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Abstract The paper presents an automatic video summarization technique based on graph
theory methodology and the dominant sets clustering algorithm. The large size of the video
data set is handled by exploiting the connectivity information of prototype frames that are
extracted from a down-sampled version of the original video sequence. The connectivity
information for the prototypes which is obtained from the whole set of data improves video
representation and reveals its structure. Automatic selection of the optimal number of
clusters and hereafter keyframes is accomplished at a next step through the dominant set
clustering algorithm. The method is free of user-specified modeling parameters and is
evaluated in terms of several metrics that quantify its content representational ability.
Comparison of the proposed summarization technique to the Open Video storyboard, the
Adaptive clustering algorithm and the Delaunay clustering approach, is provided.
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1 Introduction

Recent advances in multimedia technologies have made a large amount of commercial or home
videos available to the general public. For the manipulation of the video information
researchers developed techniques that are oriented to the production of video abstracts. Video
abstract appears as a compact representation of a video sequence and is useful for various video
applications as video browsing, indexing and retrieval. Avideo abstract or summary [3] can be
a preview sequence combining a limited number of video segments (video skimming) or a
keyframe set properly chosen from the video sequence. Although a keyframe-based video
abstract may lose the spatial-temporal properties and the audio content of the original video
sequence, it is clearly the simplest method for video representation. The use of a compact set
of keyframes reduces the amount of information required in video indexing and provides the
framework for dealing with the video content in retrieval applications.
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Among the different methods for the extraction of a keyframe set, the most
straightforward approach is by uniformly sampling the video sequence with a certain
frame rate. Although this technique has very low complexity, it is possible to disregard a
time limited but content essential part of the video sequence. Very often the number of
keyframes can be defined a priori according to the requirements of the video application.
This approach, so called, rate constraint keyframe extraction, is applicable mostly in mobile
communication networks which face bandwidth limitations. For those networks the number
of keyframes is allocated according to the storage capacity or the size of the display. On the
other hand, the number of keyframes can be set a posteriori or it can be computed
automatically according to the video content. Clearly, more keyframes are necessary for the
representation of a video with high motion activity than a rather static one.

Earlier efforts in the field of video analysis and summarization were based on frame
clustering, relying on the detection of shot boundaries [29] and providing a fixed or variable
number of keyframes per shot. The objective of those methods was twofold, maintain the
temporal continuity of the extracted keyframes and capture the pictorial information from
each shot at the same time. Although their results seem to be good for some genres of
video, for others, as films, interviews, athletic events, introduce redundancies since similar
pictorial content appear repeatedly in the resulting summary. A solution to this problem was
to obtain the video frames using the original video as a whole [12, 32] and cluster the
frames that have similar content. This approach places greater burden to the clustering
process as the size of the dataset increases considerably.

In line with the above observations, we propose a new approach for automatic video
summarization, which is organized around a hybrid frame-based pairwise clustering algorithm.
The technique arises as a combination of previous studies on clustering problems [14], [22] over
edge-weighted graphs. According to [14], an efficient structural representation of a large dataset
can be derived by utilizing the geometrical constraints among a small down-sampled version of
the original dataset. The algorithm uses a number of appropriately selected prototypes
(considered as cluster centers) to construct their connectivity graph and reveal the video
structure. This edge-weighted graph is built by exploiting the membership values of the entire
data set towards the prototypes set. The whole procedure in its original form [14] is based on
the fuzzy C-means algorithm operating in an over partitioning mode. In the present method a
modification is introduced which produce a most representative set of prototypes.

Next, in order to achieve the automatic partitioning of the resulting graph and extract an
optimal number of representative keyframes, the robust ‘dominant set clustering
methodology’ [22] is utilized. According to this work, any pair of prototypes sharing the
same content information or having high degree of connectivity is component of the same
dominant set (cluster). The technique proceeds by partitioning the prototypes set into
coherent groups, through a self-terminating clustering process, defining at each step the
corresponding dominant set. The centroids of the dominant sets are selected as key frames,
thus formulating the video summary.

The remainder of the paper is organized as follows: Section 2 is a concise report of
related works. In Section 3, the proposed method is presented in detail. Experimental results
are presented and commented in Section 4, and conclusions are drawn in Section 5.

2 Related works

Previous methods in frame-based video summarization mainly relied in shot boundary
detection [2]. A shot is detected when a certain difference measure between consecutive
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frames exceeds a threshold. This measure can be computed by using either features
containing global information (colour histograms) or more complex features, such as image
edges, motion vectors and probability densities. In a very simple approach the first frame
[1] or the first and the last frames [23] in each shot are selected as keyframes. Other
methods use a certain frame rate in order to extract a down-sample version of video. All
these approaches do not consider the dynamics of the visual content or the motion analysis
and the type of the shot boundary and they often extract a fixed number of keyframes per
shot.

Recent approaches operate on the entire video sequence using techniques like, maximum
frame coverage [4], clustering [12, 32], curve simplification [6], SRE [18], motion analysis
[7] and interesting events [17]. The maximum frame coverage technique proposed by the
Chang et al. [4] is referred as the fidelity based approach. According to this approach each
frame is represented in a high dimensional space and the video is viewed as a proximity
graph with vertices the frame set of the video segment. The problem can be interpreted as
that of finding the minimum fidelity values so that all frames can be represented by the
selected set of keyframes. The minimum set-cover problem is a well known NP-complete
vertex cover problem, Chang et al., proposed a greedy approach to get an approximate
solution. In [28] the coverage of a frame is the number of fixed-size excerpts which contain
at least one frame similar to this frame and a dynamic programming procedure is used to
select a pre-specified number of frames as the keyframe set. Cooper in [5] assumes the
analogy between keyframe extraction and the popular keyword extraction in text
information retrieval via the term frequency-inverse document frequency method (TF-IDF).

In clustering-based methods a segment of the video sequence is represented as a set of
points in the feature space. The most representative points of the formed clusters are
selected as keyframes for the video sequence. Usually the clustering process is implemented
in three steps: pre-processing, clustering procedure and filtering. Each step is used to
improve the effectiveness of the clustering process. Yeung in [29] introduced a tolerance-
band method to extract video keyframes and used it as a pre-processing step for video shot
clustering. The tolerance-band method selects the first frame as keyframe. If a subsequent
frame is more dissimilar to the existing keyframe according to a designated threshold, this
frame is selected as the next keyframe. The process continues until the number of
keyframes reaches the desired level. In [25] a set of potential keyframes are selected via the
sufficient content change method and are used as input to the clustering algorithm. The
clustering procedure is sequentially applied to the video sequence. During the process a
frame is assigned to the existing cluster if their similarity is maximal and exceeds a certain
threshold. The keyframe set is formulated by the clusters set at the end of the clustering
process. The clustering method of [32] requires users to set the maximum cluster size at the
beginning of video process. The video frames are grouped into clusters, and the frame that
are closest to the cluster centroids are extracted as keyframes. Hanjalic and Zhang in [12]
use a partitioning clustering algorithm with cluster-validity analysis to select the optimal
number of clusters for each shot. Each frame of the video segment is represented by a
cumulative activity level. The keyframe set is selected as the frames located in the middle
of the representative range between the breakpoints and the corresponding set of frames in
shot. The technique introduced in [10] is based on a hierarchical complete link approach.
From the formulated clusters the keyframes are selected only from those that contain at
least one uninterrupted nine-second sequence of frames so as to avoid video artefacts.
According to the clustering algorithm (GMM) proposed by [9] each frame is transformed
into the eigenspace via principal component analysis (PCA). The purpose of this
transformation is to perform dimensionality reduction so that the high-dimensional image
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space can be represented by a much lower dimension space, whilst retaining the significant
variations of the original dataset. The cluster centroids are the centers of each component
and are selected to form the keyframe set. In Gong [11] the video summarization is
accomplished with a clustering algorithm based on singular value decomposition method
(SVD). The video frames are time sampled and visual features are computed. The refined
feature vectors are clustered, and a keyframe is extracted from each cluster. Finally the
method presented in [31] uses a hierarchical clustering algorithm based on spectral
clustering that merges similar frames into clusters in a tree-structured representation with
individual frame at the leaves.

The curve simplification approach is related to the clustering method as each frame is
represented in the feature space. However, this technique searches for a set of points, such
as, that the removal of the remaining points does not affect the basic shape of the curve
connecting all points according to the temporal order in the video sequence. In [6] the
keyframe extraction problem is considered as fitting the curvature of point trajectory in the
feature space, in which the curvature characteristic frames are iteratively selected as
keyframes. The approach introduced in [15] uses a standard curve simplification algorithm,
namely, discrete contour evolution. The keyframe set is constructed through a polygon
simplification procedure, where its frame is appointed as a vertex.

Clustering techniques used in the above works usually rely on user-defined
specifications parameters. Most of the clustering techniques require either a predefined
number of clusters or a fixed parameter threshold value. Since, these parameters are mostly
found experimentally their adjustment is expensive and inefficient for a large dataset. It is
some of these shortcomings that the present work aims to tackle.

3 Our method

The proposed video summarization system composes of three stages and is illustrated in
Fig. 1. The first stage is a pre-processing one where the original video sequence is down-
sampled. Frames are selected by uniformly sampling the initial video sequence at a constant
frame-rate. In the second stage, a specific number of prototype vectors is selected that are
subsequently used to cluster the remainder of the video sequence. The key idea is to reveal
the topology of the original video sequence based on the selected prototypes, invoking
fuzzy logic procedures. The prototype’s set serves as a simplified representation of the
whole video sequence and the Fuzzy C-Means clustering methodology is employed to
provide the corresponding membership values among all of its elements. These membership
values are further processed to compute the connectivity matrix and construct the

Fig. 1 The structure of the video summarization system
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corresponding connectivity graph, which describes the important pairwise relations among
prototypes. Afterwards and in order to achieve an optimized grouping of prototypes, the
dominant sets among prototypes are extracted through a pairwise clustering graph-based
procedure [22]. In the third and final stage, from each dominant set the centroid vector is
extracted as keyframe.

3.1 Pre-processing

The video is considered as a discrete sequence of L consequent static images (frames), i.e.,
S ¼ FðiÞ 1 � i � Ljf g, where F(i) is the ith frame in the sequence. In order to exploit the
inherent temporal redundancy and reduce the required computational time and complexity
of the clustering process the video is down-sampled at a frame-rate R. The resulting video
sequenceS0 � S, comprises of N frames. The frame-rate R can be defined a priori or can be
set a posteriori according to the duration of the video [11, 21]. Experimental results indicate
that, for a value in the range R∈[1, 30] the quality of the video summary is only slightly
affected by the pre-sampling process. An indication is given in Fig. 2 where video
representation in the 2D (2-dimensional) reduced feature space is given both, in the original
form and in its down-sampled version. It is obvious that the topology of the data set is
maintained. This is due to the nature of the video, which conveys a great deal of redundant
information as most time adjacent frames are quite identical.

The down-sampled version S0of video sequence is represented in a d-dimensional feature
space by a set of vectors, F ¼ fi 1�i�Njf g, where fi ¼ fij 1�j�d

��� �
, is the corresponding

feature vector of the ith frame of the video sequence. The feature component fij represents
the jth attribute associated to vector fi. The feature selected in this study is a 24 bin HSV
colour histogram, where the first 16 bins refer to Hue, while the remaining 8 bins are
equally distributed to Saturation and Value, respectively.

Fig. 2 a Representation of the original video sequence S (in the box is indicated a segment of the original
dataset and the selected data through the down-sampling procedure, marked with red circle). b
Representation of the down-sampled version of the video sequence S0(the frame-rate is R=5), in the ℜ2

feature space. Both biplots were produced in the reduced feature space using PCA analysis. The structural
similarity of the two data representations is obvious
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3.2 Clustering process

Clustering the frames of a video sequence is an essential part in video summary. Clustering
data generally is not an easy task and in our case the situation is more complex due to the
high structural organization of the video data. The large number of frames and the high
dimensionality adds to the burden of the clustering process. To tackle all these issues and to
produce automatically the correct number of clusters the process adopts a graph-based
methodology which is accomplished in two steps.

3.2.1 Partition matrix—prototypes set

Using as input the set of vectors F from the pre-processing stage, some prototype vectors are
extracted. Their number is on purpose selected higher than the true number of classes in the
set. Although, these prototypes (due to the over-determined number) do not correspond to the
correct classification scheme, however, they can serve as “markers”, used to reveal the correct
organization of the dataset and guide the final classification stage. The objective of this
section is to organize prototypes in a graph structure that reveals their topology and existing
connectivity information between them. It should be noticed that this organization is
accomplished using the whole data set F so that the new structure retains global information
while at the same time is more efficient due to much reduced number of data elements.

The key idea is to compute the connectivity among prototypes utilizing the membership
values of all vectors in set F with regard to the prototypes set. This process originates from
a recently presented data structure learning methodology [14], which as starting point uses
the well known Fuzzy C-Means (FCM) clustering algorithm.

In the present work, the iteration step of the FCM algorithm for the selection of cluster
centers is ignored and the prototypes are selected by uniformly sampling the down-sampled
version of the video sequence F. This modification of the original algorithm was found
necessary due to the strong data-density variation in the feature space of the video sequences.
The selected prototypes set in our case, unlike FCM, do not necessarily correspond to high
density areas. However there are certain advantages associated with our approach i) time
proximity of prototypes is preserved ii) the property of closeness is maintained (the
prototypes are subset of the original video sequence) iii) low density areas are well
represented in the prototype’s set, especially those corresponding to small duration shots.

The number of the selected prototypes n must be sufficiently large for the competent
representation of the entire video sequence. A relatively small number of prototypes may
not represent the true clusters contained in the dataset, while a large number of prototypes
might leave insufficient number of test vectors to run the process and reveal the true
connectivity structure. It should be noticed here that, although, in our method the
prototypes are not produced from the FCM algorithm the subsequent step of the algorithm
that computes membership values is utilized.

Let us denote Fp ¼ fpi 1�i�nj� �
the selected set of prototype vectors and Fd ¼

fdj 1�j�N�n

��� �
the remaining vectors of the initial set F, where F ¼ Fp [ Fd and

fpi 6¼ fdj; 8i; j. Each prototype vector fpi is compared to the vectorsfdj, providing the
corresponding dissimilarity matrix D ¼ dij

� �
n� N�nð Þ, i.e.

dij ¼
Xd
k¼1

fpik � fdjk
�� ��2 ; 8 i 2 1; n½ � and 8 j 2 1;N � n½ � ð1Þ

where d denotes the dimension of the selected feature space.
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The partition matrix is computed from the dissimilarity matrix, as:

wij ¼ 1Pn
k¼1

dij
dkj

n o2 ð2Þ

The resulting matrix W ¼ wij

� �
n� N�nð Þ depicted in Fig. 3, is a n×(N-n) matrix

comprising the membership value of each vector fdj with regard to the set of prototype
vectors Fp, with 0≤wij≤1 and Pn

i¼1
wij ¼ 1, where:

W ¼ wij

� �
n� N�nð Þ¼

w11 w12 � � �w1N�n

w21 w22 � � �w2N�n
..
. ..

. ..
. ..

.

wn1 wn2 � � �wnN�n

2
64

3
75

3.2.2 Connectivity graph

The partition matrix W ¼ wij

� �
n�N�n contains information regarding the relative proximity of

each vector to the prototypes set Fp. The membership values indicate the strength of the
relationship between the data element j and a particular prototype i, which is considered as a
cluster centre. The assignment of data elements to one or more clusters based on the partition
matrix W ¼ wij

� �
n�N�n is an essential process in fuzzy clustering. The information included in

the partition matrix is very rich and can be used advantageously to detect existing similarities
between prototypes and subsequently compute their connectivity. Looking in one column j of
the partition matrix illustrated in Fig. 3, it is seen that each element j has stronger relations with
a certain number of prototypes. This observation could be also translated as an indication that
those prototypes may share some common characteristics and belong to the same class.

In compact formulation the connectivity strength cij is computed from the partition
matrix W as a point-to-point correlation of the membership values [14], where

cij ¼
XN�n

k¼1

wikwjk ð3Þ

Fig. 3 Visualization of the partition matrix W for a certain video data set

Multimed Tools Appl (2009) 44:161–186 167



The derived connectivity matrix C ¼ cij
� �

n�n is a symmetric n×n matrix. An example is
given in Fig. 4, for the same data set of Fig. 3.

Having produced the matrix C we construct the corresponding connectivity graph G=(V,
E,a), where V ¼ 1; . . . ; nf g is the vertex set, E � V � V the edge set, and a : E ! <þ is
the weight function. Vertices of G denote the prototypes, while edge-weights reflect the
connectivity strength between pairs of linked vertices. The graph G is represented by the
corresponding weighted similarity matrix A, where A ¼ aij

� �
n�n with entry values

computed as:

aij ¼ cij; if i 6¼ j
0; otherwise

�
ð4Þ

i.e., matrix A is symmetric and all elements on the main diagonal (self-loops) are zero. The
resulting connectivity graph is a fully connected undirected graph, and is illustrated in Fig. 5(a).

In order to emphasize the strong connectivity relations only, a thresholding scheme has
been introduced in the partition matrix. Membership values below a threshold value τ are
zeroed and do not contribute in the estimation of the correlations. Using this modification
the connectivity values are re-estimated based on the new membership values, as:

cij
0 ¼

XN�n

k¼1

wik
0wjk

0 ð5Þ

where wij
0corresponds to the re-estimated membership value: wij

0 ¼ wij � q wij � t
� 	

, with
q �ð Þ the step function. Non zero values of C0 indicate now a strong connection for the
corresponding pair of prototypes while all zero values are denoted in the produced
connectivity graph G by the absence of the corresponding edges, Fig. 5(b).

When the threshold value is increased the number of connecting edges decreases,
resulting to the partitioning of the connectivity graph, as it is illustrated in Fig. 5(b–d).
Although this partitioning based on threshold value τ could be efficiently utilized to

Fig. 4 Visualization of the connectivity matrix of the prototype set
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produce the appropriate number of classes the more robust “dominant set” clustering
algorithm [22] has been adopted here. In order to apply this algorithm, described in the next
paragraph, the graph should be connected. A self-terminating algorithm to compute the
critical threshold value τ, which keeps the graph connected, is presented in Table 1.

3.2.3 Dominant sets extraction

The dominant sets extraction step that follows serves to partition the created connectivity
graph and determine the true prominent classes of the video sequence.

Let us consider that the connectivity graph G can be partitioned into m disjoint sub-graphs,
each one comprising a set of vertices, V ¼ V1 [ V2 [ � � �Vm, where Vi \ Vj ¼ ;
O i; jð Þ 2 1; m½ �. The objective in the partitioning process is to identify the most cohesive
sets of vertices, denoted as dominant sets, based on the information provided by the weighted
similarity matrix A.

The dominant set is defined as the cluster comprising of a group of vertices with: a) high
intra homogeneity and b) high inter in-homogeneity. For the set of vertices in the graph this
is equivalent to the selection of the group of vertices with large weight values for edges
within the cluster and small weight values for edges connecting different clusters. So, a
high quality cluster is the one where elements are strongly associated with large similarity
values in matrix A.

According to a recently introduced graph-theoretic algorithm [22] the extraction of the
most cohesive group is equivalent to the maximization of the following objective function
(cohesiveness function)

JðxÞ ¼
Xn
i¼1

Xn
j¼1

xiaijxj ð6Þ

Fig. 5 a Visualization of the connectivity graph G, b the connectivity graph after the deletion of the weakest
edges based on the estimation of the critical threshold value and c–d the connectivity graph with the selection
of a relatively large threshold value (with red circles are denoted the prototypes and with solid black lines the
corresponding edges)
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according to the participation vector x [20], subject to

x ¼ xi 1�i�njf g with xi � 0 and
Xn
i¼1

xi ¼ 1; 8i ð7Þ

Each component of vector x express the participation degree of the corresponding vertex
to the cluster. If a component has a small value, then the corresponding vertex is weakly
associated with the cluster, whereas if it has a large value, the vertex is strongly associated
with it. For those vertices that do not participate in the cluster the corresponding values are
zero.

A straightforward and efficient way to find the local solution of the quadratic problem in
Eq. (6) was given by the so-called replicator dynamics [24]. According to this approach the
participation vector can be computed through a simple recursive process, according to the
following model:

x tþ1ð Þ
i ¼ xðtÞi �

xðtÞi
Pn
k¼1

aikx
ðtÞ
k

Pn
k¼1

Pn
j¼1

xðtÞk akjx
ðtÞ
j

ð8Þ

where xðtÞi denotes the value of the ith component of the participation vector x during the tth
iteration of the process. After a fixed number of iterations, the support of x is computed
providing the set of vertices participating (all vertices corresponding to no zero values) in
the dominant sub-graph, as described in Table 2.

The full partitioning of the graph is accomplished by repeating the previous procedure.
At each step, the algorithm extracts the dominant set of vertices corresponding to the

Table 1 The algorithm for the computation of the critical threshold value

Initialize the threshold value 
0 

The procedure continues until at least one node is disconnected

     while 1
1

min −=
=

n
n

j
'iji

For the current threshold value compute the re-estimated connectivity cij

and weight values ij according to Eq.(5) and Eq.(4). For each node, search
all possible node connections 

     for i=1 to n
     for j=1 to n 
For each pair of node compute the adjacency weight value and entry 
a new edge connection 

==
otherwise,

ijif,
'ji'ij

0

01

     end for 
     end for 

Increase the threshold value by a fixed value and repeat the previous procedure 
+0.001

     end while

aij
0 is the corresponding adjacency weight of graph G. It is used only during the critical threshold

computation.
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current sub-graph, as resulted through the bipartition process. The current group of vertices
is removed from the initial graph and the formed sub-graph is used as input the next
iteration of the algorithm. The algorithm with regard to the participation vector x, computes
the corresponding cohesiveness function. Groups of vertices with cohesiveness value
smaller than a certain threshold value are not accepted. The algorithm terminates when the
threshold value is reached. This threshold value is defined as:

JT ðxÞ ¼
Xn
i¼1

Xn
j¼1

eiaijej ð9Þ

where e is a n-dimensional vector consisting of unit entries (normalized in order to fulfill
the restriction, introduced in Eq. (7)). The threshold value is a measure of the cohesiveness
of the initial set of vertices in the connectivity graph. The whole procedure is described in
Table 3.

The algorithm is self-terminating according to the threshold value, in Eq. (9). Any
unprocessed vertex is assigned to the nearest dominant set according to its connectivity
value.

3.2.4 Keyframes extraction

The video summary is easily derived from the partitioned connectivity graph. For each
individual subgraph the dominant vertice is extracted, identified as the centroid of the
corresponding cluster, i.e.

vi ¼ ViðkÞ ¼ argmax
k

Xni
k¼1

C ViðkÞ;Við Þ½ �
( )

ð10Þ

where vi is the corresponding dominant node of the dominant set Vi, ni is the number of
vertices comprising in the ith cluster, and C(⋅) denotes the connectivity measure between
the kth node set and the dominant set Vi.

The resulting dominant node-set v ¼ vi 1�i�mjf g contains the centroids of the identified
clusters. We select to appoint the unitary sets directly to the nearest dominant node-set, as
they comprise of only one vertex and it is unlike to represent meaningful keyframes.

Table 2 The algorithm for the extraction of the dominant set

Initialize the clustering procedure 
t 1 
Set the participation vector x(t) as the simplex barycenter 

( ) /nx t
i 1= , for i [1, n] 

Normalize the participation vector x based on the restriction in Eq.(7) and compute 

the cohesiveness function ( )( )tJ x according to Eq.(6)

     while ( )( ) ( )( )t1t JJ xx +

Compute the re-estimated participation  vector x(t+1) and the corresponding cohesiveness function 
( )( )1tJ +x (the participation vector must first be normalized)

The procedure continues until the cohesiveness function stables to a fixed value 
t t+1 

     end while
Define the dominant set according to the arguments of the estimated cluster vector x
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4 Experimental study

4.1 Evaluation criteria

One of the most difficult tasks in the field of the video abstraction is the evaluation of the
produced abstracts over a video sequence. This is because, unlike other vision research
areas such as object detection and recognition, the evaluation of a video abstract is not a
straightforward task due to the lack of an objective criterion (ground-truth). Much of the
problem comes from the absence of standardized metrics, due to the disparities between
feature-based low level analysis and higher level semantics of the video content. In most
cases, it is difficult for someone to decide if one video abstract is better than another,
making the summarization task application-dependent.

Several evaluation techniques have been proposed during the last years. In its simple
form, the testing method is applied to a few video sequences and the resulting abstract is
described or discussed [12, 30, 32]. Other evaluation procedures rely on the opinion of a
panel of users judging the quality of the generated video summaries. In [8] each keyframe is
classified as “good”, “fair”, or “poor” according to the original video sequence. In a similar
but in a more systematic and subjective study Liu et al. [16] set the evaluation framework
based on a large group of testers. Each tester has the ability to assign a score, denoted as
“good”, “acceptable”, or “bad”, regarding the extracted keyframe set. These scores are then
used to evaluate the proposed technique on a large collection of videos of variable genres,
as news, sports and home movies. Although this is probably the most realistic approach of
evaluation, especially when keyframes are extracted for user-based tasks, it could not be
easily employed to a wide range of video applications, since it is very difficult to determine
the parameters of the experiment.

On the other hand, the selection of objective criteria which can be applied automatically
to all video sequences without the need of video experts is more attractive. According to
[13] a video abstract should maintain three attributes in order to provide an effective video
representation: conciseness, comprehensive coverage and coherence. Conciseness is
straightforward associated to the length of the produced video summary. Comprehensive
coverage ensures that the selected key-frame set can efficiently represent the visual
diversity of the video sequence. Coherence is associated to the consecutiveness of the

Table 3 The algorithm for the extraction of the dominant sets

Initialize the clustering procedure 
1i
xx ='

Compute the threshold value ( )xTJ  according to Eq.(9) 

     while ( ) ( )xx' TJJ

Identify the dominant set of the graph, based on the procedure in Table 2 
Extract the corresponding set of vertices Vi from the initial vertex set V 
          Vi V=
The procedure continues until the cohesiveness function reaches the predefined threshold 
Compute the corresponding cohesiveness value ( )x'J  and repeat the procedure 

1ii +
     end while 

x0is a subset of the participation vector x, provided after the extraction of the dominant set Vi from the
original vertex set V.
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produced abstract. This attribute is usually addressed to video applications which maintain
the temporal continuity and the dynamic of the video sequence. Based on these
observations, we select four metrics, in order to evaluate the results of a video summary:
Fidelity, Compression rate, Recall and Precision.

Fidelity is used as a measure of the comprehensive coverage of a video. It is based on
the metric of the semi-Hausdorff distance, first introduced by Chang et al. [4]. The Fidelity
measure is computed as the maximum of the minimum distances between the keyframe set
and the frames in the original video sequence, i.e.

df ¼ max
i

min
j

dij
� 	
 �

; 8i 2 1; N½ �; 8j 2 1; m½ � ð11Þ

where dij ¼ D fi;Kfj
� 	

is a dissimilarity measurement between the ith frame of the video
sequence and the jth keyframe of the video summary. Usually, the Fidelity is computed in
its normalized form, as:

Fidelity ¼ 1� df

max
i

max
j

dij
� 	
 � ð12Þ

High Fidelity values indicate that the extracted keyframe set provides a good global
description of the visual content of the video sequence.

Compression rate is used as a measure of video conciseness. It is computed as:

CR ¼ m

N
ð13Þ

where m is the number of keyframes and N is the total number of frames in the original
video. This metric gives an indication of the size of the summary with respect to the size of
the original video.

Recall is used as a measure of the coherence of a video. It is defined as:

Recall ¼ Nc

Nh
ð14Þ

where Nc is the number of the correctly detected shots and Nh the number of shots annotated
by human subjects and used in the experimentation as ground-truth. Although, it is reported
mainly for the evaluation of shot-based algorithms, it is applicable to this work too.

Precision is introduced as a measure of the optical comprehensiveness of a video. It is
defined as:

Precision ¼ Nc

Nc þ Nm
ð15Þ

where Nc is the number of the correctly detected shots and Nm the number of false detected
shots, corresponding to gradual transition segments in the video sequence like fade-in/out,
wipes and dissolves.

4.2 Algorithms tested

We have compared the results of our method with three other keyframe extraction methods:
1) Adaptive unsupervised clustering algorithm (ADC) [32], 2) Delaunay clustering
algorithm (DCA) [21] and 3) Open Video Project (OVP) website results in [26].
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The ADC algorithm is a dynamic clustering method. It works in a sequential way,
clustering the video frames according to a user-defined threshold value. At each step of the
algorithm the entry frame is compared to the centroids of the existing clusters and it is
appointed to the most similar one, according to a threshold value. If not, it is appointed to a
new cluster. Prior to the next step, the algorithm refines the clusters centroids and repeats
the procedure for all frames in the video sequence. When the clusters are formed, the frame
which is closest to the cluster centroid is selected as the keyframe.

The DCA algorithm uses the Delaunay Triangulation in order to cluster the frames of the
video sequence in a fully automatic way obviating any need for parameter definition, as the
previously described ADC algorithm does. Initially each frame is represented in a
multidimensional feature space (256 HSV colour histogram). By using PCA analysis it
reduces the dimensions of the feature vectors, which serve as nodes for the corresponding
Delaunay diagram. The clusters are formulated from the partition of the diagram by
removing the separating edges. The frame that is nearest to the center of each cluster is
selected as keyframe.

The Open Video Project (OVP) is a valuable resource, providing the storyboard results
for a very large number of videos. Each video summary is generated using the algorithm
from [6] together with some manual intervention that refines results. The overall procedure
is described in [19]. It is well suited for video summary applications and it is referenced by
many published works.

4.3 Theoretical complexity

The theoretical complexity of the three keyframe extraction algorithms is shown in Table 4.
All costs are computed using the specified algorithms’ parameters. The OVP algorithm is
not included, since the keyframe set is provided directly the corresponding website. The
complexity was computed considering logical and mathematical operations, all with unit
cost. We have not taken into account memory usage or the cost required to decode a frame
as in each algorithm the pre-processing step is ignored. Let N, the number of the processed
video sequence (we consider the same size for all algorithms), n the number of prototypes
selected in our algorithm (due to sampling n<<N) and m the number of the extracted
keyframes. The complexity is relative to the number of operations required during the
clustering procedure. Although the construction of the Delaunay diagram of the DCA
algorithm is fast, the PCA pre-processing phase penalises the algorithm. More than half of
the operations required by our algorithm are used to compute the connectivity threshold. By
employing a fixed threshold value the complexity is reduced to O(n2).

4.4 Video dataset

We tested our method on 20 selected video segments, each of length more than 2 min,
pertaining to documentaries, as shown in Table 5. The video segments were MPEG
compressed and downloaded from the Open Video Project’s shared digital video repository

Algorithm Complexity

Our method O(nN+n2)

ADC O(n-1)

DCA O(NlogN+N2)

Table 4 Complexities of the
keyframe extraction algorithms
tested in this work
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[26]. They were first decompressed using the official MPEG codec from MPEG Software
Simulation Group [27]. In Table 5 we also present the number of shots that are used as
ground-truth during the computation of Recall and Precision along with the number of
transitional regions in the video sequence.

Seven out of twenty videos are selected in order to test the ability of our algorithm to exclude
duplicate keyframes from the video summary. These videos are presented in Table 6, along
with the number of duplicate shots presented in the corresponding video sequence.

Table 6 The seven videos present duplicate shots in the video sequence

Video File anni004 UGS01 UGS02 UGS02 UGS02 UGS02 UGS02

007 004 006 008 009 010

NR 3 2 2 2 3 2 1

NR is the total number of duplicate shots in video.

Table 5 The video set used in the experimental results

VideoName Video File Duration
(mm:ss)

Resolution
(W×H)

TNF NS NF

Nasa 25th Anniversary Show,
Segment 3

anni003 02:22 320×240 4,267 27 2

Nasa 25th Anniversary Show,
Segment 4

anni004 02:09 320×240 3,895 19 5

Exotic Terrane, Segment 4 UGS01_004 02:40 352×240 4,797 23 5

Exotic Terrane, Segment 7 UGS01_007 03:06 352×240 5,601 23 13

Exotic Terrane, Segment 10 UGS01_010 02:13 352×240 3,999 20 7

Exotic Terrane, Segment 11 UGS01_011 02:00 352×240 3,606 18 15

America’s New Frontier, Segment 4 UGS02_004 02:03 352×240 3,705 10 0

America’s New Frontier, Segment 5 UGS02_005 02:40 352×240 4,896 22 1

America’s New Frontier, Segment 6 UGS02_006 04:49 352×240 8,670 20 3

America’s New Frontier, Segment 7 UGS02_007 02:00 352×240 3,615 19 5

America’s New Frontier, Segment 8 UGS02_008 04:13 352×240 7,608 23 5

America’s New Frontier, Segment 9 UGS02_009 03:49 352×240 6,879 20 1

America’s New Frontier, Segment 10 UGS02_010 02:41 352×240 4,830 9 1

Ocean Floor Legacy, Segment 3 UGS07_003 02:38 352×240 4,749 18 6

Ocean Floor Legacy, Segment 5 UGS07_005 02:35 352×240 4,665 25 4

The Future of Energy Gases,
Segment 4

UGS03_004 04:27 352×240 8,007 28 5

The Future of Energy Gases,
Segment 6

UGS03_006 02:02 352×240 3,660 19 7

The Future of Energy Gases,
Segment 10

UGS03_010 02:51 352×240 5,142 9 5

Moon, Segment 2 moon002 03:43 320×240 6,709 22 26

New Indians, Segment 11 indi011 04:14 320×240 7,640 51 2

TNF is the total number of frames in the video sequence.

NS is the number of shots according to the ground-truth.

NF is the number of transitional regions (fade-in/out, wipes, dissolves).
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4.5 Experimental results

We evaluated the proposed system on two aspects: i) the computational performance of the
tested algorithms and ii) applying the four criteria presented in Section 4.1. For both
experiments, the parameters set of the algorithms was adjusted based on the reported values
in the original papers. For the ADC algorithm, the parameter of the threshold value that
controls the density of clusters was adjusted in order to achieve the same number of
keyframes as the OVP algorithm. On the other hand since both, our algorithm and the DCA
method extracts the keyframes in a totally automatic way, the results depend on both the
number of keyframes extracted and the selection of the processing technique.

In our technique frame rate (pre-processing stage) is set to R=5, while prototypes are selected
by uniformly sampling the down-sampled version of the video sequence. In order to evaluate
the number of prototypes n, an experiment is conducted. For each video the set of prototypes is
selected by using a fixed sampling-rate in the range [2–20]. The produced key frame set is
evaluated by using the Recall measure. The scope of the experiment is to measure the influence
of the selected number of prototypes to the performance of the system, i.e., to the coverage
ability based on the identified set of different shots in the video. The results, as depicted in Fig.
6, present the average Recall measurement per step value for all the 20 videos of the dataset. As
the results indicate, there is a reduction in the Recall value as the sampling-rate increases,
especially for values greater than 10 (Recall<0.95). This is due to the reduction on the
representative ability of the system. In line with this observation, we selected a sampling-rate of
one prototype per ten frames.

4.5.1 Computational time

Table 7 shows the computational time of the algorithms tested. All algorithms were
implemented in Matlab 6.5 development environment with the default optimization turned
on. The computer used for the comparison was an Intel Pentium (4) 3 GHz with 512 MB of
RAM and running under the Windows XP 2002 Professional operating system. The pre-
processing step in each algorithm was omitted. A test session was performed by processing all
videos sequences under the same variable definition (the length of the processed video

Fig. 6 Recall value versus prototypes sampling rate
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sequence) repeated for three times. For each video the computational time reported refers to
average time of the three test sessions. The OVP was not included, since its results are provided
in the corresponding website page [26], obviating any need for simulation in the current work.

As it is shown from testing results, the computational time of the DCA algorithm depends
mostly on the length of the processed video. On the other hand, our algorithm and the ADC
algorithm depend on the number of the resulting clusters along with the length of the video
sequence, since both algorithms include an iterative stage which refines the value of the
cohesiveness function and the centroid point of the clusters. The most time consuming part in our
algorithm proved to be the computation of the critical threshold value related to the connectivity
matrix. Replacing that component with a fixed threshold value the computational time increases
its speed up to 313%. Comparing the simulation results with the other two algorithms we observe
an improvement up to 4% and 368% with respect to the ADC and DCA algorithm, respectively.

4.5.2 Evaluation metrics

Figure 7 summarizes the results for the Fidelity measure. In order to make a fair
comparison, all four algorithms were tested under the same feature, the 256 HSV colour
histogram. During these experiments two different measures were computed: overall Fig. 7(a)
and local Fidelity Fig. 7(b).

The overall Fidelity computes the overall content coverage of the video sequence by the
keyframe set. As experimental results indicate, our algorithm presents better results in 16
out of 20 tested videos (shown in bold). For the rest four videos, OVP gains higher Fidelity

Table 7 Computational time of the video set, reported in seconds and thousands of seconds

Video file Our method ADC DCA

Threshold computation Fixed threshold

anni003 3:03 0:38 1:18 4:63

anni004 3:22 0:34 1:43 4:01

UGS01_004 2:72 0:70 0:79 5:17

UGS01_007 5:44 1:03 1:56 6:07

UGS01_010 3:03 0:36 0:69 4:32

UGS01_011 2:56 0:36 0:58 3:81

UGS02_004 5:73 1:83 0:48 4:22

UGS02_005 3:45 0:53 0:75 5:21

UGS02_006 10:18 2:98 1:31 9:67

UGS02_007 2:62 0:34 0:84 3:93

UGS02_008 7:35 1:92 2:73 8:26

UGS02_009 8:51 2:15 1:17 7:50

UGS02_010 3:15 0:75 0:80 5:23

UGS07_003 3:59 0:83 1:22 5:07

UGS07_005 3:53 0:55 0:57 5:02

UGS03_004 8:53 2:03 2:10 8:69

UGS03_006 2:83 0:48 0:72 3:98

UGS03_010 3:44 1:08 1:31 5:65

moon002 6:52 2:01 2:23 7:88

indi011 13:55 4:28 3:47 8:39
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value in three of them (anni004, UGS01_004 and UGS01_011), while the ADC algorithm
is better only in one video (UGS03_010). We noticed that both OVP and ADC algorithm
produce almost the same Fidelity quality. This is not strange, as both algorithms share the
same number of keyframes. On the other hand, DCA algorithm produces the smallest
Fidelity values in almost all tested videos, compared with the other three methods. On
average, our algorithm presents an improvement of up to 6.35%, 7.65% and 15.15% with
regard to the OVP, ADC and DCA algorithms. Especially, in videos: anni003, UGS02_004,

Fig. 7 Comparison of the video summarization algorithms via the overall and local Fidelity measure
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UGS02_006, UGS07_003, UGS_007_005 and indi011 this improvement is increased up to
20%. In detail we summarize the average, the minimum and the maximum detected Fidelity
values of four algorithms in Table 8, along with the corresponding videos.

Since, keyframes extracted from different shots may have similar feature representation
but different pictorial content (semantic information), we must take this into account by
computing the corresponding local quality. For each shot the Fidelity measure is computed
for the corresponding keyframes. If an algorithm does not extract keyframes from a shot,
the corresponding Fidelity measurement is set to the worst case value (zero). The final local
Fidelity measure is computed as the average of all Fidelity measures for the shots and is
presented in Fig. 7.

As experimental results indicate, the efficiency decreases presenting better results in 14 out of
20 tested videos, with regard to the overall Fidelity measurement. The quality of the OVP is
increased by two videos (notice that the maximum local Fidelity value is not presented for the
same videos compared with the overall Fidelity value), while the ADC is better only in one video.
Although the average improvement is still up to ~10% compared to the other summarization
techniques the ability of detecting representative frames in each shot is much lower, compared to
the ability of the global representation of the video sequence. This is partly because our algorithm
has the tendency to ignore duplicate frames that appear in different but pictorial identical shots.
Although this improves the comprehensive coverage of the video sequence it cannot be clearly
evident by the use of the specific metric. In Table 9 we summarize the average, the minimum and
the maximum detected local Fidelity values of four algorithms, along with the corresponding
videos. All measurements indicate that the performance of our algorithm is better.

Table 10 summarizes the compression rate results. The first column presents the
corresponding number of shots (and the corresponding refined values after the detection of
duplicate shots); the next three columns indicate the number of the extracted keyframes per
algorithm while the final three columns portray the computed compression rate. The
number of shots is a basic indication of the correct number of keyframes. The selection of
one keyframe per shot is considered as the most efficient technique since it maintains the
conciseness of the video summary while at the same time it captures the comprehensive
information of the video segment.

As experimental results indicate, our algorithm produces on average seven additional
keyframes, OVP and ADC produce two additional keyframes, while DCA produces five
less keyframes, all compared to the ground-truth (NS). On average, our algorithm presents

Table 8 Comparison of the video summarization algorithms via the overall Fidelity measure

Algorithms AVF MAXF MINF Video

Our Method 0.7852 0.9036 UGS02_004

0.6180 UGS01_010

OVP 0.7383 0.8671 UGS01_004

0.5598 UGS07_005

ADC 0.7294 0.8675 UGS03_003

0.5282 UGS07_005

DCA 0.6819 0.8269 UGS03_006

0.5083 UGS01_010

AVF is the average Fidelity value.

MAXF is the maximum Fidelity value.

MINF is the minimum Fidelity value.
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an increase up to 25% and 88% of the compression rate, with regard to the OVP/ADC and
the DCA algorithm, respectively. Although this penalizes the conciseness of the produced
video summary, it describes analytically the details included in high motion segments of a
video sequence. As it can be seen in Fig. 8, our storyboard result (the keyframe set is re-
organized according to the index of each frame in the video sequence) contains more
semantically rich information since: a) describes a larger number of shots (without

Table 10 Compression-rate comparison of the video summarization algorithms

Video file NS Number of keyframes CR (%)

Our method OVP ADC DCA Our method OVP ADC DCA

anni003 27 32 26 7 0.75 0.61 0.16

anni004 19 (16) 27 29 13 0.69 0.74 0.33

UGS01_004 23 28 28 16 0.58 0.58 0.33

UGS01_007 23 (21) 31 24 26 0.55 0.43 0.46

UGS01_010 20 27 21 11 0.68 0.53 0.28

UGS01_011 18 21 18 9 0.58 0.50 0.25

UGS02_004 10 (8) 20 13 10 0.54 0.35 0.27

UGS02_005 22 35 23 15 0.71 0.47 0.31

UGS02_006 20 (18) 42 37 14 0.48 0.43 0.16

UGS02_007 19 22 22 17 0.61 0.61 0.47

UGS02_008 23 (20) 32 28 18 0.42 0.37 0.24

UGS02_009 20 (18) 26 24 19 0.38 0.35 0.28

UGS02_010 9 (8) 22 15 8 0.46 0.31 0.17

UGS07_003 18 20 19 14 0.42 0.40 0.30

UGS07_005 25 31 12 16 0.66 0.26 0.34

UGS03_004 28 40 30 24 0.50 0.37 0.30

UGS03_006 19 29 20 15 0.80 0.55 0.41

UGS03_010 9 13 9 13 0.25 0.18 0.25

moon002 22 26 24 18 0.39 0.36 0.27

indi011 51 42 29 20 0.55 0.38 0.26

Table 9 Comparison of the video summarization algorithms via the local Fidelity measure

Algorithms AVF MAXF MINF Video

Our Method 0.8156 0.9251 UGS02_005

0.6570 anni004

OVP 0.7442 0.9080 UGS02_009

0.3978 UGS07_005

ADC 0.6474 0.8431 UGS02_005

0.2542 UGS01_011

DCA 0.4759 0.8832 UGS03_010

0.1643 UGS01_011

AVF is the average Fidelity value.

MAXF is the maximum Fidelity value.

MINF is the minimum Fidelity value.
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Fig. 8 The keyframe sets extracted by the tested algorithm, for the video file anni003 a OVP, b our method,
c ADC and d DCA
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duplicates) and b) provides an additional keyframe in segments of the video sequence with
high motion activity. It should be noticed that ADC is adjusted in order to produce the same
number of keyframes as that provided by the OVP storyboard.

Figure 9 summarizes the results of the studied algorithms for Recall and Precision. For both
metrics our algorithm gives better results an indication that it is able to detect all the correct
keyframes (high Recall value), while at the same time avoids transitional frames (high
Precision).

Fig. 9 Comparison of the video summarization algorithms via Precision and Recall
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In detail we summarize the average, the minimum and the maximum computed Precision
and Recall values of the four algorithms in Table 11. In all cases our algorithm produces
better results.

5 Conclusion and future work

In this paper, we proposed an automatic graph-based video summarization technique. This
technique generates video summaries by exploiting the connectivity matrix of selected
number of prototypes derived by a down-sampled version of the original video sequence.
Fuzzy logic formalism is used for the connectivity matrix computations. This process
projects to the prototypes the associated connectivity information of the whole data set and
reveals its structure. The essential step of cluster extraction is accomplished by the robust
action of the dominant set clustering algorithm. The method is free of user-specified
modeling parameters and all used thresholds are extracted automatically during the
clustering process according to the inherent characteristics of the video data set.

It is well suited for long time videos, obviating any need for shot boundaries
detection. Extensive comparisons of the proposed algorithm to OVP storyboard, the
adaptive clustering algorithm (ADC) and the Delaunay clustering algorithm (DCA)
have been carried out by employing metrics such as, fidelity measure (overall and
local), compression rate, recall and precision. All these metrics evaluate the
representational ability of the proposed summarization technique. The advantage of
our method for batch processing of large videos regarding the processing time is also
demonstrated.

In future work, we plan to apply the dominant clustering approach using several
additional features besides the HSV color histogram, such as, text, audio and motion
features. As it can be seen by our results the clustering performance the algorithm is
particularly good in selecting frames with high motion activity and revealing video
segments with high semantic information. Furthermore, using the proposed clustering
technique as the core layer in an automatic video processing architecture, many other
content analysis-based applications can be designed such as, video indexing, searching and
retrieval.

Table 11 Comparison of the video summarization algorithms via Precision and Recall

Algorithms AVP MAXP MINP AVR MAXR MINR

Our Method 0.9817 1 0.9412 0.9329 1 0.7451

OVP 0.9772 1 0.9375 0.8487 1 0.4400

ADC 0.9375 1 0.8000 0.7529 0.9474 0.2778

DCA 0.8747 1 0.7454 0.5421 0.8889 0.1667

AVP is the average Precision value.

MAXP is the maximum Precision value.

MINP is the minimum Precision value.

AVR is the average Recall value.

MAXR is the maximum Recall value.

MINR is the minimum Recall value.

Multimed Tools Appl (2009) 44:161–186 183



Acknowledgments This work was financed by the European Social Fund (ESF), Operational Program for
Educational and Vocational Training II (EPEAEK II), and particularly the Program “New graduate programs
of University of Patras”.

References

1. Behzard S, Gibbon DS (1995) Automatic generation of pictorial transcripts of video programs. Proc
SPIE Multimedia Computer Networking 2417:512–518

2. Boreczky JS, Rowe LA (1996) Comparison of video shot boundary detection techniques. Proc Int Conf
Storage Retr Still Image Video Databases 5(2):170–179

3. Bovic AC (2000) Handbook of image and video processing. Bovic Academic Press 2000 9(2):705–715
4. Chanq HS, Sull S, Lee SU (1999) Efficient video indexing scheme for content-based retrieval. IEEE

Trans Circ Syst Video Tech 9(8):1269–1279. doi:10.1109/76.809161
5. Cooper M, Foote J (2005) Discriminative techniques for keyframe selection. IEEE Int. Conf Multimedia

and Expo (ICME) 502–505
6. DeMenthon D, Doermann DS, Kobla V (1998) Video summarization by curve simplification. Proc.

ACM Multimedia 211–218
7. Divakaran A, Radhakrishnanp R, Peker KA (2002) Motion activity-based extraction of key-frames from

video shots. Int Conf Image Process 1:932–935
8. Dufaux F (2000) Key frame selection to represent a video. Proc ICIP Conf 2:275–278
9. Gibson DNC, Thomas B (2002) Visual abstraction of wildlife footage using Gaussian mixture models.

Proc. 15th Int. Conf Vision Interface
10. Girgensohn A, Boreczky J (1999) Time-constrained keyframe selection technique. IEEE Int Conf

Multimedia Comput Syst 1:756–761
11. Gong Y, Liu X (2003) Video summarization and retrieval using singular video decomposition. ACM

Multimedia Syst 9(2):157–168. doi:10.1007/s00530-003-0086-3
12. Hanjalic A, Zhanq HonqJianq (1999) An integrated scheme for automated video abstraction based on

unsupervised cluster-validity analysis. IEEE Trans Circ Syst Video Tech 9(8):1280–1289. doi:10.1109/
76.809162

13. He L, Sanocki E, Gupta A, Grudin J (1999) Auto-Summarization of audio-video presentations. Proc.
ACM Multimedia Conf. (ACMMM) 489–498

14. Laskaris NA, Zafeiriou SP (2008) Beyond FCM: graph-theoretic post-processing algorithms for learning
and representing the data structure. Pattern Recognit 41(8):2630–2644. doi:10.1016/j.pat
cog.2008.02.005

15. Latecki LJ, Widldt DD, Hu J (2001) Extraction of key frames from videos by optimal color composition
matching and polygon simplification. Proc. Multimedia Signal Process Conf. (France)

16. Liu T, Kender JR (2002) An efficient error-minimizing algorithm for variable-rate temporal video
sampling. Proc. Int. Conf. Multimedia Expo (ICME)

17. Liu T, Zhanq H-J, Qi F (2003) A novel video key-frame extraction algorithm based on perceived motion
energy model. IEEE Trans Circ Syst Video Tech 13(10):1006–1013. doi:10.1109/TCSVT.2003.816521

18. Liu T, Zhang X, Feng J, Lo K-T (2004) Shot reconstruction degree: a novel criterion for keyframe
selection. Pattern Recognit Lett 25(12):1451–1457. doi:10.1016/j.patrec.2004.05.020

19. Marchionini G, Geisler G (2002) The open video digital library. D-Lib 8(12). doi:10.1045/
december2002-marchionini

20. Motzkin TS, Straus EG (1965) Maxima for graphs and a new proof of a theorem of Turan. Can J Math
17:533–540

21. Mundur P, Rao Y, Yesha Y (2006) Keyframe-based video summarization using Delaunay clustering. Int J
Digit Libr 6(2):219–232. doi:10.1007/s00799-005-0129-9

22. Pavan M, Pelillo M (2007) Dominant sets and pairwise clustering. IEEE Trans Pattern Anal Mach Intell
29(1):167–172. doi:10.1109/TPAMI.2007.250608

23. Ueda H, Miyatake T, Yoshizawa S (1991) Impact: an interactive natural picture dedicated multimedia
authoring systems. Proc. SIGCHI Conf Human factors Computer Systems 343–350

24. Weibull JW (1995) Evolutionary game theory. MIT Press
25. Xiong W, Lee JCM, Ma RH (1997) Automatic video data structuring through shot partitioning and key

frame computing. Mach Vis Appl 10(2):51–65. doi:10.1007/s001380050059
26. The Open Video Project http://www.open-video.org/
27. The MPEG Software Simulation Group http://www.mpeg.org/MPEG/MSSG/.
28. Yahiaoui I, Merialdo B, Huet B (2001) Automatic video summarization. Proc. CBMIR Conf

184 Multimed Tools Appl (2009) 44:161–186

http://dx.doi.org/10.1109/76.809161
http://dx.doi.org/10.1007/s00530-003-0086-3
http://dx.doi.org/10.1109/76.809162
http://dx.doi.org/10.1109/76.809162
http://dx.doi.org/10.1016/j.patcog.2008.02.005
http://dx.doi.org/10.1016/j.patcog.2008.02.005
http://dx.doi.org/10.1109/TCSVT.2003.816521
http://dx.doi.org/10.1016/j.patrec.2004.05.020
http://dx.doi.org/10.1045/december2002-marchionini
http://dx.doi.org/10.1045/december2002-marchionini
http://dx.doi.org/10.1007/s00799-005-0129-9
http://dx.doi.org/10.1109/TPAMI.2007.250608
http://dx.doi.org/10.1007/s001380050059
http://www.open-video.org/
http://dx.doi.org/10.1109/ICIP.1995.529715


29. Yeung MM, Liu B (1995) Efficient matching and clustering of video shots. Proc Int Conf Image Process
1:338–341. doi:10.1109/ICIP.1995.529715

30. Yu X D, Wang L, Tian Q, Xue P (2004) Multi-level video representation with application to keyframe
extraction. Proc. Int. Conf. Multimedia Modelling (MMM) 117–121

31. Zhang DQ, Lin CY, Chang SF, Smith JR (2004) Semantic video clustering across sources using bipartite
spectral clustering. Proc IEEE Conf Multimedia Expo (ICME) 1:117–120

32. Zhuang Y, Rui Y, Huang TS, Mehrotra S (1998) Adaptive key frame extraction using unsupervised
clustering. Proc Int Conf Image Process 1:866–870

Dimitrios Besiris He was born in Agrinio in 1978. He received the B.Sc. degree in Physics in 2002 and the
M.Sc. degree in Electronics in 2005. He is currently a Ph.D candidate in Image and Video Processing from
the Electronics Laboratory, Dept. of Physics, University of Patras, Greece. His main research interests
include image and video processing (browsing, retrieval, summarization and video object tracking), and
graph theory.

Andrew Makedonas He was born in Patras in 1977. He received both the B.Sc. degree in Physics in 2001
and the M.Sc. degree in Electronics in 2005 from University of Patras, Greece. He is currently a PhD
candidate in image processing at the Electronics Laboratory, Dept. of Physics, University of Patras, Greece.
His main research interests include image processing, pattern recognition, data mining and graph theory.

Multimed Tools Appl (2009) 44:161–186 185

http://dx.doi.org/10.1109/ICIP.1995.529715


George Economou received the B.S. degree in physics from the University of Patras (UoP), Greece in 1976,
the M.S. degree in microwaves and modern optics from University College London in 1978, and the Ph.D.
degree in fiber-optic-sensor-systems from the University of Patras in 1989. He is currently an Associate
Professor at Electronics Laboratory (ELLAB), Department of Physics, UoP, where he teaches at both
undergraduate and postgraduate levels. He has published papers on nonlinear signal and image processing,
fuzzy image processing, multimedia databases, data mining, and fiber-optic sensors. He has also served as a
referee for many journals, conferences, and workshops. His main research interests include signal and image
processing, computer vision, pattern recognition, and optical signal processing.

Spiros Fotopoulos is Professor at the Department of Physics of the University of Patras. He is Director of
the M.S. course on electronics and information processing. He is working in the digital signal and image
processing area. His research activities include nonlinear digital filters, fuzzy image processing, multimedia
databases, computer vision, graph-theoretic approaches, and applications to satellite images and biomedical
signals.

186 Multimed Tools Appl (2009) 44:161–186


	Combining graph connectivity & dominant set clustering for video summarization
	Abstract
	Introduction
	Related works
	Our method
	Pre-processing
	Clustering process
	Partition matrix—prototypes set
	Connectivity graph
	Dominant sets extraction
	Keyframes extraction


	Experimental study
	Evaluation criteria
	Algorithms tested
	Theoretical complexity
	Video dataset
	Experimental results
	Computational time
	Evaluation metrics


	Conclusion and future work
	References


