
Combining Global Optimization with Local Selection for
Efficient QoS-aware Service Composition

Mohammad Alrifai
L3S Research Center
University of Hannover

Germany
alrifai@L3S.de

Thomas Risse
L3S Research Center
University of Hannover

Germany
risse@L3S.de

ABSTRACT
The run-time binding of web services has been recently put
forward in order to support rapid and dynamic web ser-
vice compositions. With the growing number of alternative
web services that provide the same functionality but differ
in quality parameters, the service composition becomes a
decision problem on which component services should be se-
lected such that user’s end-to-end QoS requirements (e.g.
availability, response time) and preferences (e.g. price) are
satisfied. Although very efficient, local selection strategy
fails short in handling global QoS requirements. Solutions
based on global optimization, on the other hand, can han-
dle global constraints, but their poor performance renders
them inappropriate for applications with dynamic and real-
time requirements. In this paper we address this problem
and propose a solution that combines global optimization
with local selection techniques to benefit from the advan-
tages of both worlds. The proposed solution consists of two
steps: first, we use mixed integer programming (MIP) to
find the optimal decomposition of global QoS constraints
into local constraints. Second, we use distributed local se-
lection to find the best web services that satisfy these local
constraints. The results of experimental evaluation indicate
that our approach significantly outperforms existing solu-
tions in terms of computation time while achieving close-to-
optimal results.

Categories and Subject Descriptors
H.3.5 [On-line Information Services]: Web-based ser-
vices; H.3.4 [Systems and Software]: Distributed systems

General Terms
Management, Performance, Measurement

Keywords
Web Services, QoS, Optimization, Service Composition

1. INTRODUCTION
The service-oriented computing paradigm and its realiza-

tion through standardized web service technologies provide
a promising solution for the seamless integration of business
applications to create new value-added services. Industrial

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2009, April 20–24, 2009, Madrid, Spain.
ACM 978-1-60558-487-4/09/04.

practice witnesses a growing interest in the ad-hoc service
composition in the areas of supply chain management, ac-
counting, finances, eScience as well as in multimedia applica-
tions. With the growing number of alternative web services
that provide the same functionality but differ in quality pa-
rameters, the composition problem becomes a decision prob-
lem on the selection of component services with regards to
functional and non-functional requirements.

Figure 1: Web Service Composition Example

Consider for example the personalized multimedia deliv-
ery scenario (from [21]) in Figure 1. A smartphone user
requests the latest news from a service provider. Available
multimedia content includes a news ticker and topical videos
available in MPEG 2 only. The news provider has no adapta-
tion capabilities, so additional services are required to serve
the user’s request: a transcoding service for the multime-
dia content to fit the target format, a compression service
to adapt the content to the wireless link, a text translation
service for the ticker, and also a merging service to inte-
grate the ticker with the video stream for the limited smart-
phone display. The user request can be associated with some
end-to-end QoS requirements (like bandwidth, latency and
price). The service composer has to ensure that the aggre-
gated QoS values of the selected services match the user
requirements at the start of the execution as well as during
the execution. However, dynamic changes due to changes
in the QoS requirements (e.g. the user switched to a net-
work with lower bandwidth) or failure of some services (e.g.
some of the selected services become unavailable) can occur
at run-time. Therefore, a quick response to adaptation re-
quests is important in such applications. The performance
of the service selection middleware can have a great impact
on the overall performance of the composition system.

Figure 2 gives a conceptual overview of the QoS-aware ser-
vice composition problem. Given an abstract composition
request, which can be stated in a workflow-like language (e.g.
BPEL [19]), the discovery engine uses existing infrastructure
(e.g. UDDI) to locate available web services for each task in
the workflow using syntactic (and probably semantic) func-
tional matching between the tasks and service descriptions.
As a result, a list of candidate web services is obtained for
each task. The goal of QoS-aware service selection middel-



Figure 2: Conceptual Overview

ware is to select one component service from each list such
that the aggregated QoS values satisfy the user’s end-to-end
QoS requirements. In service oriented environments, where
deviations from the QoS estimates occur and decisions upon
replacing some services has to be taken at run-time (e.g.
in the multimedia application above), the efficiency of the
applied selection mechanism becomes crucial. The focus of
this paper is on the selection of web services based on their
non-functional properties and the performance of the ap-
plied techniques.

Local Selection vs. Global Optimization
Two general approaches exist for the QoS-aware service com-
position: local selection and global optimization.

Local Selection: The local selection approach is especially
useful for distributed environments where central QoS
management is not desirable and groups of candidate
web services are managed by distributed service bro-
kers [8, 14]. The idea is to select one service from each
group of service candidates independently on the other
groups. Using a given utility function, the values of
the different QoS criteria are mapped to a single util-
ity value and the service with maximum utility value
is selected. This approach is very efficient in terms of
computation time as the time complexity of the local
optimization approach is O(l), where l is the number of
service candidates in each group. Even if the approach
is useful in decentralized environments, local selection
strategy is not suitable for QoS-based service composi-
tion, with end-to-end constraints (e.g. maximum total
price), since such global constraints cannot be verified
locally.

Global Optimization: The global optimization approach
was recently put forward as a solution to the QoS-
aware service composition problem [24, 25, 5, 6]. This
approach aims at solving the problem on the com-
posite service level. The aggregated QoS values of
all possible service combinations are computed, and
the service combination that maximizes the aggregated

utility value, while satisfying global constraints is se-
lected. The global selection problem can be modeled
as a Multi-Choice Multidimensional Knapsack problem
(MMKP), which is known to be NP-hard in the strong
sense [20]. Consequently, it can be expected that an
optimal solution may not be found in a reasonable
amount of time [16]. The exponential time complex-
ity of the proposed solutions [24, 25, 5, 6] is only ac-
ceptable if the number of service candidates is very
limited. Already in larger enterprises and even more
in open service infrastructures with a few thousands
of services the response time for a service composition
request could already be out of the real-time require-
ments.

Contribution of the Paper
Since the QoS requirements (e.g. response times, through-
put or availability) are only approximate, we argue that find-
ing a “reasonable” set of services that avoid obvious viola-
tions of constraints at acceptable costs is more important
than finding ”‘the optimal”’ set of services with a very high
cost. In addition, we advocate that the selection of compo-
nent services should be carried out in a distributed fashion,
which fits well to the open web service environment, where
central management is not feasible.

The contribution of this paper can be stated as follows:

• A distributed QoS computation model for web services.
Unlike existing solutions that model the QoS-aware
service composition problem as a conventional global
optimization problem, we exploit the special structure
of the web service composition problem to reduce the
cost of QoS optimization. The QoS optimization in
our model is carried out by a set of distributed service
brokers. The idea is to decompose QoS global con-
straints into a set of local constraints that will serve as
a conservative upper/lower bounds, such that the sat-
isfaction of local constraints by a local service broker
guarantees the satisfaction of the global constraints.

• An efficient QoS-aware service selection approach. We
propose an efficient and scalable mechanism for se-
lecting web services for a given composition request
from a collection of service candidates, such that the
fulfillment of user’s end-to-end QoS requirements and
preferences can be ensured. By combining global op-
timization with local selection our approach is able to
efficiently solve the selection problem in a distributed
manner. Experimental evaluations show that our hy-
brid approach is able to reach close-to-optimal results
much faster than existing ’pure’ global optimization
approaches.

The rest of the papers is organized as follows. In the next
section we discuss related work. Section 3 introduces the sys-
tem model and gives a problem statement. Our approach for
efficient and distributed QoS-aware service selection is pre-
sented in Section 4. Performance analysis and experimental
evaluations for comparing our solution against existing so-
lutions are presented in Section 5. Finally, Section 6 gives
conclusions and an outlook on possible continuations of our
work.



2. RELATED WORK
The requirements for composition of web services can be

stated in a workflow language such as Business Process Exe-
cution Language (BPEL) [19]. In [26, 9] ontology-based rep-
resentations for describing QoS properties and requests were
proposed to support semantic and dynamic QoS-based dis-
covery of web services. Quality of service management has
been widely discussed in the area of middleware systems [7,
11, 12, 13]. Most of these works focus on QoS specification
and management. Recently, the QoS-based web service se-
lection and composition in service-oriented applications has
gained the attention of many researchers [24, 25, 5, 6, 15,
23]. In [15] the authors propose an extensible QoS compu-
tation model that supports open and fair management of
QoS data. The problem of QoS-based composition is not
addressed by this work. The work of Zeng at al. [24, 25]
focuses on dynamic and quality-driven selection of services.
The authors use global planning to find the best service com-
ponents for the composition. They use (mixed) linear pro-
gramming techniques [18] to find the optimal selection of
component services. Similar to this approach Ardagna et
al. [5, 6] extends the linear programming model to include
local constraints. Linear programming methods are very ef-
fective when the size of the problem is small. However, these
methods suffer from poor scalability due to the exponen-
tial time complexity of the applied search algorithms [16].
In [23] the authors propose heuristic algorithms that can be
used to find a near-to-optimal solution more efficiently than
exact solutions. The authors propose two models for the
QoS-based service composition problem: 1) a combinatorial
model and 2) a graph model. A heuristic algorithm is intro-
duced for each model. The time complexity of the heuristic
algorithm for the combinatorial model (WS HEU) is polyno-
mial, whereas the complexity of the heuristic algorithm for
the graph model (MCSP-K) is exponential. Despite the sig-
nificant improvement of these algorithms compared to exact
solutions, both algorithms do not scale with respect to an
increasing number of web services and remain out of the real-
time requirements. Any distributed implementation of these
algorithms would raise a very high communication cost. The
WS HEU for example, is an improvement of the original
heuristic algorithm for solving general Multi-Choice Multi-
dimensional Knapsack problems named M-HEU [1]. The
WS HEU algorithm starts with a pre-processing step for
finding an initial feasible solution, i.e. a service combination
that satisfies all constraints but not necessarily is the best
solution. A post-processing step improves the total utility
value of the solution with one upgrade followed by one or
more downgrades of one of the selected component services.
Applying this algorithm in a distributed setting where the
QoS data of the different service classes is managed by dis-
tributed service brokers would raise very high communica-
tion cost among these brokers to find the best composition.
In this paper, we propose a heuristic algorithm that solves
the composition problem more efficiently and fits well to the
distributed environment of web services.

3. SYSTEM MODEL
In our model we assume that we have a universe of web

services S which is defined as a union of abstract service
classes. Each abstract service class Sj ∈ S (e.g. flight
booking services) is used to describe a set of functionally-

equivalent web services (e.g. Lufthansa and Qantas flight
booking web services). In this paper we assume that infor-
mation about service classes is managed by a set of service
brokers as described in [15, 14]. Web services can join and
leave service classes at any time by means of a subscription
mechanism.

3.1 Abstract vs. Concrete Composite Services
As shown in Figure 2 we distinguish in the composition

process between the following two concepts:

• An abstract composite service, which can be defined
as an abstract representation of a composition request
CSabstract = {S1, . . . , Sn}. CSabstract refers to the
required service classes (e.g. flight booking) without
referring to any concrete web service (e.g. Lufthansa
flight booking web service).

• A concrete composite service, which can be defined as
an instantiation of an abstract composite service. This
can be obtained by binding each abstract service class
in CSabstract to a concrete web service sj , such that
sj ∈ Sj . We use CS to denote a concrete composite
service.

3.2 QoS Criteria
In our study we consider quantitative non-functional prop-

erties of web services, which can be used to describe the
quality criteria of a web service [24, 15]. These can include
generic QoS attributes like response time, availability, price,
reputation etc, as well as domain-specific QoS attributes like
bandwidth for multimedia web services as long as these at-
tributes can be quantified and represented by real numbers.
We use the vector Qs = {q1(s), . . . , qr(s)} to represent the
QoS attributes of service s, where the function qi(s) de-
termines the value of the i-th quality attribute of s. The
values of these QoS attributes can be either collected from
service providers directly (e.g. price), recorded from previ-
ous execution monitoring (e.g. response time) or from user
feedbacks (e.g. reputation) [15]. The set of QoS attributes
can be divided into two subsets: positive and negative QoS
attributes. The values of positive attributes need to be maxi-
mized (e.g. throughput and availability), whereas the values
of negative attributes need to be minimized (e.g. price and
response time). For the sake of simplicity, in this paper we
consider only negative attributes (positive attributes can be
easily transformed into negative attributes by multiplying
their values by -1).

3.3 QoS Computation of Composite Services
The QoS value of a composite service is decided by the

QoS values of its component services as well as the composi-
tion model used (e.g. sequential, parallel, conditional and/or
loops). In this paper, we focus on the sequential composi-
tion model. Other models may be reduced or transformed
to the sequential model. Techniques for handling multiple
execution paths and unfolding loops from [10], can be used
for this purpose.

The QoS vector for a composite service CS is defined as
QCS = {q′1(CS), . . . , q′r(CS)}. q′i(CS) represents the esti-
mated value of the i-th QoS attribute of CS and can be
aggregated from the expected QoS values of its component



services. In our model we consider three types of QoS ag-
gregation functions: 1) summation, 2) multiplication and 3)
minimum relation. Table 1 shows examples of these aggre-
gation functions.

Aggregation

type

Examples Function

Summation Response
time

q′(CS) =
∑n

j=1
q(sj)

Price
Reputation q′(CS) = 1/n

∑n

j=1
q(sj)

Multiplication Availability q′(CS) =
∏n

j=1
q(sj)

Reliability
Minimum Throughput q′(CS) = minn

j=1 q(sj)

Table 1: Examples of QoS aggregation functions

3.4 Global QoS Constraints
Global QoS constraints represent user’s end-to-end QoS

requirements. These can be expressed in terms of upper
(and/or lower ) bounds for the aggregated values of the dif-
ferent QoS criteria. As mentioned earlier, we only consider
negative QoS criteria. Therefore in our model we only have
upper bound constraints.

Definition 1. (Feasible Selection) Let CSabstract be a given
composition request and C′ = {c′1, . . . , c

′
m}, 0 ≤ m ≤ r, be

a vector of global QoS constraints on CSabstract. Let CS
be an instantiation of CSabstract, in which a concrete web
service is selected for each service class. We consider CS
a feasible selection iff q′(CS) ≤ c′,∀c′k ∈ C′, i.e. all global
constraints are satisfied.

3.5 Utility Function
In order to evaluate the multi-dimensional quality of a

given web service a utility function is used. The function
maps the quality vector Qs into a single real value, to enable
sorting and ranking of service candidates. In this paper we
use a Multiple Attribute Decision Making approach for the
utility function: i.e. the Simple Additive Weighting (SAW)
technique [22]. The utility computation involves scaling the
QoS attributes’ values to allow a uniform measurement of
the multi-dimensional service qualities independent of their
units and ranges. The scaling process is then followed by a
weighting process for representing user priorities and pref-
erences. In the scaling process each QoS attribute value is
transformed into a value between 0 and 1, by comparing it
with the minimum and maximum possible value according
to the available QoS information of service candidates. For
a composite service CS = {S1, . . . , Sn}, the aggregated QoS
values are compared with minimum and maximum possible
aggregated values. The minimum (or maximum) possible
aggregated values can be easily estimated by aggregating
the minimum (or maximum) value of each service class in
CS. For example, the maximum execution price of CS can
be computed by summing up the execution price of the most
expensive service candidate in each service class in CS. For-
mally, the minimum and maximum aggregated values of the

k-th QoS attribute of CS are computed as follows:

Qmin′(k) =
n∑

j=1

Qmin(j, k) (1)

Qmax′(k) =
n∑

j=1

Qmax(j, k)

with

Qmin(j, k) = min
∀sji∈Sj

qk(sji) (2)

Qmax(j, k) = max
∀sji∈Sj

qk(sji)

where Qmin(j, k) is the minimum value (e.g. minimum
price) and Qmax(j, k) is the maximum value (e.g. maximum
price) that can be expected for service class Sj according to
the available information about service candidates of this
class.

Now the utility of a component web service s ∈ Sj is
computed as

U(s) =

r∑

k=1

Qmax(j, k) − qk(s)

Qmax(j, k) − Qmin(j, k)
· wk (3)

and the overall utility of a composite service is computed as

U ′(CS) =
r∑

k=1

Qmax′(k) − q′k(CS)

Qmax′(k) − Qmin′(k)
· wk (4)

with wk ∈ R
+

0 and
∑r

k=1
wk = 1 being the weight of q′k to

represent user’s priorities.

Definition 2. (Optimal Selection) The optimal selection
for a given web service composition request CSabstract and a
given vector of global QoS constraints C′ = {c′1, . . . , c

′
m}, 0 ≤

m ≤ r, is a feasible selection (according to Definition 1) with
the maximum overall utility value U ′.

However, finding the optimal composition requires enu-
merating all possible combinations of service candidates. For
a composition request with n service classes and l service
candidate per class, there are ln possible combinations to
be examined. Performing exhaustive search can be very ex-
pensive in terms of computation time and, therefore, inap-
propriate for run-time service selection in applications with
many services and dynamic needs.

3.6 Problem Statement
The problem of finding the best service composition with-

out enumerating all possible combinations is considered as
an optimization problem, in which the overall utility value
has to be maximized while satisfying all global constraints.
Formally, the optimization problem we are addressing can
be stated as follows:

For a given composition request CSabstract = {S1, . . . , Sn}
and a given set of m global QoS constraints C′ = {c′1, . . . , c

′
m},

find an implementation CS = {s1, . . . , sn} by binding each
Sj to a concrete service sj ∈ Sj such that:

1. The overall utility U ′(CS) is maximized, and

2. The aggregated QoS satisfy: q′k(CS) ≤ c′k,∀c′k ∈ C′



Figure 3: Distributed QoS-aware Service Selection

4. QOS-AWARE SERVICE COMPOSITION
The use of mixed integer programming [18] to solve the

QoS-aware service composition problem has been recently
proposed by several researchers [24, 25, 5, 6]. Binary deci-
sion variables are used in the model to represent the service
candidates. A service candidate sij is selected in the opti-
mal composition if its corresponding variable xij is set to 1
in the solution of the model and discarded otherwise. By
re-writing (4) to include the decision variables, the problem
of solving the model can be formulated as a maximization
problem of the overall utility value given by

r∑

k=1

Qmax′(k) −
∑n

j=1

∑l

i=1
qk(sji) · xji

Qmax′(k) − Qmin′(k)
· wk (5)

subject to the global QoS constraints

n∑

j=1

l∑

i=1

qk(sji) · xji ≤ c′k, 1 ≤ k ≤ m · wk (6)

while satisfying the allocation constraints on the decision
variables as

l∑

i=1

xji = 1, 1 ≤ j ≤ n. (7)

Because the number of variables in this model depends
on the number of service candidates (number of variables =
n·l), this MIP model may not be solved satisfactorily, except
for small instances. Another disadvantage of this approach
is that it requires that the QoS data of available web services
be imported from the service broker into the MIP model of
the service composer, which raises high communication.

To cope with these limitations, we divide the QoS-aware
service composition problem into two sub-problems that can
be solved more efficiently in two subsequent phases. Figure 3
gives an overview on our approach. In the first phase, the

service composer decomposes each global QoS constraints
into local constraints on the component services level and
sends these constraints to the involved service brokers. These
constraints also include user’s preferences, which are ex-
pressed in terms of weights of the QoS attributes. In the
second phase, each service broker performs local selection
to find the best component services that satisfy these local
constraints. The two phases of our approach are described
in the next subsections in more details.

4.1 Decomposition of Global QoS Constraints
To ensure the fulfillment of global QoS constraints in a

service composition problem without enumerating all possi-
ble combinations of component web service, we decompose
each QoS global constraint c′ into a set of n local constraints
c1, . . . , cn (n is the number of abstract service classes in the
composition request). The local constraints serve as a con-
servative upper bounds, such that the satisfaction of local
constraints guarantees the satisfaction of global constraints.

A naive decomposition algorithm would be to divide each
global constraint c′ into n equal local constraints such that:
cj = c′/n, 1 ≤ j ≤ n. However, as different service classes
can have different QoS value ranges, a more sophisticated
decomposition algorithm is required. Furthermore, in or-
der to avoid discarding any service candidates that might
be part of a feasible composition, the decomposition algo-
rithm needs to ensure that the local constraints are relaxed
as much as possible while meeting global constraints. We
solve this problem by modeling the QoS constraint decom-
position problem as an optimization problem. The goal of
this optimization problem is to find a set of local constraints
for each service class that cover as many as possible service
candidates, while their aggregation does not violate any of
the global constraints. To this end, we divide the quality
range of each QoS attribute into a set of discrete quality val-
ues, which we call quality levels. We then map each global



QoS constraint into a set of these quality levels, which will
be used as local constraints by the local service selection al-
gorithm. For example, given a set of candidate web services
and their execution prices, we create a list of price levels for
that service class (the following subsection describes how
levels are determined). The global constraint on total ex-
ecution price is then mapped to the price levels of service
classes. We use mixed integer program (MIP) [18] solving
techniques to find the best mapping of global constraints to
local quality levels. Unlike the MIP model in [24, 25, 5, 6],
our MIP model has much less number of variables (i.e. the
quality levels instead of actual service candidates) and can
be, therefore, solved much faster.

4.1.1 Determining Quality Levels
Quality levels are initialized for each service class Sj by

dividing the value ranges of each QoS attribute qk into a set
of d discrete quality values as depicted in figure 4

Qmin(j, k) ≤ q1
jk ≤ . . . ≤ qd

jk ≤ Qmax(j, k).

The quality levels are determined such that they represent
the data collection of each service class. We first divide
the range of attribute values into d sub-ranges. From each
sub-range we randomly select one sample value. The more
frequent a given value is, the higher the probability that it
is selected as a quality level. We then assign each quality
level qz

jk a value pz
jk between 0 and 1, which estimates the

benefit of using this quality level as a local constraint. This
value is determined as follows. First, we compute h(qz

jk),
i.e. the number of candidate services that would qualify if
this level was used as local constraint. Second, we calculate
the utility value of each service candidate in the service class
using the utility function (3) and determine u(qz

jk), i.e. the
highest utility value that can be obtained by considering
these qualified services. Finally, pz

jk can be calculated as

pz
jk =

h(qz
jk)

l
·
u(qz

jk)

umax

(8)

where l is the total number of service candidates of service
class Sj , and umax is the highest utility value that can be
obtained for this class by considering all service candidates.
The value pz

jk indicates how many web services would qualify
if the z-th level was used as local constraint for the k-th
QoS attribute in service class Sj , and estimates the highest
obtainable utility value for that class.

Figure 4: Quality Level Selection

4.1.2 Formulating the MIP Model
We use MIP model to find the best decomposition of QoS

constraints into local constraints. Therefore, we use a binary
decision variable xz

jk for each local quality level qz
jk such that

xz
jk = 1 if qz

jk is selected as a local constraint for the QoS
attribute qk at the service class Sj , and xz

jk = 0 otherwise.
Therefor, we use the following allocation constraints in

the model:

∀j,∀k :

d∑

z=1

xz
jk = 1 , 1 ≤ j ≤ n , 1 ≤ k ≤ m (9)

Note that the total number of variables in the model
equals to n · m · d, i.e. it is independent of the number
of service candidates. If the number of quality levels d sat-
isfies m ·d ≤ l we can ensure that the size of our MIP model
is smaller than the size of the model used in [24, 25, 5, 6]
(where the number of decision variables is n · l), thus can be
solved much faster.

The objective function of our MIP model is to maximize
the p value (as defined in 8) of the selected local constraints
to minimize the number of discarded feasible selections. There-
fore, the objective function can be expressed as follows:

maximize

n∏

j=1

m∏

k=1

pz
jk , 1 ≤ z ≤ d (10)

We use the logarithmic function to linearize (10) in order
to be able to use it in the MIP model:

maximize
n∑

j=1

m∑

k=1

d∑

z=1

ln(pz
jk) ∗ xz

jk (11)

The selection of the local constraints must ensure that
global constraints are still satisfied. Therefore, we add the
following set of constraints to the model:

∀k :

n∑

j=1

d∑

z=1

qz
jk · xz

jk ≤ c′k , 1 ≤ k ≤ m (12)

By solving this model using any MIP solver methods, we
get a set of local quality levels. These quality levels are
then sent to the distributed set of involved service brokers
to perform local selection.

4.2 Local Selection
After decomposing global QoS constraints into local ones,

the second step of our solution is to perform local selec-
tion for each service class independently. Upon the receipt
of local constraints and user’ preferences from the service
composer, each service broker performs the local selection
and returns the best web service candidate to the service
composer. The received local constraints are used as upper
bounds for the QoS values of component services. Web ser-
vices that violate these upper bounds are skipped from the
selection. A list of qualified services is created and sorted
by their utility values.

The use of (3) for this purpose is not appropriate for
the following reason. This utility function compares the
distance Qmax(j, k) − qk(sji) between the quality value of
a service candidate sji and the local maximum value in
its class Sj with the distance Qmax(j, k) − Qmin(j, k) be-
tween the local minimum and maximum values. This scal-
ing approach can be biased by local properties leading to
local optima instead of global optima. Therefore, we com-
pare the distance Qmax(j, k) − qk(sji) with the distance



between the maximum and minimum overall quality values:
Qmax′(k) − Qmin′(k). This scaling method ensures that
the evaluation of service candidates is globally valid, which
is important for guiding local selection in order to avoid lo-
cal optimums. The scaling process is then followed by a
weighting process for representing user’s over the different
QoS attributes. We compute the utility U(sji) of the i-th
service candidate in class Sj as

U(sji) =
r∑

k=1

Qmax(j, k) − qk(sji)

Qmax′(k) − Qmin′(k)
· wk (13)

with wk ∈ R
+

0 and
∑r

k=1
wk = 1 being the weight of qk to

represent user’s priorities.

5. PERFORMANCE STUDY
The aim of this evaluation is to validate our hypothesis

that our approach achieves close-to-optimal results with a
much lower computation time compared to “pure” global
optimization approach as proposed by [15, 25, 6]. In the fol-
lowing we use the label “hybrid” to refer to our solution and
the label “global” to refer to the “pure” global optimization
approach.

5.1 Performance Analysis
The scalability of QoS-based service composition systems

is affected by the time complexity of the applied algorithm.
There are three factors that determine the size of the compo-
sition problem: the number of required service classes n, the
number of service candidates per class l, which we assume
to be equal for all classes, and the number of global QoS
constraints m. As the problem can be modeled as a Multi-
Choice Multidimensional Knapsack problem (MMKP), which
is known to be NP-hard [20], the time complexity of any ex-
act solution is expected to be exponential. Existing global
optimization solutions model the service selection problem
as a standard mixed integer program (MIP). The worst case
time complexity of MIP solvers using the simplex method
is an exponential function O(2n·l) [16], which restricts the
applicability of these solutions to small size composition
problems, where the number of service candidates l is very
limited. Returning back to the given service composition
scenario in section 1, already with a few hundreds of web
service candidates that provide the same functionality (e.g.
transcoding web services), the response time of this ap-
proach to QoS-optimized service selection (or replacement)
requests can be out of the run-time requirements.

In our Hybrid approach, we use mixed integer program-
ming to solve part of the problem, namely, the decomposi-
tion of the global QoS constraints into local ones. The actual
selection of services, however, is done using distributed lo-
cal selection strategy, which is very efficient and scalable.
The local utility computation for service candidates has a
linear complexity with respect to the number of service can-
didates, i.e. O(l). As service brokers can perform the local
selection in parallel, the total time complexity of this step
is not affected by the number of service classes, hence, the
complexity of the second step remains O(l).

The time complexity of our approach is dominated by the
time complexity of the constraint decomposition part. The
number of decision variables in our MIP model is n · m · d,
where n is the number of service classes, m is the number
of global QoS constraints and d is the number of quality

levels. Consequently, the time complexity of our approach is
independent on the number of available web services, which
makes it more scalable than existing solutions that rely on
“pure” global optimization. By selecting a low number of
quality levels d with 1 < d << l

m
we ensure that the size of

the MIP is much smaller compared to the MIP model used
in the global optimization approaches in [15, 25, 6].

5.2 Experimental Evaluation
We have conducted extensive simulations to evaluate the

performance of the proposed QoS-aware service selection ap-
proach, which we describe in this section.

Evaluation Methodology
We have created several test cases of the QoS-based service
composition problem. Each test case consists of a service
composition request with n service classes, l service candi-
dates per class and m global QoS constraints. By varying
these numbers we created a collection of test cases, where
each unique combination of these parameters represents one
test case. We first solved each test case using the global
optimization approach to find the optimal selection of com-
ponent services that satisfy all global QoS constraints, while
maximizing the overall utility value. We recorded the re-
quired computation time tglobal and the obtained utility
value uglobal by this method for each test case. We then
provided the same test cases to our hybrid service selec-
tion method and compared its computation time thybrid and
the aggregated utility value of the returned selection uhybrid

with tglobal and uglobal for the same test case respectively.
In order to study the effect of the chosen number of qual-
ity levels in the hybrid approach, we solved each test case
several times with different number of quality levels. The
number of quality levels in this experiment was set to 10,
20, 30, 40 and 50 levels.

The Dataset
In our evaluation we experimented with two QoS datasets.
The first dataset is the QWS real dataset from [2, 3, 4]. This
dataset includes measurements of 9 QoS attributes for 2500
real web services. Table 2 lists the QoS attributes in this
dataset and gives a brief description of each attribute. The
dataset was measured using commercial benchmark tools for

Table 2: QoS attributes in the QWS dataset
QoS At-

tribute

Description Units Of

Measure-

ment

Response
Time

Time taken to send a request and
receive a response

millisecond

Availability Number of successful invoca-
tions/total invocations

percent

Throughput Total number of invocations for a
given period of time

invocations /
second

Likelihood of
success

Number of response/number of re-
quest messages

percent

Reliability Ratio of the number of error mes-
sages to total messages

percent

Compliance To which extent a WSDL document
follows the WSDL spec.

percent

Best Practices To which extent a web service fol-
lows the Web Services Interoper-
ability (WS-I) Basic Profile

percent

Latency Time the server takes to process a
given request

millisecond

Documentation Measure of documentation (i.e. de-
scription tags) in WSDL

percent



Figure 5: Performance comparison w.r.t. the number of web service candidates

Figure 6: Performance comparison w.r.t. the number of web service classes

web services, which were located using public sources on the
Web, including UDDI registries, search engines and service
portals. For more details about this dataset we refer the
reader to [3, 4].

In order to make sure that the results of our experiments
are not biased by the used QWS dataset, we experimented
with a second dataset. The second dataset was created by
assigning arbitrary QoS values to 20000 artificial web ser-
vices. The QoS values were normally distributed in the
range between 1 and 100.

Experiment Settings
We used the open source (Mixed Integer Programming) Lp-
Solve system lpsolve version 5.5 [17] for solving the MIP
model in both approaches. The experiments were conducted
on a HP ProLiant DL380 G3 machine with 2 Intel Xeon
2.80GHz processors and 6 GB RAM. The machine is run-
ning under Linux (CentOS release 5) and Java 1.6.

Performance Results
In Figure 5 we compare the performance of our hybrid ap-
proach and the global optimization approach with respect
to the number of service candidates. The graphs show the
measured computation times tglobal and thybrid for each test
case. The number of service candidates per class l varies
from 50 to 500 for the QWS dataset and from 100 to 2000

services per class. In this experiment, the number of service
classes n is fixed to 5 for the QWS dataset and to 10 classes
for the random dataset in all test cases. The number of QoS
constraints in all these test cases was fixed to 3 constraints.

The results indicate that the hybrid approach significantly
outperforms the global approach for both datasets. By in-
creasing the number of service candidates, the required com-
putation time of the hybrid approach increases very slowly
compared to the global approach, which makes our solution
more scalable.

The results also show that increasing the number of qual-
ity levels in the hybrid approach increases the computation
time. We also notice that with small number of service can-
didates, increasing the number of quality levels “more than
necessary” (i.e. to 50 quality levels in this case) can lead
to longer computation time than in the global approach.
This is an expected behavior as we already discussed in Sec-
tion 5.1. According to our analysis, the number of qual-
ity levels d must be less than l/m. In the aforementioned
situation this was not the case (in the random dataset for
example, d = 50, whereas l/m = 33.3).

In the experiment shown in Figure 6 we study the per-
formance of both approaches with respect to the number of
service classes n in the composition. The number of service
classes varies from 5 to 25 for the QWS dataset and from
10 to 100 classes for the random dataset. The number of



Figure 7: Optimality w.r.t. the number of web service candidates

Figure 8: Optimality w.r.t. the number of web service classes

service candidates per class l in this experiment is fixed to
100 for the QWS dataset and to 500 for the random dataset.
The results of this experiment show that our approach still
outperforms the global approach in all test cases.

Optimality
As our hybrid solution is an approximate solution, we have
evaluated the quality of the results obtained by our solution
by comparing it with the optimal results obtained by the
global optimization approach. We compute the optimality of
the results of the hybrid approach by comparing the overall
utility value (uhybrid) of the selected services to the overall
utility value (uglobal) of the optimal selection obtained by
the global approach, i,e.:

optimality = uhybrid/uglobal

Figure 7 shows the achieved optimality in several test
cases with different number of service candidates, while Fig-
ure 8 shows the achieved optimality in several test cases
with a varying number of service classes. The results indi-
cate that the hybrid approach was able to achieve above 96%
optimality in average. The results also show that in aver-
age, increasing the chosen number of quality levels improves
the achieved optimality. This improvement does not come
without cost as we can see from Figures 5 and 6. There

is a trade-off between optimality and performance. Never-
theless, in average, the hybrid approach is able to reach a
close-to-optimal results with very low cost.

6. CONCLUSION AND FUTURE WORK
In this paper we presented an efficient heuristic for the

QoS-based service composition, which is known to be NP-
hard. We combine global optimization with local selection
methods to benefit from the advantaged of both worlds. Our
proposed method allows to dramatically reduce the (worst
case) efforts compared to existing solutions. Our evaluations
show a significant improvement in terms of computational
time, while achieving close to optimal results. This is es-
pecially useful for applications with dynamic changes and
real-time requirements. In the current approach the number
of service levels is fixed and need to be defined beforehand.
Currently we are studying the impact of the applied method
as well as the number of the selected quality levels on the
performance and quality of the obtained results. We also
aim at developing a self-adaptive approach, which optimizes
itself by determining the best number of quality levels at
run-time based on the available QoS information. A proto-
col for coordinating the distributed service brokers, which
are involved in a QoS optimization process, is also part of
our future work.



7. REFERENCES
[1] M. M. Akbar, E. G. Manning, G. C. Shoja, and

S. Khan. Heuristic solutions for the multiple-choice
multi-dimension knapsack problem. In Proceedings of
the International Conference on Computational
Science-Part II, pages 659–668, London, UK, 2001.
Springer-Verlag.

[2] E. Al-Masri and Q. H. Mahmoud. The qws dataset.
Web page. http:
//www.uoguelph.ca/~qmahmoud/qws/index.html/.

[3] E. Al-Masri and Q. H. Mahmoud. Qos-based discovery
and ranking of web services. In Proceedings of the
IEEE International Conference on Computer
Communications and Networks, 2007.

[4] E. Al-Masri and Q. H. Mahmoud. Investigating web
services on the world wide web. In Proceedings of the
International World Wide Web Conference, 2008.

[5] D. Ardagna and B. Pernici. Global and local qos
constraints guarantee in web service selection. In
Proceedings of the IEEE International Conference on
Web Services, pages 805–806, Washington, DC, USA,
2005. IEEE Computer Society.

[6] D. Ardagna and B. Pernici. Adaptive service
composition in flexible processes. IEEE Transactions
on Software Engineering, 33(6):369–384, 2007.

[7] C. Aurrecoechea, A. T. Campbell, and L. Hauw. A
survey of qos architectures. Multimedia Systems,
6(3):138–151, 1998.

[8] B. Benatallah, Q. Z. Sheng, A. H. H. Ngu, and
M. Dumas. Declarative composition and peer-to-peer
provisioning of dynamic web services. In Proceedings
of the International Conference on Data Engineering,
pages 297–308, Washington, DC, USA, 2002. IEEE
Computer Society.

[9] A. S. Bilgin and M. P. Singh. A daml-based repository
for qos-aware semantic web service selection. In
Proceedings of the IEEE International Conference on
Web Services, pages 368–375, Washington, DC, USA,
2004. IEEE Computer Society.

[10] J. Cardoso, J. Miller, A. Sheth, and J. Arnold. Quality
of service for workflows and web service processes.
Journal of Web Semantics, 1:281–308, 2004.

[11] F. Casati and M.-C. Shan. Dynamic and adaptive
composition of e-services. Information Systems,
26(3):143–163, 2001.

[12] Y. Cui and K. Nahrstedt. Supporting qos for
ubiquitous multimedia service delivery. In Proceedings
of the ACM International Conference on Multimedia,
pages 461–462, 2001.

[13] M. Gillmann, G. Weikum, and W. Wonner. Workflow
management with service quality guarantees. In
Proceedings of the SIGMOD Conference, pages
228–239, 2002.

[14] F. Li, F. Yang, K. Shuang, and S. Su. Q-peer: A
decentralized qos registry architecture for web services.
In Proceedings of the International Conference on
Services Computing, pages 145–156, 2007.

[15] Y. Liu, A. H. H. Ngu, and L. Zeng. Qos computation
and policing in dynamic web service selection. In
Proceedings of the International World Wide Web
Conference, pages 66–73, 2004.

[16] I. Maros. Computational Techniques of the Simplex

Method. Springer, 2003.

[17] K. E. Michel Berkelaar and P. Notebaert. Open source
(mixed-integer) linear programming system.
Sourceforge. http://lpsolve.sourceforge.net/.

[18] G. L. Nemhauser and L. A. Wolsey. Integer and
Combinatorial Optimization. Wiley-Interscience, New
York, NY, USA, 1988.

[19] OASIS. Web services business process execution
language, April 2007. http://docs.oasis-open.org/
wsbpel/2.0/wsbpel-v2.0.pdf.

[20] D. Pisinger. Algorithms for Knapsack Problems. PhD
thesis, University of Copenhagen, Dept. of Computer
Science, February 1995.

[21] M. Wagner and W. Kellerer. Web services selection for
distributed composition of multimedia content. In
Proceedings of the ACM International Conference on
Multimedia, pages 104–107, New York, NY, USA,
2004. ACM.

[22] K. . P. Yoon and C.-L. Hwang. Multiple Attribute
Decision Making: An Introduction (Quantitative
Applications in the Social Sciences). Sage
Publications, 1995.

[23] T. Yu, Y. Zhang, and K.-J. Lin. Efficient algorithms
for web services selection with end-to-end qos
constraints. ACM Transactions on the Web, 1(1),
2007.

[24] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam,
and Q. Z. Sheng. Quality driven web services
composition. In Proceedings of the International
World Wide Web Conference, pages 411–421, 2003.

[25] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang. Qos-aware middleware
for web services composition. IEEE Transactions on
Software Engineering, 30(5):311–327, 2004.

[26] C. Zhou, L.-T. Chia, and B.-S. Lee. Daml-qos
ontology for web services. In Proceedings of the IEEE
International Conference on Web Services, pages
472–479, Washington, DC, USA, 2004. IEEE
Computer Society.


