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Introduction

Complex adaptive systems (CAS) research area is trying to establish a comprehensive 

and general understanding of the complex world around us (Niazi and Hussain 2013). 

Complex systems typically involve the generation of high dimensional data and rely on 

effective analysis and management of such high-dimensional data. High dimensional 

data exists in a wide variety of real applications, such as text mining, image retrieval, and 

visual object recognition. While the high performance of computers can address some 

of the problems of high dimensional data, for example, the time consuming problem, 

however, the processing of high-dimensional data often suffers from a series of other 

problems, such as the curse of dimensionality and the impact of noise and redundancy. 

Fortunately, it has been shown that the high dimensionality of the data is usually small in 

the intrinsic reduced space.
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In the more or less recent past time, researchers have put forward a lot of efficient data 

dimensionality reduction algorithms (Wang et al. 2014; Zhou and Tao 2013; Nie et al. 

2011; Xu et  al. 2009; Li et  al. 2008). Principal component analysis (PCA) (Belhumeur 

et al. 1997) is a traditional method that projects the high dimensional data onto a low 

dimensional space. Linear discriminant analysis (LDA) (Zuo et al. 2006) is a supervised 

dimensionality reduction method by maximizing the amount of between-class vari-

ance relative to the amount of within-class variance (Nie et al. 2009; Yang et al. 2010). 

Neighborhood component analysis (NCA) (Goldberger et al. 2004) learns a linear trans-

formation by directly maximizing the stochastic variant of the expected leave-one-out 

classification accuracy on the training set. In order to find the intrinsic manifold struc-

ture of data samples, researchers also proposed some nonlinear dimension reduction 

methods, such as the locally linear embedding (LLE) (Roweis and Saul 2000) and the 

Laplacian eigenmap (LE) (Belkin and Niyogi 2003). If there are new data samples in the 

training set, the Laplacian methods need to learn the whole training set again, this is one 

of the disadvantages of these types of algorithms. In order to solve this problem, He et al. 

(2005a) put forward the algorithm of locality preserving projection (LPP), in which the 

linear projection is used to deal with new data samples. Wu et al. (2007) proposed the 

local learning projection (LLP) method to solve this problem. In addition, the neighbor-

hood preserving embedding (NPE) (He et al. 2005b) algorithm was put forward to keep 

the local neighborhood structure on the manifold of the data samples. Some previous 

studies (Zhang et  al. 2009; Tenenbaum et  al. 2000; Yan et  al. 2007) proved that many 

dimensionality reduction algorithms can be expressed as a unified framework.

However, in real applications, most of the methods mentioned above can only pre-

serve the information of the local neighbors, while ignoring the global structure of the 

data. �e local structure of the dataset may be easily affected by some factors such as 

noise, illumination or corruption. As a result, the performance of clustering or classifi-

cation tasks will be reduced because of these. Fortunately, some researches have shown 

that the recently proposed low-rank representation (LRR) (Liu et al. 2010, 2013) algo-

rithm has a good robustness for datasets that contain noise or corruption. In the past 

few years, a series of robust classification algorithms based on low-rank representation 

have been put forward. �e Robust PCA (RPCA) (Wright et al. 2009; Candès et al. 2011) 

use the low-rank representation to recover the structure of subspaces from the dataset 

corrupted by noise. For subspace segmentation problem, Liu et al. (2010, 2013) use the 

nuclear norm to find the lowest rank representation of a dataset; in this way, the global 

structure of the dataset can be well preserved. Unlike the low-rank representation seek-

ing the lowest rank of the dataset, sparse representation finds the sparest representation 

of a dataset. Zhuang et al. (2012) combine the sparsity and low-rankness together to put 

forward a non-negative low-rank and sparse representation (NNLRS) for dealing with 

the high-dimensional dataset. And then they use the representation coefficient matrix 

to construct the affinity graph for subspace segmentation. �rough the combination of 

sparse representation and low-rank representation, the NNLRS method can both cap-

ture the global structure and the local structure of the dataset.

�rough the analysis of the above problems, a novel method is proposed in this paper 

by combining the graph embedding and sparse regression method in a joint optimiza-

tion framework. And the supervised learning information is also used in the framework 
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to guide the construction of the affinity graph. In this paper, the construction of the 

affinity and graph embedding are combined to ensure the overall optimal solution. In 

the whole learning process, the label information can be accurately propagated through 

the graph construction. �us, the linear regression can learn the discriminative projec-

tion to better adapt to the labels of the samples and improve the classification rate of the 

new samples. In order to solve the corresponding optimization problem, this paper pro-

poses an iterative optimization procedure.

In general, the main contributions of this paper are summarized as follows:

1. Different from conventional methods, by both using the low-rank representation and 

sparse representation which can preserve the global structure and the local structure 

of the data, the proposed GESR-LR method can learn a novel weight graph.

2. By unifying the graph learning, projection learning and label propagation into a joint 

optimization framework, the proposed GESR-LR method can guarantee an overall 

optimum solution.

�e remaining of this paper is organized as follows: “Background and related work” 

section briefly reviews the background and some related works. �e proposed GESR-LR 

method and the corresponding solution are described in “Combined graph embedding 

and sparse regression with structure low-rank representation” section. Extensive experi-

ments are conducted in “Experiments” section. Finally, we conclude the paper in “Con-

clusion” section.

Background and related work

Since the proposed method in this paper is based on low-rank representation and mani-

fold embedding (Nie et  al. 2014), we briefly review the relevant methods. Given the 

dataset X = [x1, x2, . . . , xu, xu+1, xn] ∈ R
m×n, where the labeled samples are denoted as 

xi|
u
i=1

 and the unlabeled samples are denoted as xj|
n
j=u+1

. �e label information of the 

labeled samples is denoted as yi ∈ {1, 2, . . . , c}, where the number of the total classes 

is c. �e label binary indicator matrix Y are defined as follows: given the training sam-

ple xi(i = 1, . . . , n) and its label vector yi ∈ Rc, if xi is the sample from the kth class 

(k = 1, . . . , c), then the k-th entry of the label vector yi is 1 and for the other entries, the 

value is 0. In this paper, the lr,p-norm is defined as follows: 

Low-rank representation (LRR)

Given the dataset X ∈ R
m×n which is drawn from a union of subspaces {�i}

c

i=1
, where c 

is the dimension of the low-dimensional subspaces, and the dataset is corrupted by noise 

matrix E, the objective function of the LRR method is defined as follows:

�Q�r,p =

(

∑u

i=1

(

∑v

j=1

∣

∣Qij

∣

∣

)p/r
)1/p

.

(1)min
Z,E

rank(Z) + γ �E�0

s.t. X = AZ + E
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where A is the dictionary for the low-rank representation, E is the error matrix of the 

noise or corruption and γ is the parameter to control the influence of the error matrix. 

Due to the optimization of the rank norm is NP-hard (Nie et al. 2014), in practice, we 

often use the nuclear norm for relaxation. �us the objective function of the low-rank 

representation is defined as follows:

where �·�∗ represents the nuclear norm which is a relaxation of the rank norm. �·�1 rep-

resents the l1-norm which is a relaxation of the l0-norm for error matrix. If let A = I, we 

can see that the objective function of LRR is equivalent to RPCA while the goal of RPCA 

is to recover an approximate matrix from a corrupted subspace. In real applications, we 

often use the original matrix X as the dictionary. �erefore, the objective of the optimi-

zation problem (2) can be rewritten as:

�ere are many optimization methods for solving the problem (3). After we get the 

final result of representation coefficient matrix Z, we can use is as a kind of similarity to 

construct an affinity graph (|Z| + |ZT|). �en we use the spectral clustering method on 

the affinity graph to obtain the final clustering result.

Flexible Manifold Embedding (FME)

Given the dataset X, we assume the predicted label matrix is F, then we can have 

F = XTW +  1bT if the label is strict to lie in the space of the give matrix X, in which 

1 ∈ R
n×1 is an all 1 vector. W ∈ R

m×c is the projection matrix. However, as the objective 

function F = XTW + 1bT is a linear format, if the samples is from a nonlinear manifold, 

this may be too strict to fit the samples. �erefore, it is reasonable to add a residual item 

in the regression model of FME (Nie et al. 2010). �en the objective function of FME 

is relaxed to F = XTW + 1bT + F0, where F0 is the residual item between the predicted 

label matrix F and XTW + 1bT. �e advantage of this kind of relaxation can make the 

processing of the sample data points on the nonlinear manifolds more flexible. �e goal 

of FME is to predict the sample label matrix F and reduce the residual of regression F0 at 

the same time. �e objective function of FME is defined as follows:

where the two parameters μ and γ are used to balance the influence of the two terms. 

L ∈ R
n×n is the Laplacian matrix and U ∈ R

n×n is the diagonal matrix. tr(·) represents 

(2)
min
Z,E

�Z�∗ + γ �E�1

s.t. X = AZ + E

(3)
min
Z,E

�Z�∗ + γ �E�1

s.t. X = XZ + E

(4)

(

F∗,W∗, F
∗
0

)

= arg min
F ,W ,F0

tr(F − Y )TU(F − Y ) + tr

(

F
T
LF

)

+ µ

(

�W�2 + γ �F0�
2
)
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the trace of a matrix. �e first two terms in (4) is used to propagate the labels from the 

labeled samples to unlabeled samples. �e last two terms are the regression model. If we 

use the XTW + 1bT − F to replace the regression residual F0, then the objective function 

of FME can be expressed as follows:

Combined graph embedding and sparse regression with structure low-rank 

representation

In this section, we introduce the details of the proposed method in this paper. �e 

objective of GESR-LR is to unify the graph embedding and regression into a unified 

framework. �e objective of regression model is to find a projection matrix W ∈ R
m×c 

to match the sample labels F ∈ R
n×c, and use it to classify the new samples. �us, the 

objective function of the regression model can be defined as follows:

where F0 is the regression residual (Nie et al. 2010).

In the following section, we first introduce the motivation of the proposed method of 

GESR-LR, summarize the objective function of the GESR-LR method and propose the 

optimization solution.

Motivations

For the label propagation problem, we usually have the following hypothesis: a data sam-

ple and its nearest neighbors usually belong to the same class, and the nearest neighbors 

would have a big influence in the determination of the labels of new data samples. In 

short, the labels of similar samples should be close and we can propagate the labels to 

similar samples. �erefore, in the construction of an ideal graph we should consider that 

similar data points and their nearest neighbors should be assigned larger weight values. 

However, the evaluation of similarity of most traditional graph construction methods 

mainly depends on the pair-wise Euclidean distance, while the Euclidean distance is very 

sensitive to noise and any other corruption of the data samples (Zhuang et  al. 2012). 

However, these methods can only capture the local structure of the dataset, but ignore 

to preserve the global structure of the dataset. Fortunately, some recent studies show 

that the LRR method can preserve the global structure of the dataset, and it is robust to 

noise and the corruption of the dataset (Liu et al. 2010, 2013). As a result, these low-rank 

properties can be combined with the graph embedding problem, and thus it can address 

the sensitivity with respect to the local and neighbor properties. So, the main idea of 

constructing an informative graph is to use the low-rankness property to preserve the 

local and the global structure of the dataset with noise. Following the above analysis, 

we put forward a novel method of joint graph embedding and sparse regression with 

structure low-rank representation, named GESR-LR, presented in the next sections in 

this paper.

(5)

(

F∗,W∗, F
∗
0

)

= arg min
F ,W ,F0

tr(F − Y )TU(F − Y ) + tr

(

F
T
LF

)

+ µ

(

�W�2 + γ

∥

∥

∥
X
T
W + 1bT − F

∥

∥

∥

2
)

(6)F = X
T
W + F0
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GESR-LR model

�e aim of the proposed GESR-LR method is to design an optimization framework to 

combine graph embedding and sparse regression in order to get a global overall opti-

mum solution. Based on the above analysis of low-rank representation (LRR) and flex-

ible manifold embedding (FME), the objective function of the proposed GESR-LR is 

defined as follows:

where Mij =

∥

∥Xi − Xj

∥

∥

2

2
, U is a diagonal matrix defined as

ς is a large constant such that F
∗l and Y

∗l (l = 1, 2, . . . , c) can be approximately satisfied, 

and F ∈ R
n×c is the predicted labels of both labeled and unlabeled samples. In the objec-

tive function (7), the aim of the first term is to assess the fitness of labels which means 

that the predicted labels F should be close to the labels of the labeled data samples. �e 

second term is the graph embedding and it aims at integrating the regression, graph 

embedding and label propagation for the unlabeled data samples from the labeled data 

samples. For the data point xi, if we get a larger weight Zij, this means that the label F∗j 

has a bigger influence on the prediction of the label F∗i for the data point xi. �e third 

item is used to minimize the regression residual. �e third and fourth items represent 

the regression model, the goal being to learn the projection for fitting the labels of the 

data samples and classifying new data points. In this method, we adopt the l2,1-norm 

to regularize the projection matrix W, so that it is guaranteed that W is sparse in row 

for feature selection. �e last three items adopt the low-rank representation to learn a 

weight graph. �e five parameters α, β, λ1, λ2 and γ are used to balance the influence of 

the corresponding five terms. �erefore, the objective function of the proposed GESR-

LR method can be formulated as follows:

where L  =  D  −  S is the Laplacian matrix, and D is a diagonal matrix with 

Dii =

∑
Zi∗+

∑
Z∗i

2
.

(7)

min

n
∑

i=1

Uii(Fil − Yil)
2 +

n
∑

i=1

n
∑

j=1

∥

∥Fi − Fj
∥

∥

2

2
Zij

+ α

∥

∥

∥
XTW − F

∥

∥

∥

2

2
+ β�W�21

+ �1�Z�∗ + �2tr(Θ(Z ⊙ M)) + γ �E�21

s.t. X = AZ + E, Z ≥ 0

(8)U =

{

ς if xi is tagged
0 otherwise

(9)

min tr

(

(F − Y )TU(F − Y )

)

+ tr(FT
LF)

+ α

∥

∥

∥
X
T
W − F

∥

∥

∥

2

2

+ β�W�21

+ �1�Z�∗ + �2tr(Θ(Z ⊙ M)) + γ �E�21
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The solution of GESR-LR

�e optimization problem of (9) can be solved by calculating W independently and 

updating F and Z iteratively. In order to solve the optimization problem of (9), we intro-

duce an auxiliary variable S to separate the objective function. We firstly convert the 

problem of (9) to the following equivalent optimization problem:

In order to solve the optimization problem, we first transfer the optimization problem 

to the Lagrange function, and the Lagrange function of problem (10) is as follows:

where ϕ(Z, S,E,Y1,Y2,µ) =
µ
2

(

∥

∥

∥
X − AZ − E +

Y1
µ

∥

∥

∥

2

F

+

∥

∥

∥
Z − S +

Y2
µ

∥

∥

∥

2

F

)

 and �A,B� =

tr(AT
B). Y1 and Y2 are the Lagrange multipliers and μ ≥ 0 is a penalty parameter. For 

solving the optimization problem, we use the LADMAP method. By fixing the other 

variables, the LADMAP updates the variables W, F, Z, S and E alternately, and then it 

updates Y1 and Y2.

1. By fixing F, Z and S, W is solved by the following optimization problem:

(10)

mintr

(

(F − Y )TU(F − Y )

)

+ tr

(

F
T
LF

)

+ α

∥

∥

∥
X
T
W − F

∥

∥

∥

2

2

+ β�W�21

+ �1�Z�∗ + �2tr(Θ(Z ⊙ M)) + γ �E�21

s.t. X = AZ + E, Z = S, S ≥ 0

(11)

L = min

n
∑

i=1

Uii

c
∑

l=1

(Fil − Yil)
2 +

n
∑

i=1

n
∑

j=1

∥

∥Fi − Fj
∥

∥

2

2
Sij + α

∥

∥

∥
XTW − F

∥

∥

∥

2

2
+ β�W�21

+ �1�Z�∗ + �2tr(Θ(S ⊙ M)) + γ �E�21

+ �Y1,X − AZ − E� + �Y2,Z − S�

+
µ

2

(

�X − AZ − E�2F + �Z − S�2F

)

= min

n
∑

i=1

Uii

c
∑

l1

(Fil − Yil)
2 +

n
∑

i=1

n
∑

j=1

∥

∥Fi − Fj
∥

∥

2

2
Sij + α

∥

∥

∥
XTW − F

∥

∥

∥

2

2
+ β�W�21

+ �1�Z�∗ + �2tr(Θ(S ⊙ M)) + γ �E�21

+ �Y1,X − AZ − E� + �Y2,Z − S�

+ ϕ(Z, S,E,Y1,Y2,µ) −
1

2µ

(

�Y1�
2
F + �Y2�

2
F

)

s.t. S ≥ 0

(12)L(W ) = arg min
W

∥

∥

∥
X
T
W − F

∥

∥

∥

2

2
+β�W�21
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By setting the derivative ∂L(W )
∂W

= 0, we have the following equation:

where Dii = 1

2�wi�2

Or equivalently

where A = (XXT
+ βD)−1

X .

2. By fixing W, S and Z, F is solved by the following optimization problem:

�is is an unconstrained optimization problem. Let W  =  AF and integrate in the 

objective function and find the derivation of the problem (11) with respect to F, by mak-

ing the value of the derivative to zero, and we have

where B = ((XTA − I)T(XTA − I)).

3. By fixing W, S and F, Z is solved by the following optimization problem:

where ∇Zϕ is the partial differential of ϕ with respect to Z, θ = �A�2
F
, �·�F represents the 

Frobenius norm.

(13)
∂L(W )

∂W
= 2XX

T
W − 2XF + 2βDW = 0

(14)W =

(

XX
T

+ βD

)

−1

XF = AF

(15)L(F) = arg min
F

tr

(

(F − Y )TU(F − Y )

)

+ tr

(

F
T
LF

)

+ α

∥

∥

∥
X
T
W − F

∥

∥

∥

2

F

(16)
∂L(F)

∂F
= UF − UY + LF + αBF = 0

(17)F = (U + L + αB)−1
UY

(18)

L

(

Z
k+1

)

= arg min
Z

�1�Z�∗ + �∇Zϕ(Z, S,E,Y1,Y2,µ),Z − Zk� +
µθ

2
�Z − Zk�

2
F

= arg min
Z

�Z�∗

+
µθ

2

∥

∥

∥

∥

∥

∥

Z − Z
k +

[

−XT

(

X − AZK − E +
Y1
µ

)

+

(

Zk − S +
Y2
µ

)]

θ

∥

∥

∥

∥

∥

∥

2

F
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where J is the thresholding operator with respect to the singular value �1
θµ

. A proximal 

optimization method can be used to find the solution of Z.

4. By fixing W, Z and F, S is solved by the following optimization:

Let R = λ2M + V, Vij =

∥

∥Fi − Fj
∥

∥

2

2
. �e optimization problem in (20) can be decom-

posed into n independent sub-problems, and each of these sub-problems can be formu-

lated as a weight non-negative sparse coding problem as follows:

where (Sk)ig and (R)ig are the g-th elements of i-th columns of matrices Sk and R. �ere-

fore, the problem of (21) has a closed form solution (Yang et al. 2013; Zhang et al. 2012).

5. By fixing W, Z, S and F, E is solved by the following optimization problem as follows:

from the above analysis, we can find that, on one hand, the deduction of the variables F, 

Z, S and E are closely dependent. On the other hand, the solution of variable W is only 

related to the variable F. �erefore, we can update the variables F, Z, S and E, iteratively, 

by fixing the other variables fixed. We can calculate the variable W by W = AF after get-

ting the optimal solution of F.

�e overall optimization framework for the proposed GESR-LR method is described 

in Algorithm 1.

(19)Zk+1
= J �1

θµ



Zk
−

�

−XT
�

X − AZK
− E +

Y1
µ

�

+

�

Zk
− S +

Y2
µ

��

θ





(20)

L

(

S
k+1

)

= arg min
S

tr

(

F
T
LF

)

+ �2tr

(

Θ

(

S
k

⊙ M

))

+
µ

2

∥

∥

∥

∥

S
k

−

(

Z +
Y2

µ

)
∥

∥

∥

∥

2

F

(21)min
Si

∑n

g=1

(

Sk
)i

g
⊙ Ri

g +
µ

2

∥

∥

∥

∥

(

Sk
)i

−

(

Zk+1
+

Y2

µ

)
∥

∥

∥

∥

2

2

s.t. S ≥ 0

(22)L(E) = arg min
E

γ �E�21 +
µ

2

∥

∥

∥

∥

X − AZ +
Y1

µ
− E

∥

∥

∥

∥

2

F
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Experiments

Human social systems and human facial structure recognition is the emergent outcome 

of adaptation over a period of time (Holland and John 2012). Here, in the experiments 

described in this paper, we have used several datasets to evaluate the performance of the 

proposed GESR-LR method (http://www.cad.zju.edu.cn/home/dengcai/Data/data.html), 

including two human face images datasets (i,e., the ORL and the extended Yale B data-

sets) in addition to an object dataset (COIL-20), a spoken letter recognition dataset (Iso-

let 5) and a handwritten digit dataset (USPS dataset). �e datasets contain the common 

images information in daily life, and they are widely used in the areas of image process-

ing, machine learning, etc. �e computing platform is matlab R2015B in a PC with CPU 

i7 2600, RAM 16G,

µ

http://www.cad.zju.edu.cn/home/dengcai/Data/data.html
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Datasets descriptions

1. ORL dataset �e ORL dataset consists of 400 face images of 40 people. �ese face 

images are taken under different situations, such as different time, varying lighting, 

facial details (glasses/no glasses) and facial expressions (open/closed eyes, smiling/

not smiling).

2. �e extended Yale B dataset �e extended Yale B dataset contains the face images of 

38 people, each individual has around 64 frontal face images which are taken under 

different illuminations. For computing efficiency, we adjust the size of each image to 

32 × 32 pixels in this experiments.

3. COIL-20 dataset �e COIL-20 dataset contains the images of 20 objects, each object 

has 72 images and the images are collected from varying every five degrees. For com-

putation efficiency purposes, we adjust the size of each image to 32 × 32 pixels in 

this experiments.

4. ISOLET 5 dataset �e ISOLET spoken letter recognition dataset consists of 150 sub-

jects, where each person speaks each letter from the alphabet twice. �e speakers are 

divided into 5 groups, each group has 30 speakers, and this is marked as ISOLET 5 

dataset. In this work, the ISOLET 5 dataset contains 1559 images, with images from 

26 people, each speaker providing 60 images.

5. USPS dataset �e USPS dataset is a handwritten digit dataset, which contains two 

parts: the training set with 7291 samples, and the test set with 2007 samples. In this 

experiment, we randomly selected 7000 images of the 10 letters. �us, there are 700 

images in each category. �e size of each images is 16 × 16 pixels.

Classi�cation results

In this section, we evaluate the performance of the proposed GESR-LR method. For the 

semi-supervised problem, we compare the proposed GESR-LR method with the follow-

ing algorithms: FME (Nie et al. 2010), GFHF (Zhu et al. 2003), NNSG, SDA (Cai et al. 

2007), LapRLS/L (Belkin et al. 2006), Transductive component analysis (TCA) (Liu et al. 

2008), and MFA (Yan et  al. 2007). We also use the learned projection matrix to clas-

sify the new samples. �e classification method used in our experiments is the near-

est neighbor (NN) classification. For the NNSG and GFHF methods, the classification 

method is as indicated in the corresponding research paper in (Zhou et al. 2004). For 

some embedding algorithms, we first learn the graph Laplacian matrix L while the graph 

weight matrix is defined as Sij = e
−

∥

∥

∥
xi−xj

∥

∥

∥

2

σ . �e number of the nearest neighbors are cho-

sen from the set of {3, 4, 5, 6, 7, 8, 9, 10}, and the kernel parameters are from the set of 

{10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103, 104}. �e final dimensions of some algorithms, 

such as FME, LapRLS/L, SDA, TCA and MFA are set to the number of the classes 

and the parameters in these methods are set to the best value according to the related 

research papers. While the parameters of the proposed method GESR-LR (α, β, λ1, λ2 

and γ) are chosen from the range of (10−4, 100). For the sake of computational efficiency, 

all data in these data sets were eventually reduced to 60D vectors.

We performed the experiments on the above datasets: ORL, the extended Yale B, 

COIL-20, Isolet5 and USPS. For every dataset, we randomly selected 50 % samples of 

each subject as the training sample set, while the remaining samples are selected as the 

testing set. For the semi-supervised classification, we select p samples per subject as the 
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labeled data samples, while the remaining formed the unlabeled data samples. �e unla-

beled data samples are used to test the performance of semi-supervised classification, 

while the testing sample set is used to test the performance of classifying the new data 

samples with the learned projection matrix.

For the dataset of ORL, COIL-20, Isolet5 and USPS, the number of the labeled data 

sample is set to p = 1, 2 and 3, respectively. For the dataset of the extended Yale B, the 

number of the labeled data samples is set to p = 5, 10 and 15, respectively. In addition to 

the MFA algorithm, where the labeled samples were used for subspace learning, for the 

other algorithms, the training samples are used to learn the projection matrix. We run 

the experiments 30 times on the unlabeled data samples and the test data samples, and 

we obtain the mean classification accuracy and standard deviation (%). In the Tables 1, 2, 

3, 4, 5, the corresponding experiments are referred as Semi and Test respectively. From 

these experimental results, we can get the following conclusions:   

1. In terms of classification accuracy, the semi-supervised classification algorithms 

TCA, LapRLS/L, SDA get a higher classification accuracy than the supervised classi-

fication algorithm MFA. �is shows that the unlabeled data samples help to improve 

the performance of the semi-supervised classification.

2. In some datasets, the GFHF algorithm achieves higher semi-supervised classification 

accuracy than that of TCA, LapRLS/L and SDA algorithms, especially on the data-

sets which have some strong variations. For example, the extended Yale B dataset has 

Table 1 Semi-supervised classi�cation results of di�erent algorithms on the COIL-20 data-

set

Method P = 1 P = 2 P = 3

Semi (%) Test (%) Semi (%) Test (%) Semi (%) Test (%)

GFHF 78.65 ± 2.07 – 81.32 ± 1.77 – 84.56 ± 2.02 –

MFA – – 69.87 ± 2.24 70.10 ± 2.52 76.54 ± 2.28 76.27 ± 2.37

SDA 64.92 ± 2.07 65.80 ± 2.54 72.24 ± 2.19 73.19 ± 2.15 78.89 ± 2.05 78.19 ± 2.66

TCA 71.08 ± 2.23 70.83 ± 2.51 78.17 ± 3.15 77.29 ± 2.18 81.15 ± 2.32 80.96 ± 2.27

LapRLS 69.46 ± 2.58 69.73 ± 2.76 75.21 ± 2.66 75.16 ± 2.31 79.61 ± 2.54 79.85 ± 2.59

FME 76.31 ± 2.09 74.46 ± 2.13 82.35 ± 2.18 79.14 ± 2.39 85.86 ± 1.92 84.70 ± 2.03

NNSG 79.15 ± 2.86 75.31 ± 2.01 83.79 ± 2.69 80.88 ± 2.43 86.62 ± 2.29 82.13 ± 2.24

GESR-LR 81.09 ± 2.33 76.79 ± 2.18 85.29 ± 2.62 81.07 ± 2.59 87.12 ± 2.15 83.32 ± 2.16

Table 2 Semi-supervised classi�cation results of di�erent algorithms on the USPS dataset

Method P = 1 P = 2 P = 3

Semi (%) Test (%) Semi (%) Test (%) Semi (%) Test (%)

GFHF 72.39 ± 3.60 – 79.66 ± 3.67 – 83.39 ± 3.07 –

MFA – – 68.74 ± 3.82 66.52 ± 4.23 72.76 ± 4.21 70.57 ± 3.19

SDA 56.86 ± 3.11 54.91 ± 3.92 67.37 ± 3.26 67.43 ± 2.91 72.66 ± 2.64 69.32 ± 3.20

TCA 70.39 ± 3.38 65.36 ± 3.17 76.52 ± 3.21 71.27 ± 3.28 79.58 ± 3.37 72.76 ± 2.94

LapRLS 57.89 ± 4.08 58.42 ± 4.36 69.03 ± 3.86 69.39 ± 2.49 76.02 ± 3.28 74.08 ± 2.79

FME 74.75 ± 6.52 67.91 ± 5.04 79.64 ± 3.41 73.26 ± 3.19 82.15 ± 2.26 74.97 ± 2.72

NNSG 76.98 ± 3.80 68.92 ± 3.37 81.17 ± 2.59 76.85 ± 2.57 84.50 ± 2.13 76.38 ± 2.54

GESR-LR 78.49 ± 3.65 69.56 ± 3.18 83.61 ± 2.36 77.28 ± 2.29 86.07 ± 2.73 78.20 ± 2.17
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strong illumination changes and expression. In this case, the label propagation may 

not perform well. �is phenomenon is more obvious on the extended Yale B dataset.

3. On the unlabeled dataset, the performance of the proposed GESR-LR algorithm is 

obviously better than the compared methods. �is indicates that the structure of the 

graph obtained by the GESR-LR method has more discriminant information, which 

is more effective for the label propagation. �is also suggests that simultaneously 

performing label propagation and graph learning is necessary and effective.

Table 3 Semi-supervised classi�cation results of  di�erent algorithms on  the ISOLET5 

dataset

Method P = 1 P = 2 P = 3

Semi (%) Test (%) Semi (%) Test (%) Semi (%) Test (%)

GFHF 49.29 ± 2.15 – 56.26 ± 2.44 – 61.13 ± 2.14 –

MFA – – 61.19 ± 2.14 61.46 ± 2.89 65.52 ± 2.27 65.19 ± 2.36

SDA 52.01 ± 2.38 51.19 ± 2.54 61.31 ± 2.28 61.57 ± 2.35 67.55 ± 2.28 67.91 ± 2.06

TCA 49.19 ± 2.94 49.30 ± 2.13 59.77 ± 2.36 59.16 ± 2.42 64.72 ± 2.37 65.01 ± 2.38

LapRLS 51.71 ± 3.03 50.98 ± 2.84 61.63 ± 2.37 61.85 ± 2.21 65.19 ± 1.89 65.25 ± 2.05

FME 49.92 ± 2.40 50.17 ± 2.49 59.92 ± 2.45 59.88 ± 2.56 65.98 ± 1.64 66.13 ± 2.29

NNSG 53.39 ± 2.26 51.75 ± 2.37 62.84 ± 2.57 62.63 ± 2.26 67.33 ± 2.21 67.94 ± 2.15

GESR-LR 55.01 ± 2.25 52.26 ± 2.82 63.09 ± 2.12 63.13 ± 2.43 69.26 ± 2.24 70.03 ± 1.78

Table 4 Semi-supervised classi�cation results of di�erent algorithms on the ORL dataset

Method P = 1 P = 2 P = 3

Semi (%) Test (%) Semi (%) Test (%) Semi (%) Test (%)

GFHF 52.81 ± 4.31 – 63.26 ± 3.78 – 68.97 ± 3.54 –

MFA – – 78.22 ± 4.25 79.11 ± 3.76 85.40 ± 3.89 84.78 ± 2.54

SDA 65.29 ± 2.72 65.32 ± 2.83 75.84 ± 3.61 76.92 ± 3.25 82.44 ± 2.54 82.95 ± 2.26

TCA 64.75 ± 2.05 64.61 ± 2.29 77.02 ± 3.15 78.80 ± 2.57 84.49 ± 3.12 84.27 ± 2.67

LapRLS 61.49 ± 3.31 59.88 ± 3.10 78.29 ± 2.54 77.86 ± 2.71 85.83 ± 2.75 85.94 ± 2.39

FME 68.25 ± 2.58 66.69 ± 3.24 80.80 ± 3.25 80.73 ± 2.76 85.92 ± 3.67 84.35 ± 2.64

NNSG 71.86 ± 3.29 67.77 ± 3.73 82.57 ± 2.65 82.91 ± 2.15 86.38 ± 3.83 85.52 ± 2.97

GESR-LR 73.08 ± 3.17 69.29 ± 3.68 85.52 ± 2.14 85.64 ± 2.89 87.45 ± 3.54 86.12 ± 2.99

Table 5 Semi-supervised classi�cation results of  di�erent algorithms on  the extended 

Yale B dataset

Method P = 5 P = 10 P = 15

Semi (%) Test (%) Semi (%) Test (%) Semi (%) Test (%)

GFHF 27.49 ± 1.27 – 34.76 ± 2.11 – 40.13 ± 2.02 –

MFA – – 69.52 ± 3.19 70.08 ± 3.26 73.90 ± 2.72 74.15 ± 3.42

SDA 51.92 ± 2.36 52.06 ± 1.58 66.76 ± 1.65 67.49 ± 1.41 73.40 ± 1.19 73.08 ± 1.78

TCA 51.47 ± 2.19 52.56 ± 2.34 65.94 ± 1.95 66.76 ± 2.25 74.38 ± 1.76 74.28 ± 2.37

LapRLS 60.16 ± 2.24 59.47 ± 1.83 74.85 ± 1.67 74.19 ± 1.47 78.64 ± 2.54 78.08 ± 2.67

FME 63.46 ± 2.14 63.75 ± 1.89 76.92 ± 2.38 74.37 ± 1.22 80.38 ± 1.77 78.19 ± 2.03

NNSG 72.37 ± 2.25 66.92 ± 1.64 82.25 ± 1.64 75.42 ± 1.27 83.38 ± 1.93 79.06 ± 1.25

GESR-LR 75.26 ± 2.59 68.13 ± 1.54 84.11 ± 1.57 76.61 ± 1.95 85.87 ± 1.69 80.52 ± 1.28



Page 14 of 17You et al. Complex Adapt Syst Model  (2016) 4:22 

�e GESR-LR method requires five parameters (α, β, λ1, λ2 and γ) to be set in advance. 

Figure 1 shows the classification accuracy versus the variations of the five parameters, 

respectively, on the extended Yale B dataset. 50 % of samples per subject were randomly 

selected as training samples and remaining samples were used as test samples. We report 

the mean recognition accuracy over 20 random splits. Obviously, it can be found that 

when the parameters vary in a relatively large ranges, the performance of the proposed 

GESR-LR method is more stable. 

Next, we consider the effectiveness of the algorithm when different dimension sizes 

are used. �e experiment is conduct on the extended Yale B dataset. We also report the 

mean recognition accuracy over 20 random splits. We can see from the Fig. 2, when use 
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Fig. 1 Classification accuracy versus parameters on the extended Yale B dataset
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larger dimensions of the feature, the accuracy increase, while when the number of fea-

tures is over 60, the accuracy increases slowly and it is much stable.

Conclusion

Complex adaptive systems (CAS) involve the processing of large amounts of high dimen-

sional data. It is thus paramount to develop and employ effective machine learning tech-

niques to deal with such high dimensional and large datasets generated from the CAS 

area. In this paper, we proposed a novel semi-supervised learning method termed as 

graph embedding and sparse regression with structure low rank representation (GESR-

LR), by combing graph embedding and sparse regression, which are performed simul-

taneously in order to get an optimal solution. Different from some traditional methods, 

the proposed GESR-LR method takes into account both the local and global structure 

of the dataset to construct an informative graph. Extensive experiments on five datasets 

demonstrate that the GESR-LR method outperform the state-of-the-art methods. In our 

future work, we will extend the ideas presented in this paper and will apply the proposed 

GESR-LR method to other challenging problems.
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