.e., the probability that the surrogate prediction

at x∗ is lower thant−) can be readily computed from the posterior meant̂(x∗) and standard

deviationσ(x∗) as follows:

PoI(x∗) = Φ

(
t− − t̂(x∗)

σ(x∗)

)
(14)

whereΦ(.) is the normal cumulative distribution function.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−1

−0.5

0

0.5

1

1.5

x

f(x)
Training Points
Mean Prediction
PoI
t

Fig. 2. Characteristics of thePoI criterion when the GP model is trained on points generated by an one-dimensional function.

Figure 2 shows the characteristics of thePoI pre-selection criterion for a one-dimensional test

function. It may be noted from the figure that thePoI criterion is able to correctly identify the

region in which the true objective function must be sampled to drivef(x) below t−. The points

identified by maximizingPoI(x) can be appended to the baseline training dataset to update
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the surrogate model (and consequently the probability of improvement criterion). Increasing the

number of training points in such a stage-wise fashion improves the ability of thePoI criterion

to correctly locate the region in which the optimum lies. Note here that this statistical criterion is

only used to filter the individuals in an EA population – as discussed later, a local search strategy

is employed to identify the best solution in the vicinity of an individual. We also mention here

the possibility of employing alternative statistical measures such as the expected improvement

criterion proposed by Jones et al. [21].

B. Local Search Strategy

The local search strategy is designed to work with a locally trained system that adjusts to

the local properties of the training data in each area of the input space. The surrogate model is

constructed using only them neighboring data points in the database nearest to the design point

of interest because the neighboring points are likely to have more impact than remote ones [3].

The surrogate model used by the local search strategy is built dynamically for every filtered

and non-duplicated individual. Since local surrogate models will probably be built thousands of

times during the overall search, computational efficiency is a major concern. This consideration

motivates the use of RBF local surrogate models, which can be efficiently applied to approximate

multiple-input multiple-output data, particularly when a few hundred data points are used for

training. The RBF model also has found to offer reasonable accuracy as well as fast training.

Since computational efficiency is the major concern, the RBF model is suitable for the local

search strategy of the proposed optimization framework.

Let D = {xi, ti}, i = 1 . . . n denote the training dataset, wherexi ∈ Rd and ti ∈ R are the

input and output, respectively. Then the local surrogate models are interpolating radial basis

function networks of the form

t(x) =
n∑

i=1

αiK(||x− xi||), (15)

whereK(||x− xi||) : Rd → R is a RBF andα = {α1, α2, . . . , αn} ∈ Rn denotes the vector of

weights.

Typical choices for the kernel include linear splines, cubic splines, multiquadrics, thin-plate

splines, and Gaussian functions [24]. We propose the use of linear splines, i.e.||x − ci||, to

construct surrogate models since our earlier study [1] suggests that this kernel is capable of
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providing models with good generalization capability at a low computational cost. Further, our

local search strategy embeds a Feasible Sequential Quadratic Programming optimizer (FSQP)

within a trust-region framework, which ensures convergence to the local optimum of the exact

computationally expensive fitness function [1], [25]. More specifically, for each non-duplicated

individuals among the top rankingη% in the population, the local search strategy proceeds with

a sequence of trust-region subproblems of the form

Minimize : f̂k(x + xk
c ) (16)

Subject to : ||x|| ≤ Ωk (17)

wherek = 0, 1, 2, . . . , kmax, f̂(x) is the approximation function corresponding to the objective

function f(x). xk
c andΩk are the starting point and the trust-region radius used for local search

at iterationk, respectively.

For each subproblem (or during each trust-region iteration), surrogate models of the exact

fitness function, viz.,f̂k(x) are created dynamically. Them nearest neighbors of the initial

point, xk
c , are extracted from the archived database of design points evaluated so far using the

exact analysis codes. The criterion used to determine the similarity between design points is the

simple Euclidean distance metric. These points are then used to construct local surrogate models

of the exact fitness function.

The surrogate models thus created are used to facilitate the necessary fitness function esti-

mations in the local searches. During local search, we initialize the trust-regionΩ using the

minimum and maximum values of the design points used to construct the surrogate models.

After each iteration, the trust-region radiusΩk is updated based on a measure which indicates

the accuracy of the surrogate model at thekth local optimum,xk
lo. After computing the exact

values of the fitness function at this point, the figure of merit,ρk, is calculated as

ρk =
f(xk

c )− f(xk
lo)

f̂(xk
c )− f̂(xk

lo)
. (18)

The above equations provide a measure of the actual versus predicted change in the exact fitness

function values at thekth local optimum. The value ofρk is then used to update the trust-region
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radius as follows [26]:

Ωk+1 = 0.25Ωk, if ρk ≤ 0.25,

= Ωk, if 0.25 < ρk ≤ 0.75, (19)

= ξΩk, if ρk ≥ 0.75,

whereξ = 2, if ||xk
lo − xk

c ||∞ = Ωk or ξ = 1, if ||xk
lo − xk

c ||∞ < Ωk.

The trust-region radius,Ωk, is reduced if the accuracy of the surrogate, measured byρk is

low. Ωk is doubled if the surrogate is found to be accurate and thekth local optimum,xk
lo, lies

on the trust-region bounds. Otherwise the trust-region radius remains unchanged.

The exact solutions of the fitness functions at thekth local optimum are combined with the

existing neighboring data points to generate new surrogate models in the subsequent trust-region

iterations. The initial point for iterationk + 1 is defined by

xk+1
c = xk

lo, if ρk > 0

= xk
c , if ρk ≤ 0. (20)

The trust-region process for an individual terminates when the maximum number of trust-region

iterations permissible,kmax, chosen by the user, is reached. Lamarckian learning then proceeds

if the kmax local optimum solution obtained is an improvement over that of the initial individual.

IV. PERFORMANCEANALYSIS

In this section, we analyze the performance of the proposed evolutionary optimization frame-

work. Since a Genetic Algorithm (GA) is used here in the empirical studies, we also refer

to the algorithm proposed in the present work as Surrogate-Assisted Genetic Algorithm with

Global and Local search Strategy (SAGA-GLS). We evaluate the performances of the SAGA-

GLS algorithm against a traditional GA, and two surrogate-assisted evolutionary optimization

algorithms that were recently introduced in the literature [1], [3]. These are representatives of

Surrogate-Assisted Evolutionary Algorithm with Global-search Strategy (SAGA-GS) or Local-

search Strategy (SAGA-LS).

At each search generation, the SAGA-GS employs the standard RBF or GP surrogate model

to screen the entire population of individuals. The predefined top rankingη% individuals in the

EA population then undergo exact evaluations. In contrast to [3], the SAGA-GS we employed
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in our study involves using the computationally cheap DPGP and estimates the ranking of

the individuals based on their probability of improvements rather than merely using the mean

prediction. On the other hand, the SAGA-LS we considered corresponds to the earlier work of

the authors [1] that evolves the solution of each individual in the spirit of Lamarckian learning

using local RBF surrogates.

A standard GA is employed with population size of 50, uniform crossover and mutation

operators at probabilities 0.6 and 0.01, respectively. A stochastic universal sampling algorithm

is used for selection. However, apart from the standard GA settings, the two user-specified

parameters of the SAGA-LS are – (1) maximum number of nearest neighboring data points used

to construct the local surrogate modelmmax and (2) maximum trust region iterationskmax. In our

numerical studies, we setmmax andkmax to 100 and 3, respectively. In SAGA-GS and SAGA-

GLS, the maximum number of training design points (i.e.,qmax) and clusters for constructing

the global surrogate model using DPGP are configured as 2000 and 4, respectively. It is worth

noting that in the surrogate assisted algorithms, all design points in the database will be used

for constructions of global or local surrogate models, if the training design points are lower than

the maximum number configured, i.e.,qmax or mmax. In addition, all configurations used in this

study were values suggested in earlier studies [1], [6], [27].

The results obtained from our empirical studies on a range of benchmark test functions,

i.e., two unimodal test functions (Sphere and Rosenbrock test function) and three multimodal

test functions (Ackley, Griewank and Rastrigin test function) are presented in Figures 3-7. All

benchmark test functions used in the study are of 20 dimensions and have a single global

minimum at zero (see appendix I for greater details of the test functions). Note that the results

presented are averaged over 20 simulation runs conducted with a limited computational budget

of (6× 103) exact objective function evaluations.

From the results obtained in Figures 3-7, it is clear that all the surrogate-assisted evolutionary

optimization algorithms considered here are capable of searching more efficiently than the

standard GA on the benchmark problems under a limited computational budget. Further, both

SAGA-LS and SAGA-GLS appear to converge much faster and yield improved solution quality

as compared to SAGA-GS on all the benchmark problems. This makes sense since Memetic

algorithms, i.e., EAs that employ local search heavily such as SAGA-LS and SAGA-GLS, are

generally well-known to search more effectively and efficiently. The superiority of SAGA-LS
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and SAGA-GLS are more evident on the unimodal benchmark problems.

It is worth nothing that SAGA-GLS converges significantly faster than the SAGA-LS on the

unimodal problems. For instance, we observed that SAGA-GLS converges correctly to the global

minima of the exact objective function in Figure 3 within the limited computational budget. This

outcome may be easily explained. Since the sphere problem is a smooth, symmetric function

and unimodal, it makes perfect sense to use the Lamarckian learning process in SAGA-GLS or

SAGA-LS involving any gradient-based local search. However, in contrast to SAGA-LS, only

the η% top ranking individuals among the entire EA population in SAGA-GLS undergo the

Lamarckian learning process, thus providing significant computational cost savings.

Consider next the complex multimodal benchmark problems. On multimodal functions, the

number of local minima increases exponentially with the problem dimensions, often they present

hills and valleys with misleading local optima. Any gradient-based optimization algorithm would

easily get stuck in a local minima. Hence, performance studies of surrogate-assisted EAs on

multimodal problems reflect the algorithm’s ability to escape from poor local optima and head

towards the global optimum. Figures 5-7 illustrate the search performances of GA, SAGA-GS,

SAGA-LS and SAGA-GLS on the Ackley, Griewank and Rastrigin multimodal benchmark test

functions, respectively. From these figures, SAGA-GLS is once again demonstrated to accelerate

the evolutionary search significantly faster than GA, SAGA-GS or SAGA-LS on all of the

multimodal problems considered. For the Ackley function, we observed that the SAGA-GLS is

capable of converging correctly to the global minima of the exact objective function even though

there are thousands of local minima in the entire search space (see Figure 5). This indicates the

robustness of the SAGA-GLS to premature convergence.

Overall, the results obtained also imply that the SAGA-GLS is not only capable of identifying

the better quality individuals in each EA population (via its global search strategy), at the same

time, its intrinsic local search strategy can also exploit these filtered individuals effectively and

efficiently. This combination of the global and local search strategies in the SAGA-GLS is the

key reason for the improvements in search quality at a significantly lower computational budget

than existing surrogate-assisted EAs.
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Fig. 3. Convergence trends of the GA, SAGA-GS, SAGA-LS and SAGA-GLS framework for Sphere function

Fig. 4. Convergence trends of the GA, SAGA-GS, SAGA-LS and SAGA-GLS framework for Rosenbrock function
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Fig. 5. Convergence trends of the GA, SAGA-GS, SAGA-LS and SAGA-GLS framework for Ackley function

Fig. 6. Convergence trends of the GA, SAGA-GS, SAGA-LS and SAGA-GLS framework for Griewank function
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Fig. 7. Convergence trends of the GA, SAGA-GS, SAGA-LS and SAGA-GLS framework for Rastrigin function
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V. A ERODYNAMIC SHAPE DESIGN OPTIMIZATION

In this section, we apply the SAGA-GLS to efficient aerodynamic shape design. In particular,

we consider the parametric design optimization of a 2D airfoil structure with minimum drag-

over-lift ratio, D/L.

The dragD and lift L on an airplane are the components of the total aerodynamic force parallel

and vertical to the direction of flight, respectively, as shown in Figure 8a. The importance of the

ratio D/L in design can be understood, for example, in two airplane performance considerations

[28]. First, the engine thrust required for level and unaccelerated flight, i.e. cruise, is given by

Tcruise = (weight of aircraft)×D/L (21)

Second, an airplane in a power-off gliding flight will descent at an angle -θgliding gliding given

by

tan θgliding = D/L (22)
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Fig. 8. Forces acting on: (a) an airplane, and (b) an airfoil

In both cases, it is obvious that the smaller the ratioD/L, the better the performance. In

the first case, a small ratio means less engine power is required for cruising flight, thus saving

fuel. In the second case, low drag over lift entails a safer gliding flight in the case of engine

failure. While the drag and lift forces on an airplane are determined by various body components,
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the contribution of the wings is dominant. This motivates the development of an approach for

designing airfoil geometries by minimizing theD/L ratio.

In an airfoil shape optimization problem using computation fluid dynamics, the drag and lift

forces can be obtained by calculating the flow field around the airfoil under prescribed operating

conditions, defined by the Mach number which represents the incident flow rate, and the angle

of attack (see Figure 8b). Ignoring friction, the flow is governed by the 2D Euler equations:

∂w

∂t
+

∂f1

∂z1

+
∂f2

∂z2

= 0 (23)

with t as the time variable,

w =




ρ

ρu1

ρu2

ρE




, f1 =




ρu1

ρu2
1 + p

ρu1u2

ρu1H




, f2 =




ρu2

ρu1u2

ρu2
2

ρu2H




(24)

whereρ is the density,u1 andu2 are the flow velocity components in the Cartesian space with

coordinatesz1 andz2, p is the pressure,E is the total specific energy andH is the total specific

enthalpy. Moreover, the pressure is given byp = (γ − 1)ρ(E − 1
2
u2

1 − 1
2
u2

2), whereγ is the

specific heat [29].

Thus, the dragD and lift L are simply the components opposite the direction of flight~u∞ , and

the direction perpendicular to flight~τ∞, respectively, of the resultant force due to pressure acting

along the contourC of the airfoil (see Figure 8b). They are given by the following integrals:

D =

∮

C
p(σ)~n(σ).~u∞dσ (25)

and

L =

∮

C
p(σ)~n(σ).~τ∞dσ. (26)

A. Optimization Setup

The optimization problem considered here is to achieve an airfoil design for an optimized

drag-to-lift ratio profile for constant operating conditions of Mach 0.5 and Angle of Attack,

AOA = 2.0 degrees. The geometry of the airfoil is represented using 24-parameter Hicks-Henne

functions as illustrated in Figure 9 [30].
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Fig. 9. Airfoil geometry characterized using 24-parameter Hicks-Henne functions.

For the airfoil problem we consider, a single exact adjoint CFD analysis takes approximately

30 minutes to compute. In comparison, surrogate model construction using linear splines RBF

takes merely a fraction of a second to compute while building the DPGP model takes less than

a minute on a typical workstation. When dealing with computationally expensive problems that

cost many minutes of cpu time per function evaluation, this training cost may be regarded as

insignificant.

We conduct the parametric design of the airfoil using all three evolutionary optimization

frameworks, i.e., standard GA, SAGA-LS and SAGA-GLS. It is worth noting that SAGA-GL

algorithm was omitted for the sake of brevity since it has been shown as inferior to SAGA-LS

and SAGA-GLS. Apart from using a population size of 20 (due to the immense computational

cost), all other parameters are kept the same as in Section IV.

B. Optimization Results

The design histories of the aerodynamic 2D airfoil optimization problem using standard GA,

SAGA-LS and SAGA-GLS frameworks are presented in Figure 10. Using a population of 20

initial design points based on Latin hypercube sampling, these designs are evaluated using the

exact Adjoint CFD analysis code. All three EA frameworks proceed with the standard GA
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operations using the exact CFD analysis code for the first three generations. Hence, they share

the same search history at the initial search phase. This initial phase represents the period where

the SAGA-LS and SAGA-GLS forms its database of past design points for constructing surrogate

models later during search.

Fig. 10. Convergence trends of the GA, SAGA-LS and SAGA-GLS framework for Aerodynamic Shape Design problem.

Clearly, the results in Figure 10 indicate that both SAGA-GLS and SAGA-LS arrived at better

airfoil designs than the standard GA, using significantly lower computational costs. Moreover,

SAGA-GLS was shown to accelerate the evolutionary search much faster as compared to both

standard GA and SAGA-LS, producing improved design much earlier.

VI. CONCLUSION

For computationally expensive optimization problems, the use of surrogate models helps to

greatly reduce the number of evaluations of the exact fitness model by exploiting the information

contained in the search history. In this paper, we present a novel surrogate-assisted evolutionary

optimization framework that combines both global and local surrogate models and exploits

the integration between them. The algorithms make use of the global surrogate model and a

probability of improvement pre-selection criterion to rank the promising individuals in the EA

population. A surrogate-assisted Lamarckian learning approach is then applied to these promising

individuals to accelerate evolutionary search.
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Experimental studies are presented for a number of unimodal and multimodal benchmark test

functions to study the effect of changing various user-specified parameters introduced in this

framework. Results are also presented for a real-world aerodynamic shape design problem. The

empirical results were compared with those obtained using a standard GA and other surrogate-

assisted EAs. The results obtained suggest that the proposed optimization framework is capable

of solving computationally expensive optimization problems more efficiently than the standard

GA, SAGA-GS and SAGA-LS on a limited computational budget.

APPENDIX I

TEST PROBLEMS

A. Sphere Test Function

f(x) =
∑n

i=1(x
2
i ) (27)

−5.12 ≤ xi ≤ 5.12, i = 1, 2, . . . , n.

B. Rosenbrock Test Function

f(x) =
∑n−1

i=1 (100× (xi+1 − x2
i )

2 + (1− xi)
2) (28)

−2.048 ≤ xi ≤ 2.048, i = 1, 2, . . . , n− 1.

C. Ackley Test Function

f(x) = 20 + e− 20e
−0.2

√
1
n

n∑
i=1

x2
i − e

1
n

n∑
i=1

cos 2πxi

(29)

−32.768 ≤ xi ≤ 32.768, i = 1, 2, . . . , n.

D. Griewank Test Function

f(x) = 1 +
∑n

i=1 x2
i /4000−∏n

i=1 cos(xi/
√

i) (30)

−600 ≤ xi ≤ 600, i = 1, 2, . . . , n.
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E. Rastrigin Test Function

f(x) = 10n +
∑n

i=1(x
2
i − 10 cos(2πxi)) (31)

−5.12 ≤ xi ≤ 5.12, i = 1, 2, . . . , n.
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